INTRODUCTION TO FINITE ELEMENT METHOD DIRECT APPROACH TO FEM

Tomáš Krejčí

Department of Mechanics Faculty of Civil Engineering Czech Technical University in Prague Czech Republic

132NAST - Numerical analysis of structures Prague - 21 September 2022

1 Course information

2 INTRODUCTION TO FEM

3 Direct Approach for discrete systems

- Lecturer: Tomáš Krejčí
- Room: D2029
- Office hours: Thursday from 12:00 to 13:30 in D2029
- Email: krejci@fsv.cvut.cz
- Web page: http://mech.fsv.cvut.cz/~krejci/TEACHING/NAST/index.html
- Credit requirements:
 - Minimal 10 points
 - Mid-term test 20 points
 - Homeworks (optional), each 2 points
 - Semester projects (optional), each 5 points

Exam requirements:

- Credit has to be given
- Grades:
 - A 90 100 points
 - B 80 89 points
 - C 70 79 points
 - D 60 69 points
 - E 50 59 points

http://mech.fsv.cvut.cz/~krejci/TEACHING/NAST/index.html

132NAST - Numerical analysis of structures

Lecturer: Tomáš Kreiči

Subject anotation

- Subject code: 132NAST
- No. of credits: 2 + 2 Credit and Exam

Short description: Overview of direct stiffness method of structural mechanics. Weak solution of one-dimensional elasticity eputions. Galerkin method, Gauss integration, principle of the Finite Element method. Steedy state heat conduction in one dimensional heat conduction problem, itingualar finite elements. Two-dimensional elasticity problems. Convergence of FEM, error estimates

References:

- J. Fish and T. Belynschkor-<u>A First Course in Finite Elements</u>, John Wiley & Sons, 2007 (free access (§CTU)
 O. C. Zienkowicz and R. L. Taylor: The Finite Element Method, Volume 1, The Basis, Fifth Edition, Butterworth-Heinemann, 2000
 C. Felipacity (Finite Element Method), Department of Accesspace Engineering Sciences, University of Colorado at Bodder
- C. Petiple: Integration of Pather Exempts, Separation of According Engineering
 Z. Bitmar and J. Sejnoba: Numerical Methods in Structural Mechanics, ASCE Press, 1996

MATLAB links:

- · G. Strang:Short MATLAB tutorial
- C. Moler:<u>Numerical Computing with MATLAB</u>

Grading policy

- · Semester projects (optional)
- Homework assignments
- Lectures
- Tutorials
- Mid-term review test Exams (obsolete)

Course Schedule

Date	Lecture	Tutorial
September 21	Introduction to FEM, Overview of Direct Stiffness Method - 1D Elasticity	Introduction to Programming - Matlab, Octave, Excel; Localization
September 28	Public Holiday	Public Holiday
October 5	Strong and Weak Forms, Weighted Residual Method, Lagrange Principle	1D Elastic Element: Localization, Benchmarks
October 12	Aproximation Functions and Numerical Integration - Gauss Quadrature, Finite Elements	2D Trusses
October 19	Finite Element Formulation for One-Dimensional Problems - Linear Elasticity	Linear and Quadratic Bar Elements, Gauss Quadrature, Natural Coordinates
October 26	Finite Element Formulation for One-Dimensional Heat Conduction Problems	1D Heat Conduction
November 2	Finite Element Formulation for One-Dimensional Nonstationary Heat Conduction Problems	1D Nonstationary Heat Transfer
November 9	Two-Dimensional Heat Conduction Problems	2D Heat Conduction
November 16	Mid-term test; Consolidation	2D Heat Conduction
November 23	Finite Element Formulation for Two-Dimensional Problems - Linear Elasticity	2D Problems - Plane Stress and Plane Strain Problems
December 1	Finite Element Formulation for Beams	Beams
December 7	Numerical Aspects of FEM Part I	Beams
December 14	Numerical Aspects of FEM Part II	A posteriori Error Estimation

Dewnloads:

Links:

INTRODUCTION TO FINITE ELEMENT METHOD

Introduction to Finite Element Method

- Many physical phenomena in engineering and science can be described in terms of partial differential equations
 - Stress analysis, Heat transfer, Fluid flow and Electromagnetics
- Solving these equations by classical analytical methods for arbitrary shapes is almost impossible
- The finite element method (FEM) is a numerical approach by which these partial differential equations can be solved approximately
- Millions of engineers and scientists worldwide use the FEM
- Google "FEM" about 533,000,000 results
- 69,000 FEM books
- Google "FEM software" 23,900,000 results
- https://en.wikipedia.org/wiki/List_of_finite_element_software_packages

IDEA OF FEM

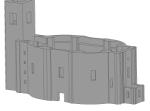
Real structure

 \rightarrow

Discretization by finite elements

 \rightarrow

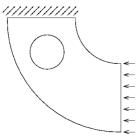
Model - Problem - partial differential equations \rightarrow



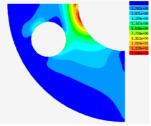
Weak solution - approximation

IDEA OF FEM

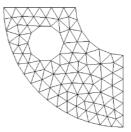
Problem, differential equations



Weak solution



Discretization by finite elements \rightarrow



 \rightarrow

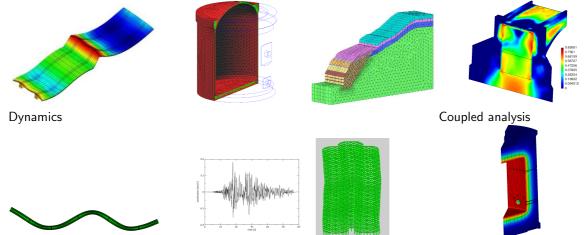
HISTORY OF FEM

- 1943: Courant published a paper in which he used tringular elements with variational principles to solve vibration problems
- 1950: The FEM was developed in the aerospace industry Boeing and Bell Aerospace (USA), Rolls Royce (UK)
- 1956: M.J.Turner, R.W.Clough (Berkeley, Boeing), and M.C.Martin, L. J. Topp published one of the first papers that laid out the major ideas
- Berkeley: E. Wilson, R.L.Taylor, professors at Berkeley, and their students PhD students: T.J.R. Hughes, C. Felipa, K.J. Bathe
- Swansea: O.C. Zienkiewicz, B. Irons, R.Owen
- 1960: E. Wilson developed one of the first finite element programs that was widely used
- 1965: NASA funded a project to develop a general-purpose finite element program Nastran
- 1969: ANSYS program focused on linear and nonlinear applications, has a capitalization of \$1.8 billion (in 2006)
- 1978: ABAQUS software initially focused on nonlinear applications
- Nowadays: FEM applications in many areas
 - Fast computer development
 - Software: NASTRAN, ANSYS, ABAQUS, LS-DYNA, COMSOL, NEMETSCHEK, SCIA Engineer, RFEM, ATENA

- Stress and thermal analyses of industrial parts such as electronic chips, electric devices, valves, pipes, pressure vessels, automotive engines and aircraft
- Seismic analysis of dams, power plants, cities and high-rise buildings
- Crash analysis of cars, trains and aircraft
- Fluid flow analysis of coolant ponds, pollutants and contaminants, and air in ventilation systems
- Electromagnetic analysis of antennas, transistors and aircraft signatures
- Analysis of surgical procedures such as plastic surgery, jaw reconstruction, correction of scoliosis and many others

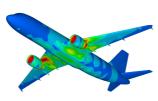
Applications of FEM

 Civil Engineering: Statics

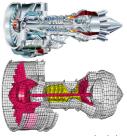


Applications of FEM

Mechanical Engineering:

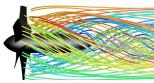


source:stressebook.com

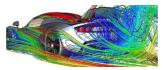


source:semanticscholar.org

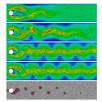
Fluid Flow:



source:simtec-europe.com

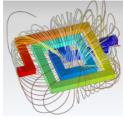


source:simutechgroup.com



source:https://doi.org/10.3390/fluids4010005

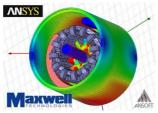
Electrical engineering:
 Electromagnetics simulations



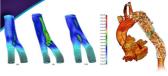
source:comsol.com

Medical research:

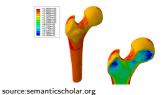
source: https://doi.org/10.1016/j.euromechsol.2014.04.001



source:https://solenoidsystems.com



source:http://www.cardiomedtech.com/



The finite element method (FEM) consists of the following five steps:

- 1. Preprocessing: subdividing the problem domain into finite elements
- 2. Element formulation: development of equations for elements
- **3**. Assembly: obtaining the equations of the entire system from the equations of individual elements
- 4. Solving the equations
- **5**. Postprocessing: determining quantities of interest, such as stresses and strains, and obtaining visualizations of the response

Customary matrix notation is used:

Matrices are denoted by uppercase boldface italic letters A, B, Lowercase boldface italic letters stand for vectors σ, r , Scalars A, b, Variables A, b,

BEHAVIOR OF A SINGLE BAR ELEMENT

Truss structures

Highway truss bridge over the Mississippi River, photo by Highsmith, Carol M.

Truss structure in the atelier at Faculty of Civil Engineering

- Direct derivation of FEM for bar elements deformation method
- Expression of forces according to nodal displacements

BEHAVIOR OF A SINGLE BAR ELEMENT

Equilibrium of the element internal forces and nodal forces

$$F_1^e = -\sigma^e A^e, \qquad F_2^e = \sigma^e A^e, \qquad F_1^e + F_2^e = 0$$

The elastic stress-strain law, known as Hooke's law

$$\sigma^e = E^e \varepsilon^e$$

- The deformation of the structure must be compatible
- Strain definition as the ratio of the elongation to the original element length

$$\varepsilon^e = \frac{\Delta l^e}{l^e}$$

Equation for stress

$$\sigma^e = E^e \varepsilon^e = E^e \frac{\Delta l^e}{l^e} = E^e \frac{u_2^e - u_1^e}{l^e}$$

Equations for nodal forces

$$F_1^e = -\sigma^e A^e = \frac{E^e A^e}{l^e} (u_1^e - u_2^e), \qquad F_2^e = \sigma^e A^e = \frac{E^e A^e}{l^e} (u_2^e - u_1^e)$$

Matrix form of nodal forces

$$\left\{\begin{array}{c}F_1^e\\F_2^e\end{array}\right\} = \left[\begin{array}{c}k^e&-k^e\\-k^e&k^e\end{array}\right] \left\{\begin{array}{c}u_1^e\\u_2^e\end{array}\right\},$$

where

$$k^e = \frac{EA}{l^e}$$

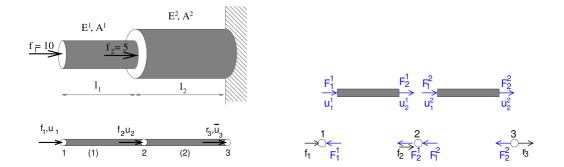
Matrix form of nodal forces

$$F^e = K^e d^e$$

$$\left(\begin{array}{c}F_1^e\\F_2^e\end{array}\right\} = \left[\begin{array}{cc}k^e&-k^e\\-k^e&k^e\end{array}\right] \left\{\begin{array}{c}u_1^e\\u_2^e\end{array}\right\}$$

- Stifness matrix K^e is symmetric and singular
- Linearity of constitutive, geometrical, and balance equations
- \blacksquare Rigid body motion: If $u_1^e=u_2^e,$ then $F_1^e=F_2^e=0$

STIFFNES MATRIX ASSEMBLY



Force - displacement relations for both elements

$$\boldsymbol{F}^1 = \boldsymbol{K}^1 \boldsymbol{d}^1, \qquad \boldsymbol{F}^2 = \boldsymbol{K}^2 \boldsymbol{d}^2$$

Compatibility of displacements

$$u_1^1 = u_1, \quad u_2^1 = u_1^2 = u_2, \quad u_2^2 = u_3$$

(1)

STIFFNES MATRIX ASSEMBLY - LOCALIZATION

$$\xrightarrow{1}_{f_1} \xrightarrow{2}_{f_2} \xrightarrow{3}_{f_2} \xrightarrow{f_1}_{f_2} \xrightarrow{f_2}_{f_2} \xrightarrow{f_2}_{f_2} \xrightarrow{f_2}_{f_2} \xrightarrow{f_3}$$

• Equilibrium equations for three nodes

$$\begin{array}{rcl} (1) & \to & & F_1^1 - f_1 = 0 \\ (2) & \to & & F_2^1 + F_1^2 - f_2 = 0 \\ (3) & \to & & F_2^2 - r_3 = 0 \end{array}$$

Matrix form

$$\left(\begin{array}{c}F_1^1\\F_2^1\\0\end{array}\right) + \left\{\begin{array}{c}0\\F_1^2\\F_2^2\end{array}\right\} = \left\{\begin{array}{c}f_1\\f_2\\r_3\end{array}\right\}$$

Element internal nodal forces are expressed by global displacements

$$\left\{ \begin{array}{c} F_1^1 \\ F_2^1 \end{array} \right\} = \mathbf{K}^1 \left\{ \begin{array}{c} u_1^1 \\ u_2^1 \end{array} \right\} = \mathbf{K}^1 \left\{ \begin{array}{c} u_1 \\ u_2 \end{array} \right\} \\ \left\{ \begin{array}{c} F_1^2 \\ F_2^2 \end{array} \right\} = \mathbf{K}^2 \left\{ \begin{array}{c} u_1^2 \\ u_2^2 \end{array} \right\} = \mathbf{K}^2 \left\{ \begin{array}{c} u_2 \\ u_3 \end{array} \right\}$$

STIFFNES MATRIX ASSEMBLY - LOCALIZATION

Local vectors of nodal forces and stifness matrices are augmented by adding zeros

$$\underbrace{\left\{\begin{array}{c}F_{1}^{1}\\F_{2}^{1}\\0\end{array}\right\}}_{\tilde{F}^{1}} = \underbrace{\left\{\begin{array}{c}k^{1} & -k^{1} & 0\\-k^{1} & k^{1} & 0\\0 & 0 & 0\end{array}\right\}}_{\tilde{K}^{1}} \left\{\begin{array}{c}u_{1}\\u_{2}\\u_{3}\\u_{3}\\u_{3}\\u_{3}\\u_{3}\\u_{3}\\u_{3}\\u_{3}\\u_{4}\\u_{2}\\u_{3}\\u_{4}\\u_{2}\\u_{3}\\u_{4}\\u_{4}\\u_{3}\\u_{3}\\u_{4}\\u_{4}\\u_{3}\\u_{4}\\u_{3}\\u_{4}\\u_{4}\\u_{3}\\u_{4}\\$$

• Augmented vectors are introduced into the equilibrium equations for the nodes

$$\underbrace{\left\{\begin{array}{cccc} k^{1} & -k^{1} & 0\\ -k^{1} & k^{1} & 0\\ 0 & 0 & 0\end{array}\right\}}_{\tilde{K}^{1}} \underbrace{\left\{\begin{array}{cccc} u_{1}\\ u_{2}\\ u_{3}\end{array}\right\}}_{d} + \underbrace{\left\{\begin{array}{ccccc} 0 & 0 & 0\\ 0 & k^{2} & -k^{2}\\ 0 & -k^{2} & k^{2}\end{array}\right\}}_{\tilde{K}^{2}} \underbrace{\left\{\begin{array}{cccc} u_{1}\\ u_{2}\\ u_{3}\end{array}\right\}}_{d} = \underbrace{\left\{\begin{array}{cccc} f_{1}\\ f_{2}\\ r_{3}\end{array}\right\}}_{f} \\ \begin{pmatrix} \tilde{K}^{1} + \tilde{K}^{2} \end{pmatrix} d = f \quad \rightarrow \quad Kd = f$$

STIFFNES MATRIX ASSEMBLY - LOCALIZATION

Formalising with help of a distribution matrix ("gather" matrix) L^e for each element, d^e = L^ed
For example, displacements for the first element read

$$d^{1} = \left\{ \begin{array}{c} u_{1}^{1} \\ u_{2}^{1} \end{array} \right\} = \underbrace{\left\{ \begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}}_{\boldsymbol{L}^{1}} \left\{ \begin{array}{c} u_{1} \\ u_{2} \\ u_{3} \end{array} \right\} = \boldsymbol{L}^{1} \boldsymbol{d}$$

The same for vector of nodal forces

$$F^1 = L^e \tilde{F}^1$$

Equilibrium equations for one element can be expressed via a global displacement vector

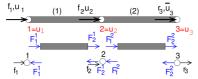
$$oldsymbol{K}^eoldsymbol{d}^e = oldsymbol{F}^e \qquad o \qquad oldsymbol{K}^eoldsymbol{L}^eoldsymbol{d} = oldsymbol{F}^e$$

Multiplying by transpose matrix $L^{e\mathrm{T}}$

$$\underbrace{ \underbrace{ L^{e\mathrm{T}} K^e L^e}_{ ilde{K}^e} d = \underbrace{ L^{e\mathrm{T}} F^e}_{ ilde{f}} }_{ ilde{f}}$$

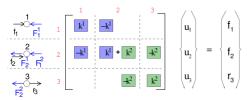
STIFFNES MATRIX ASSEMBLY - ALGORITHMIZATION

Code numbers represent numbers of unknown displacements



Assignment of code numbers to local displacements and forces on elements

Local stiffness matrices are added to global stiffness matrix



STIFFNES MATRIX ASSEMBLY - ALGORITHMIZATION

- Code numbers represent mapping between local numbering on elements and global numbering for the whole structure
- Formally we can write:

$$m{K} = \sum_i ilde{m{K}}^i$$

- The stiffness matrix is symmetric and singular
- Regularization of the matrix is obtained by the setting of boundary conditions
- The system of equations is rearanged for free degrees of freedom (unknown displacements) and prescribed displacements

$$\left[egin{array}{ccc} K_{uu} & K_{up} \ K_{pu} & K_{pp} \end{array}
ight] \left\{ egin{array}{ccc} u \ ar u \end{array}
ight\} = \left\{ egin{array}{ccc} f \ r \end{array}
ight\}$$

The vector of unknown displacements is calculated from the first row

$$oldsymbol{u} = oldsymbol{K}_{uu}^{-1} \left(oldsymbol{f} - oldsymbol{K}_{up} oldsymbol{ar{u}}
ight)$$

Unknown reactions are obtained from the second row

$$r = K_{up}u + K_{up}\bar{u}$$

- English course of "Numerical analysis of structures" by J. Zeman (jan.zeman@fsv.cvut.cz)
- Czech course of "Numerická analýza konstrukcí" (Numerical analysis of structures) by B. Patzák (borek.patzak@fsv.cvut.cz)
- J. Fish and T. Belytschko: A First Course in Finite Elements, John Wiley & Sons, 2007

