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Convergence of FEM

Convergence of FEM:

FEM is based on the dicretization of the original continuous domain by a set of elements - generally it

is a discretization of the weak form ⇒ the result is the approximated solution

The accuracy of the approximated solution depends on

- type of finite elements
- size of elements
- weak form
- for time-dependent problems, on the time distretization type and the algorithm of solution

FEM in strongly influenced by the finite element mesh construction (basis functions)
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Convergence of FEM

Convergence of FEM:

The convergence theory is elaborated very well in problems of mechanics (linear statics) -
findings are exploited in transport problems (stationary → non-stationary)

Convergence (Cauchy principle): we say that the sequence of real numbers an converge in the
limit to a, if for an arbitrary ϵ > 0, we can find n0 so that for each n ≥ n0, it is |a− an| ≤ ϵ.
So we write:

lim
n→∞

an = a

The previous definition says we are able to approximate the limit a by a sequence an with an
arbitrary accuracy ϵ > 0

In FEM, we approximate the weak solution uex by a FE solution uFEMn with a given accuracy:

uFEMn (x) → uex
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Convergence of FEM

Convergence of FEM:

FEM deals with the convergence of functions

Example: bar element
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Convergence of FEM

Convergence of FEM:

We can define an energy norm of the function u as

∥u(x)∥ =

∫
L
E(x)A(x)

(du
dx

)2
dx,

which has a physical meaning of the structure energy with a given displacement u

We verify if it is valid:

∥uFEMn (x)∥ → ∥uex(x)∥

In FEM, we parametrize solutions by the element size h instead of the number of elements n

In the ideal case, it has to be satisfied:

lim
h→0

∥uFEMh (x)∥ → ∥uex(x)∥
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Convergence of FEM

Convergence of FEM:

For the given accuracy, ϵ > 0, we can find such element size h, so that:

∥uFEMh (x)− uex(x)∥ < ϵ.

We are able approximate weak solution with an arbitrary accuracy in energy norm.
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Convergence of FEM

Convergence of FEM:
Basis functions have to satisfy following conditions:

Smoothness requirement: functions have derivatives of one degree higher than derivatives
appearing in the weak form

Continuity requirement: functions have to be continuous within the element and on the
boundary

Completeness requirement: e. g., in elasticity:
- the displacement field and its derivative can take constant values so that the finite elements
can represent rigid body motion and constant strain states exactly

Finite element with approximation functions satisfying continuity and completeness is called
”conforming” → monotonous convergence

If the completeness is satisfied but the continuity is not, the finite element is non-conforming

For non-conforming elements, the analysis of the condition completeness is difficult. The
PATCH TEST can be then used for the solution control
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Adaptive techniques in FEM

Adaptive techniques in FEM:
Adaptive techniques in FEM deal with the mesh refinement and the increasing of the
approximation function polynomial degree, and the speed of convergence

The speed of convergence can be affected by
- mesh refinement h → 0 = h convergence
- increasing of the approximation function polynomial degree = p convergence
- combination of both effects = hp convergence

From the computational point of view, it is beneficial to perform the mesh refinement or the
increasing of the approximation function polynomial degree, where the approximated solution
doesn’t approximate the exact solution as precise as possible → adaptive FEM,
- e .g., areas of hight stresses concentration, extreme temperature gradients, etc.
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Error estimate

Error estimate:

For adaptive methods, it is necessary to know the error of the approximated solution

e(x) = uFEM(x)− uex(x) (1)

respectively
∥e(x)∥ = ∥uFEM(x)− uex(x)∥ (2)

To describe the behavior of the problem we define the variation of the relative energy norm
error as

η =
∥e∥
∥u∥

(3)
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Error estimate

Error estimate:

The exact solution uex is not generally known. We have to work with an error estimate 0∥e∥
or relative error estimate 0η

The efficiency index:

ϑ =
0∥e∥
∥e∥

.

For asymptotic effective error estimate methods, it holds:

lim
h→0

ϑ = 1

Error estimate methods:
- ZZ method (introduced by Zienkiewiczem a Zhuem) - suitable for h adaptive method

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical
engeneering analysis, International Journal for Numerical Methods in Engineering 24 (1987),
337-357.
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Error estimate

ZZ method:
Suitable for h adaptive method
Simple for the computation - based on known nodal displacements r
Approximated displacements uFEM by linear basis functions:

uFEM(x) ≈ N(x)r

Stresses σFEM and strains εFEM are piecewise constant:

εFEM(x) ≈ B(x)r

Consider stresses σ⋆ is closed to exact solution σex

σ⋆(x) = N(x)rσ
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Error estimate

Error estimate:
Coefficients in the vector rσ are determined for the minimal error between approximated
σFEM and recovered stresses σ⋆ with help of least square method:∫

Ω

(
σ⋆(x)− σFEM(x)

)T (
σ⋆(x)− σFEM(x)

)
dx

Then

∂

∂rσ

∫
Ω
(N(x)rσ −B(x)r)T (N(x)rσ −B(x)r) dx = 0∫

Ω
NT(x) (N(x)rσ −B(x)r) dx = 0

Nodal values of recovered stresses are calculated from this system of equations:(∫
Ω
NT(x)N(x)dx

)
rσ =

(∫
Ω
NT(x)B(x)dx

)
r

Arσ = b
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Error estimate

Error estimate:

The error estimate is based on the following difference:

σ⋆(x)− σFEM(x)

For 1D problem, we obtain:

0∥e∥ =

∫
l

A(x)

E(x)

(
σ⋆(x)− σFEM(x)

)2
dx

In case of general problem (2D and 3D), the energy norm is expressed by:

∥u∥ =

∫
Ω
εT(x)D(x)ε(x)dx =

∫
Ω
σT(x)D−1(x)σ(x)dx

The energy norm error:

∥e∥ =

∫
Ω

(
σ⋆(x)− σFEM(x)

)T
D−1(x)

(
σ⋆(x)− σFEM(x)

)
dx
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Error estimate

Error estimate:

Let’s remind the definition of energy norm:

∥u∥ =

∫
l
E(x)A(x)

(
du

dx

)2

dx =

∫
l
εx(x)E(x)A(x)εx(x)dx =

A(x)

E(x)
σ2
x(x)
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An introduction to the solution of sparse systems of equations

An introduction to the solution of sparse systems of linear algebraic equations
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An introduction to the solution of sparse systems of equations

Solution of the system:

Ax = b,

where the number of equation is huge (106) and the matrix A is sparse
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An introduction to the solution of sparse systems of equations

18 / 28 An introduction to the solution of sparse systems of equations An introduction to the FEM accuracy



An introduction to the solution of sparse systems of equations

Methods of sparse matrix storing:

Banded matrix
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An introduction to the solution of sparse systems of equations

Methods of sparse matrix storing:

Skyline

Coordinate scheme for storing sparse matrices - suitable for iterative solvers
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An introduction to the solution of sparse systems of equations

Direct solvers:

Maind idea: factorization of the matrix in to multiplication of two matrices, which are
invertible (and triangular) with possible permutation for the stability reaching

Example: LU decomposition A = LU , where L a U are the lower and upper triangular
matrices, respectively. If we have the decomposition, then:

Ax = (LU)x = L(Ux) = b,

Ly = b, Ux = y

The main benefit of the matrix decomposition is the simple solution of both problem by
backward and forward substitution
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An introduction to the solution of sparse systems of equations

Direct solvers:

Advantages:
- known number of operations
- ability of the large systems solution (2D a 3D problems)
- speed and robustness

Disadvantages:
- assembly of the whole matrix - it can be complicated
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An introduction to the solution of sparse systems of equations

Iterative solvers:

Two main iterative algorithms: relaxation (Jacobi, Gauss-Seidel) a project (Krylovov method:
CG, GMRES)

Idea: generation of a sequence of approximation solutions x0, x1, . . . xn so than limxn → x∗,
where x∗ is the exact solution

In comparison with the direct solvers, the solution can be end ahead of time with help of a
suitable criterion

Advantages:
- the explicit matrix assembly is not needed
- low memory requirements
- effective for very sparse systems, mainly for 3D problems

Disadvantages:
- huge number of iterations
- effective preconditioning is often needed
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An introduction to the solution of sparse systems of equations

Hybrid methods:

Multigrid methods
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An introduction to the solution of sparse systems of equations

Parallel solution of equation systems:

The size of solved problem is limited on one computer by the CPU speed and the size of
memory → parallel and distributed computations in modern clusters and computers

Architecture:
- shared memory
- distributed memory
- hybrid systems

Computing models:
- threads - shared memory (POSIX, OpenMP)
- Message passing interface - distributed systems (MPI)
- parallel data model - shared memory (F90, HPF)
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An introduction to the solution of sparse systems of equations

Domain decomposition:

Idea: the decomposition of solved problem into sub-problems, that can be solved on individual
clusters and the mutual correspondence enforces mutual communication

In FEM, the domain decomposition method is used = the decomposition of a domain into
several sub-domains. A parallel solver is needed for the effective processing

Requirements: constant work distribution (equal number of elements and nodes), minimal
boundary between subdomains (communication)

Solution methods:
1. Primary domain decomposition method - Schur complement method
2. Dual decomposition method - FETI method (Finite Element Tearing and Interconnecting
method)

Load balancing - distributed work among clusters (static, dynamic), is inevitable for the
effective computation
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An introduction to the solution of sparse systems of equations

Example of domain decomposition:
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