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Introduction

Stationary 2D problem:

The derivation similar to the 1D problem - extension to 2D (x, y)

Heat transfer (conduction):

- function of temperature distribution T (x, y) [K]
- solution procedure:

Differential equation + boundary conditions

→ weak form → FEM discretization

Temperature gradient:

∇T (x, y) = gradT (x, y) =

[
∂T (x, y)

∂x
,
∂T (x, y)

∂y

]T
Heat flux qn(x, y) is an amount of heat energy, which is transferred through a unit area A

[1m2] with outer normal n per time unit t [s]:

qn(x, y) =
Q(x, y)

A · t
n(x, y), [Wm−2]
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Differential equation of heat transfer

Heat flux inside a body (x, y ∈ Ω) can be decomposed into two directions:

q = [qx(x, y), qy(x, y)]
T

Transport equation:
Fourier’s law: heat flux in an internal body point (material point) x, y ∈ Ω

q(x, y) = −λ(x, y)∇T (x, y),

where λ(x, y) is the matrix of heat conduction coefficients [Wm−1K−1]

Balance equation:
Energy balance in a volume element Ω

∇T (−λ(x)∇T (x)) = 0,

where x = (x, y)
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Derivation of heat transfer equation

Derivation of heat transfer equation:

Inside a body (x ∈ Ω):

qx(x, y)∆y − qx(x+∆x, y)∆y (→ x)

+qy(x, y)∆x− qy(x, y +∆y)∆x (↑ y)

+Q

(
x+

∆x

2
, y +

∆y

2

)
∆x∆y = 0.

Dividing by ∆x∆y, and for the limit limitńım p̌rechodem ∆x → 0 a ∆y → 0, it follows

−∂qx
∂x

(x, y)− ∂qy
∂y

(x, y) +Q(x, y) = 0,

which can be written in matrix form

−
[

∂
∂x

∂
∂y

] [ qx(x, y)
qy(x, y)

]
+Q(x, y) = 0

and:

−∇Tq(x) +Q(x) = 0
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Derivation of heat transfer equation

Derivation of heat transfer equation:

Introducing of Fourier’s law , we obtain a partial differential equation of second order for
heat transfer:

∇T (λ(x)∇T (x)) +Q(x) = 0

λ(x) is the material conductivity matrix:

λ(x) =

[
λxx(x, y), λxy(x, y)
λyx(x, y), λyy(x, y)

]
The matrix (λxy = λyx) is symmetric and positive definite. For isotropic material reads:

λ(x) =

[
λ(x), 0
0, λ(x)

]
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Derivation of heat transfer equation

Boundary conditions:

Dirichlet b.c. - prescribed temperature on the boundary:

T (x) = T (x), x ∈ ΓT

Neumann b.c - prescribed flux on the boundary:

qn(x) = qn(x), x ∈ Γqp,

where

qn(x) =
[
nx(x), ny(x)

] [ qx(x)
qy(x)

]
= nT(x)q(x)

Cauchy - Newton b.c. - heat transfer on the boundary:

qn(x) = α(x) (T (x)− T∞(x)) , x ∈ Γqc

Non-linear b.c. (Newton) - heat radiation on the boundary:

qn(x) = ε(x)σ(x)
(
T 4(x)− T 4

∞(x)
)
, x ∈ Γqr
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Weighted residual method

Weighted residual method (Galerkin method):

We are looking for a solution T (x) smooth enough, which fulfills x ∈ Ω:

∇T (λ(x)∇T (x)) +Q(x) = 0

for x ∈ ΓT :
T (x) = T (x)

for x ∈ Γq:
−nT(x)λ(x)∇T (x) = qn(x),

where:

for x ∈ Γqp: qn(x) is prescribed
for x ∈ Γqc: qn(x) = α(x) (T (x)− T∞(x))
for x ∈ Γqr: qn(x) = ε(x)σ(x)

(
T 4(x)− T 4

∞(x)
)
(it is avoided in the derivation)
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Weighted residual method

Weighted residual method (Galerkin method):

For an arbitrary weight function δT so that δT (x) = 0 for x ∈ ΓT , it holds:∫
Ω
δT (x)

(
∇T (λ(x)∇T (x)) +Q(x)

)
dΩ = 0, x ∈ Ω

Integration by parts:∫
Ω
g(x)

∂fx
∂x

(x)dx =

∫
Γ
g(x)nx(x)fx(x)ds−

∫
Ω

∂g

∂x
(x)fx(x)dx∫

Ω
g(x)

∂fy
∂y

(x)dx =

∫
Γ
g(x)ny(x)fy(x)ds−

∫
Ω

∂g

∂y
(x)fy(x)dx∫

Ω
g(x)∇Tf(x)dx =

∫
Γ
g(x)nT(x)f(x)ds−

∫
Ω
(∇g(x))T f(x)dx,

where

∇Tf(x) =
[

∂
∂x ,

∂
∂y

] [ fx(x)
fy(x)

]
=

∂fx
∂x

(x) +
∂fy
∂y

(x)
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Weighted residual method

Weighted residual method (Galerkin method):

We apply the divergence theorem for δT = g a f = λ(x)∇T (x):∫
Ω
δT (x)

(
∇T (λ(x)∇T (x)) +Q(x)

)
dΩ =

=

∫
Γ
δT (x)nT(x)λ(x)∇T (x)dΓ−

∫
Ω
(∇δT (x))T λ(x)∇T (x)(x)dΩ +

∫
Ω
δT (x)Q(x)dΩ,

where the integral on the boundary can be split into two parts:

∫
Γ
δT (x)nT(x)λ(x)∇T (x)dΓ =

∫
ΓT

=0︷ ︸︸ ︷
δT (x)nT(x)λ(x)∇T (x)dΓ+

∫
Γq

δT (x)nT(x)λ(x)∇T (x)︸ ︷︷ ︸
=−qn

dΓ

10 / 14 Weighted residual method Finite Element Formulation for Heat Transfer Problem



Weak form

It follows:∫
Γq

δT (x)qn(x)dΓ =

∫
Γqp

δT (x)qn(x)dΓ +

∫
Γqc

δT (x)α(x) (T (x)− T∞(x)) dΓ

Weak form:∫
Ω
∇TδT (x)λ(x)∇T (x)dΩ +

∫
Γqc

δT (x)α(x)T (x)dΓ =

∫
Γqp

δT (x)qn(x)dΓ +

+

∫
Γqc

δT (x)α(x)T∞(x)dΓ +

∫
Ω
δT (x)Q(x)dΩ

We are looking for such an admissible trial solution T (x) which satisfies the above formulation.
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Finite Element Method

Finite Element Method:
The domain Ω is discretized by finite elements and nodes
The weak form is expressed by an approximation of the trial solution and the weight function in
elements. The approximation solution requires C0 continuity
The temperature function T is approximated in each element in the following shape:

T e(x) ≈ N e(x)re, ∇T e(x) ≈ Be(x)re, δT e(x) ≈ N e(x)we, ∇δT e(x) ≈ Be(x)we

Introducing approximations of trial solution and weight function into the weak form (for all we that
we = 0 on ΓT ), we obtain the following equation, where the integrals of the weak form are transferred
into the sum of integrals in elements:

n∑
e=1

weT


Ke

Ω︷ ︸︸ ︷∫
Ωe

BeT(x)λe(x)Be(x)dΩ re +

Ke
Γ︷ ︸︸ ︷∫

Γe

N eT(x)αe(x)N e(x)dΓ re +

−

f e

Γc︷ ︸︸ ︷∫
Γe

N eT(x)αe(x)N e(x)dΓT e
0+

−f e

Γp︷ ︸︸ ︷∫
Γe

N eT(x)N e(x)dΓqe −

f e

Ω︷ ︸︸ ︷∫
Ωe

N eT(x)N e(x)dΩQ
e

 = 0
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Finite Element Method

Finite Element Method:

Global quantities - localization, for which is introduced the distribution function for an
each element: Le such that it is valid re = Ler:

wT
n∑

e=1

(
(LeTKe

ΩL
e +LeTKe

ΓL
e)r −LeTf e

Γc
−LeTf e

Γp
−LeTf e

Ω

)
= 0,

We can write:

wT

(
n∑

e=1

K̂
e
r −

n∑
e=1

f̂
e

)
= 0

Finaly, we have:
Kr = f

Decomposition of the conductivity matrix according to Dirichlet b.c. (rd):[
KTT KTd

KdT Kdd

] [
rT
rd

]
=

[
fT

fd

]
+

[
0
R

]
,

where
KTTrT = fT −KTdrd

and residuum vector - vector of nodal heat fluxes on the boundary:

R = KdTrT +Kddrd − fd

13 / 14 FEM Discretization Finite Element Formulation for Heat Transfer Problem



References

English course of “Numerical analysis of structures” by J. Zeman (jan.zeman@fsv.cvut.cz)
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