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Chapter 1

INTRODUCTION

Modeling of hydrating concrete represents a challenging task especially

due to multiscale nature and missing mathematical formulation of several un-

derlying phenomena. This opens a way for soft computing techniques, namely

a cellular automata-based hydration model, non-traditional optimized Design

of Experiments for sensitivity analysis, evolutionary algorithms applied to

identification purposes, Kriging and Genetic Programming approximations

and, last but not least, Evolutionary Multi-objective Optimization methods.

The term soft computing [109] is widely used for all approaches that do not

solve the given problem directly, like e.g. an analytical search for a solution

of differential equations. Oppositely, the aim is to guess the optimal solution

as fast as possible yet precisely as possible. And any trick that helps to find

an appropriate solution in shorter time is welcomed. Particularly, Cellular

Automata (CA) [106] is a tool that was originally aimed at the simulation of

an artificial life. Later on, CA have been used for the optimization purposes

leading to the development of Genetic Algorithms (GAs) [32] and the whole

Evolutionary Algorithms (EAs) area [55] that tries to mimic processes in

nature to solve the given optimization tasks. Similar history is behind Krig-

ing [62], which is the method originally used to discover new mining areas for

gold, diamonds etc. Twenty years later, the nice mathematical properties of

Kriging have led to its usage within the approximation of computer experi-

ments [82]. Genetic Programming (GP) [48] can be seen as an enhancement

of GAs, however, from the philosophical point of view, the goal is to find a so-

lution in the form of tree structures. Therefore, GP application is very wide,

from programming of autonomous systems, through placing of transistors on

a computer chip up to a symbolic regression presented in this work.
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1.1 Aim and scope

The aim of this work is to show possible applications of soft computing

tools within one specific problem of a material design domain. Since the

main emphasis of the presented work is placed on soft computing methods,

the phenomenon of hydrating cement is only sketched in the next section.

The objectives are concentrated at an approximation and optimization of hy-

dration heat by above mentioned techniques, taking into account chemical

and physical cement composition and boundary conditions. The works starts

with the Design of Experiments (DoE) for sampling-based sensitivity analy-

sis to investigate the influence of individual components and processes during

concrete hydration, as is presented in Chapter 2. The identification of im-

portant models’ parameters from obtained experimental data is briefly sum-

marized in Chapter 3. Then, the combination of approximation techniques,

so-called Kriging metamodel combined with the Genetic Programming (GP)

algorithm presented in Chapters 4 and 5, aims at prediction of hydration heat

solely from experimental data sets. The Kriging method gives good prediction

when monotonicity evolution of hydration heat is assumed. Finally, Chap-

ter 6 presents the multi-objective optimization of maximal Young’s modulus

and minimum of hydration heat.

1.2 Simulation of cement performance1

Concrete is one of the most durable, reliable and cheap construction ma-

terials. Cement represents an essential component and cement paste governs

a majority of concrete properties such as elasticity, strength, creep, freeze-

thaw resistance, permeability, or durability. All components for concrete

production are readily available throughout the world and cement kilns with

concrete mix facilities are located virtually everywhere.

While the production of cement in the kilns is controlled under nearly

laboratory conditions, concrete casting and curing on site suffers from vary-

1Reproduced from: Z. Bittnar, M. Lepš, and V. Šmilauer. Soft Computing in Civil
and Structural Engineering, chapter Soft computing in concrete mix optimization, pages
227–246. Stirling: Saxe-Coburg Publications, 2009.
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ing boundary conditions including a human factor. As a consequence, higher

uncertainty is needed to cover possible variations and this is reflected in de-

sign codes by a higher material safety factor, e.g. 1.5 while 1.05 for steel2.

Moreover, elementary rules have to be fulfilled for durable concrete as has

been summarized in many guidelines and books [74, 73]. Although such rules

summarize hundred-year experience, they are neither exhaustive nor complete

and leave an open way for further refined analysis.

The first penetration of computers into concrete engineering came in the

field of structural analysis and reinforcement design. The solution of equa-

tions coming from physical description proved to be very efficient. The op-

posite is true on the material side, where the complex and multiscale con-

crete nature is captured only partially in the mathematical framework. It

is worth mentioning that computational micromechanics paved the design of

engineered cementitious composites.

Soft computing techniques bring another alternative to tackle a descrip-

tion of complex systems such as hardening concrete. Missing physical and

mathematical description is replaced here by cellular automata providing a ro-

bust framework which was previously used in the simulation of panic escape

during fire [30]. Here, the automata will describe ongoing chemical reaction

during concrete hydration and the formation of cement microstructure.

1.2.1 Cement hydration model CEMHYD3D and its inputs

The simulation at the scale of cement paste will be carried out by hydra-

tion model called CEMHYD3D, developed at NIST [6], see Fig. 1.1. The idea

is to split the representative microstructure into voxels usually with an edge

of 1 µm. The 3D microstructure, typically in the size of 50 × 50 × 50 µm,

consists of chemical phases that are implemented as an ID assignment to

each voxel. Cellular automata rules define how voxels dissolve, move and

what happens on their collision thus representing ongoing chemical reaction

and placement of hydration products in the microstructure.

The model can capture directly the chemical composition of cement (C3S,

2Eurocode 2: Design of concrete structures, ČSN EN 1992-1-1
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Figure 1.1: A flowchart of hydration model with consecutive outputs

C2S, C3A, C4AF, gypsum), distribution of cement particle sizes, hydrating

temperature and saturated/sealed conditions, see [100] for more details. The

optimization in Chapter 6 will therefore focus on changing these inputs.

Within this work, standard CEMHYD’s input values were used and the

model capabilities were extended with the prediction of C-S-HLD and C-S-HHD

to include additional mechanical stiffening at confined capillary space [101].

Cycle-time mapping parameter β = 0.0003 was used throughout for the map-

ping of CEMHYD3D cycles to a real hydration time. Microstructure size of

50 × 50 × 50 µm was assumed to be representative up to approximately 28

hydration days. The drawback of using such a small size is a limited maxi-

mum grain diameter to 31 µm. The consequence is a slight overestimation of

hydration degree at later stages especially in coarse cements. All simulations

took place at isothermal 20 ◦C.

The selection of input parameters is chosen in such a way that CEMHYD3D

is able to take them realistically into account in the simulations. Their ranges

correspond approximately to contemporary limiting values of Portland ce-

ments used in civil engineering, see Tab. 1.1.

The particle size distribution (PSD) is expressed by the value of Blaine

fineness [m2/kg]. Rosin-Rammler cumulative function is fitted to PSD data [29]

with x [µm ] being the particle diameter
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Parameter Minimum Maximum
Fineness [m2/kg] 200 600
Gypsum content [vol. of cement] 0 0.1
Autocorrelation file designation 0 9
C3S [cement mass fraction] 0.4 0.8
C2S [cement mass fraction] 0 0.35
C3A [cement mass fraction] 0 0.15
C4AF [cement mass fraction] 0 0.15
w/c 0.2 0.6
Curing condition regime 0-saturated 1-sealed

Table 1.1: Input parameters with limits used in virtual tests

G(x) = 1− exp(−bxn) (1.1)

n = −0.00083333 · fineness + 1.1175 (1.2)

b = 0.000754 · fineness− 0.143 (1.3)

Before the simulation of hydration, spherical cement grains have to be

thrown into the computational volume. Since Portland cement is composed

basically from four clinker minerals, each grain has to be consequently di-

vided into silicates, aluminates and later to individual clinker minerals, rely-

ing on a triplet of autocorrelation functions [29]. Ten triplets obtained from

CCRL cements were taken from the NIST cement database to explore their

effect [29].

Saturated or sealed curing conditions result in a different morphology

of cement paste. While the saturation ensures enough water to percolated

capillary space, sealed conditions slow down the hydration process due to

the lack of water, implemented as emptying of larger capillary pores with an

influence on reactions.

1.2.2 Affinity hydration model

Since the CEMHYD3D model is computationally demanding, sometimes

a utilization of a much simpler model is on demand. An affinity model is such
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a tool that provides a simple framework describing all stages of cement hy-

dration. The rate of hydration can be expressed by temperature-independent

normalized chemical affinity Ã(α)

dα

dt
= Ã(α) exp

(
− Ea

RT

)
, (1.4)

where T is an arbitrary constant temperature of hydration, R is the universal

gas constant (8.314 Jmol−1K−1) and Ea is the apparent activation energy.

The affinity can be obtained experimentally easily from calorimetry. Iso-

thermal calorimetry measures a heat flow q(t) from a sample and quantifies,

after an integration, the hydration heat Q(t). Recognizing Q(t)/Qpot as a de-

gree of hydration DoH leads to an approximation which has been slightly

modified in [100]

Ã(α) = B1

(
B2

α∞
+ α

)
(α∞ − α) exp

(
−η̄ α

α∞

)
(1.5)

where B1, B2 are coefficients to be calibrated, α∞ is an ultimate hydration de-

gree and η̄ represents a microdiffusion of free water through formed hydrates.

The parameters for a general type of cement were set to B1 = 1.0 · 107 1/h,

B2 = 2.0 · 10−4, α∞ = 0.9 and η̄ = 7.6. Since these constants are used for

all possible cement pastes, a general curve of DoH development has been ob-

tained by numerical integration of Equation 1.5 with one hour step. A poten-

tial hydration heat Qpot can be obtained from the portland cements’ mineral

Designation C3S C2S C3A C4AF Gyp. w/c Fin.
Mass Mass Mass Mass Vol

% % % % % - m2/kg
Aalborg white 0.666 0.238 0.034 0.004 0.036 0.400 390
Princigallo 0.554 0.184 0.082 0.091 0.051 0.375 530
BAM Fontana 0.492 0.243 0.090 0.076 0.0652 0.300 380
Hua 0.688 0.075 0.081 0.092 0.04 0.420 400
Robeyst 0.634 0.084 0.074 0.100 0.05 0.500 390
Smolik Litos 0.612 0.126 0.070 0.100 0.05 0.500 306
Tamtsia early 0.465 0.246 0.104 0.083 0.05 0.500 340

Table 1.2: Cement properties of considered data sets
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Designation Hydration heat
(time in h, heat in J/g of cement)

Aalborg white 24 48 168 [h]
170.3 234 327 [J/g]

Princigallo 9.42 80.24 400.00 [h]
63.388 323.247 377.466 [J/g]

BAM Fontana 10.01 144.03 310.69 [h]
159.2624 295.6692 322.3247 [J/g]

Hua 24.00 168.00 600.00 [h]
233.4 317.25 339.8 [J/g]

Robeyst 14.66 45.79 140.99 [h]
94.07 238.623 348.757 [J/g]

Smolik Litos 10.01 19.19 261.78 [h]
59.9159 329.2083 466.1589 [J/g]

Tamtsia early 18.00 24.00 102.00 [h]
279.4076 307.3484 447.0522 [J/g]

Table 1.3: Experimental results of hydration heat scaled to a reference tem-
perature 20 ◦C

composition

Qpot [J] = 517mC3S + 262mC2S + 1144mC3A + 725mC4AF (1.6)

with the masses in grams.

Although the value of potential heat is uniquely given by the amount of

clinker minerals, see Equation 1.6, it cannot be directly used with the equation

of the DoH development (1.5) because of unknown B1, B2 coefficients for

particular cement paste3. In a detail, the general expression of hydration

heat Q(·) reads

Q(C,B, t) = Qpot(C) ·DoH(B, t), (1.7)

where C = {C3S, C2S, C3A, C4AF} stands for the amount of clinker min-

erals, B = {B1, B2, α∞, η̄} are affinity model parameters and t is time. Note

that Qpot is independent on time. As a general solution, Chapter 5 shows

3B1, B2 coefficients are somehow dependent on all input parameters, however, these
relationships are unknown and the search for them exceeds the scope of this work.
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an attempt to find an analytical expression of hydration heat Q dependent

directly on all input parameters that concurrently best fits the given data.

1.3 Experimental data

Particular applications will be shown on experimental data see Tab. 1.2

and Tab. 1.3, obtained from seven sources, consecutively from the top: data

measured at CTU by TAMAir isothermal calorimeter, from [78], data from

private communication and determined from evaporable water content and

assumed potential hydration heat 480 J/g, from [40], [80], data measured

at CTU by TAMAir isothermal calorimeter and finally, from [94] assuming

potential heat 500 J/g. In Tab. 1.2 cement chemical composition, gypsum

content, a water to cement ration w/c and fineness are presented. Measure-

ments of hydration heat at three different times recalculated for the same

reference temperature of 20 ◦C are shown in Tab. 1.3. For more points in

data sets, see Fig. 3.2 in Chapter 3.



Chapter 2

DESIGN AND ANALYSIS OF MIXTURE
EXPERIMENTS

2.1 Introduction

Space-Filling Design Strategies1 known as a Design of Experiments (DoE)

constitute an essential part of any experimentation. The DoEs’ area is very

wide covering a broad range of domains from real experiments through com-

puter simulations to sampling for uncertainty analysis. An interested reader

is referred to the fundamental book [65] for DoEs with real experiments, and

works [82] and [27] for introduction on computer experiments.

This chapter is aimed at one particular domain of DoEs. We are in-

terested in a composition of cement which is the most frequent example of

constrained design spaces called a mixture experiment, where individual in-

puts (variables, factors, components) form a unity volume or unity weight [65,

Chapter 11-5]. This only condition leads to the simplex space; further limits

of individual inputs then form a polytope, still convex but generally irregular

space. Therefore, all traditional DoEs [65] that are constructed for hypercube

spaces cannot be applied here.

Although the problem of mixture experiments is known for decades, the

progress of methods for DoEs does not follow current development within

the area of computer experiments [27]. The main difference between classical

and modern DoEs is the number of samples where, for the latter, the hun-

dreds of samples is a usual scenario. Then, the classical approaches based on

fixed small-sample templates [17, 18] cannot be used. Up-to-date, the authors

have found only few references on DoEs in constrained design spaces. Ref-

1Since we are interested in traditional way of doing experiments, whether they are real
or simulated ones, space-filling properties are investigated hereafter. An interested reader
is therefore referred to nice works [31] and [44] for references on other criteria for optimized
DoEs like discrepancy and correlation coefficients.
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x1
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x1 + x2 = 1
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1

(a)

0

1

1

1

x1 + x2 + x3 = 1

(b)

x1

x2

x3

Figure 2.1: Mixture experiments spaces for (a) two and (b) three factors

erence [76] applies traditional Latin Hypercube (LH) designs to a bounding

box followed by a Genetic Algorithm (GA) to fulfil original constraints. Here,

the LH methodology is merely used for minimization of the searched space

than for nice properties of LH designs. Another approach is presented in [38],

where interesting points are found by a GA and then, the final solution is

located by sequential linear programming. The solution is in this case gen-

eral; however, the computational demands are enormous. Therefore, in this

chapter a totally different approach based on Delaunay triangulation (DT) of

an admissible domain is presented.

2.2 Designs of mixture experiments

In contrast to the classical Design of Experiments, the mixture experiment

is characterized by dependent variables forming a unity mass or volume. More

specifically, if there are p components of a mixture, then

0 ≤ xi ≤ 1 i = 1, 2, . . . , p (2.1)

and

x1 + x2 + · · ·+ xp = 1 (i.e. 100 percent). (2.2)
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0.2

0.4

0.6

0.8

0.2

0.4
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0.2
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x1 x2

x3

(1,0,0) (0,1,0)

(0,0,1)

(1/3,1/3,1/3)

(1/2,1/2,0)

(0,1/2,1/2)(1/2,0,1/2)
(1/4,1/4,1/2)

(1/2,1/4,1/4) (1/4,1/2,1/4)

(b)(a)
Figure 2.2: Trilinear coordinate system (left) and corresponding barycentric
coordinates (right)

Such situation is depicted in Fig. 2.1 for two and three components, re-

spectively. In the first case, all solutions form a line segment, in the second

case, solutions come from a triangle. Generally, the admissible space for the

mixture experiment is a (p−1)-dimensional simplex. Conveniently, individual

components can be represented by barycentric coordinates [20], as a special

case for p = 3 known as triangular, trilinear or areal coordinates see Fig. 2.2

and examples within the Finite Element Method (FEM) [28].

The classical uniformly spaced designs for a simplex domain, so-called

simplex lattice designs [65, Chapter 11-5], can be constructed by proportion-

ally changing barycentric coordinates. Assuming m+ 1 equally spaced values

from 0 to 1 such that

xi = 0,
1

m
,

2

m
, . . . , 1 i = 1, 2, . . . , p (2.3)

and all possible combinations of these proportions that fulfil Eq. (2.2) form

a [p,m] lattice design with

M =
(p+m− 1)!

m!(p− 1)!
(2.4)

number of points. For example, if p = 3 and m = 2, then xi = 0, 1
2
, 1 i =
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A [3,2] lattice A [3,3] lattice

A [4,2] lattice A [4,3] lattice

x1 = 1 x1 = 1x2 = 1 x2 = 1

x2 = 1 x2 = 1x1 = 1 x1 = 1

x3 = 1 x3 = 1

x3 = 1 x3 = 1

x4 = 1 x4 = 1

x3 = 0

x2 = x3 = 1/2

x1 = 0

x3 = 2/3, x2 = 1/3

x1 = 0

Figure 2.3: Examples of simplex lattice designs for three and four compo-
nents

1, 2, 3 and the [3, 2] simplex lattice design is created by the following six

points, see Fig. 2.3:

(1, 0, 0); (0, 1, 0); (0, 0, 1); (
1

2
,
1

2
, 0); (

1

2
, 0,

1

2
); (0,

1

2
,
1

2
) . (2.5)

2.3 Designs of constrained mixture experiments

In case some limits are placed on individual components, i.e.

0 ≤ ai ≤ xi ≤ bi ≤ 1, 1 ≤ i ≤ p , (2.6)

the admissible domain is no more simplex and forms a convex polytope. The

problem of the mixture of cement clinker minerals from Section 1.2.1 will serve

as an illustrative example. Since the problem composes of four components,

the admissible space in case of no constraints is a tetrahedron, see Fig. 2.4c).
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Here, the individual bounds for four clinker minerals (see also Tab. 1.1) are

set as

0.4 ≤ C3S ≤ 0.8

0 ≤ C2S ≤ 0.35

0 ≤ C3A ≤ 0.15

0 ≤ C4AF ≤ 0.15

and form a convex space bounded by 12 nodes and 8 faces. The sequence

of the polytope visualization is shown in details in Fig. 2.4. The classical

approaches for real experiments [18] will try to place experiments in vertices

of polytope, however no simple methods are available for a bigger number of

experiments in case of computer experiments.

2.4 DoE Methods based on classical approaches

Here, we present a methodology how to solve the constrained mixture DoE

problem without solving the nonlinear optimization problem as is presented

in [38]. The method is based on the creation of the bounding box of the

admissible space and then, application of the traditional designs applicable

for the particular bounding box. As traditional designs, one can assume all

ranges of algorithms, from factorial designs [65], through Latin Hypercube

Sampling (LHS) [15, 95] to quasi random numbers generators [58].

The simplest way is to define a bounding hypercube of the given polytope.

Hence, any popular method for the DoEs for hypercube spaces [27] can be

applied. The selected procedure then generates samples from the hypercube

and admits only those points lying inside the original admissible space until

the prescribed number of samples is attained. However, an ability to gener-

ate a required number of samples dramatically degenerates with the growing

number of dimensions. Imagine an example of the N -dimensional simplex

created with the vertex at the origin (0, . . . , 0) and vertices on individual

axes (1, 0, . . . , 0), (0, 1, . . . , 0), . . ., (0, 0, . . . , 1). The volume of this simplex

is V = 1
2N

of the unit bounding hypercube. Then, e.g. for N = 20 only one

design out of 1, 048, 576 samples from the unit hypercube will lie in the orig-
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   C3S

C2S    C3A

C3S=0.8
C2S=0.35
C3S=0.4
C3A=0.15

(a)

 

   C3S

C2S    C3A

Upper face
Lower face

(b)

   C2S

  C3A

  C4AF

C3S  

(c)

Figure 2.4: Constraints for cement mixture experiment: (a) contours at lower
face (C4AF = 0), (b) admissible spaces at lower and upper (C4AF = 0.15)
faces and (c) the whole 3D polytope

inal simplex. Therefore, such approach is suitable only for smaller number of

dimensions.
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(a) (b)

Figure 2.5: Triangulation of the admissible domain for the example of
the mixture experiment by Delaunay triangulation: (a) a wire model and
(b) a volume model

2.5 Delaunay triangulation based methods

A triangulation is a term suitable for 2D, generally it means the partition

of the domain by simplexes. Delaunay triangulation (DT) is the most popular

triangulation method [12]. It is based on a convex hull of given points V

describing the admissible domain, where the convex hull is the smallest convex

set containing all points in V . Then, DT triangulates the convex hull such

that there is no point of V inside the circumsphere of any simplex in the

triangulation.

Because it is relatively simple to create DT2, see Fig. 2.5, and then com-

pute a volume of simplexes, see Appendix A, we have a rough estimation, how

is the admissible region formed. An example of utilizing such methodology

has been firstly presented in [19] for regular design spaces. We extended this

idea for constrained design spaces by incorporating three methodologies. The

first one (RND) generates quasi random points in the triangulated admissi-

ble domain. The second method (RMV) starts with a doubled number of

2We assume that the admissible domain is defined by the set of vertices for which DT
exists. If not, there is still possibility to add more temporary points inside the domain to
create valid DT.
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random points from the RND method. By removing unfavorable points the

algorithm then reaches the optimum. The last methodology (DM) is based on

the analogy with a dynamical system. The detailed description of individual

methods follows.

2.5.1 A uniform random point generator for simplex meshes
(RND)

First, a generator for uniform random numbers for a general simplex is

needed. There are several solutions, however the one presented in [22] is

very simple. It starts with the required number of samples from exponential

distribution, i.e. sampling X from [0, 1]p uniformly, and returning −log(X).

In such a way, the required number of samples is obtained. Then, uniform

samples within the simplex are created only by normalization of obtained

samples from the exponential distribution.

The algorithm for random uniform samples within the triangulation by

simplexes is again simple - each simplex will contain a portion of the required

number of samples based on a ratio of its volume to the total volume of

the admissible space3. And again, since the computation of the simplexes’

volumes is simple, see Appendix A, the procedure is for a smaller number of

dimensions very fast.

2.5.2 Removal of superfluous points (RMV)

The above presented procedure is fast and reliable; however, the space-

filling quality is usually very poor. Recently, we have tried to find a fast

and reliable method for generating uniformly spaced samples within regular

domains [69]. One of the most promising methods is based on the removal of

superfluous points from overcrowded random designs generated with above-

mentioned generator. Particularly, we construct a design with two times

more points than needed, and then, we are repeatedly removing the point

that creates the worst Euclidean Maximin distance until the original number

3Note that since the generation of points is dependent on the volumes of the individ-
ual simplexes creating the whole admissible region, the final distribution of points is not
random, but quasi random.
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of points is attained. Although this procedure is at least two times slower

than the random number generator, the obtained results justifies expended

effort, see Section 2.6.

2.5.3 A Distmesh tool (DM)

The Distmesh tool (DM) [75] is a heuristic smoothing algorithm for gener-

ating uniform meshes [12]. It is well-known that the most uniform meshes for

the Finite Element Method (FEM) are characterized with uniformly spaced

nodes (but not vice-versa!). Therefore, we have tried to utilize this nice prop-

erty of the DM tool. The DM is based on a simple dynamical system of an

expanding pin-jointed structure. Those trusses that are too short are causing

repulsive forces that move the too close nodes apart. The main disadvantage

apart from high computational demands is the need to return nodes that

leave the prescribed admissible domain. The DM offers solutions for basic

entities, however, a general simplex as well as a triangulation is missing. The

description of our solution follows.

At every iteration of the DM tool, one has to solve three problems:

Which points are outside the domain is in our approach resolved by enu-

meration of the barycentric coordinates. If a point has at least one neg-

ative barycentric coordinate in accordance to a given simplex, then the

point is outside this simplex. Therefore, at every simplex we search for

a minimal value of barycentric coordinates. If the maximum of these

minima over all simplexes is negative, then the point is outlier to the

admissible domain.

In which direction to move outliers is the most crucial problem. The

original task is, for every outlier, to move itself to the nearest point

on the boundary of the admissible domain. The problem is that the

boundary is in general N -dimensional convex hull created with a huge

number of entities, see e.g. the list of entities for a general simplex up to

five dimensions presented in Appendix B. Therefore, we have not used

a direct analytical solution. Instead, Monte Carlo approach has been
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Figure 2.6: A random illustrative example of moving outliers (big blue cir-
cles) to the nearest random point on the boundary (vertices) and the search
for intersection (green star) with the boundary in case the random point
inside is not on the boundary (red filled circle)

used to describe the volume of the admissible space. One hundred of

temporary random points are created within each simplex. All vertices

describing the topology of the convex hull are added as well. Then the

search for nearest boundary is replaced by the search for the nearest

point from the temporary list, see illustrative example in Fig. 2.6.

How far to move outliers can be done analytically or numerically. We

have selected the numerical solution. If the temporary point lies directly

on the boundary, then is replaced by the outlier and this vertex is

removed from the temporary list to prevent duplicities, see Fig. 2.6. In

case the nearest point is inside the domain, the simple bisection method

is used to find the intersection of the direction from the previous step

with the domain boundary, see again Fig. 2.6, and the outlier is moved
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to the intersection. All these three steps are done consecutively for all

points lying outside the domain.
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LHS RND RMV DM
0
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0.05

LHS RND RMV DM
0
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LHS RND RMV DM

0

2000
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10000
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5
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2.5

3

3.5

4
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x 10
7
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Figure 2.7: Comparison of four methods for generating constrained mixture
designs: (Top row) Euclidean Maximin - higher is better and (Bottom row)
Audze-Eglais potential energy - lower is better; (From left) results for 10, 100
and 1000 samples. Key: LHS = Latin Hypercube Sampling within bounding
box, RND = random point generator in Delaunay triangulation, RMV =
removal of superfluous points from overcrouded RND and DM = Distmesh
tool

2.6 Comparison of methods

Since we are interested in space-filling properties, two most common objec-

tive functions are examined. The first is Euclidean Maximin metric (EMM) [97,
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41] for its simplicity and easiness in visualization. The EMM is the minimal

distance out of all distances between any two design points and is to be max-

imized. From the experiments point of view EMM expresses the worst case

scenario of the closeness of two experiments. Even for computer experiments

the assumption that an evaluation is costly is still valid. Therefore, the pos-

sible duplicity of two closed points remains a crucial task.

The second measure is Audze-Eglais objective function (AE) proposed by

Audze and Eglais in [4]. It is based on an analogy with a potential energy

of the set of points. The points are distributed uniformly when the potential

energy EAE proportional to the inverse of the squared distances among points

is minimized, i.e.

EAE =
N∑
i=1

N∑
j=i+1

1

L2
ij

, (2.7)

where N is the number of design points and Lij is the Euclidean distance be-

tween points i and j. Since the objective is a sum of distances, it is not heavily

disturbed by outliers from the potential energy point of view. Therefore, such

measure represents an average property of the set of points.

Up-to-now three methods have been described in detail - a uniform ran-

dom point generator for simplex meshes (RND), removal of superfluous points

(RMV) and a modified Distmesh tool (DM). The last method that will be

compared is the classical bounding approach presented in Section 2.4. It is

a traditional Latin Hypercube Sampling (LHS) method, see e.g. [5], from the

Matlab environment. Samples are generated in a bounding box of the admis-

sible space presented in previous parts. The procedure consecutively increases

the number of samples in LHS until sufficient points fall inside the admissi-

ble domain. Note that Matlab’s implementation is not directly optimized for

given metrics; with the default settings, MATLAB generates 5 set of samples

and the best from the EMM point of view is introduced to a user. Our expe-

rience [69] shows that the performance of this algorithm can be improved by

the heuristic procedure at least twice in terms of the EMM metrics.

The final results for the comparison of these four methods are presented

in Fig. 2.7. The analysis has been done for 10, 100 and 1000 samples in

the final design. For the statistical purposes, the results are presented as
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a statistic out of ten independent runs. The results for EMM objective are

presented in Fig. 2.7 in the top row. Note that the higher the boxplot is, the

better the EMM property is. The LHS and RND methods perform equally.

The DM methodology has outstanding performance in case of lower numbers

of dimensions and samples. With both growing numbers the performance of

the DM method deteriorates. The removal-based method is in terms of EMM

metric clear winner.

The differences among methods based on the AE objective function are

not so extreme. Results for the second objective are presented in Fig. 2.7 in

the bottom line. Note that in case of AE the lower values are better. Only

the LHS method is losing, however this can be improved by incorporating an

optimization procedure as mentioned previously.

Since the codes have not been deeply optimized from implementation point

of view, the analysis of computational demands cannot be rigorously done.

However, we can state general requirements of the methods. The RND gen-

erator is the fastest one, with no optimization cycle. The RMV method is the

second, since it needs two times more samples than RND. Moreover, there is

a loop on removal of points. Although the LHS methods is for regular spaces

one of the fastest, its performance is deteriorated here because of repetitive

growing of number of samples until a sufficient number of samples fall inside

the admissible domain. The DT based method is the most demanding one.

There is several Delaunay triangulations inside the loop of the Distmesh tool

that are needed to preserve the inner structure to be physically consistent.

And still, as is visible from the EMM performance, the Distmesh has prob-

lems with the quality of the boundary surface mesh, see also the discussion

e.g. in [12].

2.7 Conclusions

The Design of Experiments for constrained spaces and computer experi-

ments is relatively new and unexplored area. The constraint in the form of

sum of all inputs equal to one complicates the application of all contemporary

DoE algorithms for regular design spaces. The presented chapter is a pioneer-
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ing work that brings a totally new methods and unpublished results. More-

over, the modification of the Distmesh tool can enable improvement within

the smoothing methods for FEM meshes for triangulated spaces. Finally, it is

important to note that all presented methods are independent on the number

of dimensions. Only the computational demands can limit the application of

some of the methods in higher dimensions.



Chapter 3

PARAMETER ESTIMATION

The problem of inverse analysis occurs in many engineering tasks and, as

such, attains several different forms and can be solved by many very distinct

methods. Note that the topic addressed in this work can be found under

totally different terms, most frequent ones are Parameter estimation, Model

fitting, Curve fitting, Parameter identification, Model calibration, Model up-

dating, Inverse analysis and Back analysis, see Fig. 3.1 for the list of their ap-

pearance within individual scientific disciplines. In this chapter, an overview

of two basic philosophies of the parameter estimation with an emphasis put

on the area of soft-computing methods is presented. An interested reader is

referred to [61] and PhD Theses [50] and [98] for more details and description

of other approaches. An application on the fitting of one phenomenological

model will be shown in the end.

3.1 Introduction1

A variety of engineering tasks nowadays leads to an inverse analysis prob-

lem. Generally, the aim of an inverse analysis is to rediscover unknown inputs

from the known outputs. In common engineering applications, a goal is to

determine the initial conditions and properties from physical experiments or,

equivalently, to find a set of parameters for a numerical model describing the

experiment. Therefore, existence of such numerical model is assumed in this

work and the task is to find parameters of this model to match outputs from

model with results from the experiment.

In overall, there are two main philosophies to solution of this problem.

1A part of this chapter is reproduced from: A. Kučerová, M. Lepš, and Z. Bittnar.
Solutions to inverse analysis problems using soft-computing methods. In Proceedings of
ICCES’07 (International Conference on Computational & Experimental Engineering and
Sciences), pages 1531–1537. Forsyth: Tech Science Press, 2007.
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Table 1: Statistics of used keywords

1

Figure 3.1: Frequency of the equivalent terms for parameters estimation
among scientific branches according to WoS (last update 2009)
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A forward (classical) mode / direction is based on the definition of an error

function of the difference between outputs of the model and experimental

measurements. A solution comes with the minimum of this function. The

second philosophy, an inverse mode, assumes existence of an inverse rela-

tionship between outputs and inputs. If such relationship is created, then,

the retrieval of desired inputs is a matter of seconds yet repeatedly. Both

philosophies are introduced in the text and thoroughly discussed.

3.2 Forward mode of inverse analysis

As mentioned previously, the problem of an inverse analysis can be for-

mulated based on the existence of an experiment E, which, physically or

virtually, connects the known inputs (parameters) XE to the desired outputs

(measurements) Y E. Formally, this can be written as

Y E = E(XE). (3.1)

Then, the problem of an inverse analysis is defined as a search for unknown

inputs XE from the known outputs Y E, i.e. inversely to the experiment E.

In common engineering applications, the experiment E is usually simulated

by some virtual model M . Often, the model is a program based on numerical

methods such as the finite element method. Here, this work assumes that

the model M is sufficiently precise to replace the experiment E, and thus, we

can put E ≡ M . This automatically results to Y E = M(XE). This step is

important from the economy point of view, where the cost of the evaluation

of the model M is assumed to be by an order of magnitude smaller than the

cost of the physical experiment E.

Based on the above-mentioned statements, the forward (classical) mode

/ direction of an inverse analysis is defined as a minimization of an error

function of a difference between the outputs of the model and the output of

the experiment, i.e.

min f(X) = ||Y E −M(X)||. (3.2)

A solution X∗ comes with the minimum of this function, where f (X∗) = 0

as well as X∗ ≡ XE.
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The problem (3.2) has been classically solved by gradient-based optimiza-

tion methods. Nowadays, the model M is usually hidden in a program which

is limited by license conditions, compact code etc. and therefore, the knowl-

edge of derivatives is missing even if the function is differentiable. Hence,

the soft-computing methods can be successfully applied here. Methods like

the simulated annealing method [42] with one solution in time or evolutionary

algorithms [63] with a “population” of solutions are usually used.

The main advantage of this approach is that the forward mode is general

in all possible aspects and is able to find an appropriate solution if such exists.

This statement is confirmed with special cases like

a) A problem of a same value of outputs (Y ) for different inputs (X), i.e.

existence of several global optima. This case leads to a multi-modal

optimization [59] but is solvable by an appropriate modification of an

optimization algorithm.

b) There are different outputs (Y ) for one input (X). This is the case of

stochastic and probability calculations as well as experiments burdened

with a noise or an experimental error. This obstacle can be tackled e.g.

by introduction of stochastic parameters for outputs.

c) There is more than one experiment for one material. This task can be

handled as a multi-objective optimization problem, see e.g. [16],[64] for

the references on multi-objective optimization methods and Thesis [98]

for multi-objective identification solutions.

3.3 Reducing disadvantages of forward mode

The biggest disadvantage of the forward mode is the need for a huge

number of error function evaluations. This problem can be managed by

two approaches: the first one is based on parallel decomposition and par-

allel implementation, the second one employs a computationally inexpensive

approximation or interpolation method.
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The parallel decomposition is based on an idea of the so-called implicit par-

allelism, i.e. the independence of any two solutions X. This can be utilized by

master-slave model [10], where the main (master, root) processor/computer

controls the optimization process while the slave processors compute the ex-

pensive evaluations of the model M . Thanks to independency of solutions,

nearly linear speed-up can be reached until a high number of processors [56].

The second methodology applies similar idea used previously. It assumes

another model M different from the model M but with a lower computational

cost than M . Then, a goal is to use the cheap model M instead of M

as often as possible. The equality is not fulfilled here, i.e. M 6= M and

therefore, the optimum X∗ obtained by optimizing the model M has to be

always checked by equality Y E = M(X∗). A question arises, how to construct

the model M . Two, most often used, approaches will be inspected. First

methodology, let’s call it an interpolation approach, is created to interpolate

the model M without any knowledge of an inner structure of the model M .

As a solution, traditional mathematical interpolation methods like Kriging or

response surface methods (RSM) [53] or soft-computing methods like radial

basis function networks (RBFN) [46],[70] are used. The need for interpolation

is crucial here, because new modelM , except for already computed values Y ≡
Y , does not correspond to the model M and therefore the model M is assumed

to be unreliable. To obtain a sufficiently precise interpolation of the model

M , an iterative process is usually used: starting with Mk from known values

(pairs Xk,Yk), the minimum f (X∗) = ||Y E −Mk(X∗)|| is found using multi-

modal optimization (this step should by computationally inexpensive due to

usage of the cheap model M), correct values of the model M are computed by

Yk+1 = M(X∗) and these new values are added to the set of already computed

pairs. This procedure is repeated until the minimum of the function (3.2) is

reached. A subscript k is used to describe a number of iterations. Finally, the

problem is to minimize a number of evaluations of the expensive model M .

Individual iterative procedures proposed by different authors, see e.g. [70],[77]

or [51], differ in the details of how this problem is solved. Also note that the

M model can be applied within the optimization process in two ways: (i) as

an approximation of the response of the model M and then, the optimization
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is running on the model M , or (ii) as an pre-evaluation of the model M , as

is presented within the area of Meta-model assisted evolutionary algorithms,

see e.g. [25]. Our experiences with the last approach are not positive, the

optimal results were strongly problem dependent.

The second approach, here called approximation, assumes that, for a phys-

ical model M , there is an inaccurate physical model M , which is computation-

ally less expensive than the model M . This situation occurs in cases where,

for one physical phenomenon, there are two or more describing theories, e.g.

wave vs. particle theories. More often, there are cases, where different topolo-

gies, geometries, a different number of finite elements, a simple or a difficult

model, a 2D or a spatial model etc. for a studied problem can be used. The

biggest problem here is that for such models, the inequality M 6= M will be

almost valid. Moreover, it is not clear how to include this discrepancy into

the simple model M (contrary to the interpolation approach). There is few

papers published to address this topic and therefore, we refer an interested

reader to available sources [33],[103] or [79].

The second disadvantage of the forward mode, following the definition, is

a fact that the computationally expensive search should be repeated for any

change in data, e.g. even for small change in an experimental setup. This

feature handicaps the forward mode from an automatic and frequent usage.

The opposite is true for the second mode of an inverse analysis.

3.4 Inverse mode of inverse analysis

The second philosophy, an inverse mode, assumes existence of an in-

verse relationship between outputs and inputs, i.e. there is an “inverse”

model M INV associated to the model M , which fulfils following equation:

X = M INV (Y ) (3.3)

for all possible Y . Generally, this inverse model does not need exist. Never-

theless, we assume that the inverse model can be found sufficiently precise on

some closed subset of the definition domain. Next, we will limit our atten-

tion to an approximation of an inverse relationship, not its exact description.
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A quality of this approximation is easy to measure since a pair X, Y obtained

using Equation (3.3) should also fulfill the original Equation (3.1). Final us-

age of this methodology is trivial because a desired value XE can be obtained

by simple insertion Y E into Equation (3.3).

The main advantage is clear. If an inverse relationship is created, then the

retrieval of desired inputs is a matter of seconds yet repeatedly. This can be

utilized for frequent identification of one model. On the contrary, the main

disadvantage is an exhausting search for the inverse relationship. Further

obstacles are the existence problems for the whole search domain and inability

to solve the a) case mentioned above in Section 3.2. Case b) can be handled

by introducing stochastic parameters, case c) by sequential, hierarchical or

iterative processes [104, 52]. As a solution, different approximation tools are

applied. Nowadays, artificial neural networks (ANN) [35],[9] are commonly

used due to their ability to approximate complex non-linear functions and

their straightforward implementation and utilization.

Recently, authors of this contribution have published an example of the

inverse mode applied to the above-mentioned microplane model parameter

identification [52]. Within concrete modeling community, two research groups

have implemented inverse mode using stochastic parameters of the searched

parameters, see [26] and [91] for more details.

3.5 Identification of parameters for affinity model

For the purposes of Chapter 5, an example of the forward mode of the

parameters estimation is presented here. The goal is to find B1, B2 and η co-

efficients for an affinity model mentioned in Section 1.2.2. The optimization

is controlled by an evolutionary algorithm GRADE [50], see the reference for

more details. Since the affinity model is relatively cheap from the compu-

tational point of view, the maximum number of evaluations has been set to

100.000 and the overall time spent was less than one hour. The objective

function to be maximized is R2, a coefficient of determination2. Here, R2

provides a measure of how well future outcomes are likely to be predicted by

2http : //en.wikipedia.org/wiki/Coefficient of determination
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the model. A data set has values yi each of which has an associated modeled

value fi. Here, the values yi are called the observed values and the modeled

values fi are sometimes called the predicted values. The ”variability” of the

data set is measured through different sums of squares:

SStot =
∑

i(yi − ȳ)2, the total sum of squares (proportional to the sample

variance);

SSreg =
∑

i(fi − f̄)2, the regression sum of squares, also called the explained

sum of squares.

SSerr =
∑

i(yi − fi)2 , the sum of squared errors, also called the residual sum

of squares.

In the above, ȳ and f̄ are the means of the observed data and modeled

(predicted) values, respectively. That is: ȳ = 1
n

∑n
i yi and f̄ = 1

n

∑n
i fi,

where n is the number of observations. Then, the most general definition of

the coefficient of determination is

R2 ≡ 1− SSerr

SStot

. (3.4)

R2 is a statistic that will give some information about the goodness of fit

of a model. In regression, the R2 coefficient of determination is a statistical

measure of how well the regression line approximates the real data points.

An R2 of 1.0 indicates that the regression line perfectly fits the data. Note

that R2 can be even negative. This is the case where SSerr > SStot.

B1 B2 η R2 Fig.

Original setting 1.0e+7 2.0e-4 -7.6 0.9932
3.2

Fitted coefficients 8.543e+6 1.198e-3 -6.839 0.9972

Table 3.1: Fitted coefficients of an affinity model for all data sets

The result show a slight improvement in both, the R2 measure as well as

produced graphs, see Tab. 3.1 and Fig. 3.2. The reason is that there is no
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enough degrees of freedom to bend one affinity model to all data samples.

Note that optimizing all curves individually, i.e. searching for a unique set of

parameters for every data set, leads to perfect fits (not shown here).

10
−1

10
0

10
1

10
2

0

100

200

300

400

500

Aalborg, w/c=0.4

Hydration time at isothermal 20°C [days]

R
el

ea
se

d 
he

at
 [J

/g
ce

m
]

 

 

DoH
Fitted DoH
Calorimeter

10
−1

10
0

10
1

10
2

0

100

200

300

400

500

Princigallo, w/c=0.375

Hydration time at isothermal 20°C [days]

R
el

ea
se

d 
he

at
 [J

/g
ce

m
]

 

 

DoH
Fitted DoH
Calorimeter

10
−2

10
0

10
2

0

100

200

300

400

500

BAM(Fontana), w/c=0.3

Hydration time at isothermal 20°C [days]

R
el

ea
se

d 
he

at
 [J

/g
ce

m
]

 

 

DoH
Fitted DoH
Calorimeter

10
−1

10
0

10
1

10
2

0

100

200

300

400

500

Hua, w/c=0.42

Hydration time at isothermal 20°C [days]

R
el

ea
se

d 
he

at
 [J

/g
ce

m
]

 

 

DoH
Fitted DoH
Calorimeter

10
−1

10
0

10
1

10
2

0

100

200

300

400

500

Robeyst, w/c=0.5

Hydration time at isothermal 20°C [days]

R
el

ea
se

d 
he

at
 [J

/g
ce

m
]

 

 

DoH
Fitted DoH
Calorimeter

10
−2

10
0

10
2

0

100

200

300

400

500

Smolik_Litos, w/c=0.5

Hydration time at isothermal 20°C [days]

R
el

ea
se

d 
he

at
 [J

/g
ce

m
]

 

 

DoH
Fitted DoH
Calorimeter

10
−1

10
0

10
1

10
2

0

100

200

300

400

500

Tamtsia, w/c=0.5

Hydration time at isothermal 20°C [days]

R
el

ea
se

d 
he

at
 [J

/g
ce

m
]

 

 

DoH
Fitted DoH
Calorimeter

Figure 3.2: Fitted affinity model for all data sets. Key: DoH -
original setting, Fitted DoH - simulations for new parameters
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3.6 Conclusions

The two most often used approaches how to solve the problem of pa-

rameters estimation were presented here. Both methodologies are described

and thoroughly discussed. As an illustrative example, the forward mode is

used to find parameters for the affinity model of hydration that will be used

later in this work. If the studied model is simple and fast, then the tra-

ditional forward approach is the most logical solution. More importantly,

any of the new modern zero-order optimization methods like Evolutionary

Algorithms [24, 23] can be used.



Chapter 4

KRIGING APPROXIMATION

This chapter presents experiences and difficulties encountered during in-

terpolation of experimental results by Kriging/DACE metamodel [45]. Since

the response of the cement paste studied in this work in terms of mixture

parameters is non-linear, the Kriging approximation in the space of hydra-

tion heat of available real measurements seems a natural choice. Particularly,

several combinations of regression and correlation parts have been tested and

optimized in order to ensure monotonicity of the response. Even though

a certain progress is reported, the selection of the proper model still remains

a challenging task.

4.1 Introduction1

Cement paste is a fundamental scale from which concrete inherits major-

ity of its properties. Experimental results show considerable scatter in the

elastic response of cement paste samples; however, virtual testing in a com-

puter allows testing the influence of input parameters on resulting macro-

scopic response, see the introductory sections or a reference [99]. Recently,

a combination of a CEMHYD3D model with homogenization processes was

tested as a basis for an optimization [102], where the Young modulus and heat

of hydration appear as objective functions. Question arises, whether results

from the optimization of the virtual model can be trusted. Our proposed

solution is based on a so-called robust optimization [34] where some selected

distance to existing experimental results is employed as the robustness mea-

sure, see Chapter 6. Hence, our goal is to create the closest approximation to

available experimental data and to provide estimation of the quality of that

1Partially reproduced from: M. Valtrová and M. Lepš. Kriging approximation in
cement paste experimental performance. In Engineering Mechanics 2009, pages 1–7. In-
stitute of Theoretical and Applied Mechanics AV ČR, 2009.
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approximation.

In this chapter, we demonstrate that actually the popular Kriging, also

called DACE (acronym for Design and Analysis of Computer Experiments

[82]), approximation is far away from the surface that is expected to describe

physical process underneath. Therefore, nonlinear optimization of the max-

imum monotonicity is presented. Overall, dozens of combinations of regres-

sion and correlation parts have been tested. Unfortunately, the importance of

a proper regression part is more crucial than presented in the optimization lit-

erature [45]. We have found a regression part that almost ideally describes the

physical problem; however, the strict monotonicity has not been preserved.

Name R(θ; dj), dj = wj − wi

EXP exp(−θj|dj|)
GAUSS exp(−θjd2j)
LIN max{0, 1− θj|dj|}
SPHERICAL 1− 1.5ξj + 0.5ξ3j , ξj = min{1, θj|dj|}
SPLINE 1− 15ξj + 30ξ3j , for 0 ≤ ξj ≤ 0.2

1.25(1− ξj)3, for 0.2 ≤ ξj ≤ 1
0, for ξj > 1, ξj = θj|dj|

Table 4.1: Correlation functions

4.2 Kriging

Kriging is an approximation method frequently used in geostatistics, global

optimization and statistics [96]. Kriging was originally developed by the

South African mining engineer D.G. Krige in the early fifties. In the 1960s

the French mathematician G. Matheron gave theoretical foundations to this

method [62] and named the method after Krige. Generally, the Kriging pre-

dictor is composed of a regression and interpolation part that constitutes the

nonlinear surface among available data [57]:

ŷ = f(x)Tβ∗ + r(x)Tγ∗ , (4.1)

where f(x) is an a-priori selected set of basis functions creating the response
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Figure 4.1: Cuts of approximations for not optimized weights θ: Constant
regression term (left column), linear regression term (right column) and (from
top) five correlation functions

surface and r(x) is the correlation term between an unsampled point x and

known points si, i = 1, ...,m : r(x) = [R(θ; s1;x), ..., R(θ; sm;x)]T , where R is

a-priori selected correlation function with unknown coefficients θ, see later.

The regression part is solved by a generalized least squares solution

β∗ = (FTR−1F)−1FTR−1Y , (4.2)

where F is a matrix containing f(x) evaluated at known sites si, R stems for

correlation among si using again the correlation function R and Yare known

values of yi at si. The Kriging part then interpolates the residual leading to

the system of linear equations

Rγ∗ = Y − Fβ∗ . (4.3)
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Figure 4.2: Cuts of approximations for optimized weights θ for minimal
MSE: Constant regression term (left column), linear regression term (right
column) and (from top) five correlation functions

The use of such a metamodel for optimization purposes is less demanding

on the regression part since an interpolation is dominant and hence, the

constant regression part usually suffices. Then, the correlation function is

traditionally selected to obtain a positive-definite system of equations, mainly

restricted to the form

R(θ, w, x) =
n∏

j=1

Rj(θ, wj − wi) . (4.4)

In our case, a free Matlab toolbox DACE [57] is utilized providing seven

correlation functions, where five of them are presented in this work, see

Tab. 4.1.

Note that at this point we still do not know the tuning/shape param-
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eters θ. Their functionality is twofold: they express the anisotropy among

dimensions and also determine the shape of the metamodel in the vicinity

of given samples. Traditionally, these parameters are found a-posteriori by

minimizing an expected mean squared error (MSE), which leads to the con-

strained nonlinear optimization problem. See e.g. [45] for discussion on how

to efficiently solve this problem without re-calculation of β∗ and γ∗ for these

new θ.

Figure 4.3: Cut of approximation through experiments using exponential
correlation function, linear term of composition and exponential regression
term in time for not optimized weights θ

4.3 Fitting of experimental data

Particular application is shown on experimental data describing the re-

leased heat of cement pastes already presented in Tab. 1.2 and Tab. 1.3. First,
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Figure 4.4: Cut of approximation through experiments using exponential
correlation function, linear term of composition and exponential regression
term in time for optimized weights θ for minimal MSE

almost linear dependency within the input data caused by volume unity of the

mixture experiment described in Chapter 2 results in ill-conditioned matrices

in Eq. (4.2). This obstacle is solved by Principal Component Analysis (PCA)

by transforming inputs into the space of principal directions and removing the

direction with the smallest eigenvalue, see e.g. [50] for more details. Therefore,

our approximation is a real function (hydration heat) of seven inputs – time

plus seven original inputs from Tab. 1.2 transformed with PCA to the six di-

mensions. Next, several combinations of regression and correlation functions

have been tested, see Fig. 4.1 and Fig. 4.2. Horizontal axes are for time and

vertical axes for hydration heat. Note that zero point [0 h, 0 J/g] has been

added to enforce a physically reasonable start of the heat-time relationship.
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There are two main requirements on the approximation. We need an

interpolation of experimental data to precisely describe the behavior in the

vicinity of existing experiments and conversely, the best possible description

of the trend in extrapolation. This is of great importance since there is a low

number of available data and the range of parameters covered is usually also

small. The deficiency of created metamodels for extrapolation purposes is

clearly visible from Fig. 4.1 and Fig. 4.2. Whenever the metamodel is far

away from given data, the prediction is approaching the mean trend. This

means that in distant extrapolation we would obtain a flat surface in the case

of a constant regression term and a linear surface in a linear case.

We have tried a dozen combinations of regression descriptions and cor-

relation functions and finally, a combination of an exponential correlation

function, a linear regression of mixture parameters and an exponential re-

gression term (1 − e−T ) for time T gives reasonable regression output, see

Fig. 4.3. In Fig. 4.4, the result for optimized weights θ with respect to the

minimal MSE is presented. Since the curve of hydration heat history should

be (from physical principles) monotonous, the traditional MSE minimization

is replaced by minimization of a negative (numerical) derivative of a resulting

curve in the time direction. As an optimization algorithm, the Quasi-Newton

line-search method available in Matlab Optimization toolbox was used. The

optimization algorithm ran 6.5 minutes on AMD Turion MT-37 notebook

processor with more than 700 evaluations of the metamodel. The resulting

curves are presented in Fig. 4.5. The approximation that almost ideally de-

scribes the physical problem has been found, however, the strict monotonicity

has not been preserved, see again Fig. 4.5.

4.4 Conclusions

The main advantage of the proposed methodology is that the expected

mean Kriging prediction also offers an expected mean squared error (MSE)

which serves as a good proxy for the distance from the available experimental

data, i.e. MSE is zero at given points and is monotonously growing with the

distance from the nearest known values, see again Fig. 4.5. On the other hand,
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Figure 4.5: Cut of approximation through experiments with expected mean
(black continuous line) and MSE bounds (blue dashed lines) for optimized
weights θ for maximal monotonicity

the main disadvantage is the exhausting search for proper model functions.

Finally, the search for the best closed-form approximation is still black

magic and is part of the know-how of every experienced curve fitter. Next

chapter shows that Genetic Programming can be used to solve this task using

a burden of a computational power.



Chapter 5

GENETIC PROGRAMMING APPROXIMATION

This chapter introduces results of Genetic Programming used for creation

of experimental data approximations. Within Genetic Programming trees,

the placement of constants still has not been satisfactorily solved. Therefore,

the proposed contribution also presents a search for real-valued constants

employing Ordinary Least Squares (OLS). Twenty trees as results of twenty

independent runs of Genetic Programming are presented. From these results

the best six trees are chosen according to specific criteria and the approx-

imations of experimental data are shown. Still, many aspects of Genetic

Programming-based symbolic regression are uncovered and especially sup-

pression of the overfitting issues remains unsolved.

5.1 Introduction to Genetic Programming1

Genetic Programming (GP) is a relatively new form of artificial intelli-

gence and is inspired by Darwinian biological evolution and genetics. GP is

an extension of Genetic Algorithms (GA) [108]. Contrary to GA that uses

string of numbers to represent the solution, Genetic Programming deals with

tree-structured program (tree) as an individual (see2 Fig. 5.1). GP searches

highly fit computer programs in the space of all possible programs that solve

a problem. The trees are compound of nodes that are elements either from

a functional set or from a terminal set. Generally, the functional set consists

of mathematical operators, for example {+,−, ∗, /} while the terminal set

contains variables or constants. The main difference in the functional set and

the terminal set is that the terminal set cannot have arguments.

1Partially reproduced from: M. Valtrová and M. Lepš. Genetic programming approxi-
mation in cement paste experimental performance. In Engineering Mechanics 2010, pages
1–7. Institute of Thermomechanics AS CR, Sent for publication, 2010

2Reproduced from http://en.wikipedia.org/wiki/Genetic_programming

http://en.wikipedia.org/wiki/Genetic_programming
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Figure 5.1: An example of a tree

The evolution of programs is performed through the action of genetic oper-

ators and the evaluation of the fitness function [3]. Generally, there are three

main genetic operators: reproduction, crossover and mutation. Reproduction

is the process of copying individuals according to their fitness value [108].

Trees with fitness lower than the average are killed and the new population

is filled with the surviving trees. Meanwhile, the crossover is the process of

combining information from two trees that are selected from the whole popu-

lation. Here, one randomly selected subtree is interchanged with another one

and two new offsprings are created (see3 Fig. 5.2). The last genetic operator

is mutation (see again Fig. 5.2). Mutation replaces the subtree of selected

individuals with new randomly generated subtrees [108]. These operations

with trees are repeated after several generations until the tree with optimum

fitness value is obtained. The principle of genetic programming can be seen

in Fig. 5.3.

5.1.1 Symbolic regression in Genetic Programming

Problems of symbolic regression require finding a function in a symbolic

form that fits a given finite sampling of data points [48]. One of the main

challenges in symbolic regression using Genetic Programming is the handling

of constants (or real numbers). There are three known possibilities how to

solve it. Koza in [48] has expanded the terminal set by adding new special

3Reproduced from http://www.alesdar.org/oldSite/IS/chap6-3.html

http://www.alesdar.org/oldSite/IS/chap6-3.html
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Figure 5.2: Two genetic operators: the crossover and the mutation

terminal called the ephemeral random constant. Whenever the ephemeral

random constant is chosen for any endpoint of the tree during the creation of

the initial random population in generation 0, a random number of a specified

data type in a specified range is generated and attached to the tree at that

point [48]. These constants remain fixed for all generations.

The second access to solving constants in symbolic regression is presented

in paper [3]. The authors used Genetic Programming for the creation of

approximation functions obtained by the response surface methodology. In

this work the constants are called tuning parameters. They are allocated to

a subtree depending on the type of the current node and the structure of

the subtree according to the algorithm described in [3]. Once the tuning

parameters are allocated at different parts of a tree, a nonlinear optimization

method is used to compute them.

The last approach of constants’ handling has been used, e.g., in [108].

Authors have reported their work regarding GP with polynomials which are

applied to fitting a given response surface. They transformed the GP tree into

the standard mathematical form by the help of their own translation algo-

rithm. Then the classical regression matrix is created and the Ordinary Least

Squares method (OLS) is used to estimate the coefficients. This methodol-
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Figure 5.3: The flowchart of GP metodology reproduced from [3]

ogy seems to reduce computational cost in comparison with the nonlinear

optimization method.
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There are more articles concerning symbolic regression in Genetic Pro-

gramming. For instance, a paper by [81] presents the analysis of the effect of

Multi-Branches Genetic Programming in function approximation problems

(i.e. symbolic regression problems). Another article published by [92] de-

scribes the usage of Genetic Programming to automate the discovery of nu-

merical approximation formulae. Nevertheless, neither paper specifies the

way how they deal with constants within GP trees.

5.2 Application of GP to cement paste hydration data

Because the previous chapter has not brought a sufficiently precise ap-

proximation of the hydration heat development, the following part presents

Genetic Programming applied at the prediction of hydration heat solely from

experimental data sets presented already in Tab. 1.2 and Tab. 1.3. For the

sake of simplification, a new notation for seven variables influencing released

heat is introduced:

Variable X1 X2 X3 X4 X5 X6 X7
Parameter C3S C2S C3A C4AF Gypsum w/c Fineness

Table 5.1: Definition of the variables X1 - X7

Recall, that according to the affinity model of hydration Eq. (1.7) the

value of hydration heat Q(·) is given by

Q(X , t) = Qpot(C) ·DoH(B(X ), t), (5.1)

where the potential hydration heat Qpot is uniquely given by the composi-

tion of clinker minerals C = {X1, . . . , X4} and the time dependent degree of

hydration DoH is a phenomenological model influenced by all relevant pa-

rameters X = {X1, . . . , X7} listed in Tab. 5.1. Since particular parameters

of the affinity model B for arbitrary cement are unknown, we have tried to

propose a new model based on a GP approximation. The idea is to use an

affinity model from Section 3.5 that has been fitted to all available data as an

approximation of the DoH, i.e. a time dependent approximation DoH which
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is independent on the given composition. This ensures the physically correct

monotonic behavior of hydration heat Q(·) that has not been obtained in the

previous chapter. Then, a general expression of Qpot dependent on all input

parameters is needed, i.e. we search for Qpot such that approximation

Q(X , t) = Qpot(X ) ·DoH(t) (5.2)

fits the given data as much as possible.

5.2.1 Application of GP

We have used a free GPLAB - a Genetic Programming Toolbox for MAT-

LAB by Sara Silva (for more details see http://gplab.sourceforge.net/).

Since the GPLAB toolbox does not include a solution of real numbers in

a symbolic regression within GP, the first step was to solve this problem. In

Section 5.1.1 we have presented three possibilities how to treat real numbers.

After considering all circumstances (e.g. the way in which the GPLAB is

programmed), we decided to transform the GP tree into the standard math-

ematical form and to apply an Ordinary Least Squares approach. Note that

after the last step a GP solution is actually a polynomial with real-valued

coefficients that is used for evaluating the fitness of the corresponding tree.

The GPLAB offers many settings of Genetic Programming. Tab. 5.2 shows

available options from which several combinations have been tested. In the

same table, the final setting that has produced the best performance in short

runs is presented. Individual terms are explained in the GPLAB Manual [87].

http://gplab.sourceforge.net/
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Name Available Options Chosen Setting

Genetic Operators

Crossover
Crossover

Mutation
Shrink Mutation

Mutation
Swap Mutation

Initialization Methods
Full

Ramped Half-and-HalfGrow
Ramped Half-and-Half

Expected Number of Offspring
Absolute

Rank85Rank85
Rank89

Sampling Methods

Roulette

Lexictour
SUS
Tournament
Lexictour
Doubletour

Elitism

Replace

Replace
Keep Best
Half Elitism
Total Elitism

Survival of The Individuals
Fixed Popsize

Fixed PopsizeResources
Pivotfixe

Table 5.2: Available options of Genetic Programming and chosen setting
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X6 X2
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X3 X1

  minus
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  times X3

  minus

  times

(a) Tree 10

X5 X1

  minus

X7 X2

  plus

  times

X3 X1

  minus X2

  times

  times

(b) Tree 14

X5 X7

  plus

X1

X6 X5

  plus X4

  plus

  plus

  times

(c) Tree 15

X3 X5

  plus

X3 X6

  plus X7

  minus X1

  minus

  times

(d) Tree 17

X6 X7

  minus

X7 X5

  plus

  times

X1 X6

  plus X6

  times

  times

(e) Tree 19

X5 X4

  plus

X7 X1

  plus

  times

X6 X5

  minus

  times

(f) Tree 20

Figure 5.4: Chosen trees
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The function set contained mathematical operators {+,−, ∗}, the terminal

set consisted of variables only. To avoid a bloat, a phenomenon consisting of

an excessive code growth without the corresponding improvement in fitness

[87], the maximum of 14 nodes was set. Finally, the population size of 500

individuals and the maximum number of generation of 100 was used.

5.2.2 Results

One optimization run was repeated 20 times for the sake of statistical rel-

evance. In the last ten runs we have increased the maximum number of gen-

eration to 150. Tab. 5.3 presents best trees (without regression coefficients)

along with appropriate coefficients of determination R2 (the more coefficient

of determination is closer to one the better a model is, see Section 3.5).

Table 5.4: Coefficients of chosen trees

Tree Number Figure Coefficients

10 Fig. 5.4 (a)

−8.11e+ 003
−1.33e+ 004
2.16e+ 004
2.09e+ 004
3.14e+ 004
−5.15e+ 004
1.65e+ 004
−2.50e+ 003

14 Fig. 5.4 (b)

9.24e+ 005
1.09e+ 005
−1.64e+ 009
−1.95e+ 008
6.85e+ 004
8.14e+ 003
−1.18e+ 008
−1.42e+ 007

15 Fig. 5.4 (c)

1.45e+ 001
−3.76e+ 001
2.36e+ 002
−1.25e+ 001
−1.40e+ 005
4.20e+ 005
−2.63e+ 006
1.42e+ 005

17 Fig. 5.4 (d)

−2.46e+ 005
1.65e+ 005
−3.18e+ 002
2.39e+ 005
−8.62e+ 004

Continued on Next Page. . .
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Table 5.4 – Continued

Tree Number Figure Coefficients

−1.89e+ 005
3.75e+ 002
−3.27e+ 005

19 Fig. 5.4 (e)

−6.07e+ 001
1.82e+ 002
1.03e+ 006
−2.10e+ 006
−3.72e− 001
6.62e− 001
3.45e+ 003
−5.91e+ 003

20 Fig. 5.4 (f)

−1.12e+ 003
−3.33e+ 004
−1.42e+ 005
1.00e+ 007
6.55e+ 002
1.63e+ 004
1.62e+ 005
−3.58e+ 006

Six best trees were chosen according to coefficients of determination, see

again Tab. 5.3. These trees are plotted in Fig. 5.4 and appropriate coefficients

are shown in Tab. 5.4. We have also created approximation of experimental

data as shown in Fig. 5.5. We present only the tree 10 approximation of

experimental data because other approximations are almost the same and

the differences are not remarkable.

5.3 Conclusions

The goal of this chapter was to create an approximation of experimental

data. The fitted response surfaces are almost perfect; however, a detailed

examination of results shows that no tree contains all important input vari-

ables (X1, X2, X3, X6 and X7). One of the missing variables X1 – X3 can

be replaced by X4 variable since X1 – X4 are linearly dependent constituting

a volume unity, see Chapter 2. But still, inclusion of this relationship into

GP will surely not bring substantial improvement. Rough enumeration of

obtained trees over the allowable domain shows classical signs of overfitting.

Therefore, more data are needed or more strict selection mechanism within

GP based on the length and/or complexity of regression trees have to be
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Figure 5.5: Approximation of experimental data. Key: Fitted = DoH fitted
to all experimental data multiplied by original Qpot form Eq. (1.6); GP = new
approximation found by GP

employed. Finally, a problem of constants’ placement within GP trees has

been successfully solved; however, the Ordinary Least Squares approach lim-

its dramatically the functions list. Therefore, in a near future our next step

will be aimed at the ephemeral random constant methodology.



Chapter 6

SENSITIVITY ANALYSIS AND OPTIMIZATION
OF CEMENT PASTE PERFORMANCE

6.1 Introduction1

This chapter is aimed at utilizing tools presented in previous chapters and

to show potential outcomes offered by soft computing methods. From the

area of computer experiments, it may seem that the sensitivity analysis (SA)

is usually only a process that is preceding the optimization as to minimize

a number of parameters and hence computational demands. A frequent term

screening is usually used for this process, see e.g. references [21] and [66].

However, the general area of sensitivity analysis is broader and can be divided

into three groups [83]: (i) factor screening mentioned above, (ii) local SA

most frequently used within the shape optimization domain via computing

derivatives of the objective functions with respect to shape parameters [86,

13, 14] and (iii) global SA studying the influence of inputs uncertainty to

the uncertainties at the outputs [84, 36]. For the latter, so-called sampling-

based SA [37] is usually applied. Within this chapter, the sampling-based SA

will be used to investigate properties of the cement paste hardening process.

Particularly, a Spearman’s rank correlation coefficient (SRCC) that is able

to describe nonlinear monotonic relationship between parameters and the

outputs of the studied system will be introduced, see e.g. [54, 50] for more

details on the methodology used.

Then, one type of optimization can be seen as a special case of a sensitivity

analysis performed only on a small subset of solutions asking a question how

these solutions are influenced by inputs. However, the term optimization

is wide covering all sciences. In material sciences from which the design of

1Partially reproduced from: Z. Bittnar, M. Lepš, and V. Šmilauer. Soft Computing
in Civil and Structural Engineering, chapter Soft computing in concrete mix optimization,
pages 227–246. Stirling: Saxe-Coburg Publications, 2009.
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the mixture experiment for the cement paste comes from, the optimization

is usually aimed not only at designing one particular composition, but also

at the detailed analysis of the influence of individual components influencing

the studied optimal properties. Particularly, concrete as a multiscale material

inherits several properties from the cement paste. The level of cement paste

plays an important role in the design of tailored material since its composition

and time evolution can be controlled, monitored, and influenced. A higher

level of mortar or concrete is rather relevant for aggregates, being usually not

the weakest element in mechanical performance or durability.

The optimization of concrete properties has been a long time the domain

of experiments and experts, see e.g. reference [110] for an example of an

expert system. Statistical mixture design methods may provide certain guid-

ance to select extreme combinations and to interpolate among experimental

results [89]. The leading idea is to optimize not directly the problem itself,

but only some approximation of obtained experimental data. One of the first

applications of such a methodology is the nice paper [49], where Nelder-Mead

simplex optimization algorithm [72] was applied to optimize response surfaces

(RSM) [68] of obtained data in a multi-objective fashion by using a desirabil-

ity approach. For a more detailed description of this type of methodology,

a reader is referred to the technical report [88]. From a soft computing per-

spective, e.g. papers [2] and [107] present an approximation of experimental

results by RSM and Artificial Neural Networks, respectively, and the resulting

systems are optimized by Genetic Algorithms.

Virtual modeling [93] is another approach to complement an experimen-

tal point of view. It is a promising tool not only for a design itself but for

the verification of certain assumptions in a numerical way. One of the first

applications of the virtual models in cement research is a paper [7], where

the sensitivity analysis were done by a virtual model for concrete diffusivity

and result were compared to experimental data. The next section presents

similar methodology utilizing already presented CEMHYD3D model, see Sec-

tion 1.2.1.

The second part of this chapter is devoted to the combination of both the

data and the virtual model. To the best author’s knowledge, such an optimiza-
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tion approach that directly incorporate measured data and the virtual model

together has not been published yet. The advantage in comparison to other

methods is that Kriging model presented in Chapter 4 is precise interpolation

and therefore, the value of the optimized model is equal to measured data in

given data points.

6.2 Sampling-based sensitivity analysis

The objectives of this part include sampling-based sensitivity analysis be-

tween input parameters of cement paste and its response in terms of hydration

heat and Young’s modulus. Such approach is hardly to be achieved experi-

mentally due to the hundreds of evaluations which are time-consuming, or ex-

hibit statistical nature of cement paste and testing device. The reproducibility

in virtual tests is guaranteed although the link microstructure-property does

not have to exist or can be even wrong. Therefore virtual modeling is ex-

ploited particularly for well-established and validated simulations, i.e. for the

heat evolution and Young’s modulus of cement paste.

As was presented in Chapter 2, the design of the cement composition is

a mixture experiment [11]. Therefore, the amount of clinker minerals form

unity which complicates the creation of the individual mixtures. For the pur-

poses of this chapter, the classical bounding box approach has been used, see

Section 2.4. The bounds for individual parameters are taken from Tab. 1.1.

Typically, two hundred input data sets were randomly generated using LHS

method which guaranteed low mutual correlation among input parameters

and covered the range of feasible input combinations. Since four clinker min-

erals have to form a unity, weak correlation among them was reported.

6.2.1 Role of parameters influencing the heat of hydration

Bentz, Waller & de Larrard [8] used CEMHYD3D in the simulation of

temperature rise under adiabatic conditions. It is well established that heat of

hydration originate from individual chemical reactions in which the kinetics of

clinker minerals determine heat release rates. The effect of input parameters

on the overall heat is examined either in terms of the degree of hydration
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Figure 6.1: Correlation between input parameters and hydration heat at two
degrees of hydration and two hydration times

(DoH) or elapsed hydration time, see Fig. 6.1.

Regardless of the above-mentioned evaluation criteria, there are negligible

effects in the amount of gypsum, type of autocorrelation file, C4AF content,

and saturated/sealed curing conditions on released heat. Decreasing C3A

content and increasing C2S amounts have the only significant impact when

microstructures are hydrated to the same hydration degrees but not times.

When the released heat is quantified at 3 and 28 days of hydration, the

effect of input parameters is more complex. Released heat increases due to

higher fineness, especially at early ages, since higher surface area of cement

grains accelerates the overall kinetics. The effect of C3S and C3A content

is about the same, which seems to be contradictory to experiments, where

Portland cements with higher C3A are known to release more heat at early

stages. It must be borne in mind that increasing the C3A amount itself re-

sults in the decrease of the other clinkers and that C3S content is always more

dominant over C3A in Portland cements. Therefore there are two contradict-

ing mechanisms which defeat each other, but the mechanism is uncovered in

the comparison against the achieved hydration degree. An increase in w/c
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Figure 6.2: Correlation between input parameters and Young’s modulus at
two degrees of hydration and two hydration times

has an impact on higher released heat since hydration is not slowed down by

limited capillary space. This effect is more significant at 28 days.

6.2.2 Role of parameters influencing Young’s modulus

Determination of the Young’s modulus is based on numerical linear elas-

tic homogenization, utilizing fast Fourier transform (FFT) [67]. Periodic mi-

crostructure 50 × 50 × 50 µm from CEMHYD3D model is filtered through

solid percolation routine [101] and sampled to a grid of 50 × 50 × 50 Fourier

points. The filtering has an effect up to an approximate degree of hydration

of 0.3 for the range of input parameters in Tab. 1.1. The average time con-

sumption for FFT-based homogenization is around 10 minutes on 3.2 GHz

CPU. Intrinsic elastic properties are taken from [99], including water filled

and empty capillary porosity, C-S-HLD and C-S-HHD.

The stochastic statistical sensitivity between input parameters and Young’s

modulus is depicted in Fig. 6.2. The w/c ratio is the only governing param-

eter, followed by cement fineness. Obviously, decreasing w/c reduces the

capillary porosity while increasing the modulus. More homogeneous compos-

ites, having the same volume fractions, are known to exhibit higher stiffness
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Figure 6.3: Relationship between Young’s modulus and w/c ratio and the fit
to a power function

which can be interpreted as increasing cement fineness where smaller grains

cause more uniformly distributed phases.

The w/c is the most influencing input parameter for the Young modulus

so the results may be plotted against w/c only. The situation is depicted

in Fig. 6.3. Over 250 sets of different microstructures were generated, left

to hydrate, filtered with solid percolation routine and homogenized by FFT-

based method. Only 50 microstructures were selected for the degree of hydra-

tion of 0.8. The evolution of Young’s modulus in Fig. 6.3 can be approximated

with a power function. See e.g. reference [102] for its derivation.

6.3 Multi-objective optimization of the mixture composition

A majority of realistic optimization problems do not rely on one objective

function only but require simultaneous optimization of several objective func-

tions. For example, one objective function can be merged with the amount

of released heat at a given time and an optimal set of input parameters can

be found. On the other hand, such combination can be detrimental to other

properties, such as stiffness, shrinkage, or crack formation. Several contra-

dicting goals are typical in multi-objective optimization and a compromise

has to be found partially to satisfy all of them.
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ED
iff

Figure 6.4: Two consecutive Pareto fronts: Difference among CEMHYD3D
and Kriging approximation vs. MSE (both normalized, left) and Young’s
modulus vs. released heat (right)

Therefore, the scalar concept of optimality has to be replaced with Pareto

optimality in the multi-objective optimization, see e.g. [55] or [98] for more

details. Pareto optimal solution presents a set, for which no better set can

be found while minimizing (or maximizing) all of the objective functions.

The goal is to find such a set of input parameters which maximize the Young

modulus while minimizing hydration heat at the time of 28 days of hydration.

Moreover, the Kriging approximation from Chapter 4 is used as an estimation

of accuracy of the CEHYD3D prediction. We are supported by two proxies

- the value of a mean square error (MSE) of the approximation tells us how

far we are from the nearest experimental data point whereas the difference

between the Kriging and CEMHYD3D result (we will use abbreviation DIFF

hereafter) expresses either lack of Kriging fit or inability of CEMHYD3D to

properly describe experimental results.
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Figure 6.5: Pareto fronts from Fig. 6.4 (top) and ten clusters found by k-
means cluster analysis: horizontal axes are for parameters, vertical axes are
normalized using bounds from Tab. 1.1. Black curves represent means of
clusters

Thee multi-objective optimization method used was based on an evolu-

tionary algorithm called Pareto Archived Evolution Strategy (PAES) [47].

Each individual in optimization represents a unique set of input parameters.

The PAES algorithm chooses one individual from the population and applies

mutation. The offspring is evaluated for dominancy and is rejected or given

back into the population archive. The situation after 1000 cycles is depicted
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in Fig. 6.4, where two consecutive Pareto fronts are depicted.

The “errors” in Fig. 6.4 (left) are divided into four groups for the sake of

convenience. The division lines are made in medians within both normalized

proxies, MSE and DIFF, respectively. This division formed four groups: the

left lower corner (green dots) represents solutions which are closed to experi-

mental data and the predictions from CEMHID3D and Kriging are close by.

These solutions are characterized by relatively high Young’s moduli as well

as high hydration heat. An opposite case is the right upper corner (blue

dots) where we are missing both experimental data and agreement between

our two models. These solutions dominate lower grades of hydration heat

whereas two clusters with totally different Young’s moduli can be found here.

Two remaining parts, left upper corner with high DIFF and low MSE (brown

dots) and right lower corner with high MSE and low DIFF (magenta dots),

are filling the space between two previous limit cases.

Next, we investigate properties of resulting solutions using a k-means clus-

tering analysis [43] available in Matlab. As can be seen from Fig. 6.5, different

compositions can be found. For instance, the left cluster with low Young’s

moduli and low hydration heat (orange color) is composed of high w/c, high

C2S and low fineness. Oppositely, the whole middle part of the Pareto fronts

is composed with minimal level of the w/c ratio. Finally, all these results can

serve as a basis for new mixture compositions aimed at tailored properties.

6.4 Conclusions

In this chapter, it has been shown that the soft computing techniques are

easily applicable to concrete engineering. The most fundamental quantity -

hydration heat - was studied in detail together with the estimation of the

Young’s modulus. A cellular automata-based hydration model CEMHYD3D

is readily applicable for sensitivity analysis and multiscale simulation as a vir-

tual model of much more expensive real tests. It is important to mention that

the hydration model underestimates hydration heat, roughly after a week of

hydration. Here, the comparison is possible due to calibrated Kriging model

to real data sets.
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Kriging metamodel developed in Chapter 4 approximated experimental

data of hydration heat well and enables an efficient combination of the vir-

tual and data-based model. It should be emphasized that the metamodel

does not rely on any physical process and can be applied to any data sets.

The combination of these two models then offers reliable optimization that

can show weaknesses in both the insufficient cover by the data as well as

incompatibility and potential deficiencies among models.



Chapter 7

CONCLUSIONS

Soft computing (SC) is a relatively new research area, however its defi-

nition is not clear. Usually contains methodologies that do not solve given

problem directly. However, categorization based on such definition is fuzzy.

Imagine a list of similarities of several interpolation methods as presented

in [39] shown in Fig. 7.1.

Kriging

RBF

PDESignal processing
         Chaos

Markov Random
       Fields

Duality

Green’s Function

State space

Feynman path
     integral

Statistical
estimation

Splines Variational
  calculus

Figure 7.1: Similarity among several interpolation methods, reprinted
from [39]. Key: RBF = Radial Basis Functions, PDE = Partial Differential
Equations

Kriging and Radial Basis Functions are tackled as a part of SC. How-

ever, e.g. spline approximation can be used for inexact pre-evaluations and

then will be a part of SC. Also a nice quotation by Peter Convey and Roger

Highfield in the book Frontiers of Complexity describes a relation of classical

branches of sciences to SC:

Natural selection can be seen as cheating for scientists who want

to find discoveries only by perfect deduction.
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Figure 7.2: Comparison of convergence histories for four optimization algo-
rithms for a structural benchmark. Figure provided by courtesy of Jaroslav
Kabeláč. Key: Nelder-Mead = simplex method [72], SQP = Sequential
Quadratic Programming, Differential Evolution = simple evolutionary algo-
rithm presented in [90], MSA = Modified Simulated Annealing [60]

From this view, SC is commonly seen as a simpler and easy way of doing

research. Therefore, a big honor for the soft computing community comes

with the publication of the paper [85] in the Science journal. The article is

devoted to the GP that has been applied to rediscovery of known analytical

solutions for dynamical systems.

From author’s own perspective and experience, the application of soft

computing methods for the given problem is a part of multi-objective deci-

sion making. If we compare computational demands of several optimization

methods in solving continuous optimization problems, see e.g. comparison

in Fig. 7.2, the gradient-based methods will usually lead. But sometimes

they can completely fail, see e.g. a chapter [105] for details on problems usu-

ally encountered in optimization practice. Another objective is time spent

on the development of the code. For instance, in the case presented above

in Fig. 7.2, the development of the MSA algorithm was 14 days in contrast

to the Sequential Quadratic Programming method that cost almost three
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months.

In the last few decades the growing price of material and labor leads to

huge developments in the field of SC, since anything that can lead to the

minimization of the price of real experiments was justifiable. However, since

the beginning of the millennia, the price of electrical energy needed for com-

puters grows such that the price of computationally demanding calculations

like GP is continuously increasing and can limit future developments.
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[33] L. F. González, E. J. Whitney, J. Périaux, M. Sefrioui, and K. Srinivas.

Multidisciplinary aircraft conceptual design and optimisation using a

robust evolutionary technique. In Neittaanmäki et al. [71].
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Appendix A

COMPUTATION OF SIMPLEX VOLUME

Because we know the coordinates of simplex vertices, we use the formula

which requires these (and only these) inputs [1].

The computation of a volume of a simplex in 2D (3 vertices):

V2 =
1

2!

∣∣∣∣∣∣
1 x1(1) x2(1)
1 x1(2) x2(2)
1 x1(3) x2(3)

∣∣∣∣∣∣
The computation of a volume of a simplex in 3D (4 vertices):

V3 =
1

3!

∣∣∣∣∣∣∣∣
1 x1(1) x2(1) x3(1)
1 x1(2) x2(2) x3(2)
1 x1(3) x2(3) x3(3)
1 x1(4) x2(4) x3(4)

∣∣∣∣∣∣∣∣
The computation of a volume of a simplex in nD (n+ 1 vertices):

Vn =
1

n!

∣∣∣∣∣∣∣∣∣
1 x1(1) x2(1) . . . . . . xn(1)
1 x1(2) x2(2) . . . . . . xn(2)
...

...
...

...
...

...
1 x1(n+1) x2(n+1) . . . . . . xn(n+1)

∣∣∣∣∣∣∣∣∣
In the notation xa(b) a is a variable (dimension), b is a design point.



Appendix B

LIST OF (0-5)-DIMENSIONAL SIMPLEX
ELEMENTS

dim. name vertices edges faces cells 4-faces 5-faces sum
0 Point 1 1
1 Line segment 2 1 3
2 Triangle 3 3 1 7
3 Tetrahedron 4 6 4 1 15
4 Pentachoron 5 10 10 5 1 31
5 Hexateron 6 15 20 15 6 1 63

Table B.1: List of (0-5)-dimensional simplex elements.
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