Mindlin theory

Assumptions:

« Constant deflection (vertical displacement) does not vary along the height of the beam
e The cross sections remain planar but not necessarily perpendicular to
the deformed beam axis

« Kinematics of the cross-section (plane xz):
u(, 2) = u,(2) + ¢ ()2
v=20
w(z, z) = w(z)

» Non-zero strain components:
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« Governing differential equations:
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e Boundary conditions:

 Kinematic b.c. (prescribed: u,,w, @)
« Static b.c. (N(z) = N(z),V(z) = V(z), M(z) = M(z))




Discretized problem
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Linear approximation function

Matrix of approximation functions:
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Kinematic matrix (derivatives of approximation functions):
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Sub-matrices of the stiffness matrix:
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Example 1

F=E=G=L=b=1 5 k=5/6

F
N }
NN [0,0] [1.2]

In [3]:
function Ke = beam2d stiffness(xz, EA, kGA, EI)

1 = sgrt((xz(3) - xz(1))"2 + (xz(4) - xz(2))"2)

Kuu = EA/1*[1 -1; -1 1];

Kww = kGA/1*[1 -1; -1 17;

Kwf = kGA*[-1/2 -1/2; 1/2 1/2];

Kff = EI/1*[1 -1; -1 1] + kGA*[1l/3 1/6; 1/6 1/3];

% Kff = EI/U*[1 -1; -1 1] + kGA*[1/4 1/4; 1/4 1/4];
0 = zeros(2);

Ke = [Kuu 0 0; O Kww Kwf; 0 Kwf' Kff]
end



Shear locking

In the same type of approximation of deflection and rotation, the approximation of shear force
is of one degree higher than the approximation of bending moment. It doesn’t satisfy

the Schwedler relation — resulting response in too “stift” = excessive influence of shear terms,
sc. shear locking.

d
o Shear force: V(z) =kGA (_w + goy) = linear

dr
- ) L dey
« Bending moment: M(z) = EI o = constant
@
« Schwedler relation: Ag(x) —V(z)=0
4y

The shear locking problem can be solved by the use of a selective integration or a hierarchical function.

Selective (reduced) integration

The conflict is reduced by a selective integration of the K. the part of the stiffness matrix,
which corresponds to the contribution of the shear force.
dw . Wy — W +
Shear strain vy = To + ¢ is assumed constant, then A= 2 7 L e 12" i it ,
&

which corresponds to the reduced integration.

Assuming the constant shear strain influences the parts of the stiffness matrix with N -
In the case of constant approximation, Only matrix K‘P‘P’ is Changed, because parts of the integral
have parabolic shape. If we prefer linear functions, the one-point integration is equal to the full one.
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Bubble (hierarchical) function
In case of linear approximation for the shear strain, it is valid:

dw Wy — W
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For the constant shear strain, we add a quadratic term to the deflection approximation.
Then the linear part is vanished after in the derivative:
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Resulting approximation:
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Reordering of nodal values of deflection and rotation is suitable for the calculation:

Twep = {'wla ©1, W2, 902}-

Interpolation of deflection and rotation:
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Final form of sub-matrices: K, = [ BIKGAB,dz =
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This gives the same results as for the reduced integration

Comparison for a cantilever beam:
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Full integration

 Cantilever beam:

F=E=G=L=b=1, k=5/6 [ kGA/I kGA/2 ] { w } _ { F }
\LF kGA/2  El/I + kGAI/3 o 0
N
N[0,0] [1,2] h=01— W(0'1) = 47.6
1 h=0.01 - wg.o) =479.9  Ratio
W(0.01)/W0.1) = 10
Deflection — analytical solution: ~ w = FL3/3El + FL/kGA.
Our case: Wo.1) = 4Xx10% + 12, w(g o1y = 4x108 + 120,
Reduced integration
« Cantilever beam:
_____ o kGA/I kGA/2 F
PERSRER R E o [ kGA//2 El/I + kGAI§4 } { v } = { 0 }
\ /
&‘[0’0] [1’2] h=01— W(0_1):3012

1 h=0.01 — wp 1) = 3x10°  Ratio

W(0.01)/W(0.1) = 1000
Deflection — analytical solution: w = FL3/3El + FL/kGA.

Our case: W(0.1) — 4X103 + 12, W(0‘01) =4x1 06 + 120,
W(0.01)/W(0.1) = 1000 ok.

Comparison of full integration and reduced integration scheme for one and more elements

« Full integration (2 points):

h/L > 1/3: h/L < 1/10:
nelem | w/we nelem | w/w;.
1 0.0416 1 0.0002
2 0.445 2 0.0008
4 0.762 4 0.0003
8 0.927 8 0.0013

« Reduced integration (1 point):

h/L > 1/3: h/L < 1/10:
nelem | w/we nelem | w/w;.
1 0.762 1 0.750
2 0.940 2 0.938
4 0.985 4 0.984
8 0.996 8 0.996
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