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1 Bending of beams – Mindlin theory

Cross-section kinematics assumptions

• Distributed load acts in the xz plane, which is also a plane of symmetry
of a body Ω⇒ v(x) = 0 m

• Vertical displacement does not vary along the height of the beam (when
compared to the value of the displacement) ⇒ w(x) = w(x).

• The cross sections remain planar but not necessarily perpendicular to
the deformed beam axis ⇒ u(x) = u(x, z) = ϕy(x)z
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• These hypotheses were independently proposed by Timoshenko [6],
Reissner [5] and Mindlin [4].

J. Bernoulli J.-L. Lagrange C.-L. Navier R.-D. Mindlin B. F. de Veubeke

2 Strain-displacement equations

Cross-section kinematics assumptions imply that only non-zero strain com-
ponents are

εx(x) =
∂u(x)

∂x
=

∂

∂x
(ϕy(x)z)) =

dϕy(x)
dx

z = κy(x)z

γzx(x) =
∂w(x)

∂x
+

∂u(x)
∂z

=
dw(x)

dx
+

∂

∂z
(ϕy(x)z) =

dw(x)
dx

+ ϕy(x) ,
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when κy denotes the pseudo-curvature of the deformed beam centerline.

Bernoulli-Navier [7, kap. II.2] Mindlin

Valid for h/L < 1/10 h/L < 1/3

Cross-section planar, perpendicular planar

γzx 0 6= 0 (shear effects)

Unknowns w(x) w(x), ϕy(x)

ϕy(x) = − dw(x)
dx

independent

3 Stress-strain relations

• For simplicity, we will assume ε0 = 0

σx(x, z) = E(x)εx(x, z) = E(x)κy(x)z

τzx(x) = G(x)γzx(x) = G(x)
(

dw(x)
dx

+ ϕy(x)
)
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• Non-zero internal forces:

My(x) =
∫

A(x)

σx(x, z)z dy dz = E(x)κy(x)
∫

A(x)

z2 dy dz

= E(x)Iy(x)κy(x) = E(x)Iy(x)
dϕy(x)

dx
(1)

Qc
z(x) =

∫
A(x)

τzx(x) dy dz = G(x)
(

dw(x)
dx

+ ϕy(x)
)∫

A(x)

dy dz

= G(x)A(x)
(

dw(x)
dx

+ ϕy(x)
)

• Distribution of shear stresses τzx for a rectangular cross-section

Bernoulli-Navier Mindlin

Constitutive eqs: τ = Gγ 0 constant

Equilibrium eqs quadratic ?

[7, kap. II.2.5]

• Therefore, we modify the shear force relation in order to take into
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account equilibrium equations, at least in the sense of average work of
shear components

Qz(x) = k(x)Qc
z(x) = k(x)G(x)A(x)

(
dw(x)

dx
+ ϕy(x)

)
(2)

• The multiplier k(x) depends on a shape of a cross-section, for a rect-
angular cross-section, k = 5/6.

Homework 1. Derive the relation for the constant k for a general cross-

section: k = I2
y/(A

∫
A

S2
y(z)

b2(z) dA).
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4 Equilibrium equations

(a) (b)

• Equilibrium equation of vertical forces (a)

dQz(x)
dx

+ fz(x) = 0 (3)

• Equilibrium equation of moments (b)

dMy(x)
dx

−Qz(x) = 0 (4)

• For a detailed derivation see Lecture 1, Homework 1.
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5 Governing equations

d
dx

(
k(x)G(x)A(x)

(
dw(x)

dx
+ ϕy(x)

))
+ fz(x) = 0 (5)

d
dx

(
E(x)Iy(x)

dϕy(x)
dx

)
− k(x)G(x)A(x)

(
dw(x)

dx
+ ϕy(x)

)
= 0 (6)

5.1 Kinematic boundary conditions: x ∈ Iu

Pinned end: w = 0

Clamped end: w = 0, ϕy = 0

5.2 Static boundary conditions: x ∈ Ip

Qz(x) = Qz(x) , My(x) = My(x) .
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6 Weak solution

• For notational simplicity, we will use relations (3)–(4) instead of (5)–
(6).

• We will “weight” Eq. (3) by term δw(x), Eq. (4) by δϕy(x) and inte-
grate them on I. This leads to conditions

0 =
∫

I

δw(x)

(
dQz(x)

dx
+ fz(x)

)
dx,

0 =
∫

I

δϕy(x)

(
dMy(x)

dx
−Qz(x)

)
dx,

which are to be satisfied for all δw(x) and δϕy(x) compatible with the
kinematic boundary conditions.
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• By parts integration

0 = [δw(x)Qz(x)]ba −
∫

I

d(δw(x))
dx

Qz(x) dx +
∫

I

δw(x)fz(x) dx

0 = [δϕy(x)My(x)]ba −
∫

I

d(δϕy(x))
dx

My(x) dx−
∫

I

δϕy(x)Qz(x) dx

• Enforcement of boundary conditions

0 =
[
δw(x)Qz(x)

]
Ip
−
∫

I

d(δw(x))
dx

Qz(x) dx +
∫

I

δw(x)fz(x) dx

0 =
[
δϕy(x)My(x)

]
Ip
−
∫

I

d(δϕy(x))
dx

My(x) dx−
∫

I

δϕy(x)Qz(x) dx
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• The weak of equilibrium equations (we insert (1) for My and (2) for
Qz) ∫

I

d(δw(x))
dx

k(x)G(x)A(x)
(

dw(x)
dx

+ ϕy(x)
)

dx =

[
δw(x)Qz(x)

]
Ip

+
∫

I

δw(x)fz(x) dx (7)

∫
I

d(δϕy(x))
dx

E(x)Iy(x)
dϕy(x)

dx
dx + (8)

∫
I

δϕy(x)k(x)G(x)A(x)
(

dw(x)
dx

+ ϕy(x)
)

dx =
[
δϕy(x)My(x)

]
Ip
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7 FEM discretization

• We replace a continuous structure with n nodal points and (n − 1)
(finite) elements.

• In every nodal point we introduce two independent quantities – a de-
flection wi and a rotation ϕyi of the i-th nodal point.

• On the level of whole structure, we collect the unknowns into vectors
of deflections rw and rotations rϕ.

• Discretization of unknown quantities and their derivatives

w(x) ≈ Nw(x)rw ,
dw(x)

dx
≈ Bw(x)rw ,

ϕy(x) ≈ Nϕ(x)rϕ ,
dϕy(x)

dx
≈ Bϕ(x)rϕ .
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• Discretization of weight functions

δw(x) ≈ Nw(x)δrw
d(δw(x))

dx
≈ Bw(x)δrw

δϕy(x) ≈ Nϕ(x)δrϕ
d(δϕy(x))

dx
≈ Bϕ(x)δrϕ

• The linear system of discretized equilibrium equations

Kww rw + Kwϕ rϕ = Rw

Kϕw rw + Kϕϕ rϕ = Rϕ

• Compact notation Kww Kwϕ

Kϕw Kϕϕ

 rw

rϕ

 =

 Rw

Rϕ


K

(2n×2n)
r(2n×1) = R(2n×1)
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• Kϕw = Kwϕ
T ⇒ the stiffness matrix K is symmetric thanks to ap-

pearance of the terms
∫

I
(δw(x))′kGA(x)ϕy(x) dx in (7) and∫

δϕy(x)kGA(x)w′(x) dx in (8).

Homework 2. Derive explicit relations for matrices Kww,Kwϕ,Kϕw,Kϕϕ

and vectors Rw, Rϕ.

8 Shear locking

• For h/L → 0, the response of a Mindlin theory-based element should
approach the classical slender beam (negligible shear effects).

• If the basis functions Nw a Nϕ are chosen as piecewise linear, resulting
response in too “stiff” → excessive influence of shear terms, sc. shear
locking.
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8.1 Statics-based analysis

• Shear force: Qz(x) = k(x)G(x)A(x)
(

dw(x)
dx

+ ϕy(x)
)

– linear

• Bending moment: My(x) = E(x)Iy(x)
dϕy(x)

dx
– constant

• Severe violation of the Schwedler relation

dMy(x)
dx

−Qz(x) = 0

8.2 Kinematics-based explanation
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• The approximate solution must be able to correctly reproduce the pure
bending mode, see [3, Section 3.1]):

κy(x) =
dϕy(x)

dx
= κ = const γzx(x) =

dw(x)
dx

+ ϕy(x) = 0

• For the given discretization

w(x) ≈ w1

(
1− x

L

)
+ w2

x

L

dw(x)
dx

≈ 1
L

(w2 − w1)

ϕy(x) ≈ ϕ1

(
1− x

L

)
+ ϕ2

x

L

dϕy(x)
dx

≈ 1
L

(ϕ2 − ϕ1)

• The requirement of zero shear strain leads to

γzx(x) ≈ 1
L

(w2 − w1) + ϕ1 +
x

L
(ϕ2 − ϕ1) = 0.

• Therefore, the previous relation must be independent of the x coordi-
nate ⇒

ϕ2 − ϕ1 = 0 ⇒ κy ≈
1
L

(ϕ2 − ϕ1) = 0 6= κ
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9 Selective integration

• The shear strain is assumed to be constant on a given interval, its value
is derived from the value in the center of an interval

γzx(x) ≈ 1
L

(w2−w1)+ϕ1+
1
2

(ϕ2 − ϕ1) =
1
L

(w2 − w1) +
1
2

(ϕ1 + ϕ2)

• Kinematics: the element behaves correctly, it enables to describe the
pure bending mode.

• Statics: Qz(x) = k(x)G(x)A(x)γxz(x) – constant, My – constant ←
the Schwedler condition is not “severely violated”.

10 Bubble (hierarchical) function

• It follows from analysis of the kinematics that the shear locking is
caused by insufficient degree of polynomial approximation of the dis-
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placement w(x).

• Therefore, we add a quadratic term to approximation of w(x):

w(x) ≈ w1

(
1− x

L

)
+ w2

x

L
+ αx(x− L)

• Pure bending mode requirement

γzx(x) =
dw(x)

dx
+ ϕy(x)

≈ 1
L

(w2 − w1) + α(2x− L) + ϕ1 +
x

L
(ϕ2 − ϕ1)

=
1
L

(w2 − w1)− αL + ϕ1 +
x

L
(ϕ2 − ϕ1 + 2αL) = 0
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• Requirement of independence of coordinate x⇒

α =
1

2L
(ϕ1 − ϕ2)

• Final approximations

w(x) ≈ w1

(
1− x

L

)
+ w2

x

L
+

1
2L

(ϕ1 − ϕ2) x(x− L)

ϕy(x) ≈ ϕ1

(
1− x

L

)
+ ϕ2

x

L

• From the “static” point of view the element behaves similarly to pre-
vious formulation – Qz is constant, My is constant.

• Approximation of the w displacement not based not only on the values
of deflections nodal, but also on the values of nodal rotations [2] – sc.
linked interpolation.
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11 Method of Lagrange multipliers

• Recall the weak form of the bending moment equilibrium equations (8)
for a beam with with My = 0, constant values of E, G and a rectangular
cross-section.

0 = EIy

∫
I

d(δϕy(x))
dx

dϕy(x)
dx

dx + kGA

∫
I

δϕy(x)
(

dw(x)
dx

+ ϕy(x)
)

dx

= E
bh3

12

∫
I

d(δϕy(x))
dx

dϕy(x)
dx

dx

+
5
6

E

2(1 + ν)
bh

∫
I

δϕy(x)
(

dw(x)
dx

+ ϕy(x)
)

dx

/
12

Ebh3

∫
I

d(δϕy(x))
dx

dϕy(x)
dx

dx +
5

1 + ν

1
h2

∫
I

δϕy(x)
(

dw(x)
dx

+ ϕy(x)
)

dx = 0

• The condition of zero shear strain for h → 0 is imposed via the
sc. penalty term.
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• For slender beams and linear-linear approximation this leads to the
shear locking as

→∞︷︸︸︷
1
h2

∫
I

arbitrary︷ ︸︸ ︷
δϕy(x)

→0 for all x∈I︷ ︸︸ ︷(
dw(x)

dx
+ ϕy(x)

)
dx = 0.

• If we introduce a new independent variable for imposing the condition
γxz = 0 for h→ 0, we suppress influence of the choice of approximation
of unknowns w(x) a ϕy(x).

• Therefore, we have to add an additional condition to weak equilibrium
equations (7)–(8)∫

I

δλ(x)

(
γzx(x)− dw(x)

dx
− ϕy(x)

)
dx = 0 , (9)

where γ(x) is now a new variable independent of w and ϕy and δλ(x)
is the corresponding weight function.
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• Constitutive equations for the shear force Qz now simplify as

Qz(x) = k(x)G(x)A(x)γxz(x) .

• Weak form of equilibrium of equations can now be rewritten as

0 =
∫

I

d(δw(x))
dx

k(x)G(x)A(x)γzx(x) dx−
[
δw(x)Qz(x)

]
Ip

−
∫

I

δw(x)fz(x) dx

0 =
∫

I

d(δϕy(x))
dx

E(x)Iy(x)
dϕy(x)

dx
dx

+
∫

I

δϕy(x)k(x)G(x)A(x)γzx(x) dx−
[
δϕy(x)My(x)

]
Ip

0 =
∫

I

δλ(x)
(

γzx(x)− dw(x)
dx

− ϕy(x)
)

dx

• Observe that is we choose the weight function in the specific form

δλ(x) = k(x)G(x)A(x)δγxz(x) ,
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we will finally obtain a symmetric stiffness matrix K.

• The last equation now can be modified as

0 =
∫

I

δγxz(x)k(x)G(x)A(x)
(

γzx(x)− dw(x)
dx

− ϕy(x)
)

dx.

• The additional variable γxz needs to be discretized

γxz(x) ≈ Nγ(x)rγ

and inserted into the weak form of equilibrium equations. This yields,
after standard manipulations, the following system of linear equations

Kww Kwϕ Kwγ

Kϕw Kϕϕ Kϕγ

Kγw Kγϕ Kγγ




rw

rϕ

rγ

 =


Rw

Rϕ

0


• The stiffness matrix, resulting from this discretization, is larger only

virtually. It can be observed that parameters rγ only internal and can
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be eliminated (expressed via variables rw and rϕ); see, e.g. [1, pp. 234–
235] for more details.

• This formulation works even for piecewise linear approximation of w

and ϕy; it suffices to approximate γ as a piecewise constant on an
element.

• Kinematics: shear locking avoided due to (9).

• Statics: the shear force Qz is again (piecewise) constant, so is the
bending moment My.

Homework 3∗. Derive the element stiffness matrix based on Lagrange
multipliers. Assume the linear approximation of deflections w(x), linear
approximation of rotations ϕy(x) and constant values of γxz on a given
elements. Show that this procedure yields results identical to the reduced
integration and linked interpolation.

2
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A humble plea. Please feel free to e-mail any suggestions, errors and
typos to zemanj@cml.fsv.cvut.cz.

Version 000
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[1] Z. Bittnar and J. Šejnoha, Numerical method in structural mechanics,
ASCE Press, ???, 1996.

[2] B. F. de Veubeke, Displacement and equilibrium models in the finite
element method, International Journal for Numerical Methods in Engi-
neering 52 (2001), 287–342, Classic Reprints Series, originally published
in Stress Analysis (O. C. Zienkiewicz and G. S. Holister, editors), John
Wiley & Sons, 1965.
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