Isoparametric approximation for triangular elements
Triangular coordinates of a given point P are defined as the ratio:

where A, is the area of the triangle connecting nodes J, k and point P, and A
IS the triangle area (1,2,3).
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Equations & = const represents the set of lines parallel with the opposite
edge of the /-th node. Equations corresponds to edges 2-3, 3-1, and 1-2 are
=0, =0, and é;= 0. The three nodes have coordinates (1,0,0), (0,1,0),
and (0,0,1). Points in centers of edges have coordinates (1/2,1/2,0),
(0,1/2,1/2), and (1/2,0,1/2), then the center of gravity (1/3,1/3,1/3).



Triangular coordinates are dependent, and their sum must be equal to 1:
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Kronecker delta property:
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The dependence of triangular and real coordinates is linear.

* For linear approximation of a trial function, we can write:
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Relation between real and triangular coordinates:
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Transformation of coordinates

Quantities, which are connected with the geometry, are expressed in
triangular coordinates. Quantities — displacements, strains, and stresses
are functions of Kartesian coordinates (x, y). Therefore, we need the
transformation between both (natural and Kartesian) coordinate
systems. Kartesian coordinates are connected with the triangular
coordinates by:
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The first equation expresses the sum of all coordinates (it is equal to 1).
The second and the third express coordinates x and y as a linear
combination of ¢;. Inverting, we obtain:
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For partial derivatives, it applies:
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where x; =xj —x7, y;j =y; —); and indices in the last row
are connected by a cyclic permutation, e. g., for: i=2isj=3 and k = 1.

The derivative of a given function f(&1,&2,&3) with respect to coordinates x, y
comes out from the derivative of a composite function
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Matrix form:
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Stiffness matrix of linear triangular element

* Interpolation functions are equal to triangular coordinates N; = ¢

* Displacements approximation
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« Kinematic matrix B® calculation:
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. B°® s constant in the element.
* The stiffness matrix K¢ is constant (matrix D€ is also constant)

(Ke)GXG _ /g;e BeTDeBedQ _ BeTDeBe

Qe

dQ = AB°’" D¢B°®



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

