
_____________ _________
/_____ _____/ /__ ____ \

/ / ______ / / / / _____
/ / /_____ \ / / / / /____ \

/ / ____/ / / / / / ____/ /
/ / /___ / / / / / / ____/

_______ / / ______/ / / /___/ / / /____
/ _____ \ /_/ ______/ /_______/ /______/

/ / / / _______ _________ _________ __________
/ / / / / _____ \ / _______/ / _______/ / __ __ /

/ / / / / / / / / /____ / /____ / / / / / /
/ / / / / / / / / _____/ / _____/ / / /_/ / /

/ /____/ / / /____/ / / / / /______ / / / /
_______/ _______/ /_/ /________/ /_/ /_/

Converter from T3D to OOFEM

Version 2.7

User Guide

December 13, 2018

Daniel Rypl

Czech Technical University in Prague
Faculty of Civil Engineering, Department of Mechanics

Thákurova 7, 166 29, Prague
Czech Republic

e-mail: drypl@fsv.cvut.cz
http://mech.fsv.cvut.cz/˜dr/dr.html

1 Introduction

T3d2oofem converts the output of T3d mesh generator to the input file for Oofem finite
element solver. T3d2oofem processes on the input two files

• output file of T3d containing all relevant data (appropriate T3d command line options
for output specification are required),

• control file containing Oofem control records and assignment of some of these con-
trol records (boundary conditions, loading, material) to individual entities of the T3d
model.

T3d2oofem processes the control file at first and stores internally the Oofem control records
and property assignments. After that, the T3d output file is processed (without actually
storing the individual mesh entities) and the Oofem input file is produced. Optionally, Oofem
domain input file (Oofem input file without certain control records) for adaptive analysis is
also generated.

2 Synopsis

T3d2oofem is executed as

t3d2oofem control file t3d output file oofem in file [options]

The following command line options are recognized

-din domain input file (named oofem in file.domain) is also generated

Usage and list of control file keywords can be obtained by executing

t3d2oofem -h

3 Format of Control File

Control file consists of two sections. The first section contains Oofem control records, this is
all Oofem input file statements without the mesh (node and element statements). Note that
the statement describing the number of records may not contain entries corresponding to
the number of nodes and elements. The entries in the statement can be ordered arbitrarily
only if corresponding Oofem textual keywords are used. In such a case the statement can
contain also specification of number of optional records. If the textual keywords are not used
(for compatibility with older control files), the statement must contain only the obligatory
components in predefined order (number of cross sections, number of materials, number of
boundary conditions, number of initial conditions and number of load time functions).

An example of the first section of the control file may look like this

test.out
testing example
linearstatic nsteps 1
domain 3d
outputmanager tstep_all dofman_all element_all

2

in the following statement, keywords and entries corresponding
to the number of nodes and elements are omitted
ncrosssect 1 nmat 1 nbc 4 nic 0 nltf 1
simplecs 1 thick 0.25
isole 1 d 4850.0 e 210.0e6 n 0.3 talpha 1.2e-6
boundarycondition 1 loadtimefunction 1 prescribedvalue 0
constantsurfaceload 2 loadtimefunction 1 components 3 0 0 -10 loadtype 3 ndofs 3
nodalload 3 loadtimefunction 1 components 3 -2.5 0 0
deadweight 4 loadtimefunction 1 components 3 0 0 -1
constantfunction 1 f(t) 1.0

The second section contains records describing assignment of node and element features.
Each assignment consists of model entity or model property specification or 1D interface
specification followed by one or more of the following feature specifications

• node type specification (single),

• node property specification (multiple),

• element type specification (multiple),

• element property specification (multiple),

• boundary load specification (multiple),

• boundary code specification (single),

• local coordinate system specification (single).

The second section may also contain specification of protective spheres (around singularities),
solution from which is excluded from the error assesment and mesh refinement during an
adaptive analysis.
In the following paragraphs, syntax of model entity, property, 1D interface, feature and pro-
tective sphere specifications are given. The keywords are typed in bold, user specification
in italic, braces {} enclose exclusive selection, brackets [] enclose optional parameter(s),
parentheses () enclose (at least once) repeated parameter, chevrons 〈〉 enclose (at least once)
repeated statement (each one on a new line), | stands for exclusive OR (logical XOR) and
represents an identification number.

Model entity specification has the form

〈 { vertex |curve |surface |patch |shell |region | interface } { all [except (#)] | (#) } 〉
and it is valid for all the subsequent node and element feature assignments until a new
model entity or property specification or 1D interface specification is encountered or until
the keyword cancel is encountered. Note that curve/surface/patch/shell/region specifica-
tion includes all elements on that entity but only those nodes on that entity which cannot
be classified to other model entity of lower dimension. Interface specification includes only
the elements.

An example of the model entity specification may look like this

vertex all except 1 2
curve all
surface 1 2 11 12

3

patch 24
shell 13 14
region 1
interface all

Model property specification has the form

〈 property { all [except (#)] | (#) } 〉
Similarly as before, model property specification is valid for all the subsequent node and ele-
ment feature assignments until a new model entity or property specification or 1D interface
specification is encountered or until the keyword cancel is encountered. Note that model
property specification include all nodes and elements with that property.

An example of the model entity specification may look like this

property 2

Specification of 1D interface between pair of vertices has the following form

〈 interface1d vertex # # dir normal dir 〉
where normal dir defines the normal direction of the interface. Note that 1D interface be-
tween pairs of vertices can be also defined using 1D interface element produced by T3d (if
your version of T3d supports that feature) to which the normal direction is supplied via
element property specification (see the last example of element property assignment below).

Specification of 1D interface between pair of compatible curves has the following form

〈 interface1d curve # # { dir normal dir | tan | nor normal vector } 〉
The interface normal direction can be defined either directly by keyword dir using normal dir
of the interface, or indirectly by keyword tan (normal direction of interface is tangent to
the curve) or keyword nor (normal direction of interface is normal to the curve and nor-
mal vector). Note that curves are compatible if they are topologicaly identical and discretized
by topologically identical mesh.

Specification of 1D interface between pair of compatible surfaces/patches/shells has the fol-
lowing form

〈 interface1d { surface | patch | shell } # # { dir normal dir | tan plane vector | nor } 〉
The interface normal direction can be defined either directly by keyword dir using normal dir
of the interface, or indirectly by keyword tan (normal direction of interface is tangent to the
surface/patch/shell in plane defined by given plane vector and surface/patch/shell normal)
or keyword nor (normal direction of interface is normal to the surface/patch/shell). Note
that surfaces/patches/shells are compatible if they are topologicaly identical and discretized
by topologically identical mesh.

Example of 1D interface specifications may look like this

interface1d vertex 2 14 dir 1 0 0
interface1d curve 12 7 tan

4

interface1d curve 11 6 nor 0 0 1
interface1d patch 7 9 nor
interface1d surface 5 13 tan 0 1 0

Node type assignment has the form

nodetype oofem node type

An example of the node type assignment may look like this

nodetype rigidarmnode

Node property assignment has the form

〈 nodeprop oofem string 〉
where oofem string is proper Oofem boundary condition or load specification referring to the
relevant control record(s) in the first section.

An example of the node property assignment may look like this

nodeprop bc 3 1 1 0 load 1 3

or like this

nodeprop bc 3 1 1 0
nodeprop load 1 3

Element type assignment has the form

〈 { edgetype | triatype | quadtype | tetratype | hexatype } oofem element type 〉
where oofem element type is proper Oofem element type consistent with the spatial dimen-
sion, element shape, element degree, and element functionality. Note that on model entities
discretized by mixed meshed (for example combination of triangular and quadrilateral ele-
ments), element type for both types of elements must be provided. Note that T3d2oofem
converts the pyramidal as well as wedge elements to degenerated hexahedral elements.

An example of the element type assignment may look like this

tetratype LTrSpace
hexatype LSpace

Element property assignment has the form

〈 elemprop oofem string 〉
where oofem string is proper Oofem material, cross-section or body load specification refer-
ring to the relevant control record(s) in the first section.

An example of the element property assignment may look like this

elemprop crosssect 1 mat 1 bodyloads 1 4

5

or like this

elemprop crosssect 1 mat 1
elemprop bodyloads 1 4

or like this

elemprop normal 1.2 0.4 0.8

Boundary load assignment has the form

〈 { boundaryload | bload } (oofem load number) 〉
where oofem load number is number of the boundary condition record corresponding to the
boundary loading. Note that keywords boundaryload and bload are interchangeable.
Note that boundary load assignment cannot be generally applied using the element prop-
erty assignment because usually only some of the elements of a particular model entity are
subjected to the boundary load and because the appropriate face of these elements must be
detected and specified in the final specification generated in the Oofem input file.

An example of the boundary load assignment may look like this

boundaryload 2 5

Boundary code assignment has the form

〈 { boundarycode | bcode } oofem code number 〉
where oofem code number is type of boundary condition. Note that keywords bound-
arycode and bcode are interchangeable. Similarly as for the boundary load assignment,
also the boundary code assignment cannot be generally applied using the element property
assignment.

An example of the boundary code assignment may look like this

bcode 3

Assignment of local coordinate system at curve or surface/patch/shell node with respect to
primary entity (curve or surface/patch/shell to which the node is classified) has the form

lcsprimary { uvw | vwu | wuv | vuw | wvu | uwv } ref vector

Triads uvw, . . ., uwv control which vectors are used to define local right-hand coordinate
system xyz. Local x and y axes are always given by the first and second vector specified by
the triad, in which u indicates tangent (at curve node) or normal (at surface/patch/shell
node) read from T3d output file, v stands for orthonormalized reference vector (with respect
to u and w), and w denotes a vector computed as normalized vector product of u and given
ref vector defining the plane uv of right-hand coordinate system uvw. Note that while for
the first three triads the local z axis is oriented identically with corresponding from u, v, and
w vectors, in the case of last three triads its orientation is opposite.

An example of the local nodal coordinate system specification with respect to primary entity
may look like this

6

lcsprimary wvu 0 0 1

in which case local x axis (represented by w in the triad) is defined as normalized vector
product of tangent (normal) vector to a curve (surface/patch/shell) (represented by u) and
reference vector {0 0 1}, local y axis (represented by v) is defined as the reference vec-
tor orthonormalized with respect to local z (represented by u) and x (represented by w)
axes (this means as a vector forming with refrence vector angle smaller than 90 degrees
and being simultaneously perpendicular to tangent/normal vector and to vector product
of tangent/normal vector and reference vector), and local z axis (represented by u) is de-
fined as vector product of unit vectors on local x (represented by w) and y (represented by
v) axes and has opposite orientation (in this particular case) than the tangent/normal vector.

Specification of a protective sphere around singularity has one of the forms

〈 singularnode # radius 〉
in which the protective sphere of radius is centered at given node, or

〈 singularpoint center radius 〉
in which the coordinates of sphere center and sphere radius are given. When using the
protective sphere(s) around singular node(s) and/or point(s), the elements which are fully
inside the sphere are assigned to a new region (with the same properties as the original one)
which is excluded from error assessment and refinement by modifying properly the region-
skipmap parameter in analysis record. The radius of the sphere should be large enough to
eliminate the effect of enclosed singularity but small enough to avoid significant influence
on the assessed error of the solution. A rule of thumb is to use such a radius that the
density of mesh inside the sphere does not get coarser during the adaptive remeshing by
T3d than the refined density specified (for the remeshing) along the the perimeter of the
sphere. Note that use of protective sphere(s) is meaningless for other than adaptive analysis.

Example of protective sphere specification may lookk like this

singularnode 17 0.8
singularpoint 14.3 18 0.0 0.65

A complete example of the second section of the control file may look like this

vertex all except 1 2 3 4 5 6
curve 1 2
nodeprop bc 3 1 0 0

vertex 1 2
curve 3
nodeprop bc 3 1 1 1

vertex 5 6
curve 4
nodeprop load 3

region all
elemprop crossSect 1 mat 1 bodyLoads 1 4

7

tetratype LTrSpace
hexatype LSpace

surface 2 4
boundaryload 2

Note that empty lines in the second section of the control file are ignored. Lines starting by
(hash) are treated as comments in both sections. However, while comments in the first
section are copied to the generated input file, comments in the second section are discarded.

4 General Remarks

For correct run of T3d2oofem it is necessary to run T3d with -p 8 or -p 512 command line
option. This will ensure that relevant boundary entity information are included in T3d out-
put file. Option -p 512 is required in the case when application of edge load to 3D elements
is to be processed (otherwise the request for the application of the edge load to 3D elements
is ignored). In order to process properly the local coordinate system requirements, T3d must
be run with -p 14 or -p 518 command line option which will include except boundary en-
tity information also components of local tangent vectors (on inner curve nodes) and normal
vectors (on inner surface/patch/shell nodes).

In T3d output file, the mesh entities are classified to the entity of the lowest dimension. This
implies that boundary nodes of a particular model entity are not classified to that model
entity but to other model entity of possible lowest dimension. For example, boundary nodes
of surface are classified to boundary curves of that surface or boundary vertices of those
curves. Also note that mesh entities are classified to the top parent physical entity. This
implies that if there is a physical curve c1 fixed to part of another physical curve c2 (not
fixed to any physical curve), then the edges on curve c1 (if subjected to the output) will
be classified to c2. As a consequence, curve c1 will appear as nonexisting and cannot be
therefore subjected to boundary conditions etc. Should you need to apply these boundary
conditions you must enforce curve c1 to appear in T3d output by changing the model (for
example by changing curve c2 to virtual and fixing to it not only curve c1 but also curve c3
on its remaining part).

When handling surfaceload, it is always applied to all elements (except interface elements)
incident to a particular face. For example, if there are two spatial regions sharing a common
surface subjected to surfaceload, then surfaceload will be applied to both elements sharing
the face on the common surface. Thus to enforce proper response, the magnitude of the
loading should be scaled appropriately (typically by half). Since there is generally not possi-
ble that the number of elements on one side of the surface is different from that on the other
side of the surface, the scaling should be always possible. This behaviour is the consequence
of the current implementation generating the Oofem input file on the fly without storing any
mesh data.

When handling edgeload, it is always applied to just a single element (not interface element)
incident to a particular edge. For example, if there are two planar domains sharing a com-
mon curve subjected to edgeload, then edgeload will be always applied to just one of the

8

two elements sharing the edge on the common curve. This is important when handling the
above described case of curve c1 fixed to part of curve c2, subjected to edge load. This
behaviour is also crucial when handling edge load subjected to curve bounding 3D elements
as the number of elements sharing the edge on the curve is generally varying along the curve.
Sometimes it may be relevant that the edgeload is applied to elements classified to particular
entity (e.g. for example if a curve subjected to the edgeload is shared by several surfaces or
regions). This can be achieved by defining the relevant entity in the T3d input file before the
other candidate entities. Note that order of the definition of the entities is relevant, not their
ids. Note that this approach fails if edgeload should be applied to 3D elements rather than
2D elements sharing the curve because 2D entities are always processed before 3D entities
due to the native ordering of elements in T3d output.

T3d2oofem may produce warnings concerning non-existing entities. For example, warning

Warning: Surface 14 referenced in ctrl file is not present in t3d output file

may be caused by the fact that in T3d output there is present no element classified to surface
14 (because, surface 14 is, for example, bounding a region and explicit request for output of
elements on it was not required in T3d) and there is simultaneously present no node classified
to surface 14 (because, for example, there is no inside node on that surface or because the
inside nodes are classified to other entities, e.g. fixed vertices). Sometimes this warning
is irrelevant (for example if nodes on the missing entity are subjected to constraints), but
sometimes it indicates a problem (for example if the missing entity is subjected to a loading).
There are 3 ways around this problem:

• use quadratic elements - note however that this does not help in case of surface/patch/shell
entity composed of just a single element, if the entity is bounding a region or interface
and the entity is not explicitly designated for output).

• designate problematic entity for output and modify constitutive parameters (e.g. stiff-
ness) for elements classified to that entity, so that they will not influence the response.

• refine locally the mesh so that there exist always at least one node classified to the
entity.

5 Compilation

For compilation on Linux/Unix platforms, use typically command

gcc -O2 -o t3d2oofem -lm t3d2oofem.c

Should you prefer other compiler, replace gcc by the name of your preferred compiler and
follow its syntax for proper specification of command line options.

For compilation on Windows/Mac platforms, create appropriated project within your favourite
compiler GUI environment.

9

6 Bugs, Problems and Limitations

Note that Oofem analysis record in the first section may be followed by several other control
lines expanding the analysis record. This version of T3d2oofem can handle only additional
control lines describing metasteps, export modules, initialization modules and xfem man-
agers. If you are using other additional control lines, comment them by # (hash) in control
file and then uncomment them in the Oofem input file produced by T3d2oofem.

Note that T3d2oofem does not support all (not only the most recent) features of Oofem.
For example, there is no support for variable local coordinate system with respect to other
than primary entity. There is also missing support for variable loading within a single model
entity. Should you require these features you should apply some additional postprocessing
of Oofem input file generated by T3d2oofem.

Similarly, T3d2oofem may not handle all features produced by T3d, for example, bubble
quadratic elements (if available in your version of T3d) are not recognized.

Due to the limitations of the current Oofem element library, pyramid and wedge elements
produced by T3d are handled as degenerated hexahedral elements.

Boundary load and boundary code are not applied to interface elements.

If using 1D interface specification(s), the total number of elements written to Oofem input
file is invalid as it does not include the generated 1D interface elements. This is due to the
single-pass processing of T3d output file which does not allow to precompute number of 1D
interface elements to be generated. The user is informed about this fact by a warning.

T3d2oofem may produce warnings that could be but need not necessarily be an error. Nev-
ertheless, the issued warnings are worth to be checked to prevent eventual problems with
the Oofem analysis.

Please, report the bugs to the author together with the description of circumstances (input
file, command line options, platform). Thank you.

10

