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Abstract

A finite element method often leads to large sparse symmetric and positive definite systems of linear equations. We consider parallel
solvers based on the Schur complement method on homogeneous parallel machines with distributed memory. A finite element mesh is
partitioned by graph partitioning. Such partitioning results in submeshes with similar numbers of elements and, consequently, subma-
trices of similar sizes. The submatrices are partially factorised. The time spent on the partial factorisation can be different, i.e., disbal-
anced, because methods exploiting the sparsity of submatrices are used. This paper proposes a Quality Balancing heuristic that modifies
classic mesh partitioning so that the partial factorisation times are balanced, which saves overall computation time, especially for time
dependent mechanical and nonstationary transport problems.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Parallel computers have become a popular and wide-
spread tool for solving large scientific and engineering prob-
lems. Parallelisation of sequential algorithms may involve
considerable changes. Algorithms for solving systems of lin-
ear equations are an important example. In this paper, only
the finite element (FE) method [1,2], and large sparse sym-
metric and positive definite linear systems are considered.
Parallelisation of classic direct methods for solving linear
systems, such as the LDLT factorisation, is not easy and only
partial success has been achieved [3]. The parallelisation of
iterative methods, such as the conjugate gradient method,
is easier. However, convergence properties are not always
optimal. Methods based on at least two level approaches
have significantly better properties. Domain decomposition
methods are an example of such methods [4–7].
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The parallel solvers should be faster than sequential
ones. Ideal time reductions cannot be obtained if the pro-
cessor loads are not balanced. Load balancing describes
the fact that all used processors execute an identical or
nearly identical number of operations. A slightly disbal-
anced load of processors is acceptable in problems where
the linear system is solved only once. A typical example
of such problems is the static linear problem. On the other
hand, there are problems such as creep analysis or non-
stationary heat transfer where numerous time steps are
needed. Each time step involves the solving of a linear sys-
tem in the case of the implicit method. Every slightly dis-
balanced load in such cases is significantly amplified and
the best possible load balancing is desirable.

In this paper, only the Schur complement method is con-
sidered for domain decomposition. Typically, the FE mesh
is represented by a graph that is partitioned by graph parti-
tioning. It produces submeshes with similar numbers of ele-
ments and nodes. Consequently, submatrices of similar sizes
are assembled on each submesh. The Schur complements
are computed by partial factorisation from the submatrices
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Table 1
An algorithm for time-dependent mechanical problems

For i = 0 until i 6 Ns compute
Increments of irreversible strains Deir

i
Increments of internal nodal forces Df ir

iþ1 ¼
R

V BTDDeir
i dV

Increments of external (prescribed) nodal
forces

Dfi+1 = f(ti+1) � f(ti)

Increments of displacements Driþ1 ¼ K�1ðDf iþ1 þ Df ir
iþ1Þ

New vector of displacements ri+1 = ri + Dri+1

Total strain increments (previous total
strain ei is stored)

Dei+1 = Bri+1 � ei

Stress increments Driþ1 ¼ DðDeiþ1 � Deir
i Þ

New stresses ri+1 = ri + Dri+1
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and the reduced problem is usually solved with a suitable
iterative method. Common methods for partial factorisa-
tion exploit the structure of submatrices, i.e., the number
and positions of nonzero matrix entries [8,9]. Therefore,
the computational complexity of the partial factorisation
depends more on the structure than on the size of a subma-
trix and classic mesh partitioning may not result in good
load balancing. This problem has already been observed
[10,11], but has not yet been resolved satisfactorily.

This paper deals with a static load balancing technique
for the Schur complement method and homogeneous par-
allel computers with distributed memory. This technique
is called a Quality Balancing (QB) heuristic and its preli-
minary version appeared in [12]. As the QB heuristic pro-
longs the time spent on mesh partitioning, its advantages
appear in problems where several linear systems with the
same structure need to be solved.

This paper is organised as follows: Sections 2 and 3
describe time dependent mechanical and nonstationary
transport problems. Sections 4 and 5 explain Schur com-
plement methods for a parallel solution of a linear system.
Classic mesh partitioning is described in Section 6 and the
QB heuristic is proposed in Section 7. Some illustrative
results of solutions to practical problems are presented in
Section 8. Finally, Section 9 concludes the paper.

2. A time dependent mechanical problem

For the purposes of this paper, a time dependent mechan-

ical problem denotes a problem that depends on time, but
the inertial forces are negligible. A typical example of such
a problem is creep analysis [1].

Time dependent mechanical problems are usually for-
mulated in the rate form

K _r ¼ _f þ
Z

V
BTD_eir dV ; ð1Þ

where K denotes the stiffness matrix of the problem (do-
main), r denotes the vector of nodal displacements, f
denotes the vector of prescribed nodal forces, _eir denotes
the irreversible strains, D denotes the stiffness matrix of
the material, B denotes the strain–displacement matrix,
and V denotes the volume of the domain considered. The
superimposed dot denotes the time derivative. Eq. (1) is
solved by a numerical method that discretises time. The
number of time steps is denoted by Ns. The basic steps
are summarised in Table 1. The method described in Table
1 is explicit and the particular expression for irreversible
strain increments depends on the material model used.
The algorithm can be applied to visco-plastic problems as
well as creep analysis. The increments of irreversible strains
are not specified in more detail in Table 1 because they are
not the focus of this paper.

The most time consuming part of the algorithm is the
computation of displacement increments that consist of
solving a system of linear equations

KDriþ1 ¼ Df iþ1 þ Df ir
iþ1: ð2Þ
3. Nonstationary transport problems

Nonstationary transport problems are also considered
in this paper. They are similar to time dependent mechan-
ical problems in the sense that several time steps are used to
solve them [2].

Basic facts can be shown on an example of a heat trans-
fer with constant coefficients, which is described by the
equation

k
o

2T
ox2
þ o

2T
oy2
þ o

2T
oz2

� �
¼ qc

oT
ot
; ð3Þ

where T denotes the temperature, k denotes the coefficient
of conductivity, q denotes the density of the material, and c
denotes the thermal capacity. After space discretisation, a
system of ordinary differential equations is obtained in
the form

C
dd

dt
þ Kd ¼ f ; ð4Þ

where C denotes the capacity matrix, K denotes the con-
ductivity matrix, d denotes the vector of nodal unknowns,
and f denotes the vector of prescribed fluxes. This system of
equation (4) is then discretised in time using

d iþ1 ¼ d i þ Dtviþh; ð5Þ
viþh ¼ ð1� hÞvi þ hviþ1; ð6Þ

where the first time derivative of nodal values is denoted by
v. Substitution of (5) and (6) into (4) results in the system of
linear equations

ðC þ DthKÞviþ1 ¼ f iþ1 � Kðd i þ Dtð1� hÞviÞ ð7Þ
with unknown vector vi+1. Nodal values are obtained from
Eqs. (5) and (6).

4. The Schur complement method

This section summarises only the basic facts about the
Schur complement method [4,6,7]. It is based on a special
form of the linear system of equations

Ax ¼ y ð8Þ
that has to be written in the form
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where A
ðjÞ
II ; A

ðjÞ
IB and A

ðjÞ
BI denote the submatrices of the jth

subdomain, x
ðjÞ
I denotes the vector of unknowns defined

at the inner nodes of the jth subdomain, y
ðjÞ
I denotes the

right-hand-side vector defined at the inner nodes of the
jth subdomain, xB denotes the vector of all unknowns de-
fined the on boundaries, and yB denotes the right-hand-side
vector defined at the boundary nodes. The system of equa-
tion (9) can be obtained by the FE method applied to the
problem decomposed into k subdomains. The subscript I

denotes an inner quantity, while B denotes a boundary
one. Clearly, IB and BI denote coupling between inner
and boundary quantities.

If all diagonal submatrices A
ð1Þ
II to A

ðkÞ
II are regular, a par-

ticular subvector of unknowns, x, can be expressed in the
form

x
ðjÞ
I ¼ ðA

ðjÞ
II Þ
�1ðyðjÞI � A

ðjÞ
IB xBÞ: ð10Þ

The existence of the inverse matrices ðAðjÞII Þ
�1 is guaranteed

by a special ordering of unknowns, which is used in order
to eliminate the inner unknowns. After repeating this pro-
cess for each row of (9) except the last one, the reduced sys-
tem of equations becomes

ABB �
Xk

j¼1

A
ðjÞ
BI ðA

ðjÞ
II Þ
�1

A
ðjÞ
IB

 !
xB ¼ yB �

Xk

j¼1

A
ðjÞ
BI ðA

ðjÞ
II Þ
�1

y
ðjÞ
I

ð11Þ

where xB denotes the vector of unknowns in the reduced
system. The original system of equations contains a signif-
icantly larger number of unknowns than the reduced sys-
tem (11). This reduction of unknowns is an important
feature of the Schur complement method. When the vector
xB is computed, all vectors of inner unknowns x

ðjÞ
I are

established from Eq. (10).
The system of equation (11) is also called the coarse grid

problem, because only unknowns defined on the bound-
aries are used. Each subdomain can be considered as one
super-element and the coarse grid is assumed to consist
of those super-elements. The system of equation (11) is usu-
ally solved by a suitable iterative method [4,7].

Systems of linear equations (2) and (7) described in the
previous two sections can be solved by the Schur comple-
ment method. The original FE mesh is partitioned into
several smaller submeshes. Each submesh is dealt with as
one independent problem. This means that submatrices
and subvectors are assembled independently on each
submesh. Continuity is enforced during the solution by
the Schur complement method, because special ordering
of unknowns is used on subdomains. Unknowns defined
at the inner nodes are ordered first, while unknowns
defined at the boundary nodes are ordered at the end.
The special ordering results in the required form of the sys-
tem of equations.

Each subdomain contains a part of the matrix of the ori-
ginal system (8) and can be expressed in the form

AðjÞ ¼ A
ðjÞ
II A

ðjÞ
IB

A
ðjÞ
BI A

ðjÞ
BB

 !
ð12Þ

Inverse matrix ðAðjÞII Þ
�1 in Eq. (10) is not computed explic-

itly, because it is a dense matrix in general. Instead, a par-
tial LDLT factorisation is computed, because the linear
systems (2) and (7) are symmetric and positive definite.

This leads to the factorised submatrix A
ðjÞ
II , the eliminated

submatrices A
ðjÞ
BI and A

ðjÞ
IB , and the modified submatrixeAðjÞBB which can be expressed in the formeAðjÞBB ¼ A

ðjÞ
BB � A

ðjÞ
BI ðA

ðjÞ
II Þ
�1

A
ðjÞ
IB ð13Þ

The matrix ~A
ðjÞ
BB is not computed with respect to Eq. (13)

but it is obtained by partial factorisation. The factorisation
is partial, because matrix entries from the lower triangular
part of the submatrix A

ðjÞ
BB are not eliminated at the subdo-

main level. The partial factorisation can be based on the
envelope (skyline) storage scheme or on the sparse storage
scheme [8]. If the partial factorisations on particular subdo-
mains have similar computational complexity, good load
balancing is obtained. On the other hand, if the computa-
tional complexity of the partial factorisations on individual
subdomains differs, load balancing is poor, as is the time of
the whole computation. Repeated use of this disbalanced
partial factorisation leads to the even poorer performance
of the method.

A significant reduction of the computational complexity
of the partial factorisation can be achieved by the proper
reordering of unknowns. Of course, such a reordering sub-
sequently has a strong impact on load balancing. It must be
noted that boundary unknowns have to be ordered last.
Since a reordering of nodes implies a reordering of
unknowns, only the reordering of nodes is considered in
the following text. The reordering methods used in this
paper are described in Section 6.2.
5. Estimation of computational complexity

Let nI and nB denote the number of inner and boundary
unknowns, respectively, in a subdomain. The boundary
unknowns come last. The envelope or sparse storage
scheme [8] stores nonzero and possibly some zero entries
in a submatrix (12). These are the submatrix entries inside
an envelope in the case of the envelope storage scheme, or
submatrix entries computed by a symbolical factorisation
[8,9], in the case of the sparse storage scheme. Due to the
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symmetry, only the lower part of the submatrices and the
main diagonals are stored.

If gðAðjÞ�i Þ denotes the number of entries stored by a stor-
age scheme in the column i under the main diagonal, then
the number of floating-point operations (FLOPs) during
the partial factorisation of A(j) is

OPðAðjÞÞ ¼
XnI

i¼1

1

2
ðgðAðjÞ�i Þ � 1ÞðgðAðjÞ�i Þ þ 2Þ; ð14Þ

see [8]. One FLOP can be a multiplication or division or a

‘‘multiply–add’’ operation. OP(A(j)) is taken as the estimate
of the computational complexity of the partial factorisa-
tion of A(j).

6. Classic mesh partitioning

One element of an FE mesh consists of several nodes.
One node may belong to several elements. Each node con-
tains unknowns.

Definition. A graph G = (V,E) consists of a finite set of
vertices V and a finite set of edges E, which are unordered
pairs of vertices (u,v), u,v 2 V. The number of vertices in
the graph is jVj and the number of edges is jEj.

An FE mesh is usually represented by a dual graph

GD = (VD,ED) and a nodal graph GN = (VN,EN). The ver-
tices in the dual graph represent the finite elements and two
vertices are adjacent if and only if the corresponding ele-
ments share a common boundary, i.e., a surface in 3D or
an edge in 2D. The vertices in the nodal graph represent
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Fig. 1. A quadrilateral mesh (a) with 9 elements a, . . . , i and 16 nodes
1, . . . , 16. The dual graph (b) and the nodal (c) graph derived from the
mesh.
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Fig. 2. Partitioning of the quadrilateral mesh from Fig. 1 using its dual graph (a
(c). The edge cut (a) is indicated by a dashed line and vertices in the vertex cu
the nodes. Two nodes are adjacent if and only if they
belong to the same element. An example of a quadrilateral
mesh and its dual and nodal graph is shown in Fig. 1.

Definition. A graph G = (V,E) with an integer k P 2 is
considered. An edge cut (a vertex cut) is a set of edges
(vertices, respectively) whose removal divides the graph
into at least k partitions. The k-way graph partitioning
problem is to partition V into k pairwise disjoint subsets
V1,V2, . . . ,Vk by an edge cut such that jVij ffi jVj/k and the
size of the edge cut is minimised. The subsets V1,V2, . . . ,Vk

induce subgraphs G1,G2, . . . ,Gk. A partitioning of a graph
by a vertex cut is similar, except that the pending edges are
also removed.

Common methods for mesh partitioning are based on
graph partitioning, typically by edge cut of dual graphs.
A submesh is made of elements from the same partition.
The boundary nodes belong to more than one submesh.
The remaining ones are the inner nodes. The example
Fig. 2(a) shows a 2-way partitioning of GD of the quadrilat-
eral mesh from Fig. 1. The corresponding mesh partition-
ing is shown in Fig. 2(b). The boundary nodes are 3, 7,
10, 11, and 14. Note that this way of mesh partitioning pro-
duces partitioning of the nodal graph GN by a vertex cut, as
shown in Fig. 2(c).

The dual graph GD is partitioned into k parts, inducing
submeshes and corresponding submatrices A(j), so that the
sizes of submatrices are roughly equal.
6.1. Multilevel graph partitioning

Multilevel graph partitioning tools are widely used to
perform the partitioning by edge cut. Our work is based
on the multilevel k-way graph partitioning implemented
in METIS [13]. This scheme consists of the following three
phases, shown in Fig. 3.
6.1.1. Coarsening

A sequence of smaller coarser graphs GD
l ¼ ðV D

l ;E
D
l Þ is

constructed from the original graph GD ¼ GD
0 ¼ ðV D

0 ;E
D
0 Þ

so that jV D
l j > jV D

lþ1j. The sequence of coarser graphs
induces levels. The graphs have integer vertex weights
rðvlÞ; vl 2 V D

l , and integer edge weights rðelÞ; el 2 ED
l . If
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the original GD
0 is unweighted, then the weight 1 is assigned

to its every vertex and edge.
A matching is used to collapse 2 adjacent vertices into a

so-called multivertex. In level l, two adjacent vertices or
multivertices vl; v0l 2 V D

l can be collapsed into a new multi-
vertex vlþ1 2 V D

lþ1. After the matching, rðvlþ1Þ ¼ rðvlÞþ
rðv0lÞ. The edge ðvl; v0lÞ is not included in ED

lþ1. If vl is adja-
cent to some other vertex ul 2 V D

l , then there is an edge
ðvlþ1; ulþ1Þ 2 ED

lþ1; ulþ1 2 V D
lþ1 such that either ul+1 � ul

or ul+1 is a multivertex created from ul and some other
vertex, and r((vl+1,ul+1)) = r((vl,ul)). A similar rule applies
if v0l is adjacent to ul. If both vl and v0l are adjacent to
ul, then ðvlþ1; ulþ1Þ 2 ED

lþ1 and rððvlþ1; ulþ1ÞÞ ¼ rððvl; ulÞÞþ
rððv0l; ulÞÞ. The METIS uses a variation of matching called
SHEM [13].
6.1.2. Initial partitioning

When the coarsest graph is sufficiently small, it can be
partitioned by any other graph partitioning technique.
The METIS partitions the coarsest graph by the multilevel
graph bisection [14].
6.1.3. Uncoarsening and refinement

A coarser graph GD
l is uncoarsed to GD

l�1, the partition-
ing of GD

l is projected to GD
l�1, and then refined by the

Fiduccia–Mattheyses (FM) heuristic. It searches candidate
vertices in the set of vertices adjacent to a vertex in another
partition. Then it tries to move the selected vertex into
other partitions. The move is accepted if one of the follow-
ing conditions is fulfilled:

1. The size of the edge cut is decreased and the partitioning
remains balanced.

2. The size of the edge cut is not increased, but the balanc-
ing is improved.

To improve the balancing of a strongly disbalanced par-
titioning, a balancing step may by added. It works like the
FM heuristic, but the conditions for accepting a move are
different:
1. The balancing is improved.
2. The balancing is not worsened, but the size of the edge

cut is decreased.

Stopping criteria for FM heuristic can be found in [13].

6.2. Reordering of nodes

After the mesh partitioning, the inner nodes in all parti-
tions are reordered to minimise the computational com-
plexity of the partial factorisation of submatrices A(j).
The reordering algorithm works with the nodal graph
GN. The boundary (inner) nodes are represented by bound-
ary (inner, respectively) vertices.

There are two common algorithms for the reordering of
nodes for the sequential factorisation of matrices. The
Sloan algorithm [15,9] and the minimum degree algorithm
[8,9]. These algorithms, if applied within the partial facto-
risation of submatrices, should be modified in order to dis-
tinguish the inner nodes from the boundary ones. Paper
[16] describes a modification of the Sloan algorithm, called
the boundary Sloan algorithm (BSA). It reorders the nodes
to minimise the envelopes of submatrices.

The minimum degree algorithm reorders the nodes for
the sparse storage scheme. It can be described in terms of
elimination graphs [8] as follows:

Step 1. Initialise the current elimination graph by GN.
Step 2. In the current elimination graph, choose a vertex u

with the minimum degree.
Step 3. Form a new elimination graph by eliminating u

and updating the degrees of its neighbours.
Step 4. If any vertex remains, go to Step 2.

A modification of this algorithm, called the boundary
minimum degree algorithm, distinguishes between inner
and boundary vertices.

Step 1. Initialise the current elimination graph by GN.
Step 2. In the current elimination graph, choose an inner

vertex u of the minimum degree.
Step 3. Form a new elimination graph by eliminating u

and updating the degrees of its neighbours.
Step 4. If any inner vertex remains, go to Step 2.
Step 5. Order the boundary vertices randomly after the

inner ones.

In this paper, the boundary multiple minimum degree
algorithm (BMMDA) is used. It differs from the previous
modification in Steps 2 and 3, where it performs a multiple
elimination as proposed in [17].

7. Mesh partitioning with load balancing

This section describes a new approach to mesh parti-
tioning based on the Quality Balancing heuristic. As stated
in Section 1, a decomposition into submatrices A(j) of
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similar sizes does not necessarily lead to a balanced compu-
tation. The load is significantly influenced by the reorder-
ing of the nodes. In the classic approach, the reordering
comes after the mesh partitioning and, therefore mesh par-
titioning cannot balance the load. The main idea of the QB
heuristic is to integrate a reordering algorithm into the
mesh partitioning, specifically into the multilevel k-way
graph partitioning of the dual graph GD. The QB heuristic
can balance various qualities computed over subdomains.
In this paper, the number of FLOPs given by the formula
(14) is taken as an estimation of the load.

Definition. Given an unbalancing threshold d P 1, a set of
qualities {q1,q2, . . . ,qk} is called balanced if

d P ðmax
k

i¼1
qiÞk

Xk

i¼1

qi

,
: ð15Þ

A quality qi is overbalanced if d < qik=
P

iqi. The set of
qualities is disbalanced if at least one quality is
overbalanced.

The input to the QB heuristic is an FE mesh, its dual GD

and nodal GN graphs. Every node generates either a con-
stant number of unknowns (in the case of unconstrained
nodes) or no unknowns (in the case of constrained nodes).
The constrained nodes are not included in GN. The first
two phases, the coarsening and the initial partitioning,
are performed almost unchanged as in Section 6.1. In addi-
tion, the weight of lost edges 1(v) for every multivertex v is
computed during the coarsening. If two adjacent vertices or
multivertices vl; v0l are collapsed into a multivertex vl+1,
the edge ðvl; v0lÞ is called ‘‘lost’’. Let 1(v) denote the total
weight of ‘‘lost’’ edges of a multivertex v. Then, 1ðvlþ1Þ ¼
1ðvlÞ þ 1ðv0lÞ þ rððvl; v0lÞÞ. Initially, 1(v0) = 0 for every
v0 2 V D

0 .
The QB heuristic modifies the conditions of move accep-

tance of the FM heuristic and extends it with a quality esti-
mation process, as illustrated in Fig. 4. Assume that the
current level is l. Similar to FM, QB chooses a candidate
vertex v for moving from its source partition GD

l;s ¼
ðV D

l;s;E
D
l;sÞ. Next, it chooses a target partition GD

l;t ¼
ðV D

l;t;E
D
l;tÞ; t 2 f1; . . . ; kg; t 6¼ s, where v is intended to be

moved. Note that the subscript s denotes the number of
the source partition and the subscript t denotes the number
of the target partition. The values of qualities qp,p 2 {s, t}
are saved to ~qp (see Step a in Fig. 4). Then the process con-
tinues for both partitions GD

l;p.
To prevent the unnecessary nullifying of moves (Step i),

the changes in the qualities qp are predicted (Step b). If the
predicted values q0p are not accepted (Step c), the whole
process is returned to the beginning. The prediction will
be explained in more detail at the end of this section.

The estimation process then starts by the uncoarsening
of the partition GD

l;p to GD
0;p, the original partition of GD

(Step d). This is skipped in the final level l = 0. After that,
the partition GN

p is constructed from all nodes belonging to
the elements from GD

0;p (Step e). If the relation between the
GD
l and GN is constructed for every level l, then the previ-

ous two steps (d and e) can be efficiently implemented as
one step. Next, the vertices of GN

p are reordered by BSA
or BMMDA (Step f), depending on the storage scheme,
see Section 6.2. The estimation process finishes by a com-
putation of the qualities (Step g) using Eq. (14).

After the estimation of the qualities qp, the conditions of
move acceptance are evaluated (Step h). In contrast to FM,
they are modified as follows:

1. The size of the edge cut of GD
l is decreased. Neither qs

nor qt is overbalanced, or else the balancing was not
worsened by the move, i.e., maxfqs; qtg 6 maxf~qs; ~qtg.

2. The balancing is improved, i.e., maxfqt; qsg <
maxf~qt; ~qsg, but the size of the edge cut of GD

l is not
increased.

The conditions of move acceptance for the balancing
step are also modified:

1. The balancing is improved.
2. The size of the edge cut of GD

l is decreased and neither qs

nor qt is overbalanced.

Only if the conditions of move acceptance fail, is the
move nullified (Step i), i.e., v remains in GD

l;s and the qual-
ities are returned to the saved values qp  ~qp. Finally, QB
returns to the beginning (Step a).

The reordering of nodes is a time consuming operation.
It significantly slows down the uncoarsening and refine-
ment phase, because it is performed for every move of a
multivertex. Therefore, the prediction of qualities (Step b)
has been inserted before the estimation process. The qual-



Fig. 5. An example of FE models of the problems (a) ‘‘vessel’’, (b)
‘‘wheel’’, (c) ‘‘dam’’.

Table 2
Description of the test FE meshes

Name jVDj jVNj
vessel09 227,559 53,670
vessel06 726,128 157,148
block05 153,051 28,339
block03 698,742 124,842
wheel5 241,955 51,376
wheel3 1,043,149 204,586
dam15 264,038 48,865
dam11 620,054 112,060

Table 3
The timing results of experiments on the PC cluster with a solver using the
envelope storage scheme

Mesh k tR
M tR

QB DtR[%] tD
M tD

QB k

vessel09 4 1190 1104 7 0.34 116.46 14
vessel09 6 619 565 9 0.33 92.07 17
vessel09 8 605 386 36 0.34 87.66 4
vessel09 10 402 276 31 0.34 85.67 7
block05 4 2348 1210 48 0.24 146.4 2
block05 6 810 663 18 0.25 282.67 20
block05 8 590 322 45 0.26 139.55 6
block05 10 297 226 24 0.26 191.17 27
wheel5 4 1814 982 46 0.36 115.03 2
wheel5 6 552 538 3 0.37 68.45 49
wheel5 8 404 382 5 0.38 92.16 42
wheel5 10 319 291 9 0.36 81.33 29
dam15 4 3644 2455 33 0.43 433.76 4
dam15 6 2127 1490 30 0.46 350.58 6
dam15 8 1920 928 52 0.44 412.76 5
dam15 10 1094 921 16 0.46 434.88 26
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ity of the source partition is predicted by the following
formula:

q0s ¼ qs �
rðV D

l;sÞ � rðvÞ
rðV D

l;sÞ

�
rðED

l;sÞ �
P
ðu;vÞ2ED

l ;u2V D
l;s
rððu; vÞÞ � 1ðvÞ

rðED
l;sÞ

ð16Þ

and the quality of the target partition is predicted by the
following formula:

q0t ¼ qt �
rðV D

l;tÞ þ rðvÞ
rðV D

l;tÞ
�
rðED

l;tÞ þ
P
ðu;vÞ2ED

l ;u2V D
l;t
rððu; vÞÞ þ 1ðvÞ

rðED
l;tÞ

;

ð17Þ

where

rðV D
l;pÞ ¼

X
u2V D

l;p

rðuÞ; p 2 fs; tg ð18Þ

and

rðED
l;pÞ ¼

X
e2ED

l;p

rðeÞ þ
X

u2V D
l;p

1ðuÞ; p 2 fs; tg: ð19Þ

The second coefficients in (16) and (17) represent ratios of
vertex weights of the updated and original partitions. The
third coefficients represent the ratios of edge weights and
lost edge weights of the updated and original partitions.
The conditions of move acceptance are evaluated for q0p
in the same way as for qp (Step c).

The estimation process is performed for every move that
satisfies the prediction conditions. The reordering is heuris-
tic and thus, the change of qualities after a move of a subset
of vertices is not deterministic. Thus, some moves must be
nullified if they worsen the balancing. The nondeterministic
changes in qualities and the move nullifications increase the
time complexity of the mesh partitioning by the QB heuris-
tic. Hence, the QB heuristic is suitable for problems where
the same decomposition is used several times, like the time
dependent mechanical problems or the nonstationary
transport problems, described in Sections 2 and 3.

8. Experimental results

The proposed QB heuristic was tested on four 3D FE
models: a ‘‘vessel’’ (see Fig. 5(a)), a ‘‘block’’ (just a plain
block), a ‘‘wheel’’ (see Fig. 5(b)), and a ‘‘dam’’ (see
Fig. 5(c)). They were discretised by tetrahedrons with var-
ious mesh sizes by the software described in [18]. The
names of FE meshes are the names of the problems and
the number relates to the mesh size. A description of the
meshes is given in Table 2. jVDj denotes the number of ele-
ments and jVNj denotes the number of nodes.

The dual graphs of meshes from Table 2 were parti-
tioned first by METIS and then by the QB heuristic into
k partitions. METIS was used with its default parameters.
The unbalancing threshold for the QB heuristic was set to
d = 1.10. All times are in seconds. The reduced system of
equations was solved with the parallel conjugate gradient
method.

The names of the columns in the tables have the form
hX, where X = M denotes parameters related to partition-
ing by METIS and X = QB denotes parameters related to
partitioning done by the QB heuristic. Two types of tables
follow. The tables for the first type (Tables 3, 5, 7 and 9)
summarise the time characteristics of the results. The wall
clock time for solving a problem is denoted by tR

X , i.e., tR
M

is the solution time for problems partitioned by the
METIS, and tR

QB is the solution time of problems parti-
tioned by the QB heuristic. The parameter



496 O. Medek et al. / Computers and Structures 85 (2007) 489–498
DtR ¼ 100 1� tR
QB=tR

M

� �
represents the percentage of the solution time saved by the
QB heuristic. The mesh partitioning time is denoted by tD

X .
The parameter k denotes how many times the partitioning
produced by the QB heuristic must be used in order to
compensate for its time requirements, i.e.,

k ¼
tD
QB � tD

M

tR
M � tR

QB

� �
=j

2666
3777;

where j denotes the number of time steps, which is the
number of calls of a linear system solver. The tables of
the second type (Tables 4, 6, 8 and 10) contain the sizes
of edge cuts jCj of the dual graphs of the meshes and the
time spent on the partial factorisation. The maximum par-
tial factorisation time over subdomains is denoted by
Table 4
The characteristics of results of experiments on the PC cluster with a
solver using the envelope storage scheme

Mesh k jCjM jCjQB max tF
M

� �
max tF

QB

� �
d tF

M

� �
d tF

QB

� �
vessel09 4 1991 2025 110 102 1.17 1.10
vessel09 6 2622 2726 55 49 1.18 1.08
vessel09 8 3276 3382 53 33 1.72 1.10
vessel09 10 3847 3913 34 22 1.60 1.10
block05 4 3674 4089 229 114 1.47 1.05
block05 6 5207 5559 75 59 1.37 1.02
block05 8 5980 6462 55 28 1.79 1.03
block05 10 6827 7466 26 19 1.38 1.09
wheel5 4 1275 1547 175 90 1.74 1.09
wheel5 6 1947 2045 49 47 1.08 1.09
wheel5 8 2421 2734 36 33 1.14 1.09
wheel5 10 2871 3060 27 25 1.21 1.10
dam15 4 4415 5122 350 231 1.48 1.06
dam15 6 6504 7534 196 131 1.46 1.06
dam15 8 7877 8759 176 79 1.93 1.09
dam15 10 8893 10,162 95 56 1.67 1.10

Table 5
The timing results of experiments on the PC cluster with a solver using the
sparse storage scheme

Mesh k tR
M tR

QB DtR[%] tD
M tD

QB k

vessel09 4 762 719 6 0.33 143.26 34
vessel09 6 442 410 7 0.33 169.18 53
vessel09 8 302 279 8 0.33 216.23 94
vessel09 10 240 207 14 0.35 219.64 67
block05 4 2193 1746 20 0.24 522.77 12
block05 6 923 836 9 0.25 627.91 73
block05 8 615 445 28 0.26 475.37 28
block05 10 381 312 18 0.28 497.64 73
wheel5 4 747 686 8 0.36 155.93 26
wheel5 6 508 447 12 0.37 221.54 37
wheel5 8 336 308 8 0.38 214.85 77
wheel5 10 274 249 9 0.37 280.81 113
dam15 4 4957 4703 5 0.45 1857.14 74
dam15 6 2741 2439 11 0.45 4375.82 145
dam15 8 1823 1405 23 0.45 1437.18 35
dam15 10 1499 972 35 0.46 1527.12 29
max tF
X

� �
¼ max

k

j¼1
tF
X

� �ðjÞ
;

where ðtF
X Þ
ðjÞ denotes the time spent on the partial factorisa-

tion of A(j). The disbalancing in partial factorisation times
is

d tF
X

� �
¼ max tF

X

� �
=tF

X ¼
max tF

X

� �
kPk

j¼1ðtF
X Þ
ðjÞ :

The experiments were carried out on two parallel
machines. The first one was a cluster of 10 PCs with
3.20 GHz Intel Pentium 4 processors and 3GB of memory.
The cluster operated under Linux 2.6. The software was
compiled using gcc 3.3 with optimisation -O3. A total of
only j = 10 time steps were performed. The meshes were
partitioned into k = 4, 6, 8, 10 submeshes. The timing char-
acteristics for the envelope storage scheme are in Table 3
and the other characteristics are in Table 4. Likewise, the
sparse storage scheme time characteristics are in Table 5
and the others are in Table 6.

The second parallel machine was a Sun Fire 15K Server
with 900MHz UltraSPARC III processors with 1GB of
memory associated with each processor. The machine is
located in the EPCC in Edinburgh, Scotland. It was oper-
Table 6
The characteristics of results of experiments on the PC cluster with a
solver using the sparse storage scheme

Mesh k jCjM jCjQB max tF
M

� �
max tF

QB

� �
d tF

M

� �
d tF

QB

� �
vessel09 4 1991 1936 67 63 1.16 1.09
vessel09 6 2622 2728 37 34 1.19 1.08
vessel09 8 3276 3582 23 21 1.20 1.10
vessel09 10 3847 3941 18 15 1.26 1.11
block05 4 3674 3945 213 168 1.39 1.11
block05 6 5207 5709 85 76 1.19 1.10
block05 8 5980 6378 57 40 1.44 1.10
block05 10 6827 7304 35 28 1.34 1.08
wheel5 4 1275 1422 67 61 1.19 1.09
wheel5 6 1947 2235 44 37 1.25 1.10
wheel5 8 2421 2682 29 26 1.20 1.09
wheel5 10 2871 3055 23 20 1.26 1.10
dam15 4 4415 5006 482 454 1.25 1.11
dam15 6 6504 8315 258 220 1.33 1.11
dam15 8 7877 8263 166 126 1.44 1.09
dam15 10 8893 9787 135 82 1.70 1.11

Table 7
The timing results of experiments on the Sun Server with a solver using the
envelope storage scheme

Mesh k tR
M tR

QB DtR[%] tD
M tD

QB k

vessel06 16 6087 4231 30 1.35 690 1
vessel06 32 2055 1773 14 1.35 807.92 6
block03 16 16,368 14,020 14 1.45 2299.34 2
block03 32 4861 3078 37 1.56 2412.76 3
wheel3 16 16,476 13,692 17 2.12 2361.2 2
wheel3 32 5263 3600 32 2.17 1942.43 3
dam11 16 15,025 9212 39 1.27 1934.38 1
dam11 32 4284 2890 33 1.34 1836.76 3



Table 8
The characteristics of results of experiments on the Sun Server with a solver using the envelope storage scheme

Mesh k jCjM jCjQB max tF
M

� �
max tF

QB

� �
d tF

M

� �
d tF

QB

� �
vessel06 16 9680 10,482 2801 1849 1.75 1.16
vessel06 32 15,148 16,281 775 588 1.91 1.37
block03 16 23,738 26,402 7775 6197 1.76 1.18
block03 32 34,536 36,684 2065 1301 1.83 1.24
wheel3 16 12,033 13,994 7734 6275 1.38 1.13
wheel3 32 22,171 24,284 2158 1358 1.71 1.23
dam11 16 20,765 23,256 6689 3808 2.00 1.14
dam11 32 30,460 33,420 1565 877 1.89 1.17
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ated under SunOS 5.9 and the software was compiled by
Forte Developer 7 C 5.4 compiler with optimisation -

fast. Only j = 2 time steps were performed. The meshes
were partitioned into k = 16 submeshes. The mesh parti-
tioning was performed on a PC from the above described
cluster. This fact influences the parameters tD

X and k. It is
common in parallel computing for preprocessing to be
done on a different machine from the one used for the main
computation. The timing characteristics for the envelope
storage scheme are in Table 7 and the others are in Table
8. Likewise, the sparse storage scheme time characteristics
are in Table 9 and the others are in Table 10.

The balancing of the estimates of the computational
complexity by the QB heuristic always leads to a better bal-
ancing of the real computational load, d tF

QB

� �
< d tF

M

� �
. On

the Sun Fire 15K Server the disbalancing in partial factori-
sation times exceeds the given unbalancing threshold of
1.10. The reason is that the partial factorisation times are
also influenced by CPU architecture, particularly by the
caches, and not only by the number of FLOPs.
Table 9
The timing results of experiments on the Sun Server with a solver using the
sparse storage scheme

Mesh k tR
M tR

QB DtR[%] tD
M tD

QB k

vessel06 16 2702 2349 13 1.34 1734.38 10
vessel06 32 1213 1275 �5 1.38 2055.84 –
block03 16 14,624 12,893 12 1.47 9701.83 12
block03 32 4255 3174 25 1.57 7522.78 14
wheel3 16 8887 8075 9 2.12 6162.03 16
wheel3 32 3377 3226 4 2.17 6312.9 84
dam11 16 12,497 10,036 20 1.27 9295.9 8
dam11 32 3887 3008 23 1.34 5780.12 14

Table 10
The characteristics of results of experiments on the Sun Server with a solver u

Mesh k jCjM jCjQB m

vessel06 16 9680 10,405 1
vessel06 32 15,148 16,373
block03 16 23,738 25,886 7
block03 32 34,536 36,510 1
wheel3 16 12,033 13,892 4
wheel3 32 22,171 24,126 1
dam11 16 20,765 23,750 5
dam11 32 30,460 32,790 1
In all but one case, better load balancing led to a reduc-
tion in the solution time. When the mesh ‘‘vessel06’’ was
solved on 32 processors on the Sun Fire 15K Server with
sparse storage scheme for submatrices, the tR

QB is slightly
greater than tR

M. This is caused by the longer solution time
for the reduced problem.

The parameter k clearly indicates whether the QB heu-
ristic is useful for a given problem. In general, if a problem
needs more than one hundred time steps, then QB is almost
always profitable. Otherwise, the user can continue to use
METIS or other common graph partitioning software.

9. Conclusion

Time dependent mechanical problems and heat transfer
problems requiring many time steps, solved by domain
decomposition methods, particularly by mesh partitioning,
are very sensitive to good load balancing. Classic mesh par-
titioning, which balances the number of elements in each
subdomain, may have random results in balancing the
computational load. The new proposed QB heuristic dem-
onstrates that for such problems it is beneficial to spend
more time on mesh partitioning in order to improve the
balancing, since the solution time savings pays off signifi-
cantly as the number of time steps required to solve a given
problem increases. It should be noted that practical prob-
lems typically require hundreds or even thousands of time
steps.
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