## Weak Solution

## Galerkin Method

Tomás Krejčí

Department of Mechanics
Faculty of Civil Engineering
Czech Technical University in Prague
Czech Republic


## 132NAST - Numerical analysis of structures <br> Prague - 21 September 2022

(1) Notation, Basic Equations
(2) Strong SOLUTION
(3) Weak solution
(4) LAGRANGE'S PRINCIPLE

## Notation, Basic Equations



■ Let's consider 1D linear elastic problem - beam under axial tension and compression in domain $\Omega$ and boundary $\Gamma$

- Loading:
- Continuous volume loading $b(x)$
- Prescribed displacments on the boundary $\Gamma^{u}(x=0)$
- Prescribed stress on the boundary $\Gamma^{t}(x=0)$
- Material property $E(x)$
- Cross-section characteristic - Cross-section area $A(x)$

- Displacement in a given point $u(x)$
- $\operatorname{Strain} \varepsilon(x),(x \in \Omega)$

$$
\begin{aligned}
\varepsilon(x) & =\lim _{\Delta x \rightarrow 0} \frac{\Delta \bar{x}-\Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x+u(x+\Delta x)-u(x)-\Delta x}{\Delta x} \\
& =\frac{\mathrm{d} u}{\mathrm{~d} x}
\end{aligned}
$$

- Boundary conditions $u(x)=\bar{u}(x)$ for $x \in \Gamma^{u}$


■ In the body: $\Omega(x \in \Omega)$

$$
\begin{aligned}
\rightarrow-\sigma(x) A(x)+b\left(x+\frac{\Delta x}{2}\right) \Delta x+\sigma(x+\Delta x) A(x+\Delta x) & =0 \\
\frac{\sigma(x+\Delta x) A(x+\Delta x)-\sigma(x) A(x)}{\Delta x}+b\left(x+\frac{\Delta x}{2}\right) & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\sigma(x) A(x))+b(x) & =0
\end{aligned}
$$



- On the boundary: $\Omega(x \in \Omega)$

$$
\begin{array}{r}
\rightarrow \bar{t}(0)+\sigma(x) A(x)=0, \quad \rightarrow \bar{t}(L)-\sigma(x) A(x)=0 \\
\sigma(x) A(x) n(x)-\bar{t}(x)=0, \quad x \in \Gamma^{t}
\end{array}
$$

- Constitutive equation - Hook's law: $(x \in \Omega)$

$$
\sigma(x)=E(x) \varepsilon(x)
$$

- Formulation for displacements $(x \in \Omega)$

$$
\varepsilon(x)=\frac{\mathrm{d} u}{\mathrm{~d} x}(x), \quad \sigma(x)=E(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x), \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left(E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x)\right)+b(x)=0
$$

We are looking for a solution $u(x)$ smooth enough, which fulfills:

- For $x \in \Omega$ :

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x)\right)+b(x)=0
$$

- For $x \in \Gamma^{u}$ :

$$
\bar{u}(x)=u(x)
$$

- For $x \in \Gamma^{t}$ :

$$
E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x} n(x)=\bar{t}(x)
$$

## PRELIMINARY

- Per partes integration (Green's theorem)

$$
\begin{aligned}
& \int_{0}^{L} \frac{\mathrm{~d} f}{\mathrm{~d} x}(x) g(x) \mathrm{d} x=[f(x) g(x)]_{0}^{L}-\int_{0}^{L} f(x) \frac{\mathrm{d} g}{\mathrm{~d} x}(x) \mathrm{d} x=0 \\
& \int_{\Omega} \frac{\mathrm{d} f}{\mathrm{~d} x}(x) g(x) \mathrm{d} x=\int_{\Gamma} f(x) g(x) \mathrm{d} x-\int_{\Omega} f(x) \frac{\mathrm{d} g}{\mathrm{~d} x}(x) \mathrm{d} x=0
\end{aligned}
$$

- The definition of solution residuum for the given function $v(x)$

$$
\begin{aligned}
x \in \Omega & : r(v(x))=\frac{\mathrm{d}}{\mathrm{~d} x}\left(E(x) A(x) \frac{\mathrm{d} v}{\mathrm{~d} x}(x)\right)+b(x) \\
x \in \Gamma^{u} & : r(v(x))=\bar{u}(x)-v(x) \\
x \in \Gamma^{t} & : r(v(x))=\bar{t}(x)-E(x) A(x) \frac{\mathrm{d} v}{\mathrm{~d} x}(x) n(x)
\end{aligned}
$$

- For $v(x) \equiv u(x)$ we have $r(x) \equiv 0$

Weighted Residual method
$■$ Is $v(x)$ the solution?

- The main idea of the weighted residual method: We choose an arbitrary function $\delta u(x)$ (weight, test function) and calculate:

$$
\int_{\Omega} \delta u(x) r(v(x)) \mathrm{d} x+\int_{\Gamma} \delta u(x) r(v(x)) \mathrm{d} x
$$

- If the value of the integrals is zero for every weight functions $\delta u(x)$, then $v(x)$ is the solution of the problem.
- Example



## Weighted Residual method

- The solution $u(x)$ has to satisfy:

$$
\int_{\Omega} \delta u(x)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\left(E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x)\right)+b(x)\right)=0
$$

- Integration by parts:

$$
\int_{\Gamma} \delta u(x) E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x) n(x) \mathrm{d} x-\int_{\Omega} \frac{\mathrm{d} \delta u}{\mathrm{~d} x} E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x) \mathrm{d} x+\int_{\Omega} \delta u(x) b(x) \mathrm{d} x=0
$$

- Integrals on the boundary:

$$
\int_{\Gamma^{u}} \underbrace{\delta u(x)}_{=0} E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x) n(x) \mathrm{d} x+\int_{\Gamma^{t}} \delta u(x) \underbrace{E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x) n(x)}_{=\bar{t}} \mathrm{~d} x
$$

## Weighted residual method

■ We find $u(x), u(x)=\bar{u}(x)$ for $x \in \Gamma^{u}$, such that:

$$
\int_{\Omega} \frac{\mathrm{d} \delta u}{\mathrm{~d} x} E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x}(x) \mathrm{d} x=\int_{\Omega} \delta u(x) b(x) \mathrm{d} x+\int_{\Gamma^{t}} \delta u(x) \overline{\mathrm{t}} \mathrm{~d} x
$$

- For an arbitrary $\delta u(x)$, where $\delta u(x)=0$ for $x \in \Gamma^{u}$. Such function $u(x)$ is called the weak solution of the problem or trial solution
- Why weak solution?
- $u(x)$ has to be continuous ( $C^{0}$ ) and integrable
- Strong solution (solution of differential equation) $\Rightarrow$ weak solution
- It allows a flexible numerical solution
- For the numerical application, we need:
- Suitable expression of the trial solution and the weighted function
- Suitable numerical method for calculation of integrals

LAGRANGE'S VARIATIONAL PRINCIPLE OF THE MINIMUM OF POTENTIAL ENERGY

## OPTIONAL TOPIC

- From all kinematically admissible states, the right is that one which gives the minimum value to the total potential energy.

$$
\begin{array}{r}
\Pi=E_{i}+E_{e}=\min \\
E_{i}=\frac{1}{2} \int_{\Omega} \sigma \varepsilon \mathrm{d} \Omega \\
E_{e}=-\int_{\Omega} u b \mathrm{~d} \Omega-\int_{\Gamma^{t}} u \bar{t} \mathrm{~d} \Omega
\end{array}
$$

## OPTIONAL TOPIC

$■ \Pi$ is functional (a function of a function). The small change of the function is called its variation, and can be expressed as $\delta u(x)=\xi w(x)$, where $w(x)$ is an arbitrary function and $\xi$ is some small positive number. A change of the functional, which is called its variation, is defined as:

$$
\delta \Pi=\Pi(u(x)+\xi w(x))-\Pi(u(x)) \equiv \Pi(u(x)+\delta u(x))-\Pi(u(x))
$$

- WE are looking for the minimum of the functional $\Pi$ - the variation must be zero $\delta \Pi=0$.



LAGRANGE'S VARIATIONAL PRINCIPLE OF THE MINIMUM OF POTENTIAL ENERGY

## Optional TOPIC

## - For our problem:

$$
\begin{aligned}
\delta \Pi= & \frac{1}{2} \int E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}+\xi \frac{\mathrm{d} w}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x-\frac{1}{2} \int E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x \\
- & \int(u+\xi w) b \mathrm{~d} x-\int(u+\xi w) \bar{t} \mathrm{~d} \Gamma+\int(u) b \mathrm{~d} x+\int(u) \bar{t} \mathrm{~d} \Gamma \\
= & \frac{1}{2} \int E A\left(\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2}+2 \xi \frac{\mathrm{~d} u}{\mathrm{~d} x} \frac{\mathrm{~d} w}{\mathrm{~d} x}+\xi^{2}\left(\frac{\mathrm{~d} w}{\mathrm{~d} x}\right)^{2}\right) \mathrm{d} x \\
- & \frac{1}{2} \int E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x-\xi \int w b \mathrm{~d} x-\left.\xi(w \bar{t})\right|_{\Gamma} \\
& \delta \Pi=\xi \int E A \frac{\mathrm{~d} u}{\mathrm{~d} x} \frac{\mathrm{~d} w}{\mathrm{~d} x} \mathrm{~d} x-\xi \int w b \mathrm{~d} x-\left.\xi(w \bar{t})\right|_{\Gamma}
\end{aligned}
$$

## OPTIONAL TOPIC

■ WE are looking for the minimum of the functional. The variation must be zero, so $\delta \Pi=0$. Introducing from previous equations and dividing by $\xi$, we have:

$$
\begin{aligned}
\delta \Pi / \xi & =\int E A \frac{\mathrm{~d} w}{\mathrm{~d} x} \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x-\int w b \mathrm{~d} x-\left.(w \bar{t})\right|_{\Gamma}=0 \\
\delta \Pi & =\int E A \frac{\mathrm{~d} \delta u}{\mathrm{~d} x} \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x-\int \delta u b \mathrm{~d} x-\left.(\delta u \bar{t})\right|_{\Gamma}=0
\end{aligned}
$$

- After the introduction of constitutive relations, previous equation is simplified:

$$
\delta \Pi=\int A \delta \sigma \varepsilon \mathrm{~d} x-\int \delta u b \mathrm{~d} x-\left.(\delta u \bar{t})\right|_{\Gamma}=0
$$

- The resulting equation above expresses the well-known "Principle of virtual displacements." Note the equivalence between these equations and equations from the beginning of this lecture!
- English course of "Numerical analysis of structures" by J. Zeman (jan.zeman@fsv.cvut.cz)
- Czech course of "Numerická analýza konstrukci" (Numerical analysis of structures) by B. Patzák (borek.patzak@fsv.cvut.cz)
- J. Fish and T. Belytschko: A First Course in Finite Elements, John Wiley \& Sons, 2007

