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Basic equations

Basic assumptions for linear elasticity:

Deformations are small
The behavior of the material is linear
Dynamic effects are neglected
No gaps or overlaps occur during the deformation of the solid

Quantities (geometry, material properties, loading) are independent of one coordinate (dimension):

Plane stress (historically, the first FEM application [Turner, 1956])
Plane strain
Axisymmetric problem
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Kinematic equations

Coordinate vector:
x = {x, y}T

Displacements:
u(x) = {u(x), v(x)}T

Strain vector (independent components):

ε(x) = {εx(x), εy(x), γxy(x)}T

Kinematic equations: 
εx(x)
εy(x)
γxy(x)

 =

 ∂
∂x 0

0 ∂
∂y

∂
∂x

∂
∂y

{ u(x)
v(x)

}
,

ε(x) = ∂Tu(x)

In planestrain, εz = 0, and in planestress, εz ̸= 0 is calculated from constitutive equations
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Equilibrium equations

Stress vector (independent components):

σ(x) = {σx(x), σy(x), τxy(x)}T

Equlibrium equation (static equations):[
∂
∂x 0 ∂

∂y

0 ∂
∂x

∂
∂y

]
σx(x)
σy(x)
τxy(x)

+

{
X(x)

Y (x)

}
=

{
0
0

}

∂σ(x) +X(x) = 0

In planestress, σz = 0, and in planestrain, σz ̸= 0 is calculated from constitutive equations
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Constitutive equation

Plane stress: 
σx
σy
τxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


εx
εy
γxy


εz = − ν

E
(εx + εy)

Plane strain:
σx
σy
τxy

 =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2


εx
εy
γxy


σz =

E

1 + ν

[
ν

1− 2ν
(εx + εy)

]
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Boundary conditions

Kinematic boundary conditions:

u(x)− u(x) = 0, x ∈ Γu

Static boundary conditions (prescribed tractions) x ∈ Γp:

[
nx(x) 0 ny(x)

0 ny(x) nx(x)

]
σx(x)
σy(x)
τxy(x)

−
{

px(x)
py(x)

}
=

{
0
0

}

n(x)σ(x)− p(x) = 0

The divergence (Clapeyron) theorem:∫
Ω
σT∂TudΩ =

∫
Γ
uTnσdΓ−

∫
Ω
uT∂σdΩ
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Weak form

Weighted residual method (Galerkin method):
For an arbitrary weight function δu so that δu(x) = 0 for x ∈ Γu, it holds:∫

Ω

δu(x)T
(
∂σ(x) +X

)
dΩ = 0

Clapeyron theorem:∫
Γu

=0︷ ︸︸ ︷
δu(x)T n(x)σ(x)dΓ +

∫
Γp

δu(x)T

=p︷ ︸︸ ︷
n(x)σ(x) dΓ

−
∫
Ω

(
∂Tδu(x)

)T
σ(x)dΩ +

∫
Ω

δu(x)TXdΩ = 0

If the weight function δu has the physical meaning of the virtual displacement, the expression ∂Tδu(x)
can be identified as the virtual strain δε(x)∫

Ω

δε(x)Tσ(x)dΩ =

∫
Γp

δu(x)Tp(x)dΓ +

∫
Ω

δu(x)TXdΩ,

δWint = δWext

The weighted residual method can be explained as the generalisation of the virtual displacement
principle
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Finite Element Method

Finite Element Method:
The domain Ω is discretized by finite elements and nodes

The weak form is expressed by an approximation of the trial solution and the weight function in
elements

Displacement approximation:
ue(x) ≈ N e(x)de

Approximations of strains and stresses:

εe(x) ≈ Be(x)de,

σe(x) ≈ De(x) (Be(x)de)

Weight functions approximation:

δue(x) ≈ N e(x)we,

δεe(x) ≈ Be(x)we
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Finite Element Method

Finite Element Method:

Introducing approximations of trial solution and weight function into the weak form (for all we

that we = 0 on ΓT ), we obtain the following equation, where the integrals of the weak form
are transferred into the sum of integrals in elements:

n∑
e=1

weT


Ke︷ ︸︸ ︷∫

Ωe

BeT(x)De(x)Be(x)dΩde −

f e

Γ︷ ︸︸ ︷∫
Γe

N eT(x)N e(x)dΓpe

−

f e

Ω︷ ︸︸ ︷∫
Ωe

N eT(x)N e(x)dΩX
e

 = 0
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Finite Element Method
Finite Element Method:

Global quantities - localization, for which is introduced the distribution function for an each
element: Le such that it is valid de = Led:

wT
n∑

e=1

(
LeTKeLed−LeTf e

Γ −LeTf e
Ω

)
= 0,

We can write:

wT

(
n∑

e=1

K̂
e
d−

n∑
e=1

f̂
e

)
= 0

Finaly, we have:
Kd = f
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Finite Element Method
Finite Element Method:

Decomposition of the stiffness matrix according to constrained and prescribed DOF’s (du):[
Kpp Kpu

Kup Kuu

] [
dp

du

]
=

[
fp

fu

]
+

[
0
R

]
,

where
Kppdp = fp −Kpudu

and residuum vector - vector of nodal heat fluxes on the boundary:

R = Kupdp +Kuudu − fu
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