Finite Element Formulation for 2D Problems - Linear Elasticity

Tomáš Krejčí

132NAST - Numerical analysis of structures
23 November 2022
(1) Basic equations

- Kinematic equations
- Equilibrium equations
- Constitutive equations
- Boundary conditions
(2) WEAK FORM
(3) FEM Discretization

BASIC EQUATIONS

- Basic assumptions for linear elasticity:
- Deformations are small
- The behavior of the material is linear
- Dynamic effects are neglected
- No gaps or overlaps occur during the deformation of the solid

■ Quantities (geometry, material properties, loading) are independent of one coordinate (dimension):

- Plane stress (historically, the first FEM application [Turner, 1956])
- Plane strain
- Axisymmetric problem
- Coordinate vector:

$$
\boldsymbol{x}=\{x, y\}^{\mathrm{T}}
$$

- Displacements:

$$
\boldsymbol{u}(\boldsymbol{x})=\{u(\boldsymbol{x}), v(\boldsymbol{x})\}^{\mathrm{T}}
$$

- Strain vector (independent components):

$$
\boldsymbol{\varepsilon}(\boldsymbol{x})=\left\{\varepsilon_{x}(\boldsymbol{x}), \varepsilon_{y}(\boldsymbol{x}), \gamma_{x y}(\boldsymbol{x})\right\}^{\mathrm{T}}
$$

- Kinematic equations:

$$
\begin{gathered}
\left\{\begin{array}{c}
\varepsilon_{x}(\boldsymbol{x}) \\
\varepsilon_{y}(\boldsymbol{x}) \\
\gamma_{x y}(\boldsymbol{x})
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]\left\{\begin{array}{l}
u(\boldsymbol{x}) \\
v(\boldsymbol{x})
\end{array}\right\}, \\
\varepsilon(\boldsymbol{x})=\boldsymbol{\partial}^{\mathrm{T}} \boldsymbol{u}(\boldsymbol{x})
\end{gathered}
$$

- In planestrain, $\varepsilon_{z}=0$, and in planestress, $\varepsilon_{z} \neq 0$ is calculated from constitutive equations
- Stress vector (independent components):

$$
\boldsymbol{\sigma}(\boldsymbol{x})=\left\{\sigma_{x}(\boldsymbol{x}), \sigma_{y}(\boldsymbol{x}), \tau_{x y}(\boldsymbol{x})\right\}^{\mathrm{T}}
$$

- Equibrium equation (static equations):

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x}(\boldsymbol{x}) \\
\sigma_{y}(\boldsymbol{x}) \\
\tau_{x y}(\boldsymbol{x})
\end{array}\right\}+\left\{\begin{array}{c}
\bar{X}(\boldsymbol{x}) \\
\bar{Y}(\boldsymbol{x})
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}} \\
\boldsymbol{\partial} \boldsymbol{\sigma}(\boldsymbol{x})+\overline{\boldsymbol{X}}(\boldsymbol{x})=\mathbf{0}
\end{gathered}
$$

- In planestress, $\sigma_{z}=0$, and in planestrain, $\sigma_{z} \neq 0$ is calculated from constitutive equations
- Plane stress:

$$
\begin{gathered}
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \\
\varepsilon_{z}=-\frac{\nu}{E}\left(\varepsilon_{x}+\varepsilon_{y}\right)
\end{gathered}
$$

- Plane strain:

$$
\begin{gathered}
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & \frac{1-2 \nu}{2}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \\
\sigma_{z}=\frac{E}{1+\nu}\left[\frac{\nu}{1-2 \nu}\left(\varepsilon_{x}+\varepsilon_{y}\right)\right]
\end{gathered}
$$

- Kinematic boundary conditions:

$$
\boldsymbol{u}(\boldsymbol{x})-\overline{\boldsymbol{u}}(\boldsymbol{x})=\mathbf{0}, \quad \boldsymbol{x} \in \Gamma_{u}
$$

- Static boundary conditions (prescribed tractions) $\boldsymbol{x} \in \Gamma_{p}$:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
n_{x}(\boldsymbol{x}) & 0 & n_{y}(\boldsymbol{x}) \\
0 & n_{y}(\boldsymbol{x}) & n_{x}(\boldsymbol{x})
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x}(\boldsymbol{x}) \\
\sigma_{y}(\boldsymbol{x}) \\
\tau_{x y}(\boldsymbol{x})
\end{array}\right\}-\left\{\begin{array}{c}
\bar{p}_{x}(\boldsymbol{x}) \\
\bar{p}_{y}(\boldsymbol{x})
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}} \\
\boldsymbol{n}(\boldsymbol{x}) \boldsymbol{\sigma}(\boldsymbol{x})-\overline{\boldsymbol{p}}(\boldsymbol{x})=\mathbf{0}
\end{gathered}
$$

- The divergence (Clapeyron) theorem:

$$
\int_{\Omega} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\partial}^{\mathrm{T}} \boldsymbol{u} \mathrm{~d} \Omega=\int_{\Gamma} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{n} \boldsymbol{\sigma} \mathrm{~d} \Gamma-\int_{\Omega} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\partial} \boldsymbol{\sigma} \mathrm{~d} \Omega
$$

Weighted residual method (Galerkin method):
■ For an arbitrary weight function $\delta \boldsymbol{u}$ so that $\delta \boldsymbol{u}(\boldsymbol{x})=\mathbf{0}$ for $\boldsymbol{x} \in \Gamma_{u}$, it holds:

$$
\int_{\Omega} \delta \boldsymbol{u}(\boldsymbol{x})^{\mathrm{T}}(\boldsymbol{\partial} \boldsymbol{\sigma}(\boldsymbol{x})+\overline{\boldsymbol{X}}) \mathrm{d} \Omega=0
$$

Clapeyron theorem:

$$
\begin{aligned}
& \int_{\Gamma_{u}} \overbrace{\delta \boldsymbol{u}(\boldsymbol{x})^{\mathrm{T}}}^{=\mathbf{0}} \boldsymbol{n}(\boldsymbol{x}) \boldsymbol{\sigma}(\boldsymbol{x}) \mathrm{d} \Gamma+\int_{\Gamma_{p}} \delta \boldsymbol{u}(\boldsymbol{x})^{\mathrm{T}} \overbrace{\boldsymbol{n}(\boldsymbol{x}) \boldsymbol{\sigma}(\boldsymbol{x})} \mathrm{d} \Gamma \\
& \quad-\overline{\boldsymbol{p}} \\
&-\int_{\Omega}\left(\boldsymbol{\partial}^{\mathrm{T}} \delta \boldsymbol{u}(\boldsymbol{x})\right)^{\mathrm{T}} \boldsymbol{\sigma}(\boldsymbol{x}) \mathrm{d} \Omega+\int_{\Omega} \delta \boldsymbol{u}(\boldsymbol{x})^{\mathrm{T}} \overline{\boldsymbol{X}} \mathrm{~d} \Omega=0
\end{aligned}
$$

- If the weight function $\delta \boldsymbol{u}$ has the physical meaning of the virtual displacement, the expression $\boldsymbol{\partial}^{\mathrm{T}} \delta \boldsymbol{u}(\boldsymbol{x})$ can be identified as the virtual strain $\delta \varepsilon(\boldsymbol{x})$

$$
\begin{aligned}
\int_{\Omega} \delta \varepsilon(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\sigma}(\boldsymbol{x}) \mathrm{d} \Omega & =\int_{\Gamma_{p}} \delta \boldsymbol{u}(\boldsymbol{x})^{\mathrm{T}} \overline{\boldsymbol{p}}(\boldsymbol{x}) \mathrm{d} \Gamma+\int_{\Omega} \delta \boldsymbol{u}(\boldsymbol{x})^{\mathrm{T}} \overline{\boldsymbol{X}} \mathrm{~d} \Omega \\
\delta W_{\mathrm{int}} & =\delta W_{\mathrm{ext}}
\end{aligned}
$$

- The weighted residual method can be explained as the generalisation of the virtual displacement principle

Finite Element Method:

- The domain Ω is discretized by finite elements and nodes
- The weak form is expressed by an approximation of the trial solution and the weight function in elements
- Displacement approximation:

$$
u^{e}(x) \approx N^{e}(x) d^{e}
$$

- Approximations of strains and stresses:

$$
\begin{aligned}
& \boldsymbol{\varepsilon}^{e}(\boldsymbol{x}) \approx \boldsymbol{B}^{e}(\boldsymbol{x}) \boldsymbol{d}^{e} \\
& \boldsymbol{\sigma}^{e}(\boldsymbol{x}) \approx \boldsymbol{D}^{e}(\boldsymbol{x})\left(\boldsymbol{B}^{e}(\boldsymbol{x}) \boldsymbol{d}^{e}\right)
\end{aligned}
$$

- Weight functions approximation:

$$
\begin{aligned}
\delta \boldsymbol{u}^{e}(\boldsymbol{x}) & \approx \boldsymbol{N}^{e}(\boldsymbol{x}) \boldsymbol{w}^{e}, \\
\delta \varepsilon^{e}(\boldsymbol{x}) & \approx \boldsymbol{B}^{e}(\boldsymbol{x}) \boldsymbol{w}^{e}
\end{aligned}
$$

Finite Element Method:

- Introducing approximations of trial solution and weight function into the weak form (for all \boldsymbol{w}^{e} that $\boldsymbol{w}^{e}=0$ on Γ_{T}), we obtain the following equation, where the integrals of the weak form are transferred into the sum of integrals in elements:

$$
\begin{array}{r}
\sum_{e=1}^{n} \boldsymbol{w}^{e \mathrm{~T}}\{\overbrace{\int_{\Omega^{e}} \boldsymbol{B}^{e \mathrm{~T}}(x) \boldsymbol{D}^{e}(\boldsymbol{x}) \boldsymbol{B}^{e}(x) \mathrm{d} \Omega}^{\boldsymbol{K}^{e}} \boldsymbol{d}^{e}-\overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{e \mathrm{~T}}(x) \boldsymbol{N}^{e}(x) \mathrm{d} \Gamma \overline{\boldsymbol{p}}^{e}}^{\boldsymbol{f}_{\Gamma}^{e}} \\
-\overbrace{\int_{\Omega^{e}} \boldsymbol{N}^{e \mathrm{~T}}(x) \boldsymbol{N}^{e}(x) \mathrm{d} \Omega \overline{\boldsymbol{X}}^{e}}^{\boldsymbol{f}_{\Omega}^{e}}\}=0
\end{array}
$$

- Global quantities - localization, for which is introduced the distribution function for an each element: \boldsymbol{L}^{e} such that it is valid $\boldsymbol{d}^{e}=\boldsymbol{L}^{e} \boldsymbol{d}$:

$$
\boldsymbol{w}^{\mathrm{T}} \sum_{e=1}^{n}\left(\boldsymbol{L}^{e \mathrm{~T}} \boldsymbol{K}^{e} \boldsymbol{L}^{e} \boldsymbol{d}-\boldsymbol{L}^{e \mathrm{~T}} \boldsymbol{f}_{\Gamma}^{e}-\boldsymbol{L}^{e \mathrm{~T}} \boldsymbol{f}_{\Omega}^{e}\right)=0
$$

We can write:

$$
\boldsymbol{w}^{\mathrm{T}}\left(\sum_{e=1}^{n} \hat{\boldsymbol{K}}^{e} \boldsymbol{d}-\sum_{e=1}^{n} \hat{\boldsymbol{f}}^{e}\right)=0
$$

- Finaly, we have:

$$
K d=f
$$

- Decomposition of the stiffness matrix according to constrained and prescribed DOF's $\left(d_{u}\right)$:

$$
\left[\begin{array}{ll}
\boldsymbol{K}_{p p} & \boldsymbol{K}_{p u} \\
\boldsymbol{K}_{u p} & \boldsymbol{K}_{u u}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{d}_{p} \\
\boldsymbol{d}_{u}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{f}_{p} \\
\boldsymbol{f}_{u}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{R}
\end{array}\right],
$$

where

$$
\boldsymbol{K}_{p p} \boldsymbol{d}_{p}=\boldsymbol{f}_{p}-\boldsymbol{K}_{p u} \boldsymbol{d}_{u}
$$

and residuum vector - vector of nodal heat fluxes on the boundary:

$$
\boldsymbol{R}=\boldsymbol{K}_{u p} \boldsymbol{d}_{p}+\boldsymbol{K}_{u u} \boldsymbol{d}_{u}-\boldsymbol{f}_{u}
$$

- English course of "Numerical analysis of structures" by J. Zeman (jan.zeman@fsv.cvut.cz)
- Czech course of "Numerická analýza konstrukci" (Numerical analysis of structures) by B. Patzák (borek.patzak@fsv.cvut.cz)
- J. Fish and T. Belytschko: A First Course in Finite Elements, John Wiley \& Sons, 2007

