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Course information

Lecturer: Tomáš Krejč́ı

Room: D2029

Office hours: Thursday from 12:00 to 13:30 in D2029

Email: krejci@fsv.cvut.cz

Web page: http://mech.fsv.cvut.cz/∼krejci/TEACHING/NAST/index.html
Credit requirements:

Minimal 10 points
Mid-term test 20 points
Homeworks (optional), each 2 points
Semester projects (optional), each 5 points

Exam requirements:
Credit has to be given
Grades:

A 90 - 100 points
B 80 - 89 points
C 70 - 79 points
D 60 - 69 points
E 50 - 59 points
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Course web page

http://mech.fsv.cvut.cz/∼krejci/TEACHING/NAST/index.html
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Introduction to Finite Element Method

Introduction to Finite Element Method

Many physical phenomena in engineering and science can be described in terms of partial differential
equations

Stress analysis, Heat transfer, Fluid flow and Electromagnetics

Solving these equations by classical analytical methods for arbitrary shapes is almost impossible

The finite element method (FEM) is a numerical approach by which these partial differential equations
can be solved approximately

Millions of engineers and scientists worldwide use the FEM

Google - “FEM” about 533,000,000 results

69,000 FEM books

Google - “FEM software” 23,900,000 results

https://en.wikipedia.org/wiki/List of finite element software packages
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Idea of FEM

Real structure → Model - Problem - partial differential equations →

Discretization by finite elements → Weak solution - approximation
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Idea of FEM

Problem, differential equations → Discretization by finite elements →

Weak solution
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History of FEM

1943: Courant published a paper in which he used tringular elements with variational
principles to solve vibration problems
1950: The FEM was developed in the aerospace industry - Boeing and Bell Aerospace (USA),
Rolls Royce (UK)
1956: M.J.Turner, R.W.Clough (Berkeley, Boeing), and M.C.Martin, L. J. Topp published one
of the first papers that laid out the major ideas
Berkeley: E. Wilson, R.L.Taylor, professors at Berkeley, and their students PhD students:
T.J.R. Hughes, C. Felipa, K.J. Bathe
Swansea: O.C. Zienkiewicz, B. Irons, R.Owen
1960: E. Wilson developed one of the first finite element programs that was widely used
1965: NASA funded a project to develop a general-purpose finite element program Nastran
1969: ANSYS program - focused on linear and nonlinear applications, has a capitalization of
$1.8 billion (in 2006)
1978: ABAQUS software - initially focused on nonlinear applications
Nowadays: FEM applications in many areas

Fast computer development
Software: NASTRAN, ANSYS, ABAQUS, LS-DYNA, COMSOL, NEMETSCHEK, SCIA Engineer,
RFEM, ATENA
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Applications of FEM

Stress and thermal analyses of industrial parts such as electronic chips, electric devices, valves, pipes,
pressure vessels, automotive engines and aircraft

Seismic analysis of dams, power plants, cities and high-rise buildings

Crash analysis of cars, trains and aircraft

Fluid flow analysis of coolant ponds, pollutants and contaminants, and air in ventilation systems

Electromagnetic analysis of antennas, transistors and aircraft signatures

Analysis of surgical procedures such as plastic surgery, jaw reconstruction, correction of scoliosis and
many others
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Applications of FEM

Civil Engineering:
Statics

Dynamics Coupled analysis
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Applications of FEM

Mechanical Engineering:

source:stressebook.com source:semanticscholar.org

Fluid Flow:

source:simtec-europe.com source:simutechgroup.com source:https://doi.org/10.3390/fluids4010005
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Applications of FEM

Electrical engineering:
Electromagnetics simulations

source:comsol.com source:https://solenoidsystems.com

Medical research:

source:https://doi.org/10.1016/j.euromechsol.2014.04.001 source:http://www.cardiomedtech.com/ source:semanticscholar.org
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Direct Approach to FEM

The finite element method (FEM) consists of the following five steps:

1. Preprocessing: subdividing the problem domain into finite elements

2. Element formulation: development of equations for elements

3. Assembly: obtaining the equations of the entire system from the equations of individual elements

4. Solving the equations

5. Postprocessing: determining quantities of interest, such as stresses and strains, and obtaining
visualizations of the response

Customary matrix notation is used:
Matrices are denoted by uppercase boldface italic letters A,B,
Lowercase boldface italic letters stand for vectors σ, r,
Scalars A, b,
Variables A, b,
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Behavior of a single bar element

Truss structures

Highway truss bridge over the Mississippi River, photo by Highsmith, Carol M. Truss structure in the atelier at Faculty of Civil Engineering

Direct derivation of FEM for bar elements - deformation method

Expression of forces according to nodal displacements
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Behavior of a single bar element

Equilibrium of the element internal forces and nodal forces

F e
1 = −σeAe, F e

2 = σeAe, F e
1 + F e

2 = 0

The elastic stress–strain law, known as Hooke’s law

σe = Eeεe

The deformation of the structure must be compatible

Strain definition as the ratio of the elongation to the original element length

εe =
∆le

le
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Behavior of a single bar element

Equation for stress

σe = Eeεe = Ee∆le

le
= Eeu

e
2 − ue

1

le

Equations for nodal forces

F e
1 = −σeAe =

EeAe

le
(ue

1 − ue
2), F e

2 = σeAe =
EeAe

le
(ue

2 − ue
1)

Matrix form of nodal forces {
F e
1

F e
2

}
=

[
ke −ke

−ke ke

]{
ue
1

ue
2

}
,

where

ke =
EA

le

Matrix form of nodal forces
F e = Kede
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Behavior of a single bar element

{
F e
1

F e
2

}
=

[
ke −ke

−ke ke

]{
ue1
ue2

}

Stifness matrix Ke is symmetric and singular

Linearity of constitutive, geometrical, and balance equations

Rigid body motion: If ue
1 = ue

2, then F e
1 = F e

2 = 0
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Stiffnes matrix assembly

Force - displacement relations for both elements

F 1 = K1d1, F 2 = K2d2

Compatibility of displacements

u1
1 = u1, u1

2 = u2
1 = u2, u2

2 = u3 (1)
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Stiffnes matrix assembly - localization

Equilibrium equations for three nodes

(1) → F 1
1 − f1 = 0

(2) → F 1
2 + F 2

1 − f2 = 0

(3) → F 2
2 − r3 = 0

Matrix form  F 1
1

F 1
2

0

+

 0
F 2
1

F 2
2

 =

 f1
f2
r3


Element internal nodal forces are expressed by global displacements{

F 1
1

F 1
2

}
= K1

{
u1
1

u1
2

}
= K1

{
u1

u2

}
{

F 2
1

F 2
2

}
= K2

{
u2
1

u2
2

}
= K2

{
u2

u3

}
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Stiffnes matrix assembly - localization

Local vectors of nodal forces and stifness matrices are augmented by adding zeros F 1
1

F 1
2

0

︸ ︷︷ ︸
˜F

1

=

 k1 −k1 0
−k1 k1 0
0 0 0

︸ ︷︷ ︸
˜K

1

 u1

u2

u3


 0

F 2
1

F 2
2

︸ ︷︷ ︸
˜F

2

=

 0 0 0
0 k2 −k2

0 −k2 k2

︸ ︷︷ ︸
˜K

2

 u1

u2

u3


Augmented vectors are introduced into the equilibrium equations for the nodes k1 −k1 0

−k1 k1 0
0 0 0

︸ ︷︷ ︸
˜K

1

 u1

u2

u3

︸ ︷︷ ︸
d

+

 0 0 0
0 k2 −k2

0 −k2 k2

︸ ︷︷ ︸
˜K

2

 u1

u2

u3

︸ ︷︷ ︸
d

=

 f1
f2
r3

︸ ︷︷ ︸
f(

K̃
1
+ K̃

2
)
d = f → Kd = f
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Stiffnes matrix assembly - localization

Formalising with help of a distribution matrix (“gather” matrix) Le for each element, de = Led

For example, displacements for the first element read

d1 =

{
u1
1

u1
2

}
=

{
1 0 0
0 1 0

}
︸ ︷︷ ︸

L1

 u1

u2

u3

 = L1d

The same for vector of nodal forces
F 1 = LeF̃

1

Equilibrium equations for one element can be expressed via a global displacement vector

Kede = F e → KeLed = F e

Multiplying by transpose matrix LeT

LeTKeLe︸ ︷︷ ︸
˜K

e

d = LeTF e︸ ︷︷ ︸
f
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Stiffnes matrix assembly - algorithmization

Code numbers represent numbers of unknown displacements

Assignment of code numbers to local displacements and forces on elements

Local stiffness matrices are added to global stiffness matrix
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Stiffnes matrix assembly - algorithmization

Code numbers represent mapping between local numbering on elements and global numbering for the
whole structure

Formally we can write:

K =
∑
i

K̃
i

The stiffness matrix is symmetric and singular

Regularization of the matrix is obtained by the setting of boundary conditions

The system of equations is rearanged for free degrees of freedom (unknown displacments) and
prescribed displacements [

Kuu Kup

Kpu Kpp

]{
u
ū

}
=

{
f
r

}
The vector of unknown displacements is calculated from the first row

u = K−1
uu (f −Kupū)

Unknown reactions are obtained from the second row

r = Kupu+Kupū
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