Czech Technical University in Prague, Klokner Institute

Competitive comparison of load combination models

Milan Holicky and Miroslav Sykora Czech Technical University in Prague, Klokner Institute

> Introduction *Comparison based on previous experience* Numerical example Concluding remarks

ISUME 2011 1st International Symposium on Uncertainty Modelling in Engineering, 2 - 3 May 2011, Prague, Czech Republic

Introduction

- Civil engineering structures often exposed to *combinations of time-variant loads* (climatic actions, imposed loads)
- *Several* load combination *models* applied in reliability studies
- The present study aimed at comparison of *three selected approaches*:
 - Rule proposed by *Turkstra* (1970)
 - Rectangular wave renewal processes with fixed durations of pulses, Ferry Borges & Castanheta (1971) *FBC models*

- Rectangular wave *renewal processes* with random durations between renewals and random durations of load pulses, Rackwitz (1998) and Sykora (2005)

• Comparison based on *previous experience*, *numerical study*

Basic assumptions

- *Resistance*, geometry variables, permanent actions and model uncertainties *time-invariant*
- *Time-variant actions* described by stationary, ergodic and regular *processes*

Turkstra's rule

4

FBC models

Renewal processes

• *Upper bound* on the failure probability in most applications (initial failure probability + outcrossing rate)

Comparison based on previous experience

• Applicability of reliability methods

(+) *Turkstra* - any of well-established methods for the time-invariant analysis

(-) *FBC models* – Rackwitz-Fiessler algorithm available in few software products

(-) *Renewal processes* – upper bound unavailable in software products

• Accuracy

(0) *Turkstra* – sufficiently accurate in most cases (given the leading action is identified)

(0) *FBC models* – exact solution (applicability to short-term actions like storms and earthquakes disputable)

(0) *Renewal processes* – applicable for many types of actions, crude approximation when time-invariant variables dominant

Comparison based on previous experience

Estimation of partial factors (calibration studies)

 (+) *Turkstra* - straightforward
 (-) *FBC models* – easy for time-invariant variables, difficulties for time-variant loads
 (0) *Renewal processes* – straightforward when a dominant load case can be identified

Non-stationary cases (out of the scope of the contribution)

 (-) *Turkstra* and *FBC models* – upper bound (maximum load effect and minimum resistance) may be overly conservative
 (+) *Renewal processes* – efficient analysis using the Laplace transform

Numerical example

- Reliability analysis of low-rise frames exposed to *snow* and *wind*, Schleich et al. (2002) and Sadovsky & Pales (2008)
- Design according to Eurocodes
- Models for the *monthly maxima* of the climatic loads meteorological data for six locations in Germany
- **Snow** present with the **probability** p_{on} ; wind always present

Basis of analysis

- *Limit state function*: $g[\mathbf{X}(t)] = K_R R K_E[G + S(t) + W(t)]$
- Reference period 50 years

Variable	Dist.	μ_X/x_k	V_X	$p_{\text{on},X}$
Resistance R	LN	1.18	0.08	-
Permanent load G	Ν	1	0.10	-
Snow on roof <i>S</i> (Münster)	GU	0.26	1.17	0.23
Wind action W (Münster)	GU	0.17	0.67	1
Resistance uncertainty K_R	LN	1.15	0.05	-
Load effect uncertainty K_E	LN	1.0	0.10	_

• Parameter - *load ratio* $\chi = (s_k + w_k) / (g_k + s_k + w_k)$

Reliability index – frame A ($\chi = 0.8$)

One dominant action (frame A – snow, frame C - wind)

Reliability index – frame B ($\chi = 0.8$) Comparable effects of snow and wind (frame B)

Reliability index vs. χ – frame B, Berlin

Partial factors γ_{M0} and γ_G vs. χ – frame B, Berlin ($\beta_t = 3.8$)

Partial factors γ_S and $\gamma_W \times \psi_W$ vs. χ – frame B, Berlin ($\beta_t = 3.8$)

Conclusions

- Selection of a model for the *load combination* may be a *key issue* of reliability analysis.
- *Comparison* of the three approaches reveals that:
- 1. Turkstra's rule:

(+) Reliability can be assessed by *any method* for the time-invariant analysis.

(+) Estimation of *partial factors* is *straightforward*.

(0) When applied strictly as proposed, *failure probability* may be *underestimated* (error insignificant).

2. Ferry Borges-Castanheta models:

(+) The *exact solution* is found if time-variant loads are well described by FBC models.

(-) Rackwitz-Fiessler algorithm may be unavailable in software.

(-) Estimation of *partial factors* may be *complicated*.

Conclusions

3. Renewal processes:

(0) Estimation of *partial factors* is *straightforward* if a dominant load case is identified.

(-) For dominant time-invariant variables, *conservative results* are obtained.

(-) *Upper bound* on failure probability is *not available* in software products.

- For common studies, Turkstra's rule is recommended (verification by FBC models).
- Renewal processes may be useful for non-stationary conditions.

More details: Sýkora, M. - Holický, M. Comparison of load combination models for probabilistic calibrations (to be published). In *Proc. ICASP11, 1-4 August, 2011, ETH Zurich*, Switzerland, 2011.

Czech Technical University in Prague, Klokner Institute

Milan Holicky and Miroslav Sykora miroslav.sykora@klok.cvut.cz

Competitive comparison of load combination models

Thank you for your attention.

References:

ISUME 201

Ferry Borges & Castanheta (1971) 'Structural Safety', Course 101 (2nd ed.). Lisbon: Laboratorio National de Engenharia Civil.
Rackwitz (1998) 'Computational Techniques in Stationary and Non-Stationary Load Combination – A Review …', J Structur Eng.
Sykora (2005) 'Load Combination Model Based on Intermittent Rectangular Wave Renewal Processes', ICOSSAR 2005.
Turkstra (1970) 'Theory of Structural Design Decisions', University of Waterloo, Ontario, Canada

> 1st International Symposium on Uncertainty Modelling in Engineering, 2 - 3 May 2011, Prague, Czech Republic