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1 Introduction

RegNeN (the abbreviation of Regression by Neural Network) is a C/C++ software package

for computing a regression for given data using Artificial Neural Network (ANN). Software is

divided in to two separate parts nnTrainer which is used for training of neural network and

nnEvaluator which is used for evaluating given experiment. Both parts need to be compiled

with static library containing routines for sqlite3, xml and cmaes.

Usage of RegNeN should not be dependent on the used operating system, but minor

problems can arise when compiling for non-traditional operating systems. Compiling for

Unix and Microsoft Windows is described in section 3.

This software was created with support of the Czech Science Foundation through project

No. 105/11/P370.
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2 About RegNeN

2.1 nnTrainer & nnEvaluator source files

This software is distributed as source files, so the logical first step at using RegNeN is

compilation. In the table 2.1 are listed all sources files with an indication for which target is

particular file needed.

Filename Size
Target

Commentary
nnTrainer nnEvaluator

BP.cpp 5 kB ◦ ◦
BP.h 1 kB ◦ ◦

cmaes.h 96 kB ◦ ◦
header files for static library

cmaesinterface.h 5 kB ◦ ◦
DataManager.cpp 13 kB ◦ ◦
DataManager.h 6 kB ◦ ◦
dbDataUtils.cpp 15 kB ◦ ◦
dbDataUtils.h 3 kB ◦ ◦
evallogger.cpp 2 kB ◦
evallogger.h 1 kB ◦

evaluaterMain.cpp 4 kB ◦ main function for nnEvaluator
general.cpp 5 kB ◦ ◦
general.h 2 kB ◦ ◦
makefile 2kB makefile for Unix system

mtwister.cpp 6 kB ◦ ◦
mtwister.h 3 kB ◦ ◦

Neuronka.cpp 25 kB ◦ ◦
Neuronka.h 5 kB ◦ ◦
nnExternal ◦ ◦ !! static library !!

NNtraining.cpp 8 kB ◦ ◦
NNtraining.h 2 kB ◦ ◦

pugiconfig.hpp 3 kB ◦ ◦
header files for static library

pugixml.hpp 45 kB ◦ ◦
RecurrentNN.cpp 8 kB ◦ ◦
RecurrentNN.h 2 kB ◦ ◦
scalingann.cpp 8 kB ◦ ◦
scalingann.h 2 kB ◦ ◦

sqlite3.h 325 kB ◦ ◦ header file for static library
Standartizor.cpp 11 kB ◦ ◦
Standartizor.h 5 kB ◦ ◦

Statistics.h 4 kB ◦ ◦
trainMain.cpp 4 kB ◦ main function for nnTrainer

Table 2.1: Source files with indication for which target is particular file needed.
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2.2 Static library nnExternal source files

For the static library are used publicly available libraries from various authors, see ta-

ble 2.2.

filename size commentary
cmaes.cpp 96 kB

Covariance Matrix Adaptation Evolution Strategy by
Nikolaus Hansen

cmaes.h 5 kB
cmaes interface.h 3 kB

pugixml.cpp 267 kB
Light-weight C++ XML processing library by Arseny
Kapoulkine

pugixml.hpp 45 kB
pugiconfig.hpp 3 kB

sqlite3.c 4601 kB Amalgamation of many separate C source files from
SQLitesqlite3.h 325 kB

Table 2.2: Files needed to compile static library
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3 Compilation

3.1 Unix systems

Compilation on Unix system should be carried by g++ compiler (with partial support of

C++0x), gcc compiler and performed on included makefiles. To compile static library use

command make in folder ./nnExternal which contain prepared makefile. To compile only

the nnTrainer use the command make train and for compiling only the nnEvaluator use

the command make eval. To compile nnTrainer and nnEvaluator at once, use command

make.

3.2 Microsoft Windows

The compilation of RegNeN on Microsoft Windows systems, could be done by many

methods and software solutions, but we are only describing compilation using Microsoft

Visual Studio software. Remember that the used compiler need to have partial support of

C++0x.

MS Visual Studio:

At first, you need to compile a static library. We recommend to create a Win32 Project and

follow Win32 Application Wizard to create a project for static library (*.lib). Then include

all necessary files (all files listed in table 2.2) and compile them into a static library with

name of your choice.

For nnTrainer and nnEvaluator you can create multi-target project or separate project

for each part. Type of both targets should be Console Application. Then include all necessary

files (all files listed in table 2.1) for each target respectively. Do not forget to include already

compiled static library.
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4 SQLite

Inputs and outputs of RegNeN software are performed using free to use embedded re-

lational SQL database engine called SQLite. But because everything about SQLite has

already been written elsewhere, we will provide only brief information in the following

paragraphs. For further information we would like to refer you to the SQLite homepage

http://www.sqlite.org/.

4.1 Installation

Because of precompiled binaries for various operating systems, the installation should

be fairly easy. The more so if you are using Unix OS. Then you just have to check if you

already have SQLite installed on your machine, because today almost all the flavors of Unix

OS are being shipped with SQLite. On the other hand if you have not SQLite installed

or you are using Microsoft Windows you need to download and install SQLite. Just go to

http://www.sqlite.org/download.html and download respective files. For Unix OS we

recommend sqlite-autoconf-*.tar.gz and for Microsoft Windows sqlite-shell-win32-*.zip and

sqlite-dll-win32-*.zip. On Unix follow the following steps:

$tar xvfz sqlite-autoconf-3071502.tar.gz

$cd sqlite-autoconf-3071502

$./configure --prefix=/usr/local

$make

$make install

$

On Microsoft Windows create a folder (for example C:\sqlite) and unzip two downloaded

files in this folder which will give you sqlite3.def, sqlite3.dll and sqlite3.exe files.

Then you can add C:\sqlite in your PATH environment variable and finally go to the

command prompt and issue sqlite3 command, which should display a result something as

below.

C:\>sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>
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Note: You do not need to add C:\sqlite in your PATH environment variable, but then

you have to use the sqlite3 command only in directory where you have the unzipped files

sqlite3.def, sqlite3.dll and sqlite3.exe.

4.2 Usage

Using SQLite is same on both systems Unix an Microsoft Windows. First you need to

create and fill your first database. In order to do that, we recommend to use any kind

on database manager, or use SQLite commands in command prompt. For further informa-

tion please see following tutorials: http://www.tutorialspoint.com/sqlite/index.htm or

http://zetcode.com/db/sqlite/.
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5 Usage of RegNeN

5.1 Preprocessing & input files

As mentioned above the inputs and outputs of data to or from RegNeN are performed

using SQL database engine called SQLite. But before SQLite can do the work for you, you

need to tell SQLite which database to use, which table and data from table to use and

optionally how to scale them. For that purpose the input XML file in specified format is

used, see the example below.

<?xml version="1.0"?>

<DBPATTERNS>

<DBPATTERN>

<INPUTS>

<SCALE type="LIN" min="-1" max="1">

<COLUMN>name_of_column</COLUMN>

</SCALE>

<SCALE type="LOG" min="-1" max="1">

<COLUMN>name_of_column</COLUMN>

</SCALE>

<SCALE type="EXP" min="-1" max="1">

<COLUMN>name_of_column</COLUMN>

</SCALE>

</INPUTS>

<OUTPUTS>

<SCALE type="LIN" min="-1" max="1">

<COLUMN>name_of_column</COLUMN>

</SCALE>

<SCALE type="LOG">

<SCALE type="LIN" min="-1" max="1">

<COLUMN>name_of_column</COLUMN>

</SCALE>

</SCALE>

</OUTPUTS>

<SET>WHERE p_id BETWEEN 1 and 10</SET>

<SET>WHERE p_id BETWEEN 11 AND 20</SET>

<SET>WHERE p_id BETWEEN 21 AND 30</SET>

<DB>path_to_database</DB>

<TAB>name_of_table</TAB>

</DBPATTERN>

</DBPATTERNS>

Every used tag have to begin with opening tag <TAG> and end with closing tag </TAG>.

The XML file start with this first line <?xml version="1.0"?>. The next tags <DBPATTERNS>

and nested <DBPATTERN> are mandatory and every other tags should be nested inside of them.
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After that follows the tag <INPUTS> to specify input data. Each column of input table have

to be specified by its name between tags <COLUMN> and </COLUMN>. The name of column need

to correspond with name of column in database. The input data can also be scaled. To do

that just surround the particular column specification by tag <SCALE type="LIN" min="-1"

max="1">. Parameter type set type of scaling which can be linear "LIN", logarithmic "LOG"

and exponential "EXP". Optional parameters min and max set minimal and maximal values

for scaling. Scaling can be also nested in another scaling as shown in example.

The tag <OUTPUTS> stands on the same level as tag <INPUTS>. All tags to specify the

outputs, scaling of outputs and name of the columns which stores the results are same as

in the input section. These outputs are needed for the ANN training phase as a reference

results.

Following tags after outputs specify the cross-validating sets. As you can see in the

example, the tag <SET> is used three times. The number of repetition of this tag determines

number of sets for cross-validation. Each set is given by this specific format:

<SET>WHERE p_id BETWEEN x and y</SET>

Where p id is name of column storing the primary keys. In other words your table have

to contain column with numbers from 1 to n, where n is number of rows of the table. The

x stands for starting row number of set and y for last row of set. The cross-validating sets

don’t need to bee equal size, but need to include all rows of table. There have to be at least

two sets.

Before the closing tags </DBPATTERN> and </DBPATTERNS> need to be tags <DB> </DB>

which surrounds the path to database and <TAB> </TAB> tags which surrounds name of table

in database.

5.2 Training of Neural Network

After creating the input database and the configuration file you have to run the training

part of RegNeN. To do that just execute nnTrainer with parameters -d which specifies the

name4 of the configuration file (*.xml type) and the parameter -o specifying the name4 of

the output file which will contain the trained ANN (also *.xml type). Additional *.csv files

containing information about adaptation process are also created, but for these there is no

configuration. If anything goes wrong during the process, the errors will be saved in the file

named ERRORS.txt. Example of the executing command can be seen below.

4Absolute or relative paths can be used instead of names.
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nnTrainer -d configuration_file.xml -o trained_ANN.xml

5.3 Evaluation of experiment using Neural Network

To use the trained neural network and evaluate some data the configuration file will be

needed. If you want to evaluate the same data that was used for training, do not change

anything in the configuration file. The outputs and cross-validation sets will be ignored5

(output data will not be overwritten). To evaluate new data the name of table or path to

database have to be changed. Do not change anything else because only data with the same

format as the data used for training can be evaluated.

To run the process the nnEvaluator need to be executed with three mandatory and one

optional parameter. The first parameter is -d and is followed by name4 of the configuration

file. Second parameter is -n with the name4 of the output file from the training phase. The

third parameter is -o with name4 of the file to store results (*.csv type). And the fourth

parameter -e is followed by the name4 of file to store calculated differences between given

values and values predicted by ANN (also *.csv type). This last parameter is optional and

if it is not given the differences will not be calculated. And same as in the training phase all

errors will be saved in file named ERRORS.txt and example of the executing command can

be seen below.

nnEvaluator -d configuration_file.xml -n trained_ANN.xml -o output_file.csv

-e difference.csv

5Depending on the input parameters the outputs will be ignored or used to calculate difference between
given output value and the prediction given by ANN. In any case the output values need to have some value.
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6 Theory

6.1 Introduction

Development in numerical modeling provides the possibility to describe a lot of complex

phenomena in material or structural behavior. The resulting models are, however, often

highly nonlinear and defined by many parameters, which have to be estimated so as to

properly describe the investigated system and its behavior. The aim of the model calibration

is thus to rediscover unknown parameters knowing the experimentally obtained response of

a system to the given excitations. The principal difficulty of model calibration is related to

the fact that while the numerical model of an experiment represents a well-defined mapping

from input (model, material, structural, or other) parameters to output (structural response),

there is no guarantee that the inverse relation even exists.

The most broadly used approach to parameter identification is usually done by means of

an error minimisation technique, where the distance between parameterised model predictions

and observed data is minimised [21]. Since the inverse relation (mapping of model outputs to

its inputs) is often ill-posed, the error minimisation technique leads to a difficult optimisation

problem, which is highly nonlinear and multi-modal. Therefore, the choice of an appropriate

identification strategy is not trivial.

Another approach intensively developed during the last decade is based on Bayesian

updating of uncertainty in parameters’ description [15, 14]. The uncertainty in observations

is expressed by corresponding probability distribution and employed for estimation of the

so-called posterior probabilistic description of identified parameters together with the prior

expert knowledge about the parameter values [10, 22]. The unknown parameters are thus

modelled as random variables originally endowed with prior expert-based probability density

functions which are then updated using the observations to the posterior density functions.

While the error minimisation techniques lead to a single point estimate of parameters’ value,

the result of Bayesian inference is a probability distribution that summarizes all available

information about the parameters. Another very important advantage of Bayesian inference

consists in treating the inverse problem as a well-posed problem in an expanded stochastic

space.

Despite the progress in uncertainty quantification methods [16, 19], more information pro-

vided by Bayesian inference is generally related to more time-consuming computations. In

many situations, the single point estimate approach remains the only feasible one and devel-

opment of efficient tools suitable for this strategy is still an actual topic. Within the several
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last decades, a lot of attention was paid to the so-called intelligent methods of information

processing and among them especially to soft computing methods such as artificial neural

networks (ANNs), evolutionary strategies or fuzzy systems [8]. A review of soft computing

methods for parameter identification can be found e.g. in [13]. In this paper, we focus on

applications of ANNs in the single point approach to parameter identification.

6.2 Artificial Neural Network

Artificial neural networks (ANNs) [3, 4] are powerful computational systems consisting of

many simple processing elements - so-called neurons - connected together to perform tasks

analogously to biological brains. Their main feature is the ability to change their behaviour

based on an external information that flows through the ANN during the learning (training)

phase.

A particular type of ANN is the so-called feedforward neural network, which consists of

neurons organized into layers where outputs from one layer are used as inputs into the follow-

ing layer, see figure 1. There are no cycles or loops in the network, no feed-back connections.

Most frequently used example is the multi-layer perceptron (MLP) with a sigmoid transfer

function and a gradient descent method of training called the back-propagation learning al-

gorithm. In practical usage, the MLPs are known for their ability to approximate non-linear

relations and therefore, when speaking about an ANN, the MLP is considered in the following

text.

Figure 1: Architecture of multi-layer perceptron

The input layer represents a vector of input parameters which are directly the outputs of

the input layer. The outputs of one layer are multiplied by a vector of constants, the so-called

synaptic weights, summarized and used as inputs into the following layer. Elements in the

hidden and output layers - neurons - are defined by an activation function, which is applied on
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the input and produces the output value of the neuron. The synaptic weights are parameters

of an ANN to be determined during the training process. The type of the activation function

is usually chosen in accordance with the type of a function to be approximated. In the case

of continuous problems, the sigmoid activation function is the most common choice.

One bias neuron is also added into the input and hidden layers. It does not contain an

activation function, but only a constant value. Its role is to enable to shift the value of a sum

over the outputs of his neighbouring neurons before this sum enters as the input into the

neurons in the following layer. The value of biases is determined by training process together

with the synaptic weights.

Despite of ANN’s popularity there are only few recommendations for the choice of ANN’s

architecture. The authors, e.g. in [7, 6]], show that the ANN with any of a wide variety

of continuous nonlinear hidden-layer activation functions and one hidden layer with an arbi-

trarily large number of units suffices for the ”universal approximation” property. Therefore,

we limit our numerical experiments to such case. The number of units in the input and

the output layer is usually given by the studied problem itself, but there is no theory yet

specifying the number of units in the hidden layer.

To overcome this problem, we use two sets of data for ANN’s preparation: training data

are used for calibration of the synaptic weights of the ANN with a chosen number of hidden

units and the resulting ANN is then evaluated on independent validation data. Then, one

hidden neuron is added to the existing ANN, which is again trained, evaluated on validation

data and the ratio between the obtained error to the error obtained for the previous ANN

is computed. We count the situations, where the ratio is higher than 0.99. When these

situations occur three times, the addition of hidden neurons is stopped. Then the ANN with

the smallest error on validation data is employed for model calibration.

6.3 Strategies for Model Calibration

In overall, there are two main philosophies for application of ANN in identification prob-

lems. In a forward mode/direction, the ANN is applied to approximate the model response.

The error minimisation technique then becomes a minimisation of distance between the

ANN’s predictions and experimental data. The efficiency of this strategy relies on the evalu-

ation of the trained ANN to be significantly much faster than the full model simulation. The

advantage of this strategy is that the ANN is used to approximate a known mapping which

certainly exists and is well-posed. Computational costs of this strategy are separated in two

parts of a similar size: (i) the ANN training - optimisation of synaptic weights and (ii) the
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minimisation of error in ANN prediction for experimental data - optimisation of ANN inputs

(i.e. determination of investigated model parameters). The latter part concerns optimisation

of an error function which is often multi-modal, non-differentiable and some robust optimi-

sation method has to be applied to solve this problem. An important shortcoming of this

method is that this ill-posed optimisation problem needs to be solved repeatedly for any new

experimental measurement. This way of ANN application to the parameter identification

was presented e.g. in [1], where an ANN is used for predicting load-deflection curves and the

conjugate directions algorithm is then applied for optimisation of ductile damage and frac-

ture parameters. Authors in [18] train an ANN to approximate the results of FE simulations

of jet-grouted columns and optimise the column radius and a cement content of the columns

by a genetic algorithm. Principally same methods are used for identification of elasto-plastic

parameters in [2].

The second philosophy, an inverse mode, assumes the existence of an inverse relationship

between the outputs and the inputs of the calibrated model. If such a relationship exists

at least on a specified domain of parameters’ value, it can be approximated by an ANN.

Then the retrieval of desired inputs is a matter of seconds and could be easily executed

repeatedly for any new experiment and no other optimisation process is necessary. Here

the ANN training represents the whole computational costs and a solution of the ill-posed

problem. This way of ANN application to parameter identification was presented e.g. in [17]

for identification of mechanical material parameters, in [23] for estimation of elastic modulus

of the interface tissue on dental implants surfaces, in [24] for identification of interfacial heat

transfer coefficient or in [12] for determination of geometrical parameters of circular arches.

In computational mechanics, there is often a disproportion between the number of inputs

and outputs of a numerical model. While the model has usually only several parameters

(inputs), their response is mostly described by a load-deflection curve, stress or strain fields.

In other words, the response is usually a quantity defined in discredized spatial, time and/or

pseudo-time domain. Generally, these domains can be easily parameterised. In the forward

mode of identification, the problem of many outputs can be handled e.g. by including the

domain parameters among the ANN inputs and thus reducing the number of outputs. An

approximation of the complete model response is then obtained by repeated evaluation of

the ANN with varying values of domain parameters. In the inverse mode, the situation is

more difficult, because usage of high number of inputs leads to excessive complexity of the

ANN architecture and the training process. Fortunately, particular components of a model

response are usually highly correlated and thus the principal component analysis (PCA) [11]
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can be easily applied to transform them into a smaller number of uncorrelated quantities

ordered according to their variance (i.e. significance). Then only a selected number of most

important principal components can be used as ANN’s inputs.

Since the ANN training needs a preparation of a set of training data, it is also worthy to

use these data for a sampling-based sensitivity analysis [5, 20] and obtain some information

about importance of particular observations or significance of each parameter for a system

behaviour. To achieve some reliable information from sensitivity analysis as well as a good

approximation by ANN, one has to choose the training data carefully according to a suit-

able design of experiments, see e.g. [9] for a competitive comparison of several experimental

designs.
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7 Future plans for RegNeN

• Unified compilation for different operating systems using CMake (http://www.cmake.

org/)

• Create a project on GitHub for RegNeN (https://github.com/)
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