Finite Element Formulation for One-Dimensional PROBLEMS
 Axially Loaded Elastic Bar

Tomáš Krejčí

132NAST - Numerical analysis of structures
19 October 2022
(1) Strong Form
(2) Weak Form
(3) FEM Discretization
(4) Element with Linear Approximation
(5) Element with Linear Approximation in Natural Coordinates
(6) Element with Quadratic Approximation in Natural Coordinates
(7) Example

- Strong form

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(E(x) A(x) \frac{\mathrm{d} u(x)}{\mathrm{d} x}\right)+b(x)=0
$$

- Boundary conditions:

$$
\begin{aligned}
\bar{u}(x) & =u(x), & & x \in \Gamma^{u} \\
E(x) A(x) \frac{\mathrm{d} u}{\mathrm{~d} x} n(x) & =\bar{t}(x), & & x \in \Gamma^{t}
\end{aligned}
$$

Weak Form for Axially Loaded Elastic Bar

■ Weighted residual method:

$$
\int_{\Omega} \delta u(x)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\left(E(x) A(x) \frac{\mathrm{d} u(x)}{\mathrm{d} x}\right)+b(x)\right)=0
$$

- Integration by parts:

$$
\int_{\Gamma} \delta u(x) E(x) A(x) \frac{\mathrm{d} u(x)}{\mathrm{d} x} n(x) \mathrm{d} x-\int_{\Omega} \frac{\mathrm{d} \delta u(x)}{\mathrm{d} x} E(x) A(x) \frac{\mathrm{d} u(x)}{\mathrm{d} x} \mathrm{~d} x+\int_{\Omega} \delta u(x) b(x) \mathrm{d} x=0
$$

- Integral on the boundary:

$$
\int_{\Gamma^{u}} \underbrace{\delta u(x)}_{=0} E(x) A(x) \frac{\mathrm{d} u(x)}{\mathrm{d} x} n(x) \mathrm{d} x+\int_{\Gamma^{t}} \delta u(x) \underbrace{E(x) A(x) \frac{\mathrm{d} u(x)}{\mathrm{d} x} n(x)}_{=\bar{t}} \mathrm{~d} x
$$

- Weak form - we are looking for such an admissible trial solution $u\left(u=\bar{u}\right.$ in $\left.\Gamma_{u}\right)$ to be valid:

$$
\int_{\Omega} \frac{\mathrm{d} \delta u(x)}{\mathrm{d} x} E(x) A(x) \frac{\mathrm{d} u(x)}{\mathrm{d} x} \mathrm{~d} x=\int_{\Omega} \delta u(x) b(x) \mathrm{d} x+\int_{\Gamma^{t}} \delta u(x), \bar{t} \mathrm{~d} x, \quad \delta u=0 \in \Gamma_{u}
$$

- The domain is discretized by finite elements and nodes
- The weak form is expressed by an approximation of the trial solution and the weight function in elements. The approximation solution requires C^{0} continuity
- The displacement function u is approximated in each element in the following shape:

$$
u^{e}=\boldsymbol{N}^{e} \boldsymbol{d}^{e}, \quad u^{e}=\bar{u} \quad \text { in } \quad \Gamma_{u}
$$

where \boldsymbol{d}^{e} is the vector of nodal displacements.

- The weight function u is approximated in each element in the same way:

$$
\delta u^{e}=\boldsymbol{N}^{e} \boldsymbol{w}^{e}, \quad \delta u^{e}=0 \quad \text { in } \quad \Gamma_{u}
$$

where \boldsymbol{w}^{e} is the vector of nodal weight function.

- The integral of the weak form is transferred into the sum of integrals in elements:

$$
\sum_{e=1}^{n}\left\{\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{\mathrm{~d} \delta u^{e}}{\mathrm{~d} x} E(x) A(x) \frac{\mathrm{d} u^{e}}{\mathrm{~d} x} \mathrm{~d} x-\int_{x_{1}^{e}}^{x_{2}^{e}} \delta u^{e} b(x) \mathrm{d} x-\left.\left(\delta u^{e} \bar{t}\right)\right|_{\Gamma_{t}}\right\}=0
$$

- Derivatives of approximated functions:

$$
\begin{aligned}
\frac{\mathrm{d} u^{e}}{\mathrm{~d} x} & =\frac{\mathrm{d} \boldsymbol{N}^{e}}{\mathrm{~d} x} \boldsymbol{d}^{e}=\boldsymbol{B}^{e} \boldsymbol{d}^{e} \\
\frac{\mathrm{~d} \delta u^{e}}{\mathrm{~d} x} & =\frac{\mathrm{d} \boldsymbol{N}^{e}}{\mathrm{~d} x} \boldsymbol{w}^{e}=\boldsymbol{B}^{e} \boldsymbol{w}^{e}
\end{aligned}
$$

- Introducing approximations into the previous weak form gives:

$$
\sum_{e=1}^{n} \boldsymbol{w}^{e \mathrm{~T}}\{\underbrace{\int_{x_{1}^{e}}^{x_{2}^{e}} \boldsymbol{B}^{e \mathrm{~T}} E A \boldsymbol{B}^{e} \mathrm{~d} x}_{\boldsymbol{K}^{e}} \boldsymbol{d}^{e}-\underbrace{\int_{x_{1}^{e}}^{x_{2}^{e}} \boldsymbol{N}^{e \mathrm{~T}} b \mathrm{~d} x}_{\boldsymbol{f}_{\Omega}}-\underbrace{\left.\left(\boldsymbol{N}^{e \mathrm{~T}} \bar{t}\right)\right|_{\Gamma_{t}}}_{\boldsymbol{f}_{\Gamma_{t}}}\}=0
$$

■ If local vectors $\boldsymbol{d}^{e}, \boldsymbol{w}^{e}$ are expanded into global vectors of nodal values $\boldsymbol{d}, \boldsymbol{w}$, we can write:

$$
\begin{gathered}
\boldsymbol{w}^{\mathrm{T}}\left(\sum_{e=1}^{n} \tilde{\boldsymbol{K}}^{e} \boldsymbol{d}-\sum_{e=1}^{n} \tilde{\boldsymbol{f}}^{e}\right)=0, \quad \forall \boldsymbol{w}, \quad w=0 \in \Gamma_{u} \\
\boldsymbol{w}^{\mathrm{T}}(\boldsymbol{K} \boldsymbol{d}-\boldsymbol{f})=0
\end{gathered}
$$

- Finaly, we have:

$$
\boldsymbol{K} \boldsymbol{d}-\boldsymbol{f}=0
$$

- Note: Residuum:

$$
R=K d-f
$$

$$
\boldsymbol{w}^{\mathrm{T}} \boldsymbol{R}=0, \quad \forall \boldsymbol{w}, \quad \text { except } \quad w=0 \in \Gamma_{u}
$$

$$
\begin{array}{rll}
w_{1} R_{1}+w_{2} R_{2} & =0, & w_{1}, w_{2} \Longrightarrow R_{1}=R_{2}=0 \\
R_{3} & \neq 0, & w_{3}=0
\end{array}
$$

$$
\begin{gathered}
\boldsymbol{R}=\left\{\begin{array}{c}
0 \\
0 \\
R_{3}
\end{array}\right\}=\left[\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
\bar{u}_{3}
\end{array}\right\}-\left\{\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right\} \\
{\left[\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
\bar{u}_{3}
\end{array}\right\}=\left\{\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}+R_{3}
\end{array}\right\}}
\end{gathered}
$$

Stiffness matrix of an element with linear approximation functions:

- Matrix of interpolation functions:

$$
\boldsymbol{N}^{e}=\frac{1}{l^{e}}\left[x_{2}^{e}-x, x-x_{1}^{e}\right]
$$

- Geometric matrix:

$$
\boldsymbol{B}^{e}=\frac{\mathrm{d} \boldsymbol{N}^{e}}{\mathrm{~d} x}=\frac{1}{l^{e}}[-1,1]
$$

- Introducing the geometric matrix into the element stiffness matrix gives:

$$
\begin{aligned}
\boldsymbol{K}^{e} & =\int_{x_{1}^{e}}^{x_{2}^{e}} \boldsymbol{B}^{e \mathrm{~T}} E A \boldsymbol{B}^{e} \mathrm{~d} x=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{1}{l^{e}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] E A \frac{1}{l^{e}}[-1,1] \mathrm{d} x \\
\boldsymbol{K}^{e} & =\frac{E A}{l^{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Loading vector in an element with linear approximation functions:
■ Loading vector:

$$
\boldsymbol{f}_{\Omega}^{e}=\int_{x_{1}^{e}}^{x_{2}^{e}} \boldsymbol{N}^{e \mathrm{~T}} b(x) \mathrm{d} x
$$

- In the case of linear volume loading $b(x)$, the loading can be expressed by approximation functions:

$$
b(x)=\boldsymbol{N}^{e} \boldsymbol{b}^{e}
$$

- The introduction of the previous equation into the loading vector integral leads to the following relationship:

$$
\begin{aligned}
\boldsymbol{f}_{\Omega}^{e} & =\int_{x_{1}^{e}}^{x_{2}^{e}} \boldsymbol{N}^{e \mathrm{~T}} \boldsymbol{N}^{e} \mathrm{~d} x \boldsymbol{b}^{e} \\
& =\frac{1^{2}}{l^{e}} \int_{x_{1}^{e}}^{x_{2}^{e}}\left[\begin{array}{cc}
\left(x_{2}^{e}-x\right)^{2} & \left(x_{2}^{e}-x\right)\left(x-x_{1}^{e}\right) \\
\left(x_{2}^{e}-x\right)\left(x-x_{1}^{e}\right) & \left(x-x_{1}^{e}\right)^{2}
\end{array}\right] \mathrm{d} x \boldsymbol{b}^{e} \\
& =\frac{l^{e}}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left\{\begin{array}{c}
b_{1}^{e} \\
b_{2}^{e}
\end{array}\right\}
\end{aligned}
$$

Element with Linear Approximation in Natural Coordinates:

- The matrix of interpolation functions in the natural coordinate system is given by this expression:

$$
\boldsymbol{N}^{e}=\left[\frac{1}{2}(1-\xi), \frac{1}{2}(1+\xi)\right]
$$

- Derivatives of shape functions with respect to x are needed for the geometric matrix \boldsymbol{B}^{e} calculation. The derivative of a compound function reads:

$$
\frac{\mathrm{d} f}{\mathrm{~d} \xi}=\frac{\mathrm{d} f}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} \xi}
$$

- The inverse relation is:

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=\left(\frac{\mathrm{d} x}{\mathrm{~d} \xi}\right)^{-1} \frac{\mathrm{~d} f}{\mathrm{~d} \xi}
$$

■ The dependence of x on ξ can be taken from the isoparametric element definition:

$$
x(\xi)=\boldsymbol{N}^{e}(\xi) \boldsymbol{x}^{e}, \quad \mathrm{~d} x(\xi)=\frac{\mathrm{d} \boldsymbol{N}^{e}}{\mathrm{~d} \xi} \boldsymbol{x}^{e} \mathrm{~d} \xi=J \mathrm{~d} \xi
$$

- In the case of the linear approximation:

$$
\begin{aligned}
x(\xi) & =\frac{1}{2}(1-\xi) \cdot x_{1}^{e}+\frac{1}{2}(1+\xi) \cdot x_{2}^{e} \\
\mathrm{~d} x(\xi) & =\frac{1}{2}\left(x_{2}^{e}-x_{1}^{e}\right) \mathrm{d} \xi=\frac{l^{e}}{2} \mathrm{~d} \xi
\end{aligned}
$$

- Introducing the previous equations into the element stiffness matrix:

$$
\begin{aligned}
\boldsymbol{K}^{e} & =\int_{-1}^{1} \boldsymbol{B}^{e \mathrm{~T}} E A \boldsymbol{B}^{e} J \mathrm{~d} \xi=\int_{-1}^{1}\left[\begin{array}{c}
-1 / l^{e} \\
1 / l^{e}
\end{array}\right] E A\left[\frac{-1}{l^{e}}, \frac{1}{l^{e}}\right] \frac{l_{e}}{2} \mathrm{~d} \xi \\
\boldsymbol{K}^{e} & =\frac{E A}{l^{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Element with Quadratic Approximation in Natural Coordinates:

- Matrix of interpolation functions in natural coordinate system:

$$
\begin{equation*}
\boldsymbol{N}^{e}=\left[-\frac{1}{2}(1-\xi)+\frac{1}{2}(1-\xi)^{2},\left(1-\xi^{2}\right), \frac{1}{2}(1+\xi)-\frac{1}{2}\left(1-\xi^{2}\right)\right] \tag{1}
\end{equation*}
$$

- Approximation of coordinates:

$$
\begin{gathered}
x(\xi)=\boldsymbol{N}^{e}(\xi) \boldsymbol{x}^{e}=\left(-\frac{1}{2} \xi+\frac{1}{2} \xi^{2}\right) \cdot x_{1}^{e}+\left(1-\xi^{2}\right) \cdot x_{2}^{e}+\left(\frac{1}{2} \xi+\frac{1}{2} \xi^{2}\right) \cdot x_{3}^{e} \\
J=\frac{\mathrm{d} x}{\mathrm{~d} \xi}=\left(-\frac{1}{2}+\xi\right) \cdot x_{1}^{e}-2 \xi \cdot x_{2}^{e}+\left(\frac{1}{2}+\xi\right) \cdot x_{3}^{e} \\
\boldsymbol{K}^{e}=\int_{-1}^{1} \boldsymbol{B}^{e \mathrm{~T}} E A \boldsymbol{B}^{e} J \mathrm{~d} \xi \\
\boldsymbol{f}^{e}=\int_{-1}^{1} \boldsymbol{N}^{e \mathrm{~T}} b(\xi) J \mathrm{~d} \xi
\end{gathered}
$$

Example:

■ Analytical solution - Strong form:

- Integration:
- Integration constant from boundary conditions:
- Solution:

Example:

- Solution with one quadratic element:

$$
\begin{aligned}
\boldsymbol{x}^{e} & =\{0 ; 2 ; 4\}^{\mathrm{T}} \\
\boldsymbol{N}^{e} & =\left[\frac{1}{2}(1-\xi)-\frac{1}{2}(1-\xi)^{2},\left(1-\xi^{2}\right), \frac{1}{2}(1+\xi)-\frac{1}{2}\left(1-\xi^{2}\right)\right] \\
x & =\boldsymbol{N}^{e} \boldsymbol{x}^{e}=2+2 \cdot \xi \Longrightarrow \frac{\mathrm{~d} x}{\mathrm{~d} \xi}=2, \quad J=2 \\
\frac{\mathrm{~d} \boldsymbol{N}^{e}}{\mathrm{~d} \xi} & =\left[-\frac{1}{2}+\xi,-2 \xi, \frac{1}{2}+\xi\right] \\
\boldsymbol{B}^{e} & =\frac{\mathrm{d} \boldsymbol{N}^{e}}{\mathrm{~d} \xi} \frac{\mathrm{~d} \xi}{\mathrm{~d} x}=\left[-\frac{1}{4}+\frac{1}{2} \xi,-\xi, \frac{1}{4}+\frac{1}{2} \xi\right]
\end{aligned}
$$

$$
\begin{align*}
\boldsymbol{K}^{e} & =\int_{-1}^{1} \boldsymbol{B}^{e \mathrm{~T}} E A \boldsymbol{B}^{e} J \mathrm{~d} \xi=\frac{E A}{12}\left[\begin{array}{ccc}
7 & -8 & 1 \\
-8 & 16 & -8 \\
1 & -8 & 7
\end{array}\right] \\
\boldsymbol{f}^{e} & =\int_{-1}^{1} \boldsymbol{N}^{e \mathrm{~T}} b J \mathrm{~d} \xi=\{2 / 3 ; 8 / 3 ; 2 / 3\}^{\mathrm{T}} \\
\boldsymbol{f} & =\{8 / 3 ; 2 / 3\}^{\mathrm{T}} \\
\boldsymbol{K} & =\left[\begin{array}{cc}
16 & -8 \\
-8 & 7
\end{array}\right] \\
\boldsymbol{d} & =\boldsymbol{K}^{-1} \boldsymbol{f}=\{1 / 2 ; 2 / 3\}^{\mathrm{T}} \\
\varepsilon & =\frac{\mathrm{d} u}{\mathrm{~d} x}=\boldsymbol{B}^{e} \boldsymbol{d}^{e}=\boldsymbol{B}\{0,1 / 2 ; 2 / 3\}^{\mathrm{T}}=1 / 6-1 / 6 \cdot \xi \\
R_{1} & =\boldsymbol{K}^{e}(1) \boldsymbol{d}^{e}-\boldsymbol{f}^{e}(1)=\{7 ;-8 ; 1\}\{0 ; 1 / 2 ; 2 / 3\}^{\mathrm{T}}-2 / 3=-4 \tag{2}
\end{align*}
$$

Example:

■ Solution with one linear element:

$$
\begin{align*}
\boldsymbol{K}^{e} & =\frac{E A}{l}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] \\
\boldsymbol{f}^{e} & =\int_{0}^{4} \boldsymbol{N}^{e \mathrm{~T}} b \mathrm{~d} x=\{2 ; 2\}^{\mathrm{T}} \tag{3}
\end{align*}
$$

- System of equations:

$$
\boldsymbol{d}=\boldsymbol{K}^{-1} \boldsymbol{f} \Longrightarrow\left\{\begin{array}{l}
u_{1} \tag{4}\\
u_{2}
\end{array}\right\}=\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right]^{-1}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
2 / 3
\end{array}\right\}
$$

- English course of "Numerical analysis of structures" by J. Zeman (jan.zeman@fsv.cvut.cz)
- Czech course of "Numerická analýza konstrukci" (Numerical analysis of structures) by B. Patzák (borek.patzak@fsv.cvut.cz)
- J. Fish and T. Belytschko: A First Course in Finite Elements, John Wiley \& Sons, 2007

