Final exam – Numerical analysis of structures

1) a) Determine temperatures at all nodes for 2D heat transfer problem - steady state.

b) Determine temperature at point A for given temperatures $T_1 = 10^{\circ}$ C and $T_2 = 15^{\circ}$ C, $T_4 = 10$ C.

- 2) a) Determine the 5^{th} row of the stiffness matrix for the truss structure.
 - b) Determine the right-hand side vector for:
 - force loading
 - prescribed displacement $u_3 = 1$ mm
 - temperature loading (uniform temperature change) of bar No. 5 $\Delta T = 10 \ ^{\circ}C$, $\alpha = 12 \cdot 10^{-6} \text{K}^{-1}$

c) Determine the axial force of bar No. 6 for given displacements $u_2 = -0.002m$ and $v_2 = 0.0005m$.

Final exam – Numerical analysis of structures

3) 1D heat transfer problem – non-stationary problem:

a) Determine the temperature profile in steady state.

b) Calculate nodal temperatures for the first two time steps t_1 a t_2

in the time-dependent problem (non-stationary). For time discretization, use the finite difference method with $\Delta t = 1$ s, $\rho = 10$, c = 1, $\tau = \frac{1}{2}$. The initial temperature is $t_0 = 10$ K.

4) The wall is discretized by two triangle elements (thickness h=0,4 m). Determine:

a) both displacements at node No. 4 (horizontal u_{4x} and vertical u_{4y})

b) strain vector at point A for given displacements:

 $u_{1x} = u_{1y} = u_{3y} = 0; u_{3x} = 1$ mm, $u_{4x} = 2$ mm, $u_{4y} = -0.5$ mm

