A posteriori error estimate - ZZ method

FEM solution:
$u^{\text {FEM }}(x)=N(x) r$
$\sigma^{\text {FEM }}(x)=D B(x) r$,
Where B is the matrix of derivatives of approximation functions.
We assume that the exact stress state is close to this
$\sigma^{*}(x)=N(x) r_{\sigma}$
Coefficients r_{σ} sigma are determined so that the error of the difference of the approximated stresses σ^{FEM} And the augmented stresses sigma_star in the least square meaning must be as small as possible:
$\int_{\Omega}\left(\sigma^{*}-\sigma^{\mathrm{FEM}}\right)^{T}\left(\sigma^{*}-\sigma^{\mathrm{FEM}}\right) d \Omega \rightarrow \min$.
After some mathematical operations (see Lecture 11), we obtain:
$\left(\int_{\Omega} N^{T} N d \Omega\right) r_{\sigma}=\left(\int_{\Omega} N^{T} \sigma^{\mathrm{FEM}^{2}} d \Omega\right)$
$A r_{\sigma}=b$

Example 1: Tensile bar

Let's assume:

$$
f_{x}=1, l=3, E A=1
$$

Analytical solution:

Stress is determined from the equilibrium equation:

$$
\sigma(x)=f_{x}(l-x) / A, \quad x \in(0, l)
$$

The displacement is derived from the integration:

$$
u(x)=\int_{0}^{x} \sigma(s) / E d s=\left[\left(f_{x} l s-f_{x} s^{2} / 2\right) /(E A)\right]_{0}^{x}=-\left(f_{x} / E A\right) *\left(-x^{2} / 2-l x\right)
$$

FEM solution:

```
# number of elements
n = 5
l = 3/n;
E = 1;
A = 1;
# fem solution
ki = (E*A/l)*[1 -1; -1 1];
fi = [l^2/(2*l) l^2/(2*l)];
K = zeros (n+1);
F = zeros (n+1, 1);
for i=1:n
    loc = [i i+1];
    K(loc, loc) += ki;
    F(loc)+= fi';
endfor
u = K(2:n+1, 2:n+1)\(F(2:n+1,1));
U = [0 ; u]
#plot analytical solution
hold on;
x = 0:0.1:3;
plot (x, -x.^2/2+3*x, "b;u;", x, -x+3, "r;N;")
sig = zeros(n,1);
#evaluate stress and plot obtained solution
for i=1:n
    eps = (U(i+1)-U(i))/l;
    sig(i) = E*eps;
    N = A*E*eps;
    plot ([(i-1)*l i*l], [U(i) U(i+1)], "b--")
    plot ([(i-1)*l i*l], [N N], "r--")
endfor
```

$\mathrm{n}=5$
U =
0.00000
1.62000
2.88000
3.78000
4.32000
4.50000

The smoothed stress: $\quad \sigma^{*}$
$A^{e}=\int_{l}\left[\begin{array}{l}N_{1} \\ N_{2}\end{array}\right]\left[\begin{array}{ll}N_{1} & N_{2}\end{array}\right] d x=\left[\begin{array}{ll}l / 3 & l / 6 \\ l / 6 & l / 3\end{array}\right]=\left[\begin{array}{ll}l / 2 & \\ & l / 2\end{array}\right]$
$b^{e}=\int N^{T} \sigma^{e} d x=\left\{\begin{array}{c}\sigma^{e} l / 2 \\ \sigma^{e} l / 2\end{array}\right\}$
Nodal values of the smoothed stress: $A r_{\bar{\sigma}} b$
where the matrix A and vector b is assembled by the localization from A^{e} and b^{e}.

In [4]:
\# evaluate recovered stresses
Ai = [l/2, 0; 0, l/2];
bi $=$ [l/2; $1 / 2] ;$
A $=$ zeros $(\mathrm{n}+1)$;
$B=z e r o s(n+1,1) ;$
for $\mathrm{i}=1$: n
loc = [i i+1];
A(loc, loc) +=Ai; $\mathrm{B}(\mathrm{loc})+=$ sig(i)*bi;
endfor
$\operatorname{sig} 2=A \backslash B ;$
\#plot analytical solution
hold on;
$x=0: 0.1: 3 ;$
plot (x, -x+3, "r;Sigma;")
\#plot recovered stresses
hold on;
for $\mathrm{i}=1$: n
plot ([(i-1)*l i*l], [sig(i) sig(i)], "r--") plot ([(i-1)*l i*l], [sig2(i) sig2(i+1)], "o--")
endfor

Error estimate:

$|e|=\int_{\Omega} \frac{1}{E(x)}\left(\sigma_{x}^{*}(x)-\sigma_{x}^{\mathrm{FEM}}(x)\right)^{2} d x$.
$|e|=\sum_{e} \int_{l_{e}} \frac{1}{E(x)}\left(\sigma_{x}^{*}(x)-\sigma_{x}^{\mathrm{FEM}}(x)\right)^{2} d x$.

```
# numerical integration
w = [1.0; 1.0];
xi=[-1./sqrt(3); 1/sqrt(3)];
# error contributions from elements
e = zeros(n,1);
err = 0.0;
hold on;
for i=1:n
    for ip=1:2
        sig2xi = (1-xi(ip))/2*sig2(i)+(1+xi(ip))/2*sig2(i+1);
        dsig = sig2xi-sig(i);
        e(i) += (dsig^2/E)*w(ip)*l/2;
    endfor
    err = err+e(i);
endfor
e
err
for i=1:n
    plot ([(i-1)*l i*l], [e(i) e(i)], "o--")
endfor
```

e =
0.018000
0.018000
0.018000
0.018000
0.018000
err $=0.090000$

Example 2: Plane stress problem - cantilever beam loaded by a force

Note: The FEM solution is not presented.

In [7]:

```
# mesh draw
hold on;
sig;
triplot(enodes,x,y,'k')
triplot(enodes,xnew,ynew, 'r')
#for ie=1:nelem
# trimesh(enodes(ie,:),xnew(enodes(ie,:)),ynew(enodes(ie,:)),[sig(ie,1),sig(i
e,1),\operatorname{sig(ie,1)])}
#endfor
```


Error estimate:

Nodal values of the smoothed stress:
$A^{e}=\int_{A_{e}} N^{T} N d A=\int_{A_{e}}\left[\begin{array}{l}N_{1} \\ N_{2} \\ N_{3}\end{array}\right]\left[\begin{array}{lll}N_{1} & N_{2} & N_{3}\end{array}\right] d A$
$b_{i}=\int_{A_{e}} N^{T} \sigma d A=\int_{A_{e}}\left[\begin{array}{l}N_{1} \\ N_{2} \\ N_{3}\end{array}\right] \sigma(x) d x$
$A r_{\sigma^{*}}=b$

```
function [Ai, bi] = plane_stress_reco (xe,ye,sig)
    # numerical integration
    w = [0.26014666666; 0.26014666666;0.26014666666; -0.28125];
    xi=[0.2, 0.2; 0.6, 0.2; 0.2, 0.6; 0.3333333333, 0.33333333333];
    Ae=(1/2)*((xe(2)*ye(3)-xe(3)*ye(2))-(xe(1)*ye(3)-xe(3)*ye(1))+(xe(1)*ye(2)-x
e(2)*ye(1))) ;
    AAi=zeros(3);
    Ai=zeros(3);
    bi=zeros(3,3); # right hand side for 3 components
    for ip = 1:4
        Ni=[xi(ip,1), xi(ip,2), 1-xi(ip,1)-xi(ip,2)]; # bazove funkce
        AAi = AAi + Ni'*Ni*w(ip)*2*Ae;
        bi = bi+Ni'*sig*w(ip)*2*Ae;
    endfor
    for i=1:3
        Ai(i,i)=sum(AAi(i,:));
    endfor
end
# evaluate recovered stresses
A = zeros(nnodes);
B = zeros(nnodes,3);
for en=1:nelem
    xe = [x(enodes(en,:))] ;
    ye = [y(enodes(en,:))] ;
    [Ai,bi] = plane_stress_reco (xe,ye,sig(en,:));
    lm = [enodes(en,1), enodes(en,2), enodes(en,3)];# code numbers = node numbers
                    Ai;
    B(lm,[1,2,3])+= bi;
endfor
sig2 = A\B
if (0)
    hold on;
    caxis ("auto")
    colorbar;
    for en=1:nelem
        xe = [x(enodes(en,:)); x(enodes(en,1))];
        ye = [y(enodes(en,:)); y(enodes(en,1))];
        sig2e = [sig2(enodes(en,:),1); sig2(enodes(en,1),1)];
        patch (xe, ye, sig2e);
    endfor
endif
```

$1.7218 \mathrm{e}+02$	$8.3082 \mathrm{e}+00$	$9.6599 \mathrm{e}+00$
$7.6158 \mathrm{e}+01$	$5.3983 \mathrm{e}+00$	$4.4783 \mathrm{e}+01$
$-3.8137 \mathrm{e}+01$	$-2.5533 \mathrm{e}+00$	$4.4558 \mathrm{e}+01$
$-1.5283 \mathrm{e}+02$	$-1.0527 \mathrm{e}+01$	$4.4393 \mathrm{e}+01$
$-2.3074 \mathrm{e}+02$	$-2.3074 \mathrm{e}+01$	$1.1516 \mathrm{e}+02$
$1.7892 \mathrm{e}+02$	$6.4295 \mathrm{e}-01$	$-2.6171 \mathrm{e}+01$
$1.1051 \mathrm{e}+02$	$1.7933 \mathrm{e}+00$	$8.4175 \mathrm{e}+00$
$1.9143 \mathrm{e}+00$	$-2.5754 \mathrm{e}-01$	$9.2766 \mathrm{e}+00$
$-1.0632 \mathrm{e}+02$	$-2.4918 \mathrm{e}+00$	$7.9001 \mathrm{e}+00$
$-1.8312 \mathrm{e}+02$	$-8.8015 \mathrm{e}+00$	$4.0493 \mathrm{e}+01$
$1.5869 \mathrm{e}+02$	$3.5503 \mathrm{e}-01$	$-2.2594 \mathrm{e}+01$
$9.8389 \mathrm{e}+01$	$-1.6859 \mathrm{e}+00$	$8.0161 \mathrm{e}+00$
$2.1021 \mathrm{e}+00$	$-1.6623 \mathrm{e}+00$	$9.7197 \mathrm{e}+00$
$-9.4360 \mathrm{e}+01$	$-1.7128 \mathrm{e}+00$	$8.2875 \mathrm{e}+00$
$-1.6286 \mathrm{e}+02$	$-3.0333 \mathrm{e}+00$	$3.5981 \mathrm{e}+01$
$1.3870 \mathrm{e}+02$	$1.5161 \mathrm{e}-01$	$-1.8919 \mathrm{e}+01$
$8.6325 \mathrm{e}+01$	$-1.6739 \mathrm{e}+00$	$8.1711 \mathrm{e}+00$
$2.0146 \mathrm{e}+00$	$-1.6998 \mathrm{e}+00$	$9.6890 \mathrm{e}+00$
$-8.2309 \mathrm{e}+01$	$-1.6958 \mathrm{e}+00$	$8.1974 \mathrm{e}+00$
$-1.4265 \mathrm{e}+02$	$-2.7036 \mathrm{e}+00$	$3.2204 \mathrm{e}+01$
$1.1861 \mathrm{e}+02$	$-5.0728 \mathrm{e}-02$	$-1.5266 \mathrm{e}+01$
$7.4282 \mathrm{e}+01$	$-1.6730 \mathrm{e}+00$	$8.1861 \mathrm{e}+00$
$2.0074 \mathrm{e}+00$	$-1.6751 \mathrm{e}+00$	$9.6924 \mathrm{e}+00$
$-7.0266 \mathrm{e}+01$	$-1.6754 \mathrm{e}+00$	$8.1866 \mathrm{e}+00$
$-1.2254 \mathrm{e}+02$	$-2.4861 \mathrm{e}+00$	$2.8535 \mathrm{e}+01$
$9.8515 \mathrm{e}+01$	$-2.5346 \mathrm{e}-01$	$-1.1616 \mathrm{e}+01$
$6.2236 \mathrm{e}+01$	$-1.6730 \mathrm{e}+00$	$8.1864 \mathrm{e}+00$
$2.0075 \mathrm{e}+00$	$-1.6730 \mathrm{e}+00$	$9.6921 \mathrm{e}+00$
$-5.8221 \mathrm{e}+01$	$-1.6729 \mathrm{e}+00$	$8.1863 \mathrm{e}+00$
$-1.0245 \mathrm{e}+02$	$-2.2812 \mathrm{e}+00$	$2.4886 \mathrm{e}+01$
$7.8418 \mathrm{e}+01$	$-4.5632 \mathrm{e}-01$	$-7.9659 \mathrm{e}+00$
$5.0190 \mathrm{e}+01$	$-1.6731 \mathrm{e}+00$	$8.1863 \mathrm{e}+00$
$2.0076 \mathrm{e}+00$	$-1.6731 \mathrm{e}+00$	$9.6921 \mathrm{e}+00$
$-4.6175 \mathrm{e}+01$	$-1.6730 \mathrm{e}+00$	$8.1863 \mathrm{e}+00$
$-8.2352 \mathrm{e}+01$	$-2.0785 \mathrm{e}+00$	$2.1236 \mathrm{e}+01$
$5.8322 \mathrm{e}+01$	$-6.5940 \mathrm{e}-01$	$-4.3150 \mathrm{e}+00$
$3.8145 \mathrm{e}+01$	$-1.6746 \mathrm{e}+00$	$8.1871 \mathrm{e}+00$
$2.0080 \mathrm{e}+00$	$-1.6750 \mathrm{e}+00$	$9.6920 \mathrm{e}+00$
$-3.4129 \mathrm{e}+01$	$-1.6731 \mathrm{e}+00$	$8.1853 \mathrm{e}+00$
$-6.2257 \mathrm{e}+01$	$-1.8758 \mathrm{e}+00$	$1.7585 \mathrm{e}+01$
$3.8217 \mathrm{e}+01$	$-8.6687 \mathrm{e}-01$	$-6.6091 \mathrm{e}-01$
$2.6097 \mathrm{e}+01$	$-1.6769 \mathrm{e}+00$	$8.1966 \mathrm{e}+00$
$2.0150 \mathrm{e}+00$	$-1.6772 \mathrm{e}+00$	$9.6951 \mathrm{e}+00$
$-2.2082 \mathrm{e}+01$	$-1.6739 \mathrm{e}+00$	$8.1733 \mathrm{e}+00$
$-4.2168 \mathrm{e}+01$	$-1.6730 \mathrm{e}+00$	$1.3933 \mathrm{e}+01$
$1.8098 \mathrm{e}+01$	$-1.5020 \mathrm{e}+00$	$3.0253 \mathrm{e}+00$
$1.4038 \mathrm{e}+01$	$-1.7895 \mathrm{e}+00$	$8.1952 \mathrm{e}+00$
$2.0173 \mathrm{e}+00$	$-1.5587 \mathrm{e}+00$	$9.6894 \mathrm{e}+00$
$-1.0016 \mathrm{e}+01$	$-1.4535 \mathrm{e}+00$	$8.1699 \mathrm{e}+00$
$-2.2076 \mathrm{e}+01$	$-1.4645 \mathrm{e}+00$	$1.0284 \mathrm{e}+01$
$1.2078 \mathrm{e}+01$	$-1.7451 \mathrm{e}+00$	$3.0195 \mathrm{e}+00$
$8.0066 \mathrm{e}+00$	$-2.1230 \mathrm{e}+00$	$7.7018 \mathrm{e}+00$
$2.0061 \mathrm{e}+00$	$-1.6627 \mathrm{e}+00$	$9.6658 \mathrm{e}+00$
$-8.9892 \mathrm{e}+00$	$-1.2099 \mathrm{e}+00$	$8.6548 \mathrm{e}+00$
$-1.0215 \mathrm{e}+00$	$8.4720 \mathrm{e}+00$	

Stress profile σ_{x}^{*}

Error estimate:

$\|e\|=\int\left(\sigma^{*}(x)-\sigma^{\left.\mathrm{FEM}_{(x)}\right)}{ }^{T} D^{-1}\left(\sigma^{*}(x)-\sigma^{\left.\mathrm{FEM}_{(x)}\right) d \Omega}\right.\right.$

In [9]:

```
# numerical integration
w = [0.26014666666; 0.26014666666;0.26014666666; -0.28125];
xi=[0.2, 0.2; 0.6, 0.2; 0.2, 0.6; 0.3333333333, 0.3333333333];
# error contributions from elements
e = zeros(nelem,1);
err = 0.0;
sig
for en=1:nelem
    sig2e = [sig2(enodes(en,1),:); sig2(enodes(en,2),:);sig2(enodes(en,3),:)];
    xe = [x(enodes(en,:))] ;
    ye = [y(enodes(en,:))] ;
    Ae=(1/2)*((xe(2)*ye(3)-xe(3)*ye(2))-(xe(1)*ye(3)-xe(3)*ye(1))+(xe(1)*ye(2)-x
e(2)*ye(1))) ;
    [ke,dbe,de,be] = plane_stress(xe,ye,E,nu) ; # de
    for ip=1:4
        xiip = [xi(ip,1), xi(ip,2), 1-xi(ip,1)-xi(ip,2)];
        sig2xi = xiip*sig2e; # stress at integration point
        dsig = sig2xi-sig(en,:); # diff. sigma - sigma_fem
        e(en) += (dsig)*inv(de)*dsig'*w(ip)*Ae*2;
    endfor
    err = err+e(en);
endfor
e
err
```

$2.2973 \mathrm{e}+02$	$5.1542 \mathrm{e}+00$	$-9.4548 \mathrm{e}+01$
$1.1462 \mathrm{e}+02$	$1.1462 \mathrm{e}+01$	$1.1387 \mathrm{e}+02$
$1.1395 \mathrm{e}+02$	$4.7427 \mathrm{e}+00$	$-9.2630 \mathrm{e}+01$
$-9.8909 \mathrm{e}-02$	$-9.8909 \mathrm{e}-03$	$1.1311 \mathrm{e}+02$
$2.8302 \mathrm{e}-01$	$3.8094 \mathrm{e}+00$	$-9.2980 \mathrm{e}+01$
$-1.1459 \mathrm{e}+02$	$-1.1459 \mathrm{e}+01$	$1.1354 \mathrm{e}+02$
$-1.1315 \mathrm{e}+02$	$2.9511 \mathrm{e}+00$	$-9.5525 \mathrm{e}+01$
$-2.3074 \mathrm{e}+02$	$-2.3074 \mathrm{e}+01$	$1.1516 \mathrm{e}+02$
$2.0505 \mathrm{e}+02$	$4.3949 \mathrm{e}+00$	$-8.4683 \mathrm{e}+01$
$1.0199 \mathrm{e}+02$	$-7.6203 \mathrm{e}+00$	$1.0072 \mathrm{e}+02$
$1.0312 \mathrm{e}+02$	$3.7080 \mathrm{e}+00$	$-8.1568 \mathrm{e}+01$
$-3.4434 \mathrm{e}-01$	$-6.6868 \mathrm{e}+00$	$1.0467 \mathrm{e}+02$
$6.3556 \mathrm{e}-01$	$3.1122 \mathrm{e}+00$	$-8.1496 \mathrm{e}+01$
$-1.0294 \mathrm{e}+02$	$-6.5129 \mathrm{e}+00$	$1.0499 \mathrm{e}+02$
$-1.0203 \mathrm{e}+02$	$2.5426 \mathrm{e}+00$	$-8.4465 \mathrm{e}+01$
$-2.0548 \mathrm{e}+02$	$-6.2815 \mathrm{e}+00$	$1.0184 \mathrm{e}+02$
$1.8120 \mathrm{e}+02$	$3.8000 \mathrm{e}+00$	$-7.3744 \mathrm{e}+01$
$8.9806 \mathrm{e}+01$	$-7.1298 \mathrm{e}+00$	$9.0646 \mathrm{e}+01$
$9.0837 \mathrm{e}+01$	$3.1833 \mathrm{e}+00$	$-7.0663 \mathrm{e}+01$
$-4.7322 \mathrm{e}-01$	$-6.6514 \mathrm{e}+00$	$9.3648 \mathrm{e}+01$
$4.4925 \mathrm{e}-01$	$2.5733 \mathrm{e}+00$	$-7.0585 \mathrm{e}+01$
$-9.0775 \mathrm{e}+01$	$-6.0289 \mathrm{e}+00$	$9.3655 \mathrm{e}+01$
$-8.9975 \mathrm{e}+01$	$1.9711 \mathrm{e}+00$	$-7.3524 \mathrm{e}+01$
$-1.8107 \mathrm{e}+02$	$-5.3610 \mathrm{e}+00$	$9.0567 \mathrm{e}+01$
$1.5708 \mathrm{e}+02$	$3.1939 \mathrm{e}+00$	$-6.2788 \mathrm{e}+01$
$7.7811 \mathrm{e}+01$	$-6.5391 \mathrm{e}+00$	$7.9774 \mathrm{e}+01$
$7.8723 \mathrm{e}+01$	$2.5852 \mathrm{e}+00$	$-5.9708 \mathrm{e}+01$
$-4.2705 \mathrm{e}-01$	$-5.9431 \mathrm{e}+00$	$8.2721 \mathrm{e}+01$
$3.6496 \mathrm{e}-01$	$1.9770 \mathrm{e}+00$	$-5.9639 \mathrm{e}+01$
$-7.8663 \mathrm{e}+01$	$-5.3380 \mathrm{e}+00$	$8.2652 \mathrm{e}+01$
$-7.7993 \mathrm{e}+01$	$1.3690 \mathrm{e}+00$	$-6.2581 \mathrm{e}+01$
$-1.5690 \mathrm{e}+02$	$-4.7210 \mathrm{e}+00$	$7.9568 \mathrm{e}+01$
$1.3293 \mathrm{e}+02$	$2.5856 \mathrm{e}+00$	$-5.1836 \mathrm{e}+01$
$6.5825 \mathrm{e}+01$	$-5.9316 \mathrm{e}+00$	$6.8826 \mathrm{e}+01$
$6.6616 \mathrm{e}+01$	$1.9773 \mathrm{e}+00$	$-4.8757 \mathrm{e}+01$
$-3.6530 \mathrm{e}-01$	$-5.3336 \mathrm{e}+00$	$7.1769 \mathrm{e}+01$
$3.0396 \mathrm{e}-01$	$1.3689 \mathrm{e}+00$	$-4.8688 \mathrm{e}+01$
$-6.6555 \mathrm{e}+01$	$-4.7150 \mathrm{e}+00$	$7.1700 \mathrm{e}+01$
$-6.6008 \mathrm{e}+01$	$7.6057 \mathrm{e}-01$	$-5.1631 \mathrm{e}+01$
$-1.3274 \mathrm{e}+02$	$-4.1062 \mathrm{e}+00$	$6.8619 \mathrm{e}+01$
$1.0878 \mathrm{e}+02$	$1.9772 \mathrm{e}+00$	$-4.0886 \mathrm{e}+01$
$5.3840 \mathrm{e}+01$	$-5.3232 \mathrm{e}+00$	$5.7875 \mathrm{e}+01$
$5.4509 \mathrm{e}+01$	$1.3688 \mathrm{e}+00$	$-3.7806 \mathrm{e}+01$
$-3.0422 \mathrm{e}-01$	$-4.7148 \mathrm{e}+00$	$6.0818 \mathrm{e}+01$
$2.4330 \mathrm{e}-01$	$7.6045 \mathrm{e}-01$	$-3.7738 \mathrm{e}+01$
$-5.4449 \mathrm{e}+01$	$-4.1063 \mathrm{e}+00$	$6.0749 \mathrm{e}+01$
$-5.4023 \mathrm{e}+01$	$1.5210 \mathrm{e}-01$	$-4.0681 \mathrm{e}+01$
$-1.0859 \mathrm{e}+02$	$-3.4980 \mathrm{e}+00$	$5.7669 \mathrm{e}+01$
$8.4624 \mathrm{e}+01$	$1.3686 \mathrm{e}+00$	$-2.9936 \mathrm{e}+01$
$4.1855 \mathrm{e}+01$	$-4.7148 \mathrm{e}+00$	$4.6924 \mathrm{e}+01$
$4.2403 \mathrm{e}+01$	$7.5960 \mathrm{e}-01$	$-2.6855 \mathrm{e}+01$
$-2.4340 \mathrm{e}-01$	$-4.1064 \mathrm{e}+00$	$4.9867 \mathrm{e}+01$
$1.8238 \mathrm{e}-01$	$1.5130 \mathrm{e}-01$	$-2.6787 \mathrm{e}+01$
$-4.2342 \mathrm{e}+01$	$-3.4981 \mathrm{e}+00$	$4.9798 \mathrm{e}+01$
$-4.4441 \mathrm{e}+01$	$-4.5623 \mathrm{e}-01$	$-2.9730 \mathrm{e}+01$
$6.0471 \mathrm{e}+01$	$-2.8897 \mathrm{e}+00$	$4.6719 \mathrm{e}+01$
$3.0296 \mathrm{e}+01$	$-4.1067 \mathrm{e}-01$	$-1.8983 \mathrm{e}+01$
$1.4457 \mathrm{e}+00$	$3.5974 \mathrm{e}+01$	$-1.5901 \mathrm{e}+01$

$-1.8118 \mathrm{e}-01$	$-3.4988 \mathrm{e}+00$	$3.8917 \mathrm{e}+01$
$1.2217 \mathrm{e}-01$	$-4.6533 \mathrm{e}-01$	$-1.5837 \mathrm{e}+01$
$-3.0235 \mathrm{e}+01$	$-2.8904 \mathrm{e}+00$	$3.8848 \mathrm{e}+01$
$-3.0052 \mathrm{e}+01$	$-1.0634 \mathrm{e}+00$	$-1.8785 \mathrm{e}+01$
$-6.0291 \mathrm{e}+01$	$-2.2815 \mathrm{e}+00$	$3.5768 \mathrm{e}+01$
$3.6304 \mathrm{e}+01$	$1.3911 \mathrm{e}-01$	$-8.0244 \mathrm{e}+00$
$1.7875 \mathrm{e}+01$	$-3.4996 \mathrm{e}+00$	$2.5025 \mathrm{e}+01$
$1.8179 \mathrm{e}+01$	$-4.6381 \mathrm{e}-01$	$-4.9058 \mathrm{e}+00$
$-1.0865 \mathrm{e}-01$	$-2.8959 \mathrm{e}+00$	$2.7971 \mathrm{e}+01$
$7.5071 \mathrm{e}-02$	$-1.0587 \mathrm{e}+00$	$-4.8791 \mathrm{e}+00$
$-1.8113 \mathrm{e}+01$	$-2.2889 \mathrm{e}+00$	$2.7900 \mathrm{e}+01$
$-1.8051 \mathrm{e}+01$	$-1.6614 \mathrm{e}+00$	$-7.9038 \mathrm{e}+00$
$-3.6161 \mathrm{e}+01$	$-1.6742 \mathrm{e}+00$	$2.4817 \mathrm{e}+01$
$1.2078 \mathrm{e}+01$	$-1.7451 \mathrm{e}+00$	$3.0195 \mathrm{e}+00$
$5.9122 \mathrm{e}+00$	$-2.9001 \mathrm{e}+00$	$1.4081 \mathrm{e}+01$
$6.0298 \mathrm{e}+00$	$-1.7237 \mathrm{e}+00$	$6.0050 \mathrm{e}+00$
$-7.1441 \mathrm{e}-02$	$-2.2888 \mathrm{e}+00$	$1.6990 \mathrm{e}+01$
$5.9889 \mathrm{e}-02$	$-9.7554 \mathrm{e}-01$	$6.0021 \mathrm{e}+00$
$-6.0300 \mathrm{e}+00$	$-1.6642 \mathrm{e}+00$	$1.6958 \mathrm{e}+01$
$-5.9616 \mathrm{e}+00$	$-9.895 \mathrm{e}-01$	$3.0042 \mathrm{e}+00$
$-1.2017 \mathrm{e}+01$	$-1.0580 \mathrm{e}+00$	$1.3940 \mathrm{e}+01$

e =
1.0268e-02
8.1590e-03
1.3137e-02
6.2613e-03
1.3016e-02
6.4484e-03
1.5302e-02
3.2585e-03
6.2711e-03
$1.0400 \mathrm{e}-02$
8.1474e-03
9.2370e-03
8.1153e-03
9.3210e-03
$9.7814 \mathrm{e}-03$
6.3693e-03
4.8997e-03
8.2860e-03
6.2832e-03
7.2454e-03
6.2813e-03
7.2292e-03
7.5861e-03
4.9375e-03
3.6814e-03
6.2708e-03
4.6739e-03
5.4983e-03
4.6647e-03
$5.4849 \mathrm{e}-03$
$5.6564 \mathrm{e}-03$
3.7171e-03
2.6369e-03
4.5332e-03
3.2973e-03
3.9937e-03
3.2894e-03

```
3.9830e-03
4.0134e-03
\(2.6681 e-03\)
\(1.7669 \mathrm{e}-03\)
3.0776e-03
2.1601e-03
\(2.7300 \mathrm{e}-03\)
2.1538e-03
2.7211e-03
2.6524e-03
1.7925e-03
1.0715e-03
\(1.9038 \mathrm{e}-03\)
\(1.2627 e-03\)
\(1.7063 e-03\)
1.2581e-03
1.6991e-03
\(1.5730 \mathrm{e}-03\)
1.0914e-03
5.5086e-04
\(1.0114 \mathrm{e}-03\)
6.0532e-04
\(9.2250 \mathrm{e}-04\)
6.0229e-04
9.1727e-04
7.7534e-04
5.6490e-04
2.0461e-04
4.0079e-04
1.8672e-04
3.7867e-04
1.8629e-04
3.7522e-04
2.6127e-04
2.1316e-04
5.3013e-06
8.1341e-05
1.0145e-05
\(7.4529 \mathrm{e}-05\)
\(1.1178 \mathrm{e}-05\)
6.4665e-05
2.8891e-05
\(2.7579 \mathrm{e}-05\)
```

err = 0.30338

Error estimate for different mesh sizes

| sizes | \mathbf{h} (char. elem. size $\left.=\sqrt{\bar{A}_{e}}\right)$ | w(I) | $\sigma_{x}(0)$ | $\\|e\\|$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4×10 | 0.05 | 0.541 | -230.7 | 0.303 |
| 6×20 | 0.029 | 0.961 | -422.7 | 0.265 |
| 8×25 | 0.022 | 1.074 | -476.1 | 0.20 |
| 10×30 | 0.018 | 1.1453 | -510.8 | 0.16 |
| 15×40 | 0.013 | 1.226 | -552.7 | 0.08 |

In [10]:

```
h=[0.05;0.029;0.022; 0.018; 0.013];
e=[0.303;0.256; 0.20; 0.16; 0.08];
w=[0.541; 0.961; 1.074; 1.145; 1.226];
s=[-230.7; -422.7; -476.1; -510.8; -552.7];
subplot(1,3,1)
plot (h,e)
subplot(1,3,2)
plot (h,w)
subplot(1,3,3)
plot (h,s)
```


In []:

In []:

References

- English course of "Numerical analysis of structures" by J. Zeman (jan.zeman@fsv.cvut.cz)
- Czech course of "Numerická analýza konstrukcí" (Numerical analysis of structures) by B. Patzák (borek.patzak@fsv.cvut.cz)
- J. Fish and T. Belytschko: A First Course in Finite Elements, John Wiley \& Sons, 2007

