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Weak Form for beams in tension and compression

Strong form
d

dx

(
E(x)A(x)

du(x)

dx

)
+ b(x) = 0,

Weighted residual method: multiplying the strong solution by an arbitrary (weight) function δu and
integrating over the domain on which it holds:∫

Ω

δu(x)

(
d

dx

(
E(x)A(x)

du(x)

dx

)
+ b(x)

)
= 0,

Integration by parts:∫
Γ

δu(x)E(x)A(x)
du(x)

dx
n(x)dx−

∫
Ω

dδu(x)

dx
E(x)A(x)

du(x)

dx
dx+

∫
Ω

δu(x)b(x)dx = 0

Integral on the boundary:∫
Γu

δu(x)︸ ︷︷ ︸
=0

E(x)A(x)
du(x)

dx
n(x)dx+

∫
Γt

δu(x)E(x)A(x)
du(x)

dx
n(x)︸ ︷︷ ︸

=t̄

dx

Weak form: ∫
Ω

dδu(x)

dx
E(x)A(x)

du(x)

dx
dx =

∫
Ω

δu(x)b(x)dx+

∫
Γt

δu(x)t̄dx
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Approximation

Convergence of the FEM - The accuracy of FEM improves with mesh refinement, i.e. as element size h,
decreases, the solution tends to be the correct solution.

The two necessary conditions for convergence of the FEM are:

Continuity
Completeness

Continuity - The trial solutions and weight functions must be sufficiently smooth. The required degree
of smoothness depends on the order of the derivatives that appear in the weak form. For the
second-order differential equations, derivatives in the weak form are the first derivatives, and the weight
functions and trial solutions must be C0 continuous.

Completeness is the capability of a series of functions to approximate a given smooth function with
arbitrary accuracy. For convergence of the FEM, it is sufficient that as the element sizes approach zero,
the trial solutions and weight functions, and their derivatives up to and including the highest order
derivative appearing in the weak form, be capable of assuming constant values.
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Notation

The trial function is denoted ϕ(x), the global FEM approximation ϕh(x); this function is for a
particular element ϕe(x).

Nodal values for the trial function are denoted by subscript; for element-related nodal value, the local
node number is used xe

1.

The solution is supposed to be approximated in each element by a polynomial function for ϕe(x):

ϕe(x) = αe
0 + αe

1x+ αe
2x

2 + αe
3x

3 + . . . , (1)

where αi are coefficients selected so that continuity is satisfied. The continuity ϕh(x) has to be
satisfied within each element and between elements, too.
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Linear Approximation

Consider an approximation ϕe(x) = αe
0 + αe

1x
This approximation satisfies completeness:

The term αe
0 can represent any constant function

The term αe
1 can represent any function with a constant derivative

For the complete and C0 continuous function, we express the approximation in the element in
terms of the nodal values. We can write the approximation ϕe(x):

ϕe(x) =
[
1 x

]︸ ︷︷ ︸
p(x)

[
αe
0

αe
1

]
︸ ︷︷ ︸
αe

= p(x)αe (2)

Coefficients are expressed in term of nodal values:

ϕe(xe1) ≡ ϕe
1 = αe

0 + αe
1x

e
1

ϕe(xe2) ≡ ϕe
2 = αe

0 + αe
2x

e
2

→
[
ϕe
1

ϕe
2

]
︸ ︷︷ ︸

de

=

[
1 xe1
1 xe2

]
︸ ︷︷ ︸

M e

[
αe
0

αe
1

]
︸ ︷︷ ︸
αe

, (3)
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Linear Approximation

where de is the vector of approximated nodal values of the function ϕ in element e.
The coefficients α are obtained by the inverse form of the previous equation:

αe = (M e)−1de. (4)

The approximation can be expressed now:

ϕe = N ede, N e = pe(M e)−1. (5)

From the inverse matrix

(M e)−1 =
1

xe2 − xe1

[
xe2 −xe1
−1 1

]
, (6)

we obtain the element shape function matrix:

N e =
[

xe
2−x
le ,

x−xe
1

le

]
= [N e

1 , N
e
2 ] . (7)
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Linear Approximation

The approximation ϕe is written as ϕe = N e(x)de, where N e(x) is the element shape function
matrix.

The previous approximation can be interpreted as a linear combination of shape functions N e
i :

ϕe = N e(x)de =
∑
i

N e
i ϕ

e
i . (8)
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Linear Approximation

Properties of approximation functions:

Kronecker delta property Ne
i (x

e
j) = δij :

ϕe(xj) =

2∑
i=1

Ne
i (x

e
j)ϕ

e
i =

2∑
i=1

δijϕ
e
i . (9)

∑2
i=1 N

e
i (x

e
j) = 1, shape functions have to approximate a constant function ϕ(x) = c, ϕe

i = c. For ∀i,
we have:

c =

2∑
i=1

Ne
i ϕ

e
i =

2∑
i=1

Ne
i c = c

(
2∑

i=1

Ne
i

)
. (10)
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Lagrange interpolants

Lagrange interpolation functions exploit the Kronecker delta property. The i-th shape function is
equal to zero at all nodes except the j-th.

N e
i =

(x− x1) . . . (x− xi−1)(x− xx+1) . . . (x− xn)

(xi − x1) . . . (xi − xi−1)(xi − xx+1) . . . (xi − xn)
, (11)

where the numerator expresses Kronecker delta property and the denominator norms the numerator
so that the value of shape functions are equal to one at i-th node
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Lagrange interpolants

Linear approximation functions for 1D problems:

Ne
1 =

(x− x2)

(x1 − x2)
,

Ne
2 =

(x− x1)

(x2 − x1)
.

The vector of linear approximation functions for 1D problems reads:

N e =
1

le
[(x2 − x), (x− x1)] . (12)

Quadratic approximation functions for 1D problems:

Ne
1 =

(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
,

Ne
2 =

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
,

Ne
3 =

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.
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Lagrange interpolants

The vector of quadratic approximation functions for 1D problems reads:

N e =
2

le2
[(x− x2)(x− x3),−2(x− x1)(x− x3), (x− x1)(x− x2)] . (13)
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Natural coordination system

In general, the weak form cannot be integrated in closed form. For the evaluation of integrals in
the weak form, it is better to map the physical domain [a, b] to the parent domain [−1, 1] with the
natural coordinate ξ. And then the numerical integration is performed from xe1 = −1 to xe2 = 1.
The shape functions are transferred into the following forms:

Linear:

Ne
1 =

1

2
(1− ξ),

Ne
2 =

1

2
(1 + ξ).

Quadratic:

Ne
1 =

1

2
(1− ξ)− 1

2
(1− ξ2),

Ne
2 = (1− ξ2),

Ne
3 =

1

2
(1 + ξ)− 1

2
(1− ξ2),

13 / 25 Natural coordination system Approximation Functions and Numerical Integration



Global approximation

The global approximation of the trial function (and the weight function) is a sum of contribution
from individual elements:

ϕh =

nel∑
e=1

N ede = N1d1 +N2d2

ϕh =
[
N1

1 , N1
2 +N2

1 , N2
2

]
ξ1
ξ2
ξ3


ϕh = Nd
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Comparison of Ritz method and FEM

In the Ritz method, approximation functions are selected for the whole domain respecting the
shape of the domain, boundary conditions, etc. - the selection is difficult.

The FEM selects shape functions very easily - they are nonzero in the vicinity of the given
node (only in adjacent elements).

Refinement in the Ritz method is obtained by adding other linear independent basis functions.
In the FEM, we perform the refinement of the FE mesh - the domain is discretized by a
greater number of elements (more basis (approximation) functions).
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Numerical Integration - Gauss Quadrature

The weak form requires the calculation of integrals which is difficult for arbitrary domains. Therefore,
numerical integration is needed. There are many numerical integration techniques. Gauss quadrature is
one of the most efficient techniques for polynomials.

Consider the following integral over a parent domain:

I =

∫ 1

−1

f(ξ)dξ. (14)

The integral value, we approximate by

Î =

n∑
i=1

wif(ξi), (15)

where wi are the weights and ξi are the points at which the integrand is to be evaluated.
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Numerical Integration - Gauss Quadrature

The basic idea of the Gauss quadrature is to choose the weights and the integration points so that the
highest possible polynomial is integrated precisely. We have 2n unknown parameters to select.

The consequence is that we have n integration points (Gauss points), then we can integrate the
polynomial of order p ≤ 2n− 1.

The number of integration points needed to integrate a polynomial of order p exactly is given by

n ≥ p+ 1

2
. (16)
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Numerical Integration - Gauss Quadrature

Consider n = 1:

w1f(ξ1) ≈
∫ 1

−1

f(ξ)dξ. (17)

We try to find such a weight w1 and the point ξ1 so that the integral will be precise for polynomials of
the highest order (the first order). Let’s consider f(ξ) = aξ+ b, where a, b ∈ R are constants. We have:

w1f(ξ1) =

∫ 1

−1

f(ξ)dξ =⇒ w1(aξ1 + b) =

∫ 1

−1

(aξ1 + b)dξ =⇒

w1(aξ1 + b) =

[
(a

ξ2

2
+ bξ)

]1
−1

=⇒ aξ1w1 + bw1 = 0 · a+ 2 · b. (18)

For the arbitrary polynomial of the first order (a, b ̸= 0):

ξ1w1 = 0,

w1 = 2.

The required solution is:

ξ1 = 0, w1 = 2,

∫ 1

−1

f(ξ)dξ ≈ 2f(0).
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Numerical Integration - Gauss Quadrature

Consider n = 2:

w1f(ξ1) + w2f(ξ2) ≈
∫ 1

−1

f(ξ)dξ. (19)

We try to find such weights w1, w2 and the points ξ1, ξ2 so that the integral will be precise for
polynomials of the highest order. Let’s consider f(ξ) = aξ3 + bξ2 + cξ + d. Introduction into Eq. (19),
we get:

w1f(ξ1) + w2f(ξ2) =

∫ 1

−1

f(ξ)dξ =⇒

w1[aξ
3
1 + bξ21 + cξ1 + d] + w2[aξ

3
2 + bξ22 + cξ2 + d] =

∫ 1

−1

[aξ3 + bξ2 + cξ + d]dξ =⇒

w1[aξ
3
1 + bξ21 + cξ1 + d] + w2[aξ

3
2 + bξ22 + cξ2 + d] =

[
aξ4

4
+

bξ3

3
+

cξ2

2
+ dξ

]1
−1

=⇒

a[w1ξ
3
1 + w2ξ

3
2 ] + b[w1ξ

2
1 + w2ξ

2
2 − 2/3] + c[w1ξ1 + w2ξ2]− d[w1 + w2 − 2] = 0.
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Numerical Integration - Gauss Quadrature

For the arbitrary polynomial of the third order (a, b, c, d ̸= 0):

w1ξ
3
1 + w2ξ

3
2 = 0,

w1ξ
2
1 + w2ξ

2
2 − 2/3 = 0,

w1ξ1 + w2ξ2 = 0,

w1 + w2 − 2 = 0.

The required solution is:

ξ1 =
−1√
3
, ξ2 =

1√
3
, w1 = w2 = 1.
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Numerical Integration - Gauss Quadrature

The previous algorithm is not really used for determining of weights and positions of Gauss points.
For the optimal precision of polynomial integration (order 2n− 1, interval [−1, 1]), the coordinates
of Gauss points are determined as roots of Legendre polynomials. Legendre polynomials are defined
by a ”recursive formula”:

Pk+1(x) =
2k + 1

k + 1
xPk(x)−

k

k + 1
Pk−1(x), where P0(x) = 1, P1(x) = x.

The weights are defined by:

wi =

∫ 1

−1

n∏
k=1,k ̸=i

x− xi
xk − xi

dx.
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Numerical Integration - Gauss Quadrature

Table of position of Gauss points and corresponding weights:
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Numerical Integration - Gauss Quadrature

Numerical example:

Determine the value of the integral:

I =

∫ 1

−1

(
x4 + 4 · x3 − 2 · x2 − 2 · x+ 1

)
dx (20)

Analytical solution:

Gauss quadrature:
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Isoparametric Elements

Numerical example:

Elements with the same approximation of trial function and the geometry (coordinates x, y, z), For 1D
bar element with linear approximation functions:

xe(ξ) = Ne
1 (ξ)x

e
1 +Ne

2 (ξ)x
e
2 =

1

2
(1− ξ)xe

1 +
1

2
(1 + ξ)xe

2. (21)

Integration is in natural coordinate system (parent domain):∫ x2

x1

f(x)dx =

∫ 1

−1

f (x(ξ)) Jdξ =
∑
i

f (x(ξ)) Jwi, (22)

where J = dx
dξ = le

2 is the Jacobian of transformation.
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