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1 Automatic Mesh Generation

1.1 Mesh Definition

Mesh M is a discrete representation of geometric model in terms of its
geometry G, topology T , and associated attributes A.

M = {G, T, A}

• geometry - nodal coordinates
• topology - element types, adjacency relationships
• attributes - color, loading, boundary conditions, ...
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1.2 Requirements on Mesh Generation

• generality (broad range of geometries and topologies)
• automation (minimum user intervention)
• validity (valid mesh)
• accuracy (accurate resolution)
• convergence (guaranteed convergence)
• quality (guaranteed quality)
• invariance (to model rigid body motions)
• flexible mesh density control (uniform, graded meshes)
• robustness (reliability)
• compactness (storage requirements)
• efficiency (computational speed)
• linear computational complexity

All these requirements can be hardly fulfilled at the same time and it is
necessary to compromise.
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1.3 Mesh Validity

• topological compatibility

◦ mesh is topologically compatible with model entity Ed

of dimension d

- if each mesh entity Md−1 classified to Ed is shared exactly by
two mesh entities Md classified to Ed

- if each mesh entity Md−1 classified to Ed−1
m forming m times

boundary of model entity Ed is shared exactly by m mesh entities
Md classified to Ed

◦ mesh is topologically compatible if it is compatible with all model
entities

◦ topological incompatibilities
- topological redundancy
- topological holes
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Topological compatibility (left), topological hole (middle), and topological re-

dundancy (right) on a curve mesh.

Topological compatibility (left), topological hole (middle), and topological re-

dundancy (right) on a surface mesh.
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• geometrical similarity

◦ topologically compatible mesh is geometrically similar to model
entity Ed (1 ≤ d ≤ 3) if for any two different mesh entities Md

i

and Md
j classified to Ed holds

Md
i ∩Md

j = ∅d if d = 3

Md
i ∩∗ Md

j = ∅d if d = 1 or d = 2

Mesh violating (left) and satisfying (right) geometrical similarity.
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1.4 Computational Complexity

• number of operations needed to generate N elements expressed in terms
of N and some appropriate constants

• corresponds to the time needed to generate N elements
• algorithm dependent
• average, worst

◦ O(1) - constant computational complexity (not achievable)
◦ O(N) - linear computational complexity (ideal)
◦ O(Nlog(N)) - logarithmic computational complexity (acceptable)
◦ O(N2) - quadratic computational complexity (unacceptable)
◦ · · ·
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1.5 Mesh Quality

Elementary quality criteria

• element shape based criteria

◦ inscribed circle/sphere radius to circumscribed circle/sphere radius
ratio (simplices only)

◦ area/volume2 to perimeter2/surface3 ratio
◦ min edge to max edge ratio (aspect ratio)
◦ dihedral angle criterion (min angle to max angle ratio)
◦ jacobian

• mesh topology based criteria

◦ nodal valence criterion

• mesh density based criteria

◦ deviation of real element spacing from desired one
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Overall mesh quality

• arithmetic mean
• harmonic mean
• worst quality
• quality distribution function

1.6 Mesh Classification

• dimension - 1D mesh, 2D mesh, 3D mesh
• element type - triangular, tetrahedral, quadrilateral, hexahedral,

quad-dominant, mixed, ... mesh
• element aspect ratio - isotropic, anisotropic mesh
• mesh density - uniform, graded mesh
• topology - structured, unstructured mesh
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1.7 Mesh Generation Method Classification

• manual and semi-automatic methods

◦ applicable to geometrically simple domains (usually 2D)
◦ enumerative methods (user supplied mesh entities)
◦ explicit methods (revolution, extrusion)

• mapping (parameterization) methods

◦ mapping from parameter space to the physical space
◦ explicit mapping - algebraic interpolation methods
◦ implicit mapping - PDE solution methods

• domain decomposition methods

◦ block decomposition methods (multiblock method)
◦ spatial decomposition methods (quadtree/octree method)
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• constructive methods

◦ applicable to arbitrary geometry and topology
◦ element creation - advancing front method
◦ point insertion - Delaunay method

2 Structured Mesh Generation

• implicit mesh topology
• applicable to topologically simple domains
• limited mesh density control
• typical for CFD

Methods

◦ algebraic methods
◦ PDE based methods
◦ multiblock methods
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3 Unstructured Mesh Generation

• explicit mesh topology
• applicable to domains of arbitrary geometrical and topological complexity
• flexible mesh density control
• typical for structural analysis

3.1 Triangular and Tetrahedral Mesh Generation

3.1.1 Quadtree/Octree Based Methods

Algorithm

1. tree construction
2. mesh generation
3. mesh optimization
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• quadtree/octree data structure

◦ hierarchic data structure
- vertical (top-down, bottom-up) traversal - O(Nlog(N))
- horizontal (neighbour at the same level) traversal - O(1)

◦ root cell (quadrant/octant) - bounding box (square/cube)

◦ boundary refinement by recursive subdivision to equal cells
(4/8 quadrants/octants) up to sufficient resolution
- desired cell size, desired cell level
- geometry representation (curvature, boundary features)

◦ global refinement by recursive subdivision using mesh density
control (background mesh, grid, sources)

◦ one-level difference rule enforcement (tree balancing)
- each two cells sharing at least an edge are at the same or

subsequent levels of hierarchic tree data structure
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One-level difference rule.
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◦ terminal cell classification
- interior / boundary / exterior
- in/out test (boundary orientation, ray intersection, modeller queries)
- classification propagation

◦ interior refinement by recursive subdivision (to minimum level)

◦ evaluation of intersection of domain boundary with boundary cells

Filtering of intersection points.
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◦ filtering of intersection points
- violation of topology not allowed
- modification of geometry permissible

(original geometry restored after mesh completion)
- reclassification of boundary cells

- association of cell corner with closest (boundary or intersection)
point (if close enough) - modification of cell shape

- merging two intersection points
- association of boundary point with closest intersection point

(if close enough) - modification of boundary geometry

◦ smoothing of corner nodes of interior cells
(repositioning of corners to barycenter of corners of all cells incident
to smoothed corner)

Typeset in LATEX by Daniel Rypl



3 UNSTRUCTURED MESH GENERATION 17

• mesh generation

◦ exterior cells - skipped
◦ interior cells - templates (predefined patterns of elements topologically

compatible with the cell)
- cell corner points - mesh nodes
- there is at maximum one midside point per octree edge

(consequence of one-level difference rule)

- 2D:
∑4

i=0

(
4
i

)
= 24 = 16 templates (6 basic templates)

- 3D:
∑12

i=0

(
12
i

)
= 212 = 4096 templates (78 basic templates)

Basic 2D templates.

Typeset in LATEX by Daniel Rypl



3 UNSTRUCTURED MESH GENERATION 18

◦ boundary cells - specific algorithm
- only interior parts of boundary cells subjected to triangulation

- discretization of relevant boundary of the cell
(must ensure compatibility with neighbouring cells)

- discretization of domain boundary within the cell
(must comply with model topology)

- discretization of interior of boundary cell (e.g. AFT)

• mesh optimization

◦ Laplacian smoothing of interior mesh nodes
- repositioning of nodes to barycenter of nodes of all elements

incident to smoothed node
- modifies mesh geometry
- preserves mesh topology
- iterative process (convergence after about 5 cycles)
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Features (• - advantages, ◦ - disadvantages)

• very fast
• very robust
• reasonable quality meshes

(slivers avoided, guaranteed quality for interior cells)
• guaranteed convergence (for sufficiently simple boundary cells)
• validity guaranteed by proper use of templates
• favourable computational complexity O(Nlog(N)) −→ O(N)
• boundary discretization is part of output
• good cache usage (for appropriate cell ordering)

◦ less flexible mesh density control (less suitable for adaptive analysis)

- limited cell sizing (power of 2)
- limited mesh density gradation

(consequence of one-level difference rule)
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◦ boundary layer of elements - worst quality
◦ not invariant with respect to rotations of the model
◦ cannot fully comply with given boundary triangulation
◦ hardly usable for anisotropic meshing

Alternatives and Extensions

• instead of templates using

◦ Delaunay based cell corners insertion
◦ element removal concept

• quadtree/octree data structure only used as control space
(mesh density control, spatial localization)

• generation of mixed meshes (there are no all-hexahedral templates)
• applicable to curved surface meshing (direct approach)
• extensible to generalized tree approach in parametric space
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3.1.2 Advancing Front Based Methods

Algorithm

1. front setup
2. mesh generation
3. mesh optimization

• front data structure

◦ oriented interface between the meshed part and not yet meshed part
of the domain

◦ initially formed by all boundary facets (segments/faces)

◦ evolves during mesh generation until becomes empty

◦ may be multiple connected (is not allowed to overlap itself)

◦ front management (facet selection, insertion, removal)
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• mesh generation (until the front is not empty)

1. facet selection: select facet f from the front
- geometrical criteria (length, area, angles)
- topological criteria (neighbour, minimize the front)

2. optimal point placement: find position of the optimal point
P opt to form together with the selected facet f a new
tentative element e

- 2D uniform mesh: equilateral triangle
- 3D uniform mesh: the most regular tetrahedron
- graded mesh: mesh density variation should be taken

into account

3. potential candidate selection: search for a point P in the mesh
to be used instead of P opt
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- spatial search
- shape - circle (2D), sphere (3D) with center at P opt

- size - related to mesh density at P opt

- points in the neighbourhood ordered with respect to the
increasing distance from P opt

P

f

opt

Optimal point placement.

1
2

3

Popt

f

Potential candidate selection.
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4. intersection check: check if the new element e is topologically valid;
if not, the point is rejected and the potential candidate selection is
repeated; if there is no more candidates, optimal point placement is
repeated with reduced element size
- spatial search
- shape - circle/rectangle (2D), sphere/parallelepiped (3D)
- size - large enough to be reliable, small enough to be efficient
- intersection check - tentative element against front
- enclosure check - tentative element against nodes

5. element forming: form the new element

6. front update: update the front
- remove existing facets used to form the new triangle from the front
- insert new facets used to form the new triangle to the front

Typeset in LATEX by Daniel Rypl



3 UNSTRUCTURED MESH GENERATION 25

Front propagation.
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• mesh optimization

◦ Laplacian smoothing of interior mesh nodes
- repositioning of nodes to barycenter of nodes of all elements

incident to smoothed node
- modifies mesh geometry
- preserves mesh topology
- iterative process (convergence after about 5 cycles)

◦ topological transformations (to remove slivers)
- diagonal edge swapping, generalized face swapping, node merging
- modify mesh topology
- preserve mesh geometry
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Computational Aspects

• front management

◦ hashing
• spatial search

◦ background grid
◦ background octree data structure

• intersection check

◦ bounding box intersection
◦ alternating digital tree
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Features (• - advantages, ◦ - disadvantages)

• high quality graded meshes
• high quality boundary layer of elements
• flexible mesh density control
• validity guaranteed (if meshing completed)
• complies with given boundary discretization
• favourable computational complexity O(Nlog(N)) −→ O(N)
• theoretically invariant with respect to rigid body motions
• extensible to anisotropic meshing
• good cache usage (for appropriate front processing)
• appropriate for adaptive analysis (local remeshing)

◦ rather low speed
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◦ convergence not guaranteed in 3D (requires node insertion to complete
mesh even in very simple 3D case - Schönhardt polyhedron)

◦ creation of slivers in mesh generation phase is not avoided
(slivers eliminated during mesh optimization)

◦ requires existence of boundary discretization

Alternatives and Extensions

• mesh density control by octree (lost of invariance) or background grid
• node acceptance driven by local Delaunay circle/sphere empty property
• extensible to curved surface meshing (direct approach)
• extensible to anisotropic meshing (using appropriate metric)
• extensible to boundary layer anisotropy (using offsetting)
• applicable to curve surface meshing (indirect approach)
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3.1.3 Delaunay Based Methods

Delaunay Triangulation

Triangulation of convex hull S of points P i, i = 1, 2, 3, . . . ,m in Rn, n ≥ 2
where for each simplex K holds Delaunay criterion

∀i : ‖ SP i ‖ ≥ ρ(K) S = {P ∈ Rn : ‖ SP j ‖= ρ(K) for P j ∈ K}

is called Delaunay triangulation Tm.

• if the equality in Delaunay criterion is fulfilled also for P not incident
to K then the Delaunay triangulation is degenerated

• empty circle property – Delaunay criterion in 2D
• empty sphere property – Delaunay criterion in 3D
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Voronoi Diagram

Set of cells Vi around m points P i, i = 1, 2, 3, . . . ,m in Rn, n ≥ 2
defined as

Vi = {P ∈ Rn | ∀i 6= j : ‖ PP i ‖ ≤ ‖ PP j ‖}

is called Voronoi Diagram.

Duality between Delaunay Triangulation and Voronoi Diagram

• corners of Voronoi cells are centers of discs (circles, spheres)
circumscribed to simplices in Delaunay triangulation

• faces of Voronoi cells correspond to faces of simplices
in Delaunay triangulation
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Duality between Voronoi diagram (left) and Delaunay triangulation (right) in 2D.
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Algorithm

1. initial Delaunay triangulation setup
2. mesh generation

• boundary node insertion
• recovery of domain boundary
• interior classification
• interior node insertion

3. mesh optimization

• initial Delaunay triangulation setup

– one or few simplices (completely surrounding the domain)
with a priori fulfilled Delaunay criterion

– can be degenerated

– 2D: typically 2 triangles of square bounding box
– 3D: typically 5 or 6 tetrahedrons of cubic bounding box
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Initial Delaunay triangulation.

• mesh generation

◦ incremental point insertion algorithm - Delaunay kernel
- Bowyer (Watson) algorithm

Ti+1 = Ti − CP + BP

P - (i + 1)th point from a convex hull S
Tj - Delaunay triangulation of first j points from a convex hull S
CP - cavity, set of elements K from Ti whose circumball contains P

BP - ball, set of new elements formed by boundary facets of CP and P
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P P

Bowyer algorithm.

- cavity CP is star-shaped
- boundary facets of CP are visible from P
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◦ insertion of boundary points
- all points of boundary discretization are incrementally insert

in the Delaunay triangulation using Bowyer algorithm
◦ recovery of domain boundary

- boundary Delaunay triangulation may be not boundary conforming
(domain boundary facets are not present in the triangulation)

- topological transformations (edge and face swapping)
not sufficient in 3D (Schönhardt polyhedron)
violate Delaunay property (unless applied to degenerated scheme)

−→ constrained Delaunay triangulation

- insertion of additional points on boundary (Steiner points)
◦ interior classification

- simplices of the constrained Delaunay triangulation are classified
either as interior or exterior with respect to the model topology

Typeset in LATEX by Daniel Rypl



3 UNSTRUCTURED MESH GENERATION 37

Recovery of boundary (left 3) and interior classification (right).

◦ insertion of interior points
- points along edges of interior simplices not complying with desired

mesh density or of poor shape
- barycenters of interior simplices not complying with desired mesh

density or of poor shape
- circumcenters of interior simplices not complying with desired mesh

density or of poor shape
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- points created on basis of AFT
(front is the interface between interior simplices complying
and not complying with desired mesh density and quality)

- points are inserted using modified Bowyer algorithms
(cavity CP cannot propagate over boundary facets)

• mesh optimization

◦ Laplacian smoothing of interior mesh nodes
- repositioning of nodes to barycenter of nodes of all elements

incident to smoothed node
- modifies mesh geometry
- preserves mesh topology
- iterative process (convergence after about 5 cycles)
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◦ topological transformations (to remove slivers)
- diagonal edge swapping, generalized face swapping, node merging
- modify mesh topology
- preserve mesh geometry

Computational Aspects

• Delaunay kernel - cavity construction

◦ spatial search
(adjacency search from simplex containing point being inserted)

◦ robustness of in-circle and in-sphere test
(rounding errors, ill-conditioned simplices, perturbation)

• boundary recovery

◦ topological issue (localization of missing facet)
◦ geometrical issue (localization of entities intersecting missing facet)
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Features (• - advantages, ◦ - disadvantages)

• strong mathematical background
• high quality graded meshes
• rather high speed
• flexible mesh density control
• convergence guaranteed
• validity of raw mesh through the meshing process
• favourable computational complexity O(N)
• extensible to anisotropic meshing

◦ validity not guaranteed (boundary recovery necessary)
◦ creation of slivers in mesh generation phase is not avoided

(slivers eliminated during mesh optimization)
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◦ not invariant with respect to rotations
◦ requires existence of boundary discretization
◦ does not comply with given boundary discretization

Alternatives and Extensions

• mesh density control by octree or background grid
• use of preplaced points (octree - high probability of degeneracy)
• extensible to anisotropic meshing (using appropriate metric)
• applicable to curved surface meshing (indirect approach)
• extensible to curved surface meshing (direct approach) with applying

Delaunay property in tangent plane at a given location
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3.2 Quadrilateral and Hexahedral Mesh Generation

3.2.1 Grid Based Methods

• quadtree-like (2D)

◦ 9-tree over domain interior
◦ all-quad templates

• octree-like (3D)

◦ 27-tree over domain interior
◦ all-hexa templates with one exception

• isomorphism technique (used to mesh boundary region between the
domain boundary and interior tree)

• poor quality elements along boundary
• limited mesh density flexibility
• cannot handle domains with internal faces

(multiple region and multiple material domains)
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3.2.2 Advancing Front Based Methods

Paving and Plastering

• whole layer of elements is constructed along the part of the front
at a time

• paving (2D)

◦ all-quadrilateral meshes of high quality
◦ even number of boundary segments must be maintained

in each closed part of the front
• plastering (3D)

◦ mixed meshes of good quality
◦ seams and wedges used to resolve a conforming mesh closure

in areas where layers would overlap or coincide with the boundary
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Triangle Merging

• extension of 2D advancing front technique

◦ merging two consequently generated triangles to form a quad
◦ modification of the optimal point placement
◦ preserving even number of segments in each closed part of the front

• high quality mesh

3.2.3 Topology Based Methods

Whisker Weaving

• spatial twisted continuum
• constructs a dual (topology based) representation of mesh

(from a boundary discretization)
• identifies chords - chains of elements neighbouring by a facet
• mesh geometry is derived from topology
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3.2.4 Postprocessing Based Methods

Simplex Splitting

• initial grid of half density
• triangles split into 3 quadrilaterals
• tetrahedrons split into 4 hexahedrons
• poor connectivity and quality (especially in 3D)

Triangle Merging

• initial triangular grid of half density
• merging neighbouring triangles forming well-shaped quadrilaterals
• one-level refinement

◦ triangles split into 3 quadrilaterals
◦ quadrilaterals split into 4 quadrilaterals

• high quality mesh
• unable to form single row mesh
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