## Isoparametric approximation for triangular elements

Triangular coordinates of a given point $P$ are defined as the ratio:

$$
\xi_{i}=\frac{A_{i}}{A}
$$

where $A_{i}$ is the area of the triangle connecting nodes $j, k$ and point $P$, and $A$ is the triangle area $(1,2,3)$.


2


Equations $\xi_{i}=$ const. represents the set of lines parallel with the opposite edge of the $i$-th node. Equations corresponds to edges 2-3, 3-1, and 1-2 are $\xi_{1}=0, \xi_{2}=0$, and $\xi_{3}=0$. The three nodes have coordinates $(1,0,0),(0,1,0)$, and $(0,0,1)$. Points in centers of edges have coordinates $(1 / 2,1 / 2,0)$, $(0,1 / 2,1 / 2)$, and ( $1 / 2,0,1 / 2$ ), then the center of gravity $(1 / 3,1 / 3,1 / 3)$.

Triangular coordinates are dependent, and their sum must be equal to 1 :

$$
\xi_{1}+\xi_{2}+\xi_{3}=1
$$

Kronecker delta property:
$\xi_{i}\left(x_{j}, y_{j}\right)=\delta_{i j}$
The dependence of triangular and real coordinates is linear.

- For linear approximation of a trial function, we can write:

$$
\phi^{e}=\sum_{i=1}^{3} \xi_{i} \phi_{i}^{e}=\xi_{1} \phi_{1}^{e}+\xi_{2} \phi_{2}^{e}+\xi_{3} \phi_{3}^{e}
$$

Relation between real and triangular coordinates:

$$
x=\sum_{i} x_{i} \xi_{i} ; \quad y=\sum_{i} y_{i} \xi_{i}
$$

## Transformation of coordinates

Quantities, which are connected with the geometry, are expressed in triangular coordinates. Quantities - displacements, strains, and stresses are functions of Kartesian coordinates $(x, y)$. Therefore, we need the transformation between both (natural and Kartesian) coordinate systems. Kartesian coordinates are connected with the triangular coordinates by:

$$
\left\{\begin{array}{l}
1 \\
x \\
y
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{1}^{e} & x_{2}^{e} & x_{3}^{e} \\
y_{1}^{e} & y_{2}^{e} & y_{3}^{e}
\end{array}\right]\left\{\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right\}
$$

The first equation expresses the sum of all coordinates (it is equal to 1 ). The second and the third express coordinates $x$ and $y$ as a linear combination of $\xi_{i}$. Inverting, we obtain:

$$
\left\{\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{ccc}
x_{2}^{e} y_{3}^{e}-x_{3}^{e} y_{2}^{e} & y_{2}^{e}-y_{3}^{e} & x_{3}^{e}-x_{2}^{e} \\
x_{3}^{e} y_{1}^{e}-x_{1}^{e} y_{3}^{e} & y_{3}^{e}-y_{1}^{e} & x_{1}^{e}-x_{3}^{e} \\
x_{1}^{e} y_{2}^{e}-x_{2}^{e} y_{1}^{e} & y_{1}^{e}-y_{2}^{e} & x_{2}^{e}-x_{1}^{e}
\end{array}\right]\left\{\begin{array}{c}
1 \\
x \\
y
\end{array}\right\}
$$

For partial derivatives, it applies:

$$
\begin{array}{rlrl}
\frac{\partial x}{\partial \xi_{i}} & =x_{i} & \frac{\partial y}{\partial \xi_{i}}=y_{i} \\
2 A \frac{\partial \xi_{i}}{\partial x} & =y_{j k} & 2 A \frac{\partial \xi_{i}}{\partial y}=x_{k j}
\end{array}
$$

where $x_{i j}=x_{i}^{e}-x_{j}^{e}, y_{i j}=y_{i}^{e}-y_{j}^{e}$ and indices in the last row are connected by a cyclic permutation, e. g., for: $i=2$ is $i=3$ and $k=1$.
The derivative of a given function $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ with respect to coordinates $x, y$
comes out from the derivative of a composite function

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{1}{2 A}\left(\frac{\partial f}{\partial \xi_{1}} y_{23}+\frac{\partial f}{\partial \xi_{2}} y_{31}+\frac{\partial f}{\partial \xi_{3}} y_{12}\right) \\
\frac{\partial f}{\partial y} & =\frac{1}{2 A}\left(\frac{\partial f}{\partial \xi_{1}} x_{32}+\frac{\partial f}{\partial \xi_{2}} x_{13}+\frac{\partial f}{\partial \xi_{3}} x_{21}\right)
\end{aligned}
$$

Matrix form:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}
y_{23} & y_{31} & y_{12} \\
x_{32} & x_{13} & x_{21}
\end{array}\right]\left\{\frac{\partial f}{\partial \xi_{1}}, \frac{\partial f}{\partial \xi_{2}}, \frac{\partial f}{\partial \xi_{3}}\right\}^{T}
$$

## Conductivity matrix of linear triangular element

- Interpolation functions are equal to triangular coordinates $N_{i}=\xi_{i}$
- Temperature approximation

$$
\{T\}=\left[\begin{array}{lll}
N_{1} & N_{2} & N_{3}
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right\}
$$

$$
\boldsymbol{T}^{e}=\boldsymbol{N}^{e} \boldsymbol{r}^{e}
$$

- The gradient calculation: $\quad \nabla T^{e}(\boldsymbol{x}) \approx \boldsymbol{B}^{e}(\boldsymbol{x}) \boldsymbol{r}^{e}$

$$
\begin{aligned}
\frac{\partial N_{i}}{\partial x} & =\frac{\partial N_{i}}{\partial \xi_{1}} \frac{\partial \xi_{1}}{\partial x}+\frac{\partial N_{i}}{\partial \xi_{2}} \frac{\partial \xi_{2}}{\partial x}+\frac{\partial N_{i}}{\partial \xi_{3}} \frac{\partial \xi_{3}}{\partial x}=\frac{y_{j k}}{2 A} \\
\frac{\partial N_{i}}{\partial y} & =\frac{\partial N_{i}}{\partial \xi_{1}} \frac{\partial \xi_{1}}{\partial y}+\frac{\partial \xi_{i}}{\partial L_{2}} \frac{\partial \xi_{2}}{\partial y}+\frac{\partial \xi_{i}}{\partial L_{3}} \frac{\partial \xi_{3}}{\partial y}=\frac{x_{k j}}{2 A}
\end{aligned}
$$

- The matrix $\boldsymbol{B}^{e}$ has the following form:

$$
\begin{aligned}
\boldsymbol{B}^{e} & =\left[\begin{array}{lll}
\frac{\partial N_{1}}{\partial x} & \frac{\partial N_{2}}{\partial x} & \frac{\partial N_{3}}{\partial x} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{3}}{\partial y}
\end{array}\right] \\
& =\frac{1}{2 A}\left[\begin{array}{lll}
y_{23} & y_{31} & y_{12} \\
x_{32} & x_{13} & x_{21}
\end{array}\right]
\end{aligned}
$$

- $\boldsymbol{B}^{e}$ is constant in the element.
- The conductivity matrix $\boldsymbol{K}_{e, \Omega}$ is also constant in case of constant $\lambda^{e}$

$$
\left(\boldsymbol{K}_{e, \Omega}\right)_{3 \times 3}=\int_{\Omega^{e}} \boldsymbol{B}^{e T} \lambda^{e} \boldsymbol{B}^{e} d \Omega=\boldsymbol{B}^{e T} \lambda^{e} \boldsymbol{B}^{e} \int_{\Omega^{e}} d \Omega=A \boldsymbol{B}^{e T} \lambda^{e} \boldsymbol{B}^{e}
$$

## Calculation of matrix $K_{\mathrm{e}, \mathrm{T}}$



