## 1 Bending of beams - Mindlin theory



Cross-section kinematics assumptions

- Distributed load acts in the $x z$ plane, which is also a plane of symmetry of a body $\Omega \Rightarrow v(\underline{x})=0 \mathrm{~m}$
- Vertical displacement does not vary along the height of the beam (when compared to the value of the displacement) $\Rightarrow w(\underline{x})=w(x)$.
- The cross sections remain planar but not necessarily perpendicular to the deformed beam axis $\Rightarrow u(\underline{x})=u(x, z)=\varphi_{y}(x) z$
- These hypotheses were independently proposed by Timoshenko [6], Reissner [5] and Mindlin (4].

J. Bernoulli

J.-L. Lagrange

C.-L. Navier

R.-D. Mindlin

B. F. de Veubeke


## 2 Strain-displacement equations

Cross-section kinematics assumptions imply that only non-zero strain components are

$$
\begin{aligned}
\varepsilon_{x}(\underline{x}) & \left.=\frac{\partial u(\underline{x})}{\partial x}=\frac{\partial}{\partial x}\left(\varphi_{y}(x) z\right)\right)=\frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x} z=\kappa_{y}(x) z \\
\gamma_{z x}(\underline{x}) & =\frac{\partial w(\underline{x})}{\partial x}+\frac{\partial u(\underline{x})}{\partial z}=\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\frac{\partial}{\partial z}\left(\varphi_{y}(x) z\right)=\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x),
\end{aligned}
$$

when $\kappa_{y}$ denotes the pseudo-curvature of the deformed beam centerline.

|  | Bernoulli-Navier [7, kap. II.2] | Mindlin |
| :--- | :---: | :---: |
| Valid for | $h / L<1 / 10$ | $h / L<1 / 3$ |
| Cross-section | planar, perpendicular | planar |
| $\gamma_{z x}$ | 0 | $\neq 0$ (shear effects) |
| Unknowns | $w(x)$ | $w(x), \varphi_{y}(x)$ |
|  | $\varphi_{y}(x)=-\frac{\mathrm{d} w(x)}{\mathrm{d} x}$ | independent |

## 3 Stress-strain relations

- For simplicity, we will assume $\underline{\varepsilon}^{0}=\underline{0}$

$$
\begin{aligned}
\sigma_{x}(x, z) & =E(x) \varepsilon_{x}(x, z)=E(x) \kappa_{y}(x) z \\
\tau_{z x}(x) & =G(x) \gamma_{z x}(x)=G(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right)
\end{aligned}
$$

- Non-zero internal forces:

$$
\begin{align*}
M_{y}(x) & =\int_{A(x)} \sigma_{x}(x, z) z \mathrm{~d} y \mathrm{~d} z=E(x) \kappa_{y}(x) \int_{A(x)} z^{2} \mathrm{~d} y \mathrm{~d} z \\
& =E(x) I_{y}(x) \kappa_{y}(x)=E(x) I_{y}(x) \frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x}  \tag{1}\\
Q_{z}^{c}(x) & =\int_{A(x)} \tau_{z x}(x) \mathrm{d} y \mathrm{~d} z=G(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) \int_{A(x)} \mathrm{d} y \mathrm{~d} z \\
& =G(x) A(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right)
\end{align*}
$$

- Distribution of shear stresses $\tau_{z x}$ for a rectangular cross-section


## Bernoulli-Navier Mindlin

Constitutive eqs: $\tau=G \gamma \quad 0 \quad$ constant
Equilibrium eqs quadratic ?
[7, kap. II.2.5]

- Therefore, we modify the shear force relation in order to take into
account equilibrium equations, at least in the sense of average work of shear components

$$
\begin{equation*}
Q_{z}(x)=k(x) Q_{z}^{c}(x)=k(x) G(x) A(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) \tag{2}
\end{equation*}
$$

- The multiplier $k(x)$ depends on a shape of a cross-section, for a rectangular cross-section, $k=5 / 6$.

Homework 1. Derive the relation for the constant $k$ for a general crosssection: $k=I_{y}^{2} /\left(A \int_{A} \frac{S_{y}^{2}(z)}{b^{2}(z)} \mathrm{d} A\right)$.

## 4 Equilibrium equations


(a)

(b)

- Equilibrium equation of vertical forces (a)

$$
\begin{equation*}
\frac{\mathrm{d} Q_{z}(x)}{\mathrm{d} x}+\bar{f}_{z}(x)=0 \tag{3}
\end{equation*}
$$

- Equilibrium equation of moments (b)

$$
\begin{equation*}
\frac{\mathrm{d} M_{y}(x)}{\mathrm{d} x}-Q_{z}(x)=0 \tag{4}
\end{equation*}
$$

- For a detailed derivation see Lecture 1, Homework 1.


## 5 Governing equations

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(k(x) G(x) A(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right)\right)+\bar{f}_{z}(x) & =0  \tag{5}\\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(E(x) I_{y}(x) \frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x}\right)-k(x) G(x) A(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) & =0 \tag{6}
\end{align*}
$$

5.1 Kinematic boundary conditions: $x \in I_{u}$

Pinned end: $\quad w=0$

Clamped end: $\quad w=0, \varphi_{y}=0$

5.2 Static boundary conditions: $x \in I_{p}$

$$
Q_{z}(x)=\overline{Q_{z}}(x), \quad M_{y}(x)=\overline{M_{y}}(x)
$$

## 6 Weak solution

- For notational simplicity, we will use relations (3)-(4) instead of (5)(6).
- We will "weight" Eq. (3) by term $\delta w(x)$, Eq. (4) by $\delta \varphi_{y}(x)$ and integrate them on $I$. This leads to conditions

$$
\begin{aligned}
& 0=\int_{I} \delta w(x)\left(\frac{\mathrm{d} Q_{z}(x)}{\mathrm{d} x}+\bar{f}_{z}(x)\right) \mathrm{d} x \\
& 0=\int_{I} \delta \varphi_{y}(x)\left(\frac{\mathrm{d} M_{y}(x)}{\mathrm{d} x}-Q_{z}(x)\right) \mathrm{d} x
\end{aligned}
$$

which are to be satisfied for all $\delta w(x)$ and $\delta \varphi_{y}(x)$ compatible with the kinematic boundary conditions.

- By parts integration

$$
\begin{aligned}
0 & =\left[\delta w(x) Q_{z}(x)\right]_{a}^{b}-\int_{I} \frac{\mathrm{~d}(\delta w(x))}{\mathrm{d} x} Q_{z}(x) \mathrm{d} x+\int_{I} \delta w(x) \bar{f}_{z}(x) \mathrm{d} x \\
0 & =\left[\delta \varphi_{y}(x) M_{y}(x)\right]_{a}^{b}-\int_{I} \frac{\mathrm{~d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} M_{y}(x) \mathrm{d} x-\int_{I} \delta \varphi_{y}(x) Q_{z}(x) \mathrm{d} x
\end{aligned}
$$

- Enforcement of boundary conditions

$$
\begin{aligned}
0 & =\left[\delta w(x) \overline{Q_{z}}(x)\right]_{I_{p}}-\int_{I} \frac{\mathrm{~d}(\delta w(x))}{\mathrm{d} x} Q_{z}(x) \mathrm{d} x+\int_{I} \delta w(x) \bar{f}_{z}(x) \mathrm{d} x \\
0 & =\left[\delta \varphi_{y}(x) \overline{M_{y}}(x)\right]_{I_{p}}-\int_{I} \frac{\mathrm{~d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} M_{y}(x) \mathrm{d} x-\int_{I} \delta \varphi_{y}(x) Q_{z}(x) \mathrm{d} x
\end{aligned}
$$

- The weak of equilibrium equations (we insert (1) for $M_{y}$ and (2) for $Q_{z}$ )

$$
\begin{array}{r}
\int_{I} \frac{\mathrm{~d}(\delta w(x))}{\mathrm{d} x} k(x) G(x) A(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) \mathrm{d} x= \\
{\left[\delta w(x) \overline{Q_{z}}(x)\right]_{I_{p}}+\int_{I} \delta w(x) \bar{f}_{z}(x) \mathrm{d} x} \tag{7}
\end{array}
$$

$$
\begin{equation*}
\int_{I} \frac{\mathrm{~d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} E(x) I_{y}(x) \frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x} \mathrm{~d} x+ \tag{8}
\end{equation*}
$$

$$
\int_{I} \delta \varphi_{y}(x) k(x) G(x) A(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) \mathrm{d} x=\left[\delta \varphi_{y}(x) \overline{M_{y}}(x)\right]_{I_{p}}
$$

## 7 FEM discretization

- We replace a continuous structure with $n$ nodal points and ( $n-1$ ) (finite) elements.
- In every nodal point we introduce two independent quantities - a deflection $w_{i}$ and a rotation $\varphi_{y_{i}}$ of the $i$-th nodal point.
- On the level of whole structure, we collect the unknowns into vectors of deflections $\underline{r}_{w}$ and rotations $\underline{r}_{\varphi}$.
- Discretization of unknown quantities and their derivatives

$$
\begin{array}{ll}
w(x) \approx \underline{N_{w}}(x) \underline{r_{w}}, & \frac{\mathrm{~d} w(x)}{\mathrm{d} x} \approx \underline{B_{w}}(x) \underline{r_{w}}, \\
\varphi_{y}(x) \approx \underline{N_{\varphi}}(x) \underline{r_{\varphi}}, & \frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x} \approx \underline{B_{\varphi}}(x) \underline{r_{\varphi}} .
\end{array}
$$

- Discretization of weight functions

$$
\begin{array}{ll}
\delta w(x) \approx \underline{N_{w}}(x) \underline{\delta r_{w}} & \frac{\mathrm{~d}(\delta w(x))}{\mathrm{d} x} \approx \underline{B_{w}}(x) \underline{\delta r_{w}} \\
\delta \varphi_{y}(x) \approx \underline{N_{\varphi}}(x) \underline{\delta r_{\varphi}} & \frac{\mathrm{d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} \approx \underline{B_{\varphi}}(x) \underline{\delta r_{\varphi}}
\end{array}
$$

- The linear system of discretized equilibrium equations

$$
\begin{aligned}
& \underline{\underline{K_{w w}}} \underline{r_{w}}+\underline{\underline{K_{w \varphi}}} \underline{r_{\varphi}}=\underline{R_{w}} \\
& \underline{\underline{K_{\varphi w}}} \underline{r_{w}}+\underline{\underline{K_{\varphi \varphi}}} \underline{r_{\varphi}}=\underline{R_{\varphi}}
\end{aligned}
$$

- Compact notation

$$
\left[\begin{array}{ll}
\underline{\underline{K_{w w}}} & \underline{K_{w \varphi}} \\
\underline{\underline{K_{\varphi w}}} & \underline{\underline{K_{\varphi \varphi}}}
\end{array}\right]\left\{\begin{array}{l}
\underline{r_{w}} \\
\underline{\underline{r_{\varphi}}}
\end{array}\right\}=\left\{\begin{array}{l}
\underline{R_{w}} \\
\underline{R_{\varphi}}
\end{array}\right\}
$$

$$
\underline{\underline{K}}_{(2 n \times 2 n)} \underline{\underline{r}}_{(2 n \times 1)}=\underline{R}_{(2 n \times 1)}
$$

- $\underline{\underline{K_{\varphi w}}}=\underline{\underline{K_{w \varphi}}}{ }^{\top} \Rightarrow$ the stiffness matrix $\underline{\underline{K}}$ is symmetric thanks to appearance of the terms $\int_{I}(\delta w(x))^{\prime} k G A(x) \varphi_{y}(x) \mathrm{d} x$ in (7) and $\int \delta \varphi_{y}(x) k G A(x) w^{\prime}(x) \mathrm{d} x$ in (8).

Homework 2. Derive explicit relations for matrices $\underline{\underline{K_{w w}}}, \underline{\underline{K_{w \varphi}}, \underline{K_{\varphi w}}, \underline{\underline{K_{\varphi \varphi}}}}$ and vectors $\underline{R_{w}}, \underline{R_{\varphi}}$.

## 8 Shear locking

- For $h / L \rightarrow 0$, the response of a Mindlin theory-based element should approach the classical slender beam (negligible shear effects).
- If the basis functions $\underline{N_{w}}$ a $\underline{N_{\varphi}}$ are chosen as piecewise linear, resulting response in too "stiff" $\rightarrow$ excessive influence of shear terms, sc. shear locking.


### 8.1 Statics-based analysis

- Shear force: $Q_{z}(x)=k(x) G(x) A(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right)$ - linear
- Bending moment: $M_{y}(x)=E(x) I_{y}(x) \frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x}-$ constant
- Severe violation of the Schwedler relation

$$
\frac{\mathrm{d} M_{y}(x)}{\mathrm{d} x}-Q_{z}(x)=0
$$

### 8.2 Kinematics-based explanation



- The approximate solution must be able to correctly reproduce the pure bending mode, see [3, Section 3.1]):

$$
\kappa_{y}(x)=\frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x}=\kappa=\mathrm{const} \quad \gamma_{z x}(x)=\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)=0
$$

- For the given discretization

$$
\begin{aligned}
w(x) & \approx w_{1}\left(1-\frac{x}{L}\right)+w_{2} \frac{x}{L}
\end{aligned} \begin{aligned}
& \frac{\mathrm{d} w(x)}{\mathrm{d} x} \approx \frac{1}{L}\left(w_{2}-w_{1}\right) \\
& \varphi_{y}(x) \approx \varphi_{1}\left(1-\frac{x}{L}\right)+\varphi_{2} \frac{x}{L}
\end{aligned} \frac{\frac{\mathrm{~d} \varphi_{y}(x)}{\mathrm{d} x} \approx \frac{1}{L}\left(\varphi_{2}-\varphi_{1}\right)}{}
$$

- The requirement of zero shear strain leads to

$$
\gamma_{z x}(x) \approx \frac{1}{L}\left(w_{2}-w_{1}\right)+\varphi_{1}+\frac{x}{L}\left(\varphi_{2}-\varphi_{1}\right)=0
$$

- Therefore, the previous relation must be independent of the $x$ coordinate $\Rightarrow$

$$
\varphi_{2}-\varphi_{1}=0 \Rightarrow \kappa_{y} \approx \frac{1}{L}\left(\varphi_{2}-\varphi_{1}\right)=0 \neq \kappa
$$

## 9 Selective integration

- The shear strain is assumed to be constant on a given interval, its value is derived from the value in the center of an interval

$$
\gamma_{z x}(x) \approx \frac{1}{L}\left(w_{2}-w_{1}\right)+\varphi_{1}+\frac{1}{2}\left(\varphi_{2}-\varphi_{1}\right)=\frac{1}{L}\left(w_{2}-w_{1}\right)+\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right)
$$

- Kinematics: the element behaves correctly, it enables to describe the pure bending mode.
- Statics: $Q_{z}(x)=k(x) G(x) A(x) \gamma_{x z}(x)$ - constant, $M_{y}$ - constant $\leftarrow$ the Schwedler condition is not "severely violated".


## 10 Bubble (hierarchical) function

- It follows from analysis of the kinematics that the shear locking is caused by insufficient degree of polynomial approximation of the dis-
placement $w(x)$.

- Therefore, we add a quadratic term to approximation of $w(x)$ :

$$
w(x) \approx w_{1}\left(1-\frac{x}{L}\right)+w_{2} \frac{x}{L}+\alpha x(x-L)
$$

- Pure bending mode requirement

$$
\begin{aligned}
\gamma_{z x}(x) & =\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x) \\
& \approx \frac{1}{L}\left(w_{2}-w_{1}\right)+\alpha(2 x-L)+\varphi_{1}+\frac{x}{L}\left(\varphi_{2}-\varphi_{1}\right) \\
& =\frac{1}{L}\left(w_{2}-w_{1}\right)-\alpha L+\varphi_{1}+\frac{x}{L}\left(\varphi_{2}-\varphi_{1}+2 \alpha L\right)=0
\end{aligned}
$$

- Requirement of independence of coordinate $x \Rightarrow$

$$
\alpha=\frac{1}{2 L}\left(\varphi_{1}-\varphi_{2}\right)
$$

- Final approximations

$$
\begin{aligned}
w(x) & \approx w_{1}\left(1-\frac{x}{L}\right)+w_{2} \frac{x}{L}+\frac{1}{2 L}\left(\varphi_{1}-\varphi_{2}\right) x(x-L) \\
\varphi_{y}(x) & \approx \varphi_{1}\left(1-\frac{x}{L}\right)+\varphi_{2} \frac{x}{L}
\end{aligned}
$$

- From the "static" point of view the element behaves similarly to previous formulation $-Q_{z}$ is constant, $M_{y}$ is constant.
- Approximation of the $w$ displacement not based not only on the values of deflections nodal, but also on the values of nodal rotations [2] - sc. linked interpolation.


## 11 Method of Lagrange multipliers

- Recall the weak form of the bending moment equilibrium equations (8) for a beam with with $\overline{M_{y}}=0$, constant values of $E, G$ and a rectangular cross-section.

$$
\begin{aligned}
0 & =E I_{y} \int_{I} \frac{\mathrm{~d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} \frac{\mathrm{~d} \varphi_{y}(x)}{\mathrm{d} x} \mathrm{~d} x+k G A \int_{I} \delta \varphi_{y}(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) \mathrm{d} x \\
& =E \frac{b h^{3}}{12} \int_{I} \frac{\mathrm{~d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} \frac{\mathrm{~d} \varphi_{y}(x)}{\mathrm{d} x} \mathrm{~d} x \\
& +\frac{5}{6} \frac{E}{2(1+\nu)} b h \int_{I} \delta \varphi_{y}(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) \mathrm{d} x / \frac{12}{E b h^{3}} \\
\int_{I} & \frac{\mathrm{~d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} \frac{\mathrm{~d} \varphi_{y}(x)}{\mathrm{d} x} \mathrm{~d} x+\frac{5}{1+\nu} \frac{1}{h^{2}} \int_{I} \delta \varphi_{y}(x)\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right) \mathrm{d} x=0
\end{aligned}
$$

- The condition of zero shear strain for $h \rightarrow 0$ is imposed via the sc. penalty term.
- For slender beams and linear-linear approximation this leads to the shear locking as

$$
\overbrace{\frac{1}{h^{2}}}^{\rightarrow \infty} \int_{I} \overbrace{\delta \varphi_{y}(x)}^{\text {arbitrary }} \overbrace{\left(\frac{\mathrm{d} w(x)}{\mathrm{d} x}+\varphi_{y}(x)\right)}^{\rightarrow 0 \text { for all } x \in I} \mathrm{~d} x=0 .
$$

- If we introduce a new independent variable for imposing the condition $\gamma_{x z}=0$ for $h \rightarrow 0$, we suppress influence of the choice of approximation of unknowns $w(x)$ a $\varphi_{y}(x)$.
- Therefore, we have to add an additional condition to weak equilibrium equations (7)-(8)

$$
\begin{equation*}
\int_{I} \delta \lambda(x)\left(\gamma_{z x}(x)-\frac{\mathrm{d} w(x)}{\mathrm{d} x}-\varphi_{y}(x)\right) \mathrm{d} x=0 \tag{9}
\end{equation*}
$$

where $\gamma(x)$ is now a new variable independent of $w$ and $\varphi_{y}$ and $\delta \lambda(x)$ is the corresponding weight function.

- Constitutive equations for the shear force $Q_{z}$ now simplify as

$$
Q_{z}(x)=k(x) G(x) A(x) \gamma_{x z}(x)
$$

- Weak form of equilibrium of equations can now be rewritten as

$$
\begin{aligned}
0 & =\int_{I} \frac{\mathrm{~d}(\delta w(x))}{\mathrm{d} x} k(x) G(x) A(x) \gamma_{z x}(x) \mathrm{d} x-\left[\delta w(x) \overline{Q_{z}}(x)\right]_{I_{p}} \\
& -\int_{I} \delta w(x) \bar{f}_{z}(x) \mathrm{d} x \\
0 & =\int_{I} \frac{\mathrm{~d}\left(\delta \varphi_{y}(x)\right)}{\mathrm{d} x} E(x) I_{y}(x) \frac{\mathrm{d} \varphi_{y}(x)}{\mathrm{d} x} \mathrm{~d} x \\
& +\int_{I} \delta \varphi_{y}(x) k(x) G(x) A(x) \gamma_{z x}(x) \mathrm{d} x-\left[\delta \varphi_{y}(x) \overline{M_{y}}(x)\right]_{I_{p}} \\
0 & =\int_{I} \delta \lambda(x)\left(\gamma_{z x}(x)-\frac{\mathrm{d} w(x)}{\mathrm{d} x}-\varphi_{y}(x)\right) \mathrm{d} x
\end{aligned}
$$

- Observe that is we choose the weight function in the specific form

$$
\delta \lambda(x)=k(x) G(x) A(x) \delta \gamma_{x z}(x)
$$

we will finally obtain a symmetric stiffness matrix $\underline{\underline{K}}$.

- The last equation now can be modified as

$$
0=\int_{I} \delta \gamma_{x z}(x) k(x) G(x) A(x)\left(\gamma_{z x}(x)-\frac{\mathrm{d} w(x)}{\mathrm{d} x}-\varphi_{y}(x)\right) \mathrm{d} x
$$

- The additional variable $\gamma_{x z}$ needs to be discretized

$$
\gamma_{x z}(x) \approx \underline{N_{\gamma}}(x) \underline{r_{\gamma}}
$$

and inserted into the weak form of equilibrium equations. This yields, after standard manipulations, the following system of linear equations

$$
\left[\begin{array}{lll}
\underline{\underline{K_{w w}}} & \underline{K_{w \varphi}} & \underline{\underline{K_{w \gamma}}} \\
\underline{\underline{K_{\varphi w}}} & \underline{\underline{K_{\varphi \varphi}}} & \underline{\underline{K_{\varphi \gamma}}} \\
\underline{\underline{K_{\gamma w}}} & \underline{\underline{K_{\gamma \varphi}}} & \underline{\underline{K_{\gamma \gamma}}}
\end{array}\right]\left\{\begin{array}{c}
\frac{r_{w}}{r_{\varphi}} \\
\underline{r_{\gamma}}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{R_{w}}{R_{\varphi}} \\
\frac{\underline{0}}{\underline{r_{i}}}
\end{array}\right\}
$$

- The stiffness matrix, resulting from this discretization, is larger only virtually. It can be observed that parameters $r_{\gamma}$ only internal and can
be eliminated (expressed via variables $\underline{r_{w}}$ and $\underline{r_{\varphi}}$ ); see, e.g. [1, pp. 234235] for more details.
- This formulation works even for piecewise linear approximation of $w$ and $\varphi_{y}$; it suffices to approximate $\gamma$ as a piecewise constant on an element.
- Kinematics: shear locking avoided due to (9).
- Statics: the shear force $Q_{z}$ is again (piecewise) constant, so is the bending moment $M_{y}$.

Homework 3*. Derive the element stiffness matrix based on Lagrange multipliers. Assume the linear approximation of deflections $w(x)$, linear approximation of rotations $\varphi_{y}(x)$ and constant values of $\gamma_{x z}$ on a given elements. Show that this procedure yields results identical to the reduced integration and linked interpolation.

A humble plea. Please feel free to e-mail any suggestions, errors and typos to zemanj@cml.fsv.cvut.cz.

Version 000

## References

[1] Z. Bittnar and J. Šejnoha, Numerical method in structural mechanics, ASCE Press, ???, 1996.
[2] B. F. de Veubeke, Displacement and equilibrium models in the finite element method, International Journal for Numerical Methods in Engineering 52 (2001), 287-342, Classic Reprints Series, originally published in Stress Analysis (O. C. Zienkiewicz and G. S. Holister, editors), John Wiley \& Sons, 1965.
[3] A. Ibrahimbegović and F. Frey, Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams, In-
ternational Journal for Numerical Methods in Engineering 36 (1993), 3239-3258.
[4] R. D. Mindlin, Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates, Journal of Applied Mechanics 18 (1951), 31-38.
[5] E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics 12 (1945), 69-76.
[6] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine 41 (1921), 744-746.
[7] J. Šejnoha and J. Bittnarová, Pružnost a pevnost 10, Vydavatelství ČVUT, Praha, opravit na anglickou verzi!!!, 1997.

