A posteriori error estimate – ZZ method

FEM solution:

$$egin{array}{ll} u & {}^{ ext{FEM}} & (x) = N(x)r \ & \sigma & {}^{ ext{FEM}} & (x) = DB(x)r \end{array}$$

Where B is the matrix of derivatives of approximation functions. We assume that the exact stress state is close to this

$$\sigma^*(x) = N(x)r_{\sigma}$$

Coefficients r_{σ} sigma are determined so that the error of the difference of the approximated stresses σ^{FEM} And the augmented stresses sigma_star in the least square meaning must be as small as possible:

$$\int_{\Omega} \left(\sigma^* - \sigma^{ ext{FEM}}
ight)^T \left(\sigma^* - \sigma^{ ext{FEM}}
ight) \; d\Omega o min.$$

After some mathematical operations (see Lecture 11), we obtain:

$$\left(\int_{\Omega} N^T N \, d\Omega\right) r_{\sigma} = \left(\int_{\Omega} N^T \sigma^{\text{FEM}} d\Omega\right)$$

 $Ar_{\sigma} = b$

Example 1: Tensile bar

Let's assume:

 $f_x=1, l=3, EA=1$

Analytical solution:

Stress is determined from the equilibrium equation:

$$\sigma(x)=f_x(l-x)/A, ~~x\in(0,l)$$

The displacement is derived from the integration:

 $u(x) = \int_0^x \sigma(s)/Eds = ig[(f_x ls - f_x s^2/2)/(EA)ig]_0^x = -(f_x/EA)*(-x^2/2 - lx)$

FEM solution:

```
# number of elements
n = 5
l = 3/n;
E = 1;
A = 1;
# fem solution
ki = (E*A/l)*[1 -1; -1 1];
fi = [l^2/(2*l) l^2/(2*l)];
K = zeros (n+1);
F = zeros (n+1, 1);
for i=1:n
    loc = [i i+1];
    K(loc, loc) += ki;
    F(loc)+= fi';
endfor
u = K(2:n+1, 2:n+1) \setminus (F(2:n+1,1));
U = [0; u]
#plot analytical solution
hold on;
x = 0:0.1:3;
plot (x, -x.^2/2+3*x, "b;u;", x, -x+3, "r;N;")
sig = zeros(n,1);
#evaluate stress and plot obtained solution
for i=1:n
    eps = (U(i+1)-U(i))/l;
    sig(i) = E*eps;
    N = A*E*eps;
    plot ([(i-1)*l i*l], [U(i) U(i+1)], "b--")
    plot ([(i-1)*l i*l], [N N], "r--")
endfor
```

n	=	5	
U	=		

0.00000
1.62000
2.88000
3.78000
4.32000

4.50000

The smoothed stress: σ^*

$$egin{aligned} A^e &= \int_l egin{bmatrix} N_1 \ N_2 \end{bmatrix} [N_1 \quad N_2] \; dx = egin{bmatrix} l/3 & l/6 \ l/6 & l/3 \end{bmatrix} = egin{bmatrix} l/2 \ & l/2 \end{bmatrix} \ b^e &= \int N^T \sigma^e \; dx = egin{bmatrix} \sigma^e l/2 \ \sigma^e l/2 \end{bmatrix} \end{aligned}$$

Nodal values of the smoothed stress: $Ar_{\overline{\sigma}}b$ where the matrix *A* and vector *b* is assembled by the localization from A^e and b^e . In [4]:

```
# evaluate recovered stresses
Ai = [l/2, 0; 0, l/2];
bi = [l/2; l/2];
A = zeros(n+1);
B = zeros(n+1,1);
for i=1:n
    loc = [i i+1];
    A(loc, loc) += Ai;
    B(loc)+= sig(i)*bi;
endfor
sig2 = A \setminus B;
#plot analytical solution
hold on;
x = 0:0.1:3;
plot (x, -x+3, "r;Sigma;")
#plot recovered stresses
hold on;
for i=1:n
    plot ([(i-1)*l i*l], [sig(i) sig(i)], "r--")
    plot ([(i-1)*l i*l], [sig2(i) sig2(i+1)], "o--")
endfor
```


Error estimate:

$$egin{aligned} |e| &= \int_\Omega rac{1}{E(x)} \Big(\sigma^*_x(x) - \sigma^{ ext{FEM}}_x(x) \Big)^2 dx. \ |e| &= \sum_e \int_{l_e} rac{1}{E(x)} \Big(\sigma^*_x(x) - \sigma^{ ext{FEM}}_x(x) \Big)^2 dx. \end{aligned}$$

In [5]:

```
# numerical integration
w = [1.0; 1.0];
xi=[-1./sqrt(3); 1/sqrt(3)];
# error contributions from elements
e = zeros(n,1);
err = 0.0;
hold on;
for i=1:n
    for ip=1:2
        sig2xi = (1-xi(ip))/2*sig2(i)+(1+xi(ip))/2*sig2(i+1);
        dsig = sig2xi-sig(i);
        e(i) += (dsig^2/E)*w(ip)*l/2;
    endfor
    err = err+e(i);
endfor
е
err
for i=1:n
    plot ([(i-1)*l i*l], [e(i) e(i)], "o--")
endfor
```

e =

0.0180000.0180000.0180000.0180000.0180000.018000

err = 0.090000

Example 2: Plane stress problem – cantilever beam loaded by a force

Note: The FEM solution is not presented.

In [7]:

```
# mesh draw
hold on;
sig;
triplot(enodes,x,y,'k')
triplot(enodes,xnew,ynew,'r')
#for ie=1:nelem
# trimesh(enodes(ie,:),xnew(enodes(ie,:)),ynew(enodes(ie,:)),[sig(ie,1),sig(i
e,1),sig(ie,1)])
#endfor
```


Error estimate:

Nodal values of the smoothed stress:

$$egin{aligned} &A^e=\int_{A_e}N^TNdA=\int_{A_e}egin{bmatrix}N_1\N_2\N_3\end{bmatrix}iggin{aligned} &N_1\N_2\N_3\end{bmatrix}iggin{aligned} &N_1\N_2\N_3\end{bmatrix}iggin{aligned} &N_1\N_2\N_3\end{bmatrix}\sigma(x)dx\ &Ar_{\sigma^*}=b \end{aligned}$$

In [8]:

```
function [Ai, bi] = plane stress reco (xe,ye,sig)
          # numerical integration
           w = [0.26014666666; 0.26014666666; 0.26014666666; -0.28125];
           xi=[0.2, 0.2; 0.6, 0.2; 0.2, 0.6; 0.333333333, 0.33333333];
           Ae=(1/2)*((xe(2)*ye(3)-xe(3)*ye(2))-(xe(1)*ye(3)-xe(3)*ye(1))+(xe(1)*ye(2)-xe(3)*ye(3))+(xe(1)*ye(2)-xe(3)*ye(3))+(xe(1)*ye(3)+xe(3))+(xe(1)*ye(3)-xe(3))+(xe(1)*ye(3)-xe(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)*ye(3))+(xe(1)+xe(1))+(xe(1)+x
e(2)*ye(1))) ;
           AAi=zeros(3);
           Ai=zeros(3);
           bi=zeros(3,3); # right hand side for 3 components
           for ip = 1:4
                       Ni=[xi(ip,1), xi(ip,2), 1-xi(ip,1)-xi(ip,2)]; # bazove funkce
                       AAi = AAi + Ni'*Ni*w(ip)*2*Ae;
                       bi = bi+Ni'*sig*w(ip)*2*Ae;
           endfor
           for i=1:3
                       Ai(i,i)=sum(AAi(i,:));
           endfor
end
# evaluate recovered stresses
A = zeros(nnodes);
B = zeros(nnodes, 3);
for en=1:nelem
           xe = [x(enodes(en,:))];
           ye = [y(enodes(en,:))];
           [Ai,bi] = plane stress reco (xe,ye,sig(en,:));
           lm = [enodes(en,1), enodes(en,2), enodes(en,3)];# code numbers = node numbers
                                                 Ai;
           B(lm,[1,2,3])+= bi;
endfor
sig2 = A \setminus B
if (0)
           hold on;
           caxis ("auto")
           colorbar;
           for en=1:nelem
                       xe = [x(enodes(en,:)); x(enodes(en,1))];
                       ye = [y(enodes(en,:)); y(enodes(en,1))];
                       sig2e = [sig2(enodes(en,:),1); sig2(enodes(en,1),1)];
                       patch (xe, ye, sig2e);
           endfor
endif
```

1.7218e+02	8.3082e+00	9.6599e+00
7.6158e+01	5.3983e+00	4.4783e+01
-3.8137e+01	-2.5533e+00	4.4558e+01
-1.5283e+02	-1.0527e+01	4.4393e+01
-2.3074e+02	-2.3074e+01	1.1516e+02
1.7892e+02	6.4295e-01	-2.6171e+01
1.1051e+02	1.7933e+00	8.4175e+00
1.9143e+00	-2.5754e-01	9.2766e+00
-1 0632e+02	-2 4918e+00	7 90010+00
-1 8312e+02	-8 8015e+00	4 04930+01
1.5860 ± 02	3,55030-01	-2,250/0+01
	-1.68500+00	8 0161o+00
2 10210+01	-1.66230+00	0.01010+00 0.71070+00
2.10210+00	1,71280+00	9.71976+00
1 62860+02	2 02220+00	250910+01
-1.02000+02	15161001	1,90100+01
1.30/00+02	1.51010-01	-1.09190+01
0.03250+01	-1.0/390+00	8.1/11e+00
2.0146e+00	-1.69980+00	9.08900+00
-8.2309e+01	-1.6958e+00	8.19/4e+00
-1.4265e+02	-2./036e+00	3.2204e+01
1.1861e+02	-5.0/28e-02	-1.5266e+01
7.4282e+01	-1.6/30e+00	8.1861e+00
2.00/4e+00	-1.6/51e+00	9.6924e+00
-/.0266e+01	-1.6/54e+00	8.1866e+00
-1.2254e+02	-2.4861e+00	2.8535e+01
9.8515e+01	-2.5346e-01	-1.1616e+01
6.2236e+01	-1.6/30e+00	8.1864e+00
2.0075e+00	-1.6730e+00	9.6921e+00
-5.8221e+01	-1.6729e+00	8.1863e+00
-1.0245e+02	-2.2812e+00	2.4886e+01
7.8418e+01	-4.5632e-01	-7.9659e+00
5.0190e+01	-1.6731e+00	8.1863e+00
2.0076e+00	-1.6731e+00	9.6921e+00
-4.6175e+01	-1.6730e+00	8.1863e+00
-8.2352e+01	-2.0785e+00	2.1236e+01
5.8322e+01	-6.5940e-01	-4.3150e+00
3.8145e+01	-1.6746e+00	8.1871e+00
2.0080e+00	-1.6750e+00	9.6920e+00
-3.4129e+01	-1.6731e+00	8.1853e+00
-6.2257e+01	-1.8758e+00	1.7585e+01
3.8217e+01	-8.6687e-01	-6.6091e-01
2.6097e+01	-1.6769e+00	8.1966e+00
2.0150e+00	-1.6772e+00	9.6951e+00
-2.2082e+01	-1.6739e+00	8.1733e+00
-4.2168e+01	-1.6730e+00	1.3933e+01
1.8098e+01	-1.5020e+00	3.0253e+00
1.4038e+01	-1.7895e+00	8.1952e+00
2.0173e+00	-1.5587e+00	9.6894e+00
-1.0016e+01	-1.4535e+00	8.1699e+00
-2.2076e+01	-1.4645e+00	1.0284e+01
1.2078e+01	-1.7451e+00	3.0195e+00
8.0066e+00	-2.1230e+00	7.7018e+00
2.0061e+00	-1.6627e+00	9.6658e+00
-3.9772e+00	-1.2099e+00	8.6548e+00
-8.9892e+00	-1.0215e+00	8.4720e+00

Error estimate:

$$||e|| = \int \left(\sigma^*(x) - \sigma^{ ext{FEM}}(x)
ight)^T D^{-1}\left(\sigma^*(x) - \sigma^{ ext{FEM}}(x)
ight) d\Omega$$

In [9]:

```
# numerical integration
W = [0.260146666666; 0.260146666666; 0.2601466666666; -0.28125];
xi=[0.2, 0.2; 0.6, 0.2; 0.2, 0.6; 0.333333333, 0.33333333];
# error contributions from elements
e = zeros(nelem,1);
err = 0.0;
siq
for en=1:nelem
    sig2e = [sig2(enodes(en,1),:); sig2(enodes(en,2),:);sig2(enodes(en,3),:)];
    xe = [x(enodes(en,:))];
    ye = [y(enodes(en,:))];
    Ae = (1/2)*((xe(2)*ye(3)-xe(3)*ye(2))-(xe(1)*ye(3)-xe(3)*ye(1))+(xe(1)*ye(2)-xe(3)*ye(3)))
e(2)*ye(1))) ;
    [ke,dbe,de,be] = plane stress(xe,ye,E,nu) ; # de
    for ip=1:4
        xiip = [xi(ip,1), xi(ip,2), 1-xi(ip,1)-xi(ip,2)];
        sig2xi = xiip*sig2e; # stress at integration point
        dsig = sig2xi-sig(en,:); # diff. sigma - sigma_fem
        e(en) += (dsig)*inv(de)*dsig'*w(ip)*Ae*2;
    endfor
    err = err+e(en);
endfor
е
err
```

2.2973e+02	5.1542e+00	-9.4548e+01
1 14620+02	1 14620+01	1 1387 <u>e+0</u> 2
1 1205 - 102	4 7427	0.2020-01
1.1395e+02	4./42/e+00	-9.2630e+01
-9.8909e-02	-9.8909e-03	1.1311e+02
2 8302e-01	3 8094e+00	-9 2980e+01
1 14500100	1.1450×01	1 12540.02
-1.1459e+02	-1.1459e+01	1.1354e+02
-1.1315e+02	2.9511e+00	-9.5525e+01
-2.3074e+02	-2.3074e+01	1.1516e+02
2 05050102	4 20400100	0 16020101
2.05050+02	4.39490+00	-0.40050+01
1.0199e+02	-7.6203e+00	1.0072e+02
1.0312e+02	3.7080e+00	-8.1568e+01
3 11310 01	6 68680+00	1 0/670+02
-3.44346-01	-0.0000000000	1.04070+02
6.3556e-01	3.1122e+00	-8.1496e+01
-1.0294e+02	-6.5129e+00	1.0499e+02
-1 02030+02	2 5426e+00	-8 4465e+01
2.0540 - 102	2.34200100	1 0104-:02
-2.0548e+02	-0.28150+00	1.0184e+02
1.8120e+02	3.8000e+00	-7.3744e+01
8.9806e+01	-7.1298e+00	9.0646e+01
0 00270101	2 10220100	7 06620101
9.005/0+01	5.10550+00	-7.00050+01
-4.7322e-01	-6.6514e+00	9.3648e+01
4.4925e-01	2.5733e+00	-7.0585e+01
-0.07750 ± 01	-6 0780 <u>0</u> +00	0 36550+01
-9.07750+01	-0.02090+00	9.30336+01
-8.99/5e+01	1.9/11e+00	-/.3524e+01
-1.8107e+02	-5.3610e+00	9.0567e+01
15708e+02	3 19390+00	-6 2788e+01
7 7011-01	6 5201-00	7.077401
/./8110+01	-0.53910+00	/.9//4e+01
7.8723e+01	2.5852e+00	-5.9708e+01
-4.2705e-01	-5.9431e+00	8.2721e+01
2 64060 01	1 07700+00	5 06200101
3.04900-01	1.97700+00	-3.90396+01
-/.8663e+01	-5.3380e+00	8.2652e+01
-7.7993e+01	1.3690e+00	-6.2581e+01
-1 5690e+02	-4 72100+00	7 9568e+01
1 2202 02	-7.72100100	F 100C + 01
1.32930+02	2.38300+00	-5.1830e+01
6.5825e+01	-5.9316e+00	6.8826e+01
6.6616e+01	1.9773e+00	-4.8757e+01
3 65300 01	5 32360+00	7 1760 + 01
-3.03306-01	-3.32300+00	7.17090+01
3.0396e-01	1.3689e+00	-4.8688e+01
-6.6555e+01	-4.7150e+00	7.1700e+01
-6 6008e+01	7 6057e-01	-5 1631e+01
1 2274-+02	1 1062 - 00	6.0610-01
-1.32/40+02	-4.10620+00	0.80196+01
1.0878e+02	1.9772e+00	-4.0886e+01
5.3840e+01	-5.3232e+00	5.7875e+01
5.45000 ± 01	1 36880+00	3 78060+01
5.45090+01	1.30000+00	-3.70000+01
-3.0422e-01	-4./148e+00	6.0818e+01
2.4330e-01	7.6045e-01	-3.7738e+01
-5 11100+01	-4 10630+00	6 07/00+01
- 102201	-4.10050+00	0.07490+01
-5.4023e+01	1.5210e-01	-4.0681e+01
-1.0859e+02	-3.4980e+00	5.7669e+01
8 4624e+01	1 3686e+00	-2 9936e+01
4 10550101	4 71490100	4 60240101
4.10550+01	-4./1400+00	4.09240+01
4.2403e+01	7.5960e-01	-2.6855e+01
-2.4340e-01	-4.1064e+00	4.9867e+01
1 87380-01	1 51300-01	-2 67870+01
4. 2242 - 01	1.01000-01	4 0700 01
-4.2342e+01	-3.498IE+00	4.9/980+01
-4.2038e+01	-4.5623e-01	-2.9730e+01
-8.4441e+01	-2.8897e+00	4.6719e+01
6 0/710-01	7 50010 01	_1 80830+01
0.04/101	1 1002 00	-1.09026+01
2.98/le+01	-4.106/e+00	3.59/4e+01
3.0296e+01	1.4457e-01	-1.5901e+01

-1.8118e-01	-3.4988e+00	3.8917e+01
1.2217e-01	-4.6533e-01	-1.5837e+01
-3.0235e+01	-2.8904e+00	3.8848e+01
-3.0052e+01	-1.0634e+00	-1.8785e+01
-6.0291e+01	-2.2815e+00	3.5768e+01
3.6304e+01	1.3911e-01	-8.0244e+00
1.7875e+01	-3.4996e+00	2.5025e+01
1.8179e+01	-4.6381e-01	-4.9058e+00
-1.0865e-01	-2.8959e+00	2.7971e+01
7.5071e-02	-1.0587e+00	-4.8791e+00
-1.8113e+01	-2.2889e+00	2.7900e+01
-1.8051e+01	-1.6614e+00	-7.9038e+00
-3.6161e+01	-1.6742e+00	2.4817e+01
1.2078e+01	-1.7451e+00	3.0195e+00
5.9122e+00	-2.9001e+00	1.4081e+01
6.0298e+00	-1.7237e+00	6.0050e+00
-7.1441e-02	-2.2888e+00	1.6990e+01
5.9889e-02	-9.7554e-01	6.0021e+00
-6.0300e+00	-1.6692e+00	1.6958e+01
-5.9616e+00	-9.8495e-01	3.0042e+00
-1.2017e+01	-1.0580e+00	1.3940e+01

e =

1.0268e-02 8.1590e-03 1.3137e-02 6.2613e-03 1.3016e-02 6.4484e-03 1.5302e-02 3.2585e-03 6.2711e-03 1.0400e-02 8.1474e-03 9.2370e-03 8.1153e-03 9.3210e-03 9.7814e-03 6.3693e-03 4.8997e-03 8.2860e-03 6.2832e-03 7.2454e-03 6.2813e-03 7.2292e-03 7.5861e-03 4.9375e-03 3.6814e-03 6.2708e-03 4.6739e-03 5.4983e-03 4.6647e-03 5.4849e-03 5.6564e-03 3.7171e-03 2.6369e-03 4.5332e-03 3.2973e-03 3.9937e-03 3.2894e-03

3.9830e-03
4.0134e-03
2.6681e-03
1.7669e-03
3.0776e-03
2.1601e-03
2.7300e-03
2.1538e-03
2./211e-03
2.6524e-03
1./925e-03
1.0/15e-03
1.90380-03
1.2627e-03
1.70030-03
1.25810-03
1.09910-03
1.00140.03
5,50860-04
1 011/0 03
6.05320-0/
9 2250e-04
6.0229e-04
9.1727e-04
7.7534e-04
5.6490e-04
2.0461e-04
4.0079e-04
1.8672e-04
3.7867e-04
1.8629e-04
3.7522e-04
2.6127e-04
2.1316e-04
5.3013e-06
8.1341e-05
1.0145e-05
7.4529e-05
1.1178e-05
6.4665e-05
2.8891e-05
2./5/9e-05

err = 0.30338

Error estimate for different mesh sizes

sizes	h (char. elem. size = $\sqrt{A_e}$)	w(I)	$\sigma_x(0)$	e
4x10	0.05	0.541	-230.7	0.303
6x20	0.029	0.961	-422.7	0.265
8x25	0.022	1.074	-476.1	0.20
10x30	0.018	1.1453	-510.8	0.16
15x40	0.013	1.226	-552.7	0.08

In [10]:

```
h=[0.05;0.029;0.022; 0.018; 0.013];
e=[0.303;0.256; 0.20; 0.16; 0.08];
w=[0.541; 0.961; 1.074; 1.145; 1.226];
s=[-230.7; -422.7; -476.1; -510.8; -552.7];
subplot(1,3,1)
plot (h,e)
subplot(1,3,2)
plot (h,w)
subplot(1,3,3)
plot (h,s)
```


In []:

In []:

References

- English course of "Numerical analysis of structures" by J. Zeman (jan.zeman@fsv.cvut.cz)
- Czech course of "Numerická analýza konstrukcí" (Numerical analysis of structures) by B. Patzák (borek.patzak@fsv.cvut.cz)
- J. Fish and T. Belytschko: A First Course in Finite Elements, John Wiley & Sons, 2007