# 1 Automatic Mesh Generation

## 1.1 Mesh Definition

Mesh M is a discrete representation of geometric model in terms of its geometry G, topology T, and associated attributes A.

 $M = \{G, T, A\}$ 

- geometry nodal coordinates
- topology element types, adjacency relationships
- $\bullet\,$  attributes color, loading, boundary conditions,  $\ldots\,$

## **1.2** Requirements on Mesh Generation

- generality (broad range of geometries and topologies)
- automation (minimum user intervention)
- validity (valid mesh)
- accuracy (accurate resolution)
- convergence (guaranteed convergence)
- quality (guaranteed quality)
- invariance (to model rigid body motions)
- flexible mesh density control (uniform, graded meshes)
- robustness (reliability)
- compactness (storage requirements)
- efficiency (computational speed)
- linear computational complexity

All these requirements can be hardly fulfilled at the same time and it is necessary to compromise.

# 1.3 Mesh Validity

- topological compatibility
  - $\circ\,$  mesh is topologically compatible with model entity  $E^d\,$  of dimension  $d\,$ 
    - if each mesh entity  $M^{d-1}$  classified to  $E^d$  is shared exactly by two mesh entities  $M^d$  classified to  $E^d$
    - if each mesh entity  $M^{d-1}$  classified to  $E_m^{d-1}$  forming m times boundary of model entity  $E^d$  is shared exactly by m mesh entities  $M^d$  classified to  $E^d$
  - mesh is topologically compatible if it is compatible with all model entities
  - $\circ\,$  topological incompatibilities
    - topological redundancy
    - topological holes



Topological compatibility (left), topological hole (middle), and topological redundancy (right) on a curve mesh.



Topological compatibility (left), topological hole (middle), and topological redundancy (right) on a surface mesh.

- AUTOMATIC MESH GENERATION 1
  - geometrical similarity
    - topologically compatible mesh is geometrically similar to model entity  $E^d$   $(1 \le d \le 3)$  if for any two different mesh entities  $M_i^d$ and  $M_i^d$  classified to  $E^d$  holds

$$M_i^d \cap M_j^d = \emptyset^d \quad \text{if } d = 3$$
$$M_i^d \cap^* M_j^d = \emptyset^d \quad \text{if } d = 1 \text{ or } d = 2$$

Mesh violating (left) and satisfying (right) geometrical similarity.

ົ

# **1.4 Computational Complexity**

- number of operations needed to generate N elements expressed in terms of N and some appropriate constants
- $\bullet\,$  corresponds to the time needed to generate N elements
- algorithm dependent
- average, worst

 $\circ O(1)$  - constant computational complexity (not achievable)

- $\circ~O(N)$  linear computational complexity (ideal)
- $\circ~O(Nlog(N))$  logarithmic computational complexity (acceptable)
- $\circ~O(N^2)$  quadratic computational complexity (unacceptable)
- o •••

## 1.5 Mesh Quality

Elementary quality criteria

- element shape based criteria
  - inscribed circle/sphere radius to circumscribed circle/sphere radius ratio (simplices only)
  - $\circ$  area/volume<sup>2</sup> to perimeter<sup>2</sup>/surface<sup>3</sup> ratio
  - $\circ\,$  min edge to max edge ratio (aspect ratio)
  - dihedral angle criterion (min angle to max angle ratio)
  - $\circ$ jacobian
- mesh topology based criteria
  - $\circ\,$  nodal valence criterion
- mesh density based criteria
  - $\circ\,$  deviation of real element spacing from desired one

Overall mesh quality

- arithmetic mean
- harmonic mean
- worst quality
- quality distribution function

# 1.6 Mesh Classification

- dimension 1D mesh, 2D mesh, 3D mesh
- element type triangular, tetrahedral, quadrilateral, hexahedral, quad-dominant, mixed, ... mesh
- element aspect ratio isotropic, anisotropic mesh
- mesh density uniform, graded mesh
- topology structured, unstructured mesh

## 1.7 Mesh Generation Method Classification

- manual and semi-automatic methods
  - applicable to geometrically simple domains (usually 2D)
  - $\circ\,$  enumerative methods (user supplied mesh entities)
  - $\circ$  explicit methods (revolution, extrusion)
- mapping (parameterization) methods
  - $\circ\,$  mapping from parameter space to the physical space
  - $\circ\,$  explicit mapping algebraic interpolation methods
  - $\circ\,$  implicit mapping PDE solution methods
- domain decomposition methods
  - $\circ$  block decomposition methods (multiblock method)
  - $\circ\,$  spatial decomposition methods (quadtree/octree method)  $\,$

- constructive methods
  - $\circ\,$  applicable to arbitrary geometry and topology
  - $\circ\,$  element creation advancing front method
  - $\circ\,$  point insertion Delaunay method

# 2 Structured Mesh Generation

- implicit mesh topology
- applicable to topologically simple domains
- limited mesh density control
- typical for CFD

## Methods

- $\circ\,$  algebraic methods
- $\circ\,$  PDE based methods
- $\circ$  multiblock methods

# **3** Unstructured Mesh Generation

- explicit mesh topology
- applicable to domains of arbitrary geometrical and topological complexity
- flexible mesh density control
- typical for structural analysis

# 3.1 Triangular and Tetrahedral Mesh Generation

3.1.1 Quadtree/Octree Based Methods

## Algorithm

- 1. tree construction
- 2. mesh generation
- 3. mesh optimization

- quadtree/octree data structure
  - $\circ\,$  hierarchic data structure
    - vertical (top-down, bottom-up) traversal O(Nlog(N))
    - horizontal (neighbour at the same level) traversal  ${\cal O}(1)$
  - $\circ\,$ root cell (quadrant/octant) bounding box (square/cube)
  - $\circ$  boundary refinement by recursive subdivision to equal cells (4/8 quadrants/octants) up to sufficient resolution
    - desired cell size, desired cell level
    - geometry representation (curvature, boundary features)
  - global refinement by recursive subdivision using mesh density control (background mesh, grid, sources)
  - one-level difference rule enforcement (tree balancing)
    - each two cells sharing at least an edge are at the same or subsequent levels of hierarchic tree data structure

#### 3 UNSTRUCTURED MESH GENERATION



Octree hierarchy.

Typeset in  $\square T_E X$  by Daniel Rypl

#### 3 UNSTRUCTURED MESH GENERATION



One-level difference rule.

- $\circ$  terminal cell classification
  - interior / boundary / exterior
  - in/out test (boundary orientation, ray intersection, modeller queries)
  - classification propagation
- interior refinement by recursive subdivision (to minimum level)
- $\circ~$  evaluation of intersection of domain boundary with boundary cells



Filtering of intersection points.

- filtering of intersection points
  - violation of topology not allowed
  - modification of geometry permissible (original geometry restored after mesh completion)
  - reclassification of boundary cells
  - association of cell corner with closest (boundary or intersection)
     point (if close enough) modification of cell shape
  - merging two intersection points
  - association of boundary point with closest intersection point (if close enough) - modification of boundary geometry
- smoothing of corner nodes of interior cells

   (repositioning of corners to barycenter of corners of all cells incident
   to smoothed corner)

- mesh generation
  - $\circ\,$  exterior cells skipped
  - interior cells templates (predefined patterns of elements topologically compatible with the cell)
    - cell corner points mesh nodes
    - there is at maximum one midside point per octree edge (consequence of one-level difference rule)
    - 2D:  $\sum_{i=0}^{4} {4 \choose i} = 2^4 = 16$  templates (6 basic templates)
    - 3D:  $\sum_{i=0}^{12} {12 \choose i} = 2^{12} = 4096$  templates (78 basic templates)



Basic 2D templates.

#### 3 UNSTRUCTURED MESH GENERATION

- $\circ\,$  boundary cells specific algorithm
  - only interior parts of boundary cells subjected to triangulation
  - discretization of relevant boundary of the cell (must ensure compatibility with neighbouring cells)
  - discretization of domain boundary within the cell (must comply with model topology)
  - discretization of interior of boundary cell (e.g. AFT)
- mesh optimization
  - $\circ\,$  Laplacian smoothing of interior mesh nodes
    - repositioning of nodes to barycenter of nodes of all elements incident to smoothed node
    - modifies mesh geometry
    - preserves mesh topology
    - iterative process (convergence after about 5 cycles)

#### **Features** (• - advantages, • - disadvantages)

- very fast
- very robust
- reasonable quality meshes
  - (slivers avoided, guaranteed quality for interior cells)
- guaranteed convergence (for sufficiently simple boundary cells)
- validity guaranteed by proper use of templates
- favourable computational complexity  $O(Nlog(N)) \longrightarrow O(N)$
- boundary discretization is part of output
- good cache usage (for appropriate cell ordering)
- $\circ\,$  less flexible mesh density control (less suitable for adaptive analysis)
  - limited cell sizing (power of 2)
  - limited mesh density gradation (consequence of one-level difference rule)

- boundary layer of elements worst quality
- $\circ\,$  not invariant with respect to rotations of the model
- $\circ\,$  cannot fully comply with given boundary triangulation
- $\circ\,$  hardly usable for anisotropic meshing

### **Alternatives and Extensions**

- instead of templates using
  - Delaunay based cell corners insertion
  - $\circ\,$  element removal concept
- quadtree/octree data structure only used as control space (mesh density control, spatial localization)
- generation of mixed meshes (there are no all-hexahedral templates)
- applicable to curved surface meshing (direct approach)
- extensible to generalized tree approach in parametric space

#### **3.1.2** Advancing Front Based Methods

### Algorithm

- 1. front setup
- 2. mesh generation
- 3. mesh optimization
- front data structure
  - oriented interface between the meshed part and not yet meshed part of the domain
  - initially formed by all boundary facets (segments/faces)
  - $\circ\,$  evolves during mesh generation until becomes empty
  - may be multiple connected (is not allowed to overlap itself)
  - front management (facet selection, insertion, removal)

- mesh generation (until the front is not empty)
  - 1. facet selection: select facet f from the front
    - geometrical criteria (length, area, angles)
    - topological criteria (neighbour, minimize the front)
  - 2. optimal point placement: find position of the optimal point  $P_{opt}$  to form together with the selected facet f a new tentative element e
    - 2D uniform mesh: equilateral triangle
    - 3D uniform mesh: the most regular tetrahedron
    - graded mesh: mesh density variation should be taken into account
  - 3. potential candidate selection: search for a point P in the mesh to be used instead of  $P_{opt}$

22

- spatial search
- shape circle (2D), sphere (3D) with center at  $\boldsymbol{P}_{opt}$
- size related to mesh density at  $oldsymbol{P}_{opt}$
- points in the neighbourhood ordered with respect to the increasing distance from  $\boldsymbol{P}_{opt}$



Optimal point placement.



Potential candidate selection.

#### 3 UNSTRUCTURED MESH GENERATION

- 4. intersection check: check if the new element *e* is topologically valid; if not, the point is rejected and the potential candidate selection is repeated; if there is no more candidates, optimal point placement is repeated with reduced element size
  - spatial search
  - shape circle/rectangle (2D), sphere/parallelepiped (3D)
  - size large enough to be reliable, small enough to be efficient
  - intersection check tentative element against front
  - enclosure check tentative element against nodes
- 5. element forming: form the new element
- 6. front update: update the front
  - remove existing facets used to form the new triangle from the front
  - insert new facets used to form the new triangle to the front

#### 3 UNSTRUCTURED MESH GENERATION



Front propagation.

- mesh optimization
  - $\circ~$  Laplacian smoothing of interior mesh nodes
    - repositioning of nodes to barycenter of nodes of all elements incident to smoothed node
    - modifies mesh geometry
    - preserves mesh topology
    - iterative process (convergence after about 5 cycles)
  - $\circ$  topological transformations (to remove slivers)
    - diagonal edge swapping, generalized face swapping, node merging
    - modify mesh topology
    - preserve mesh geometry

#### **Computational Aspects**

- front management
  - $\circ$  hashing
- spatial search
  - $\circ\,$  background grid
  - $\circ~$  background octree data structure
- intersection check
  - $\circ\,$  bounding box intersection
  - $\circ\,$  alternating digital tree

**Features** (• - advantages, • - disadvantages)

- high quality graded meshes
- high quality boundary layer of elements
- flexible mesh density control
- validity guaranteed (if meshing completed)
- complies with given boundary discretization
- favourable computational complexity  $O(Nlog(N)) \longrightarrow O(N)$
- theoretically invariant with respect to rigid body motions
- extensible to anisotropic meshing
- good cache usage (for appropriate front processing)
- appropriate for adaptive analysis (local remeshing)

 $\circ~$  rather low speed

- convergence not guaranteed in 3D (requires node insertion to complete mesh even in very simple 3D case - Schönhardt polyhedron)
- creation of slivers in mesh generation phase is not avoided (slivers eliminated during mesh optimization)
- $\circ\,$  requires existence of boundary discretization

### Alternatives and Extensions

- mesh density control by octree (lost of invariance) or background grid
- node acceptance driven by local Delaunay circle/sphere empty property
- extensible to curved surface meshing (direct approach)
- extensible to anisotropic meshing (using appropriate metric)
- extensible to boundary layer anisotropy (using offsetting)
- applicable to curve surface meshing (indirect approach)

#### 3.1.3 Delaunay Based Methods

### **Delaunay Triangulation**

Triangulation of convex hull S of points  $P_i$ , i = 1, 2, 3, ..., m in  $\mathbb{R}^n$ ,  $n \ge 2$ where for each simplex K holds Delaunay criterion

 $\forall i : \| \mathbf{SP}_i \| \ge \rho(K) \qquad \mathbf{S} = \{ \mathbf{P} \in \mathcal{R}^n : \| \mathbf{SP}_j \| = \rho(K) \text{ for } \mathbf{P}_j \in K \}$ 

is called Delaunay triangulation  $\mathcal{T}_m$ .

- if the equality in Delaunay criterion is fulfilled also for P not incident to K then the Delaunay triangulation is degenerated
- empty circle property Delaunay criterion in 2D
- empty sphere property Delaunay criterion in 3D

#### Voronoi Diagram

Set of cells  $V_i$  around m points  $P_i$ , i = 1, 2, 3, ..., m in  $\mathcal{R}^n$ ,  $n \ge 2$  defined as

$$V_i = \{ \boldsymbol{P} \in \mathcal{R}^n \mid \forall i \neq j : \parallel \boldsymbol{P} \boldsymbol{P}_i \parallel \leq \parallel \boldsymbol{P} \boldsymbol{P}_j \parallel \}$$

is called Voronoi Diagram.

#### Duality between Delaunay Triangulation and Voronoi Diagram

- corners of Voronoi cells are centers of discs (circles, spheres) circumscribed to simplices in Delaunay triangulation
- faces of Voronoi cells correspond to faces of simplices in Delaunay triangulation

#### 3 UNSTRUCTURED MESH GENERATION



Duality between Voronoi diagram (left) and Delaunay triangulation (right) in 2D.

## Algorithm

- 1. initial Delaunay triangulation setup
- 2. mesh generation
  - boundary node insertion
  - recovery of domain boundary
  - interior classification
  - interior node insertion
- 3. mesh optimization
- initial Delaunay triangulation setup
  - one or few simplices (completely surrounding the domain)
     with a priori fulfilled Delaunay criterion
  - can be degenerated
  - 2D: typically 2 triangles of square bounding box
  - 3D: typically 5 or 6 tetrahedrons of cubic bounding box



Initial Delaunay triangulation.

- mesh generation
  - incremental point insertion algorithm Delaunay kernel
    - Bowyer (Watson) algorithm

$$\mathcal{T}_{i+1} = \mathcal{T}_i - \mathcal{C}_{\boldsymbol{P}} + \mathcal{B}_{\boldsymbol{P}}$$

 $P - (i + 1)^{\text{th}}$  point from a convex hull S $\mathcal{T}_j$  - Delaunay triangulation of first j points from a convex hull S $\mathcal{C}_P$  - cavity, set of elements K from  $\mathcal{T}_i$  whose circumball contains P $\mathcal{B}_P$  - ball, set of new elements formed by boundary facets of  $\mathcal{C}_P$  and P $Typeset in \mathbb{E}T_F X$  by Daniel Rypl

#### 3 UNSTRUCTURED MESH GENERATION



Bowyer algorithm.

- cavity  $\mathcal{C}_{\boldsymbol{P}}$  is star-shaped
- boundary facets of  $\mathcal{C}_{I\!\!P}$  are visible from  $I\!\!P$

Typeset in  $\[MT_EX\]$  by Daniel Rypl

- $\circ\,$  insertion of boundary points
  - all points of boundary discretization are incrementally insert in the Delaunay triangulation using Bowyer algorithm
- $\circ\,$  recovery of domain boundary
  - boundary Delaunay triangulation may be not boundary conforming (domain boundary facets are not present in the triangulation)
  - topological transformations (edge and face swapping) not sufficient in 3D (Schönhardt polyhedron) violate Delaunay property (unless applied to degenerated scheme)

### $\longrightarrow$ constrained Delaunay triangulation

- insertion of additional points on boundary (Steiner points)
- $\circ$  interior classification
  - simplices of the constrained Delaunay triangulation are classified either as interior or exterior with respect to the model topology



Recovery of boundary (left 3) and interior classification (right).

- $\circ\,$  insertion of interior points
  - points along edges of interior simplices not complying with desired mesh density or of poor shape
  - barycenters of interior simplices not complying with desired mesh density or of poor shape
  - circumcenters of interior simplices not complying with desired mesh density or of poor shape

Typeset in  $\square T_E X$  by Daniel Rypl

- points created on basis of AFT (front is the interface between interior simplices complying and not complying with desired mesh density and quality)
- points are inserted using modified Bowyer algorithms (cavity  $C_{\mathbf{P}}$  cannot propagate over boundary facets)
- mesh optimization
  - Laplacian smoothing of interior mesh nodes
    - repositioning of nodes to barycenter of nodes of all elements incident to smoothed node
    - modifies mesh geometry
    - preserves mesh topology
    - iterative process (convergence after about 5 cycles)

Typeset in  $\square T_E X$  by Daniel Rypl

- $\circ\,$  topological transformations (to remove slivers)
  - diagonal edge swapping, generalized face swapping, node merging
  - modify mesh topology
  - preserve mesh geometry

## **Computational Aspects**

- Delaunay kernel cavity construction
  - $\circ$  spatial search
    - (adjacency search from simplex containing point being inserted)
  - $\circ\,$  robustness of in-circle and in-sphere test
    - (rounding errors, ill-conditioned simplices, perturbation)
- boundary recovery
  - topological issue (localization of missing facet)
  - $\circ$  geometrical issue (localization of entities intersecting missing facet)

**Features** ( $\bullet$  - advantages,  $\circ$  - disadvantages)

- strong mathematical background
- high quality graded meshes
- rather high speed
- flexible mesh density control
- convergence guaranteed
- validity of raw mesh through the meshing process
- favourable computational complexity O(N)
- extensible to anisotropic meshing
- validity not guaranteed (boundary recovery necessary)
- creation of slivers in mesh generation phase is not avoided (slivers eliminated during mesh optimization)

#### 3 UNSTRUCTURED MESH GENERATION

- $\circ$  not invariant with respect to rotations
- requires existence of boundary discretization
- $\circ\,$  does not comply with given boundary discretization

### **Alternatives and Extensions**

- mesh density control by octree or background grid
- use of preplaced points (octree high probability of degeneracy)
- extensible to anisotropic meshing (using appropriate metric)
- applicable to curved surface meshing (indirect approach)
- extensible to curved surface meshing (direct approach) with applying Delaunay property in tangent plane at a given location

# 3.2 Quadrilateral and Hexahedral Mesh Generation

### 3.2.1 Grid Based Methods

- quadtree-like (2D)
  - $\circ~$  9-tree over domain interior
  - $\circ\,$  all-quad templates
- octree-like (3D)
  - $\circ~27\text{-tree}$  over domain interior
  - $\circ\,$  all-hexa templates with one exception
- isomorphism technique (used to mesh boundary region between the domain boundary and interior tree)
- poor quality elements along boundary
- limited mesh density flexibility
- cannot handle domains with internal faces (multiple region and multiple material domains)

### **3.2.2** Advancing Front Based Methods

### **Paving and Plastering**

- whole layer of elements is constructed along the part of the front at a time
- paving (2D)
  - $\circ\,$  all-quadrilateral meshes of high quality
  - even number of boundary segments must be maintained in each closed part of the front
- plastering (3D)
  - $\circ\,$  mixed meshes of good quality
  - seams and wedges used to resolve a conforming mesh closure in areas where layers would overlap or coincide with the boundary

 $\textit{Typeset in } \verb" AT_{E\!X} \textit{ by Daniel Rypl}$ 

### Triangle Merging

- extension of 2D advancing front technique
  - $\circ\,$  merging two consequently generated triangles to form a quad
  - $\circ\,$  modification of the optimal point placement
  - $\circ\,$  preserving even number of segments in each closed part of the front
- high quality mesh

### 3.2.3 Topology Based Methods

### Whisker Weaving

- spatial twisted continuum
- constructs a dual (topology based) representation of mesh (from a boundary discretization)
- identifies chords chains of elements neighbouring by a facet
- mesh geometry is derived from topology

### **3.2.4** Postprocessing Based Methods

### Simplex Splitting

- initial grid of half density
- triangles split into 3 quadrilaterals
- tetrahedrons split into 4 hexahedrons
- poor connectivity and quality (especially in 3D)

## Triangle Merging

- initial triangular grid of half density
- merging neighbouring triangles forming well-shaped quadrilaterals
- one-level refinement
  - $\circ\,$  triangles split into 3 quadrilaterals
  - $\circ\,$  quadrilaterals split into 4 quadrilaterals
- high quality mesh
- unable to form single row mesh

# References

- T.J. Baker, Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation, Engineering with Computers 5 (1989), 161–175.
- T.D. Blacker, Paving: A new approach to automated quadrilateral mesh generation, International Journal for Numerical Methods in Engineering 32 (1991), 811-847.
- [3] J. Bonet and J. Peraire, An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problem, International Journal for Numerical Methods in Engineering **31** (1991), 1–17.
- [4] A. Bowyer, Computing Dirichlet tessellations, Computer Journal 24 (1981), 162–167.
- [5] P.J. Frey, H. Borouchaki, and P.L. George, *Delaunay tetrahedrization using an advancing-front approach*, Proceedings of 5th International Meshing Roundtable, Sandia National Laboratories, 1996.
- [6] H. Jin and R.I. Tanner, Generation of unstructured tetrahedral meshes by

#### REFERENCES

*advancing front technique*, International Journal for Numerical Methods in Engineering **36** (1993), 1805–1823.

- [7] B.P. Johnston, J.M. Sullivan, and A. Kwasnik, Automatic conversion of triangular finite element meshes to quadrilateral elements, International Journal for Numerical Methods in Engineering **31** (1991), 67–84.
- [8] C.K. Lee and S.H. Lo, A new scheme for the generation of graded quadrilateral meshes, Computers and Structures 52 (1994), 847–857.
- [9] S.H. Lo, A new mesh generation scheme for arbitrary planar domains, International Journal for Numerical Methods in Engineering 21 (1985), 1403– 1426.
- [10] R. Löhner and P. Parikh, Three dimensional grid generation by the advancing front technique, International Journal for Numerical Methods in Fluids 8 (1988), 1135–1149.
- [11] P. Möller and P. Hansbo, On advancing front mesh generation in three dimensions, International Journal for Numerical Methods in Engineering 38 (1995), 3551–3569.
- [12] M.A. Price, C.G. Armstrong, and M.A. Sabin, Hexahedral mesh generation

REFERENCES

by medial axis subdivisions: I. solids with convex edges, 1994, Submitted to International Journal for Numerical Methods in Engineering.

- [13] R. Schneiders, A grid-based algorithm for the generation of hexahedral element meshes, Engineering with Computers 12 (1996), 168–177.
- [14] R. Schneiders, R. Schindler, and F. Weiler, Octree-based generation of hexahedral element meshes, Proceedings of 5th International Meshing Roundtable, Sandia National Laboratories, 1996.
- [15] W.J. Schroeder and M.S. Shephard, A combined octree/Delaunay method for fully automatic 3-D mesh generation, International Journal for Numerical Methods in Engineering 29 (1990), 37–55.
- [16] M.S. Shephard and M.K. Georges, Automatic three-dimensional mesh generation by the finite octree technique, International Journal for Numerical Methods in Engineering 26 (1991), 709–749.
- [17] \_\_\_\_\_, Reliability of automatic 3-D mesh generation, Computer Methods in Applied Mechanics and Engineering 101 (1992), 443–462.
- [18] M.B. Stephenson, S. Canann, and T.D. Blacker, *Plastering: A new approach to automated 3D hexahedral mesh generation*, Tech. Report SAND 89-2192,

#### REFERENCES

Sandia National Laboratories, 1990.

- [19] T.J. Tautges, T.D. Blacker, and S. Mitchell, The whisker weaving algorithm: A connectivity-based method for constructing all-hexahedral finite element meshes, International Journal for Numerical Methods in Engineering 39 (1996), 3327–3349.
- [20] D.F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, The Computer Journal 24 (1981), 167–172.
- [21] N.P. Weatherill and O. Hassan, Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints, International Journal for Numerical Methods in Engineering 37 (1994), 2005– 2039.
- [22] J.Z. Zhu, O.C. Zienkiewicz, E. Hinton, and J. Wu, A new approach to the development of automatic quadrilateral mesh generation, International Journal for Numerical Methods in Engineering 32 (1991), 849–866.