Version:	Pame:					
A						

Task 1: Determine the magnitude of the force F if the vertical displacement of node No. 3 is equal 0.01 m .

Task 2: Determine the temperature at node No. 2. Consider the value of heat conductivity $8 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$.

Task 3: Determine the right-hand side vector for all degrees of freedom.
The problem is discretized by two elements with linear approximation functions.

$$
\begin{aligned}
& \bar{T}=5 \mathrm{~K} \quad \bar{q}(4)=-2 \mathrm{Wm}^{-2} \\
& \text { K } \quad L=3 \mathrm{~m} \quad X^{L=1 \mathrm{~m}} X \\
& f=\left\{\begin{array}{l}
0 \\
0 \\
2
\end{array}\right\}
\end{aligned}
$$

Task 4: Determine the axial force in bar No. 7.

Vector of nodal displacements: [m]
1: $\{0.0000 \mathrm{e}+00,0.0000 \mathrm{e}+00\}$
2: \{6.9697e-04, -7.1498e-03\}
3: $\{1.3939 \mathrm{e}-03,-7.4388 \mathrm{e}-03\}$
4: $\{7.8661 \mathrm{e}-04,-5.1346 \mathrm{e}-03\}$
5: $\{0.0000 \mathrm{e}+00,-2.3943 \mathrm{e}-03\}$
6: \{4.3803e-03, -5.1498e-03\}
7: \{5.1139e-03, -7.7575e-03\}
8: $\{6.0268 \mathrm{e}-03,-3.4533 \mathrm{e}-03\}$
9: $\{7.9364 \mathrm{e}-03,-2.1664 \mathrm{e}-03\}$
10: $\{0.0000 \mathrm{e}+00,0.0000 \mathrm{e}+00\}$
11: $\{0.0000 \mathrm{e}+00,0.0000 \mathrm{e}+00\}$

$$
s_{7}=-1.449 \cdot 10^{4} \mathrm{~N}
$$

Many thanks to Edita Dvořáková and Bořek Patzák for creating this test.

