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Abstract

Mixed convection flow in a vertical circular duct subjected to a periodic sinusoidal temperature change at the wall is

investigated. The analysis is performed by considering fully-developed parallel flow and steady-periodic regime. The

local momentum and energy balance equations, together with the constraint equations which arise from the definition

of mean velocity and mean temperature, are written in a dimensionless form and mapped into equations in the complex

domain. One obtains two independent boundary value problems, which provide the mean value and the oscillating term

of the velocity and temperature distributions. These boundary value problems are solved analytically, and the velocity

and temperature distributions are obtained as functions of three parameters: the Prandtl number, Pr, the dimensionless
frequency X, the ratio between the Grashof number Gr and the Reynolds number Re. The Fanning friction factor and
the dimensionless heat flux are evaluated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Unsteady boundary conditions compatible with a

steady-periodic regime have been widely studied with

reference to forced convection flows [1–5]. On the con-

trary, the effects of buoyancy on steady-periodic flows

are not so widely investigated. The interest deserved to

this argument is mainly due to its technological appli-

cations, such as, for instance, the thermal control of

electric resistors in alternating current or the develop-

ment of heat-exchange enhancement techniques based

on flows with time-oscillating mass rates.

In Refs. [6–9], natural convection is studied numeri-

cally in a two-dimensional rectangular cavity with two

horizontal adiabatic walls, one vertical wall with uni-
* Corresponding author. Tel.: +39-051-6441703; fax: +39-

051-6441747.

E-mail addresses: antonio.barletta@unibo.it (A. Barletta),

eugenia.rossidischio@unibo.it (E. Rossi di Schio).

0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2004.02.004
form and constant temperature and the other vertical

wall subjected either to a uniform temperature distri-

bution which varies in time according to a sinusoidal law

[6,7], or to a uniform heat flux distribution which

undergoes a periodic square wave time-change [8,9]. In

Refs. [7–9], the existence of a resonance phenomenon is

predicted, namely the existence of a frequency of the

wall thermal oscillations which corresponds to a maxi-

mum of the heat flux amplitude throughout any vertical

surface in the cavity. Discrepant results have been found

in Refs. [6,7] about the influence of the oscillation fre-

quency on the time-averaged heat flux: this influence is

considered as negligible in Ref. [6], while in Ref. [7] it is

shown that, for wall temperature oscillations having a

sufficiently high amplitude, there exists a critical fre-

quency which corresponds to a maximum of the time-

averaged heat flux. In Ref. [10], free convection is

studied around a vertical plane subjected to a uniform

and time-periodic temperature distribution. In Ref. [11],

mixed convection in an inclined parallel-plate channel is

investigated, with thermal boundary conditions such
ed.
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Nomenclature

AðtÞ function of time, defined in Eq. (7)

A1, A2 integration constants

f Fanning friction factor, defined by Eq. (15)

f �
a , f

�
b dimensionless complex valued functions,

defined in Eq. (37)

F ðsÞ function defined in Eq. (32)

g magnitude of the gravitational acceleration

G1, G2, G3, G4 Functions defined in Eq. (34)
Gr Grashof number, defined in Eq. (10)

i imaginary unit

In modified Bessel function of first kind and

order n
Kn modified Bessel function of second kind and

order n
k thermal conductivity

n integer number

p pressure

P difference between the pressure and the

hydrostatic pressure

Pr Prandtl number, defined in Eq. (10)

q heat flux per unit area

R radial coordinate

R0 radius of the cylinder

r ¼ R=ð2R0Þ dimensionless radial coordinate
Re Reynolds number, defined in Eq. (10)

Re real part of a complex number

s complex number

t time

T temperature

T0 mean temperature in a duct section, defined

by Eq. (4)

T1 mean wall temperature

u ¼ U=U0, dimensionless velocity
u� dimensionless complex-valued function, de-

fined in Eq. (19)

u�a, u
�
b dimensionless complex-valued functions,

defined in Eq. (21)

U fluid velocity

U X -component of the fluid velocity
U0 mean fluid velocity in a duct section, defined

by Eq. (3)

W wronskian

X axial coordinate

Greek symbols

a thermal diffusivity

b volumetric coefficient of thermal expansion

DT amplitude of the wall temperature oscilla-

tions

k dimensionless parameter, defined in Eq. (10)

k� dimensionless complex-valued function, de-

fined in Eq. (19)

k�
a, k

�
b dimensionless complex-valued functions,

defined in Eq. (21)

g dimensionless parameter, defined in Eq. (10)

h dimensionless temperature, defined in Eq.

(10)

h� dimensionless complex-valued function, de-

fined in Eq. (19)

h�
a, h

�
b dimensionless complex-valued functions,

defined in Eq. (21)

l dynamic viscosity

m kinematic viscosity

U dimensionless heat flux, defined in Eq. (40)

U�
a, U

�
b dimensionless complex-valued functions,

defined in Eq. (41)

n dimensionless parameter, defined in Eq. (10)

. mass density

.0 mass density for T ¼ T0
�sw average wall shear stress, defined by Eq. (29)

x frequency of the wall temperature oscilla-

tions, defined in Eq. (1)

X dimensionless frequency, defined in Eq. (10)
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that one wall is kept at a constant temperature and the

other is subjected to a sinusoidal temperature oscilla-

tion. The authors show that, for any value of the Prandtl

number greater that 0.277, there exists a resonance fre-

quency of the friction factor evaluated at the wall with

an unsteady temperature. Moreover, for every plane

which lies between the midplane of the channel and the

wall subjected to the oscillating boundary condition, any

value of the Prandtl number corresponds to a resonance

frequency of the dimensionless heat flux.

The aim of the present paper is to investigate laminar

mixed convection in the steady-periodic regime for a

Newtonian fluid in a vertical circular duct. Reference is

made to the fully developed region, and the thermal
boundary condition is given by a uniform wall temper-

ature distribution which undergoes a sinusoidal time-

change. The study is performed with analytical methods.

In particular, the local momentum and energy balance

equations, together with the boundary conditions and

the constraint equations which arise from the definition

of mean velocity and mean temperature, are written in a

dimensionless form and mapped onto differential equa-

tions and constraint equations in the complex domain.

A pair of independent boundary value problems is ob-

tained, which provides both the mean value and the

oscillating part of the temperature and velocity distri-

butions. The pair of boundary value problems is solved

analytically and the dimensionless distributions are ob-
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tained as functions of three parameters: the Prandtl

number Pr, the dimensionless angular frequency X, the
ratio between the Grashof number Gr and the Reynolds
number Re.
2. Governing equations

Let us consider a Newtonian fluid which steadily

flows in a vertical duct with an infinite length and a

circular cross section. The thermal conductivity k, the
thermal diffusivity a and the dynamic viscosity l of the
fluid are treated as constants. Let X be the axial coor-

dinate, chosen parallel to the gravitational acceleration g

but with opposite direction. Let us assume that the flow

is laminar and parallel, so that only the X -component U
of the velocity vector U is nonzero. A parallel-velocity

regime always exists in the case of fully developed flow

inside a vertical duct, provided that the buoyancy forces

are not too intense. In other words, a parallel-velocity

regime for vertical mixed convection flows is stable for

sufficiently small values of the Grashof number. For

higher values of the Grashof number, multi-cell patterns

arise, so that even in the fully developed region no

parallel flow exists anymore.

The effect of viscous dissipation in the fluid is ne-

glected and the Boussinesq approximation is employed.

Since this approximation implies that the velocity field is

solenoidal, one has oU=oX ¼ 0, i.e. U ¼ UðR; tÞ. Let us
assume that the wall at R ¼ R0 is kept at an oscillating
temperature, namely

T ðX ;R0; tÞ ¼ T1 þ DT cosðxtÞ: ð1Þ

Moreover, since the thermal boundary condition (1)

does not yield any net fluid heating or cooling, heat

transfer occurs only in the radial direction, so that

oT
oX

¼ 0; ð2Þ

i.e. T ¼ T ðR; tÞ. The prescribed mass flow rate is as-

sumed to be stationary, so that the mean velocity in a

duct cross section, defined as

U0 ¼
2

R20

Z R0

0

dRUðR; tÞR ð3Þ

is time-independent. Moreover, with reference to the

Boussinesq approximation, let us choose the reference

temperature as the average value of the fluid tempera-

ture with respect both to a duct cross section and to a

period of time, namely

T0 ¼
x

pR20

Z 2p=x

0

dt
Z R0

0

dRT ðR; tÞR: ð4Þ

Obviously, since oT=oX ¼ 0, T0 is a constant. On ac-
count of the above assumptions, the X -component and
the R-component of the momentum balance equation

are

.0
oU
ot

¼ � oP
oX

þ .0gbðT � T0Þ þ lr2U ; ð5Þ

oP
oR

¼ 0; ð6Þ

where P ¼ p þ .0gb is the difference between the pres-
sure and the hydrostatic pressure. By differentiating

both sides of Eq. (5) with respect to X , one obtains
o2P=oX 2 ¼ 0. This result implies the existence of a
function AðtÞ such that
oP
oX

¼ �AðtÞ: ð7Þ

Then, Eq. (5) can be rewritten as

.0
oU
ot

¼ AðtÞ þ .0gbðT � T0Þ þ
l
R

o

oR
R
oU
oR

� �
: ð8Þ

The energy balance equation is given by

oT
ot

¼ a
R

o

oR
R
oT
oR

� �
: ð9Þ

Let us define the following dimensionless variables:

h ¼ T � T0
DT

; r ¼ R
2R0

; u ¼ U
U0

; g ¼ xt;

X ¼ 4R
2
0x
m

; k ¼ 4R
2
0AðtÞ

lU0
; Re ¼ 2R0U0

m
;

Gr ¼ 8gbDTR30
m2

; n ¼ T1 � T0
DT

; Pr ¼ m
a
:

ð10Þ

Eqs. (8) and (9) can be rewritten in the following

dimensionless form:

X
ou
og

¼ k þ Gr
Re

h þ 1
r
o

or
r
ou
or

� �
; ð11Þ

XPr
oh
og

¼ 1
r
o

or
r
oh
or

� �
: ð12Þ

The boundary conditions for the dimensionless velocity

distribution uðr; gÞ and for the dimensionless tempera-
ture distribution hðr; gÞ are as follows:

uð1=2; gÞ ¼ 0; hð1=2; gÞ ¼ n þ cos g: ð13Þ

Moreover, on account of Eqs. (3) and (4), one obtains

two constraint equations for the dimensionless velocity

and for the dimensionless temperature respectively,

namely

Z 1=2

0

dr uðr; gÞr ¼ 1
8
;

Z 2p

0

dg
Z 1=2

0

drhðr; gÞr ¼ 0: ð14Þ
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One can define the Fanning friction factor as

f ¼ 2�sw
.0U

2
0

¼ � 2

Re
ou
or

����
r¼1=2

: ð15Þ

By differentiating with respect to g both sides of the
integral constraint on uðr; gÞ expressed in Eq. (14), one
obtains

Z 1=2

0

dr
ouðr; gÞ

og
r ¼ 0: ð16Þ

If one multiplies both sides of Eq. (11) by r and inte-
grates with respect to r in the interval ½0; 1=2	, one is led
to the integral balance equation

ou
or

����
r¼1=2

þ k
4
þ 2Gr

Re

Z 1=2

0

drhðr; gÞr ¼ 0: ð17Þ

It can be easily shown that, as a consequence of Eq. (17),

the parameters f and k are related through the expres-
sion

fRe ¼ k
2
þ 4Gr

Re

Z 1=2

0

drhðr; gÞr: ð18Þ
3. Analytical solution: velocity and temperature distribu-

tions

In the steady periodic regime, one can solve analyti-

cally the momentum and energy balance equations (11),

(12), together with the boundary conditions (13) and the

constraints (14), by considering the functions uðr; gÞ,
hðr; gÞ and kðgÞ as the real parts of three complex valued
functions, namely:

uðr; gÞ ¼ Re½u�ðr; gÞ	;
hðr; gÞ ¼ Re½h�ðr; gÞ	;
kðgÞ ¼ Re½k�ðgÞ	:

ð19Þ

On account of Eqs. (11)–(14), the complex valued

functions u�ðr; gÞ, h�ðr; gÞ and k�ðgÞ must be the solution
of the following boundary value problem:

X
ou�

og
¼ k� þ Gr

Re
h� þ 1

r
o

or
r
ou�

or

� �
;

XPr
oh�

og
¼ 1

r
o

or
r
oh�

or

� �
;

u�ð1=2; gÞ ¼ 0; h�ð1=2; gÞ ¼ n þ eig;
Z 1=2

0

dr u�ðr; gÞr ¼ 1
8
;

Z 2p

0

dg
Z 1=2

0

drh�ðr; gÞr ¼ 0:

ð20Þ
Therefore, one has

u�ðr; gÞ ¼ u�aðrÞ þ
Gr
Re

u�bðrÞeig;

h�ðr; gÞ ¼ h�
aðrÞ þ h�

bðrÞeig;

k�ðgÞ ¼ k�
a þ

Gr
Re

k�
be
ig: ð21Þ

By substituting Eq. (21) into Eq. (20), one obtains two

independent boundary value problems. The first

boundary value problem is expressed as

1

r
d

dr
r
du�a
dr

� �
þ k�

a þ
Gr
Re

h�
a ¼ 0;

d

dr
r
dh�

a

dr

� �
¼ 0;

u�að1=2Þ ¼ 0; h�
að1=2Þ ¼ n;

Z 1=2

0

dr u�aðrÞr ¼
1

8
;

Z 1=2

0

drh�
aðrÞr ¼ 0; ð22Þ

while the second is given by

1

r
d

dr
r
du�b
dr

� �
þ k�

b þ h�
b ¼ iXu�b;

1

r
d

dr
r
dh�

b

dr

� �
¼ iXPrh�

b;

u�bð1=2Þ ¼ 0; h�
bð1=2Þ ¼ 1;Z 1=2

0

dr u�bðrÞr ¼ 0: ð23Þ

The boundary value problem (22) provides the average

values of the complex fields u� and h�, as well as the

average value of k�. On the contrary, the solution of the

boundary value problem (23) yields the oscillating

components of these quantities. Indeed, the values of k�
a,

k�
b and n can be determined by employing the constraint
equations. For instance, the constraint on h�

aðrÞ yields
n ¼ 0, i.e. T1 ¼ T0. The solution of Eq. (22) is

h�
aðrÞ ¼ 0; u�aðrÞ ¼ 2ð1� 4r2Þ; k�

a ¼ 32: ð24Þ

As expected, the velocity distribution u�aðrÞ is the well
known Poiseuille velocity profile. On the other hand, the

dimensionless temperature distribution h�
bðrÞ which

fulfils Eq. (23) is given by

h�
bðrÞ ¼

I0 r
ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �

I0
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
=2

� � : ð25Þ

By substituting Eq. (25) into Eq. (23), one obtains the

following boundary value problem

1

r
d

dr
r
du�b
dr

� �
� iXu�b þ k�

b þ
I0 r

ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �

I0
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
=2

� � ¼ 0;
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u�bð1=2Þ ¼ 0;
Z 1=2

0

dr u�bðrÞr ¼ 0: ð26Þ

The homogeneous equation associated with the bound-

ary value problem (26) is

d2u�b
dr2

þ 1
r
du�b
dr

� iXu�b ¼ 0: ð27Þ

A pair of linearly independent solutions of Eq. (27) is

I0ðr
ffiffiffiffiffi
iX

p
Þ and K0ðr

ffiffiffiffiffi
iX

p
Þ [12]. The Wronskian of these

solutions is given by

W ðrÞ ¼ I0 r
ffiffiffiffiffi
iX

p� � dK0 r
ffiffiffiffiffi
iX

p� �
dr

� K0 r
ffiffiffiffiffi
iX

p� � dI0 r
ffiffiffiffiffi
iX

p� �
dr

:

ð28Þ

On account of the identity [12]

K0ðsÞ
dI0ðsÞ
ds

� I0ðsÞ
dK0ðsÞ
ds

¼ 1
s
; ð29Þ

one obtains

W ðrÞ ¼ � 1
r
: ð30Þ

As a consequence of a theorem on linear differential

equations [13], the general solution of the inhomo-

geneous differential equation in the boundary value

problem (26) has the form

u�bðrÞ ¼ A1I0 r
ffiffiffiffiffi
iX

p� �
þ A2K0 r

ffiffiffiffiffi
iX

p� �

þ I0 r
ffiffiffiffiffi
iX

p� �Z r

0

dsK0 s
ffiffiffiffiffi
iX

p� �
sF ðsÞ

� K0 r
ffiffiffiffiffi
iX

p� � Z r

0

ds I0 s
ffiffiffiffiffi
iX

p� �
sF ðsÞ; ð31Þ

where A1 and A2 are two integration constants and the
function F ðsÞ is given by the inhomogeneous term of the
differential equation which appears in Eq. (26), namely

F ðsÞ ¼ �k�
b �

I0 s
ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �

I0
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
=2

� � : ð32Þ

The integration constant A2 must be zero, since the the
velocity distribution must be finite at r ¼ 0. On the
contrary, the integration constant A1 can be determined
on account of the boundary condition expressed in Eq.

(26). One can rewrite Eq. (31) as follows:

u�bðrÞ ¼ A1I0 r
ffiffiffiffiffi
iX

p� �
þ k�

b G3ðr;XÞ½ � G1ðr;XÞ	

þ G4ðr;X; PrÞ � G2ðr;X; PrÞ; ð33Þ

where the functions G1, G2, G3 and G4 are defined as:

G1ðr;XÞ ¼
I0 r

ffiffiffiffiffi
iX

p� �
iX

1
h

� r
ffiffiffiffiffi
iX

p
K1 r

ffiffiffiffiffi
iX

p� �i
;

G2ðr;X; PrÞ ¼
I0 r

ffiffiffiffiffi
iX

p� �

iXð1� PrÞI0
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
=2

� �

� 1
h

� r
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
� K0 r

ffiffiffiffiffi
iX

p� �
I1 r

ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �

� r
ffiffiffiffiffi
iX

p
K1 r

ffiffiffiffiffi
iX

p� �
I0 r

ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �i
;

G3ðr;XÞ ¼ rffiffiffiffiffi
iX

p K0 r
ffiffiffiffiffi
iX

p� �
I1 r

ffiffiffiffiffi
iX

p� �
;

G4ðr;X; PrÞ ¼
rK0 r

ffiffiffiffiffi
iX

p� �

iXð1� PrÞI0
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
=2

� �

�
ffiffiffiffiffi
iX

p
I1 r

ffiffiffiffiffi
iX

p� �
I0 r

ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �h

�
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
I0 r

ffiffiffiffiffi
iX

p� �
I1 r

ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �i
: ð34Þ

As a consequence of the boundary condition in Eq. (26),

the integration constant A1 is given by

A1 ¼ k�
b

G1ð1=2;XÞ � G3ð1=2;XÞ
I0

ffiffiffiffiffi
iX

p
=2

� �

þ G2ð1=2;X; PrÞ � G4ð1=2;X; PrÞ
I0

ffiffiffiffiffi
iX

p
=2

� � : ð35Þ

Moreover, the parameter k�
b can be evaluated by utiliz-

ing the constraint equation which appears in Eq. (26),

namely

k�
b ¼ � G3ð1=2;XÞG2ð1=2;X; PrÞ � G4ð1=2;X; PrÞ

I0
ffiffiffiffiffi
iX

p
=2

� �
K0

ffiffiffiffiffi
iX

p
=2

� �
2
4

�
Z 1=2

0

drG2ðr;X; PrÞr þ
Z 1=2

0

drG4ðr;X; PrÞr

3
5

� G3ð1=2;XÞG1ð1=2;XÞ � G3ð1=2;XÞ
I0

ffiffiffiffiffi
iX

p
=2

� �
K0

ffiffiffiffiffi
iX

p
=2

� �
2
4

�
Z 1=2

0

drG1ðr;XÞr þ
Z 1=2

0

drG3ðr;XÞr

3
5

�1

:

ð36Þ

On account of Eqs. (15), (19) and (21), also the Fanning

friction factor can be rewritten as follows:

fRe ¼ Reðf �
a Reþ f �

b Gre
igÞ; ð37Þ

where f �
a and f �

b are respectively given by

f �
a Re ¼ �2 du

�
a

dr

����
r¼1=2

¼ 16 ð38Þ
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and

f �
b Re ¼ �2 du

�
b

dr

����
r¼1=2

: ð39Þ

Finally, a dimensionless heat flux can be defined as

U ¼ 2R0q
kDT

¼ oh
or

¼ Re
oh�

or

� �
¼ ReðU�Þ: ð40Þ

As a consequence of Eqs. (21), (24) and (25), the com-

plex valued function U� ¼ oh�=or can be expressed as

U� ¼ U�
a þ U�

be
ig; ð41Þ

where U�
a ¼ 0 and

U�
b ¼

oh�
b

or
¼

ffiffiffiffiffiffiffiffiffiffi
iXPr

p
I1 r

ffiffiffiffiffiffiffiffiffiffi
iXPr

p� �

I0
ffiffiffiffiffiffiffiffiffiffi
iXPr

p
=2

� � : ð42Þ
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Fig. 3. Radial distribution of ju�bj for Pr ¼ 0:7 and for X ¼ 50
(a), X ¼ 100 (b) and X ¼ 200 (c).
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4. Discussion of the results

In this section, a survey of the solution obtained

above is performed by representing the radial distribu-

tions of the oscillation amplitudes of the dimensionless

temperature as well as of the dimensionless velocity, for

fixed values of the parameters Gr=Re, X, and Pr.
Moreover, the influence of the dimensionless parameters

X and Pr on the oscillation amplitudes of k and of fRe is
analyzed.

In Fig. 1, the dimensionless temperature distribution

jh�
bj is reported versus the dimensionless radius r, for
different values assumed by the product XPr. This figure
shows that jh�

bj is a monotonic increasing function of r
and that, for increasing values of XPr, the oscillations of
the dimensionless temperature tend to be confined in a

narrow region close to the duct wall.

Figs. 2–5 represent the radial distribution of ju�bj, for
fixed values of the parameter Pr and for different values
0
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( )b

( )c

(a)

(d)

Fig. 1. Radial distribution of jh�
bj for XPr ¼ 10 (a), XPr ¼ 30

(b), XPr ¼ 100 (c) and XPr ¼ 1000 (d).
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Fig. 4. Radial distribution of ju�bj for Pr ¼ 7 and for X ¼ 0:5
(a), X ¼ 1 (b) and X ¼ 2 (c).
assumed by the parameter X. In particular, Figs. 2 and 4
refer to Pr ¼ 7 while Figs. 3 and 5 refer to Pr ¼ 0:7.
These figures show that ju�bj has two local maxima, one
placed on the duct axis and the other close to the the

duct wall. Moreover, in Figs. 2–5 the presence of a local

minimum arises for r 
 0:3. This local minimum is more
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Fig. 5. Radial distribution of ju�bj for Pr ¼ 0:7 and for X ¼ 0:5
(a), X ¼ 1 (b) and X ¼ 2 (c).
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Fig. 6. Distribution of ju�bj versus X, for r ¼ 0 and Pr ¼ 0:7 (a),
Pr ¼ 7 (b) and Pr ¼ 100 (c).
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Fig. 7. Distribution of ju�bj versus X, for r ¼ 0:4 and Pr ¼ 0:7
(a), Pr ¼ 7 (b) and Pr ¼ 100 (c).
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evident in Figs. 4 and 5, which refer to lower values of

the dimensionless frequency X (X6 2).

Moreover, for any radial position there exists a

dimensionless resonance frequency such that the oscil-

lation amplitude of the dimensionless velocity distribu-

tion reaches a maximum. This resonance frequency is a

function of the radial position and of the Prandtl

number. The phenomenon is evident in Figs. 6 and 7,

where the dimensionless velocity distribution is reported

versus the dimensionless frequency, for fixed values of

the radial coordinate and of the parameter Pr. In Table
1, the values of the resonance frequency are reported for

different values of the parameter Pr and of the dimen-
sionless radial position. This Table shows that, for any

value of Pr, the resonance frequency is not a monotonic
function of r. In particular, the resonance frequency
reaches a relative maximum for r 
 0:3, which approx-
imately correspond to the radial position in which ju�bj
has a local minimum.

In Fig. 8, the oscillation amplitude of the dimen-

sionless pressure drop is reported versus the dimen-

sionless frequency X, for some values assumed by the
parameter Pr. This Figure shows that jk�

bj is a monotonic
decreasing function of X and that it decreases more

rapidly when the Prandtl number assumes higher values.
Table 1

Dimensionless resonance frequencies of u for different values of the p

r Pr ¼ 0:01 Pr ¼ 0:1 Pr ¼ 0:7
0 255.5 138.8 51.99

0.05 274.0 140.2 52.06

0.1 352.3 145.0 52.31

0.15 458.2 155.2 52.92

0.2 565.2 178.0 54.70

0.25 721.5 240.5 70.48

0.3 935.0 334.0 147.8

0.35 294.9 159.0 55.58

0.4 612.1 180.1 54.52

0.45 1226 214.2 55.73
In Fig. 9 the oscillation amplitude of the friction

factor is reported versus the dimensionless frequency X,
for different values assumed by Pr. This Fig. 9 shows
that, for any value assumed by the Prandtl number,

there exists a resonance frequency which maximizes the

oscillation amplitude of the friction factor. In Table 2,

those resonance frequencies are reported for 0:016
Pr6 1000. The table shows that the resonance frequency
is a monotonic decreasing function of the Prandtl

number.
arameter Pr

Pr ¼ 7 Pr ¼ 20 Pr ¼ 100
7.349 2.582 0.5160

7.372 2.592 0.5180

7.449 2.623 0.5246

7.609 2.687 0.5382

7.991 2.837 0.5695

10.72 3.851 0.7765

28.20 8.959 1.668

7.684 2.682 0.5343

7.949 2.820 0.5659

8.360 2.999 0.6047
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Fig. 9. Distribution of jf �
b Rej versus X, for Pr ¼ 0:7 (a), Pr ¼ 7

(b) and Pr ¼ 100 (c).

Table 2

Dimensionless resonance frequencies of fRe for different values
of Pr

Pr X Pr X

0.01 2462 5 12.20

0.02 1249 10 6.354

0.05 514.3 20 3.237

0.1 266.2 50 1.309

0.2 142.9 100 0.6565

0.5 72.99 200 0.3288

1 45.28 500 0.1316

2 26.87 1000 0.06584
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Fig. 10. Distribution of jU�
bj versus r, for XPr ¼ 10 (a), XPr ¼

30 (b) and XPr ¼ 100 (c).

Table 3

Values of the product XPr which correspond to resonances of U

r XPr r XPr

0 49.23 0.275 56.73

0.05 49.23 0.3 61.50

0.075 49.26 0.325 70.60

0.1 49.33 0.35 92.48

0.125 49.48 0.375 143.7

0.15 49.75 0.4 223.0

0.175 50.21 0.425 384.4

0.2 50.95 0.45 842.4

0.225 52.10 0.475 3282

0.25 53.89 0.495 80 400
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Fig. 8. Distribution of jk�
bj versus X, for Pr ¼ 0:01 (a), Pr ¼ 0:7

(b), Pr ¼ 7 (c) and Pr ¼ 100 (d).
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For any radial position, also the oscillation ampli-

tude of the dimensionless heat flux displays a maximum

in correspondence of a particular value of the product

XPr. These resonance values of XPr are reported in
Table 3. Finally, in Fig. 10 the oscillation amplitude of

the dimensionless heat flux is reported versus the

dimensionless radial coordinate for different values as-

sumed by the product XPr. The figure shows that jU�
bj is

a monotonic increasing function of r.
5. Conclusions

An analysis of the fully developed laminar mixed

convection of a Newtonian fluid in a vertical cylindrical

duct with circular cross section has been performed.

Reference has been made to the steady periodic regime,

by assuming as thermal boundary condition that the

wall temperature distribution is a sinusoidal function of

time. The velocity and temperature fields, as well as the

pressure drop, have been written in a dimensionless form

and expressed as real parts of complex valued functions.

Thus, two independent boundary value problems have

been obtained and solved analytically. The first one ac-

counts for the mean component of each physical quan-

tity, while the second one provides the oscillating

component. The dimensionless velocity and temperature

have been obtained as functions of three different

parameters: the dimensionless frequency X, the Prandtl
number Pr and the ratio between the Grashof number
and the Reynolds number Gr=Re. The oscillating com-
ponents of the velocity and temperature distributions

obtained by the second boundary value problem have

been reported versus the dimensionless radial coordi-

nate, for some values of X and Pr. Moreover, the
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oscillating component of the pressure drop has been

reported versus the dimensionless angular frequency X.
It has been also shown that there exists a resonance

frequency such that the velocity oscillations reach a

maximum. This resonance frequency depends on the

value assumed by Pr and on the radial position.
Finally, the Fanning friction factor and the dimen-

sionless heat flux have been expressed as the sum of a

mean component and an oscillating component and

evaluated analytically. It has been shown that there ex-

ists a resonance frequency which maximizes the ampli-

tude of the friction factor and that this frequency is a

monotonic decreasing function of Pr. Finally, it has been
shown that there also exists a resonance frequency for

the dimensionless heat flux, which is a function of the

dimensionless radial position and of the product XPr.
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