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Faculty of Civil Engineering

Abstract

Single and Multi-Objective Optimization in Civil Engineering with
Applications

by Matěj Lepš

The proposed thesis mainly deals with problems associated with the Civil Engineering area
and therefore the methods as well as problems have been selected with emphasis on applications
to Civil Engineering topics. And also as nowadays very popular optimization methods, Evolu-
tionary Algorithms (EAs) will be presented as one of the possible ways how to solve today’s
challenging optimization problems that we are often facing.

First of all, two main optimization tasks are described - theGlobal optimization as a “math-
ematical” problem and theStructural optimization as an “engineering” one. Several categories
among Structural optimization problems are described and some solutions from the Global op-
timization area are cited.

Next, a new classification for Evolutionary Algorithms is presented. It is based on the
well-known notation developed for Evolution Strategies (ESs) [Bäck and Schwefel, 1995] and
appropriately modified. The leading idea is that everyEA can be described by a combination
of three basic operations, namelyrecombination, usually presented by different cross-overs,
mutation andselectionmechanisms.

Traditionally, theEAs have been developed for single-objective problems (SOPs) and there-
fore they are not so suitable for problems coming from engineering practice where we usu-
ally deal withmulti-objective, constrainedand oftenmixed integer-continuousoptimization
problems (CMOPs). Solutions for all the three phenomena are presented: multi-objective na-
ture can be solved by Pareto-optimality approaches, constraints by penalty functions and differ-
ent types of variables by an appropriate encoding. Several other possibilities are discussed in
the text as well.

Based on the above mentioned notation, four particular examples ofEAs that have been
developed in recent years at the workplace of the author are described and compared. In partic-
ular, three of them are based on the combination of Genetic Algorithms [Goldberg, 1989] with
the Differential Evolution [Storn, 1996]; the last algorithm is the Differential Evolution alone.
These optimization algorithms are then used to solve several tasks from engineering practice as
well as two test functions and their advantages and disadvantages are shown.

The next part is devoted to the application of the presented optimization methods to the
design of reinforced concrete frames. Generally, this taskis multi-modal, multi-objective and
highly constrained. To solve this problem as a whole, it is shown that this inevitably leads to
an integer formulation of the problem and hence presented qualities of multi-objective Evolu-
tionary Algorithms are utilized. As an illustrative result, typical examples are solved and the
Pareto-fronts in terms of the total price of a structure against its deflection are depicted. A new
system of visualization is also presented as an addition to the multi-objective optimization do-
main.



Abstract ix

As an engineering example of a single-objective optimization problem, training of an ar-
tificial neural network and its use for a microplane materialmodel parameters prediction is
presented. A traditional method for neural network training used herein is the well-known
Backpropagation method, which uses a gradient-based operator to minimize an output error.
As a novel approach, the Evolutionary Algorithm can be used here for the same purpose. It is
shown that obtained errors are much lower than the outputs obtained from the Backpropagation
algorithm.

Next, an identification of the microplane material model [Bažant et al., 2000] is investi-
gated. This model is a fully three-dimensional material lawthat includes tensional and com-
pressive softening, damage of the material, different combinations of loading, unloading and
cyclic loading along with the development of damage-induced anisotropy of the material. The
rather severe disadvantage of a microplane model is an extreme demand of computational time
and, therefore, an appropriate procedure is on demand. To define the problem more formally,
the optimization goal is to find microplane parameters from astress-strain diagram of a test
specimen in a uniaxial compression. The objective functionis then the least square error func-
tion, which contains differences between values of a known stress-strain curve and values from
a microplane model simulation.

Several approaches are tested here to solve the introduced problem. An estimation by an ar-
tificial neural network trained on approximations of stress-strain curves shows that some proper-
ties can be predicted well but a significant error in other coefficient is obtained. Next, a parallel
version of the evolutionary-algorithms-based global optimizerSADE is directly used to obtain
required parameters by varying them within a nonlinear finite element analysis. The first main
result is that this time consuming analysis can be solved by aparallel analysis in reasonable
time. The second outcome is the fact that the objective function corresponding to the identifi-
cation problem has several local minima, which are characterized by similar values but are far
from each other. To solve the above mentioned obstacles and in the view of recent research in
this domain, a new methodology is also presented: an application of a Latin Hypercube Sam-
pling method as well as a sensitivity analysis are applied not only to investigate the influence
of individual material model parameters, but also to minimize the need of training samples for
an artificial neural network. Several promising results along with some concluding remarks are
presented.
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České vysoké učenı́ technické v Praze
Fakulta stavebnı́

Abstrakt

Jedno a V́ıcekriteríalńı Optimalizace s Aplikacemi ve Stavebnı́m Inžeńyrstv́ı

Matěj Lepš

Rozvoj výpočetnı́ techniky v současné době umožňuje zcela nové přı́stupy k řešenı́ mnoha
teoretických i praktických problémů. Konkrétně v oblasti stavebnı́ mechaniky je modelovánı́
jednotlivých materiálů a dı́ky tomu následně i predikce chovánı́ konstrukcı́ daleko přesnějšı́
než dřı́ve. Snahou této práce je tedy ukázat nejnovějšı́ přı́stupy v oblasti globálnı́ optimalizace
a jejich aplikace na vybrané úlohy stavebnı́ho inženýrstvı́.

Nejprve je popsán rozdı́l meziglobálńı optimalizaćı, kterou lze pokládat za typickou ,,mate-
matickou” oblast, aoptimalizaćı konstrukćı, která se obvykle zabývá úlohami ,,inženýrskými”.
Pro lepšı́ pochopenı́ navrhovaných postupů jsou nejprve představeny různé formy optimalizace
konstrukcı́, jmenovitětopologicḱa optimalizace(topology optimization),tvarov́a optimalizace
(shape optimization),rozm̌erov́a optimalizace(size optimization),topograficḱa optimalizace
(topography optimization) aoptimalizace skladby1 (layout optimization). Pro každou z těchto
forem optimalizace je vhodná jiná optimalizačnı́ metoda z oblasti globálnı́ch optimalizacı́. Je
také nutné zdůraznit, že typická úloha bude nejspı́ˇse kombinacı́ několika těchto forem.

Dalšı́ část práce se zabývá klasifikacı́ a popisem evolučnı́ch algoritmů. Jsou využity a dále
obohaceny poznatky z oblasti evolučnı́ch strategiı́. Hlavnı́ myšlenkou je skutečnost, že se valná
většina evolučnı́ch algoritmů dá rozepsat jako konkrétnı́ kombinace třı́ operátorů – rekombi-
nace, nebo-li křı́ženı́, mutace a výběru.

Původně byly evolučnı́ algoritmy navrženy pouze pro jednokriteriálnı́ funkce a z tohoto
důvodu nejsou v této původnı́ formě přı́liš vhodné pro řešenı́ inženýrských úloh, kde se velice
často potkáváme s vı́cekriteriálnı́ podmı́něnou optimalizacı́ (CMOP). Vı́cekriteriálnı́ optimal-
izace jsou zejména charakteristické tı́m, že jejich výsledkem nenı́ jedno optimum, ale množina
dominantnı́ch řešenı́. Proto byly objeveny vı́cekriteriálnı́ evolučnı́ algoritmy. Jejich výhodou
je, že k hledánı́ optima využı́vajı́ množinu možnýchřešenı́ a dı́ky této vlastnosti jsou dobře při-
způsobitelné pro hledánı́ většı́ho množstvı́ dominantnı́ch řešenı́. Proto je značná část této práce
věnována úpravě evolučnı́ch algoritmů pro vı́cekriteriálnı́ optimalizaci.

S poznatky již představené klasifikace evolučnı́ch algoritmů jsou představeny čtyři evolučnı́
algoritmy, které byly vyvinuty na pracovišti autora v poslednı́ch letech. Tři z nich jsou založeny
na kombinaci genetických algoritmů a diferenciálnı́ evoluce, poslednı́ metodou je samotná difer-
enciálnı́ evoluce. Tato kolekce algoritmů je následněpoužita při řešenı́ dvou inženýrských úloh
a dvou optimalizačnı́ch problémů. Výhody a nevýhody těchto čtyř algoritmů jsou diskutovány
v závěru této části práce.

Dalšı́ část práce se zabývá vytvořenı́m návrhového nástroje, který by jednoduše a spole-
hlivě navrhl a zoptimalizoval železobetonovou rámovoukonstrukci. Obecně lze tuto úlohu
označit jako multimodálnı́, multikriteriálnı́ a podm´ıněnou optimalizaci. Aby bylo možné vyřešit
návrh takovéto konstrukce jako jednu optimalizačnı́ úlohu, je nezbytně nutné ji formulovat
v diskrétnı́ch proměnných a to následně nevyhnutelnˇe vede k aplikaci multikriteriálnı́ch evoluč-

1 Volně přeloženo.



Abstrakt xi

nı́ch algoritmů. Navrhovaný postup je dokumentován na několika typických úlohách. Domi-
nantnı́ řešenı́ jsou pak vykreslena v prostoru celkových cen a přı́slušných deformacı́ konstrukce.
Pro tyto účely je též navrhnut nový systém grafickéhozobrazovánı́ dominantnı́ch řešenı́.

Přı́kladem inženýrské jednokriteriálnı́ úlohy může být trénovánı́ (učenı́) umělé neuronové
sı́tě a jejı́ následné využitı́ pro zı́skánı́ parametrů mikroploškového (microplane) modelu be-
tonu. V práci je porovnáno učenı́ neuronové sı́tě tradičnı́ metodou zpětného šı́řenı́ (Backpropa-
gation) s jednı́m zástupcem evolučnı́ch algoritmů. Je ukázáno, že navrhovaný postup vykazuje
na výstupu mnohem menšı́ chyby než tradičnı́ řešenı́.

Takto natrénovaná neuronová sı́t’ je následně použita k zı́skánı́ parametrů mikroploškového
modelu betonu. Výhodou tohoto modelu je, že je schopen realisticky popsat různé druhy odezvy
betonu. Velkou nevýhodou se naopak ukazuje jeho výpočetnı́ náročnost. Prvnı́ řešenı́ tedy
využı́vá neuronové sı́tě naučené na aproximaci pracovnı́ch diagramů. Výsledky ukazujı́, že
některé z parametrů se dajı́ zı́skat poměrně snadno, ale u zbylých byla chyba od požadovaných
hodnot přı́liš velká. Proto byla použita přı́mo paralelnı́ verze algoritmu SADE. Prvnı́ pod-
statný výsledek je ten, že se tato výpočetně náročná optimalizace dá dı́ky paralelizaci vypočı́tat
v reálném čase. Druhým výsledkem je skutečnost, že tato úloha je značně multimodálnı́ a tudı́ž
vede na několik rozdı́lných optim. Jako nejnovějšı́ postup byla použita metoda Latin Hyper-
cube Sampling a stochastická senzitivnı́ analýza nejen koceněnı́ vlivu jednotlivých parametrů,
ale též k lepšı́mu natrénovánı́ neuronové sı́tě. V´ysledky zı́skané touto metodou lze do budoucna
označit za velice slibné.



Chapter 1

INTRODUCTION

Everything that you could possibly
imagine, you will find that nature
has been there before you.

John Berrill

Preface

Nowadays a rapid growth of computer performance enables andencourages new developments
in Civil Engineering as well as related areas. Particularly, within the field of structural mechan-
ics, the modeling of materials and therefore the predictionof structural response is more accu-
rate than in past decades. These are new challenges that we want to discover, but there are also
several problems, that must be solved. For instance, the research within applied optimization
is mainly lead by automotive and aerospace industries. Therefore, the emphasis is put mainly
on the computational fluid dynamics domain and structural optimization area, especially on the
shape optimization1. Because Civil Engineering problems are dominantly connected with static
problems and topology and/or size optimization, there is a gap between current research and the
application of new methods into a Civil Engineering area.

Therefore, the main goal of the proposed thesis is to review and enhance the current state
of the art within the single and multi-objective optimization area and to show possibilities of
these methods in several areas, such as the design of reinforced concrete (RC) structures and
a material model parameters estimation.

1.1 Global vs. structural optimization

When dealing with engineering problems, one may discoveredtwo different areas of optimiza-
tion - the first is usually calledGlobal optimization2. By this term we will understand the
optimization of a function or functions without any a-priori knowledge of the problem within
these functions (sometimes called as “black-box” functions). This is an area where genera-
tions of mathematicians and also many economists have spentyears of research. The second
area, usually calledStructural optimization , can be described as an applied science, where
the methods from the Global optimization area are applied toa model of a structure or a ma-
terial. At this point, the optimized function is no more black-box and adding some knowledge

1 See Section 1.2 for notation of several types of structural optimization.
2 From the mathematical point of view, the termGlobal is not correct, the term “numerical” will be more appro-
priate. Even though, the mathematical term “global” is usually used for problems, where the “global” optimum
is sought, in the case of engineering tasks the methods used are exactly those of global optimization. Therefore,
we will use the termGlobal in this general manner.
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to help the optimization process to find desired solutions isnot only advantage, but more often
necessity.

Because this work deals with the application of several methods from the first area to the
second, both domains will be investigated in very detail. Wewill start with the introduction of
several forms of structural optimization with emphasis given to the design of frame structures.
Chapter 2 aims to introduce and clarify several definitions,terms and methods from the Global
optimization area, both for single and multi-objective optimization. As an addition, the han-
dling of constraints will be discussed together with the current state of the art in parallelization
of used algorithms. Chapter 3 is devoted to the comparison offour evolutionary algorithms
applied to the suite of four black-box functions. Detailed and extensive numerical tests have
been performed to examine the stability and efficiency of theproposed algorithms and several
interesting results have been found. In Chapter 4, procedures for detailing and design of rein-
forced concrete structures will be presented together withproposed innovations in the field of
the RC design. In particular, as one of the most frequent types of structures, the reinforced con-
crete frame structures will be investigated. Chapter 5 brings the problem of the applications of
a genetic algorithm-based optimizer and an artificial neural network to material model parame-
ters identification. The current application of this methodto the microplane constitutive model
reveals the limitations of the formulated identification problem and offers possible means for
its regularization. The last Chapter 6 offers conclusion remarks as well as future perspectives in
the domain of applied optimization within Civil Engineering applications.

1.2 Forms of structural optimization

For better understanding of a new procedure proposed in Chapter 4 it is worthwhile to introduce
the forms of structural optimization. In accordance with Prof. Grant Steven [Steven, 2003],
four different forms of structural optimization can be distinguished. Each can be solved with
a distinct optimization strategy and each form can include areinforced concrete structure as
a particular case. Note that solving real-world problems typically calls for combination of these
forms.

1.2.1 Topology optimization

By topology optimization we understand finding a structure without knowing its final form
beforehand [Bendsøe and Sigmund, 2003]. Only the environment, optimality criteria and con-
straints are known. These tasks usually come from the mechanical engineering area, where
designing parts of cars or aircraft are the most frequent topics. The major civil engineering
representatives serve as a decision tool in selecting an appropriate static scheme of a desired
structure. They are mostly applied to the pin-jointed structures, where the nodal coordinates of
joints are optimization variables. Based on the position ofsupports and objective functions, sev-
eral historically well-known schemes can be discovered (see Fig. 1.1). The typical example of
this optimization form within the reinforced concrete areais placement of steel reinforcing bars
into a concrete block. In other words, we search for the most suitable strut-and-tie model, see
e.g. [Kim and Baker, 2002] or [Liang et al., 1999], in which the position of steel is not known
in advance. In this case, the objective is usually minimization of amount of steel subjected to
structural requirements.

In the first years of numerical optimization the traditionalprocedure for solving these tasks
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(a) (b)

(c)

(d)

Figure 1.1: (a) Diagram for the calculation of the problem, (b) optimal solution of the prob-
lem, (c) optimized configuration formed by concatenating basic modules and (d) the First
of Forth Bridge, built 1883–1890 as an example of the topology optimization presented
in [Gil and Andreu, 2001].

was a fully stressed design, where stresses in all members aimed to be as close as possible to the
material limits. The disadvantage is clearly visible for multiple loading cases or several support
cases. Nevertheless, this approach leads to, in some sense,weighting result with application of
the Lagrange multipliers for violated constraints.

Nowadays, the most frequently used methods herein to solve this class of problems are the
Optimality Criteria3 approach based on duality theory or convex programming [Olhoff, 1996],
homogenizationin connection withMathematical Programmingmethods [Allaire, 2002] or
[Cherkaev, 2000],Evolutionary Structural Optimization(ESO) [Xie and Steven, 1997] - an-
otherhard-kill method based on removing ineffective members from FE mesh,Cellular Au-
tomata- a very old dynamic simulation method studied since the 1960s [von Neumann, 1966]
based on building block schemes with pre-defined behavior [Wolfram, 2002] and, finally,Evo-
lutionary Algorithms(EAs) based on the principles of natural selection. For more details about
theEAs, see Chapter 2.

1.2.2 Shape optimization

In this form of optimization the topology of structure is known a-priori but there can be some
part and/or detail of the structure, in which, for instance,high stresses can produce problems.
Therefore the objective is usually to find the best shape thatwill result in the most suitable stress

3 Referring to e.g. [Saka, 2003], the termMathematical Programmingwill be assigned for gradient or approxima-
tion based methods while byOptimality Criteriawe will understand the application of Karush-Kuhn-Tucker’s
optimality conditions.
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distribution. Parameters of shapes are dimensions of the optimized parts or a set of variables
describing the shape, e.g. coefficients of spline functions. Examples for the reinforced concrete
area herein can be finding the proper shape of holes within plate members [Pedersen, 2000],
the shape of a beam with holes [Yoshimura et al., 2002], the optimal shape of pre-cast retaining
structures [Ceranic et al., 2001] or the ribs within box columns [Yoshimura and Inoue, 1995].
From the mathematical point of view, two representations ofvariables - continuous and discrete
ones - can be found within the shape optimization area. The overview of the first case can be
found, e.g. in [Sokolowski and Zolesio, 1992], and the latter case for the structural optimization
is comprehensively summarized, for instance in [Bauer and Gutkowski, 1995].

Available algorithms for solving these tasks are representatives ofMathematical Program-
ming [Haslinger and Neittaanmaki, 1996], again theESO, a new method in this context is
the Simulated Biological Growthbased on the definition of a “fake” or artificial temperature
[Mattheck and Burkhardt, 1990] and once moreEAs.

1.2.3 Size optimization

In this form of an optimization4 a structure is defined by a set of sizes, dimensions or cross-
sections. These are combined to achieve the desired optimality criteria. Within this area two
main groups of structures can be distinguished.

Discrete structures. Here pin and rigid jointed structures can occur. In the case of steel
structures in particular, nearly all possible optimization problems have been subjected
to some form of investigation. To list a few successfully solved problems, optimization of
structures with semi-rigid connections [Kameshki and Saka, 2001], optimization against
buckling [Rong et al., 2001] or a finding minimum weight in connection with a minimum
number of steel profiles used in a design [Greiner et al., 2001] and [Greiner et al., 2003]
can be found in the corresponding literature. Many small-size examples from this area
serve as benchmarks for different types of optimization algorithms, with the 10-bar truss
[Belegundu, 1982] and the 25-bar space truss, e.g. [Adeli and Kamal, 1986] being the
most often cited ones. Again, here all variables are selected from the pre-defined discrete
admissible set. But this is not exactly the case of reinforced concrete frame structures
which are more likely to be part of the next group of structures:

Continuum structures. This group contains beam-like structures defined by continuous vari-
ables, which are not known in advance in contrast to the previous case. The basic example
is a beam with moments of inertia defined as a continuous variable [Lagaros et al., 2002].
All reinforced concrete optimization tasks, where the areaof reinforcing steel is an un-
known, will be the proper representatives of this group, too. Some examples of this class
of problems are discussed in Chapter 4.

Once again, available optimization methods are gradient basedMathematical Programming,
Optimality Criteriaalgorithms,hard-kill methods like the previously mentionedESOand again
EAs.

As a consequence of the definitions introduced above, we can distinguish one additional
form of structural optimization. If a design variable - the size of a member or the material prop-
erty - can reach zero value, i.e. it is not necessary in the structure and can be removed, then

4 Also known asSizing problems.
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this type of optimization is often calledLayout Optimization , e.g. [Kirsch, 1995]. The corner-
stone of this approach is the so-calledground structure, which defines all possible positions of
nodes and the set of all possible members/connections amongthese nodes. Then the goal is the
removal of inefficient members to obtain an optimal structure. If coordinates of nodes are also
unknown, this form becomes part of topology optimization, see Section 1.2.1. Therefore the
layout optimization can be seen as the connection point between the previously cited two kinds
of optimization.

An interesting feature in solving this form of optimizationis the possibility of failure of
hard-kill methods. In some cases a weak member is removed although it isnecessary for the
efficiency of the static scheme, see [Zhou and Rozvany, 2001]for more detailed discussion.

1.2.4 Topography optimization

This form is the least investigated part of structural optimization. Here you can find the search
for a proper shape for shell, membrane or tent like structures. Only few papers on this topic can
be found in the literature, e.g. [Goslingt and Lewist, 1996]or [Schwarz et al., 2001], with even
fewer dealing with reinforced concrete structures. And finally, the Mathematical Programming
methods are known as the only efficient solutions for this type of optimization problems.



Chapter 2

OPTIMIZATION METHODS

Natural selection can be seen as
cheating for scientists who want to
find discoveries only by perfect
deduction.

Peter Convey, Roger Highfield:
Frontiers of Complexity

At the beginning, it is perhaps worthwhile to recall that theaim of this work is to improve
the current state of the optimization methods applied to engineering problems with emphasis
on (although not restricted to) the area of Civil Engineering ones. As was stated already in
the Introduction part, we will deal almost exclusively withGlobal optimization methods, used
below. This work is not aimed at thorough introduction and review of these methods. For a very
complete overview, see the works of Arnold Neumaier [Neumaier, 2004] and [Neumaier, 2003].

From the mathematical point of view, an engineering task canbe understood as amulti-
objective, constrainedand oftenmixed integer-continuousoptimization problem (CMOP).
Below we offer a formal definition:

Constrained Multi-objective Optimization Problem. A generalCMOP includes a set of
n parameters (decision variables), a set ofk objective functions, and a set ofm constraints.
The optimization goal is to

minimize y = f(x) = (f1(x), f2(x), . . . , fk(x)) (2.1)

subjected to gj(x) = 0 , j = 1, . . . , ne , (2.2)

gj(x) ≤ 0 , j = ne + 1, . . . , m = ne+ ni , (2.3)

where x = (x1, x2, . . . , xn) ∈ X , X ⊂ {� , �}n ,

y = (y1, y2, . . . , yn) ∈ Y , Y ⊆ �n ,

ne andni are the numbers of equalities and inequalities, respectively, x is the decision
vector,y is the objective vector,X is denoted as the decision space andY is called the
objective space. Note that the set of all feasible solutions, i.e. all solutionsx for which
conditions (2.2) and (2.3) are satisfied, is denotedXf and its image in the objective space
is referred to asYf , i.e. Yf = f(Xf). Also note that we assume minimization hereafter,
the statements for maximization or combined minimization/maximization are similar.

The most ambitious task of an optimization method is usuallyfinding theglobal minimum or
maximum, which yet fulfills the given constraints. Whether such a solution is “optimal” (from
the point of view of achieving the desired practical goal) ornot, is another question, which
depends on the formulation of the problem, but not on the system of finding the optimum by
the search method. Therefore, we will understand the optimization method as ablack box
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Figure 2.1: A graphical interpretation of the Pareto dominance.

application and the only “interesting” evaluation of a selected algorithm is its performance,
i.e. usually reliability, in finding global optimum. Then, at least from the designer’s point of
view, the problem might be seen as “simple” - “only” to find thesuperior optimization method
for his problem. But relatively recently, the so-calledNo free lunch theorem was proven
in [Wolpert and Macready, 1997] and therefore, as stated in [Fogel, 1999],

. . . there is no best algorithm, whether or not that algorithm is “evolutionary”, and
moreover whatever an algorithm gains in performance on one class of problems is
necessarily offset by that algorithm’s performance on the remaining problems.

In other words, there is no best optimization algorithm. On the other hand, it does not mean
that for a specific problem you cannot find a superior optimization algorithm. Furthermore,
this is why there are so many available algorithms and tools for global optimization, see e.g.
[Neumaier, 2003].

Yet, keeping in mind that our goal is to apply some optimization method to engineering
problems, we cannot choose an arbitrary optimization algorithm. For example, a huge number
of mathematical programming methods require continuity orconvexity of the objective func-
tion. Many others require that derivatives of this functionexist. But practice shows that engi-
neering problems are not always continuous and, moreover, the derivatives cannot be obtained.
This is the reason why Evolutionary Algorithms are so popular as the only input they need are
the values of objective functions. Therefore, this work will primarily deal with these methods.

The next part will be devoted to the description of three mainproblems/aspects of optimiza-
tion methods: tackling multi-objective nature, handling of constraints and selecting discrete or
continuous domains to represent optimized variables. To bring the presented procedures closer
to everyday use, one part of this section will focus on the parallelization of Evolutionary Algo-
rithms.
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2.1 Solving multi-objective problems

In this work, attention is paid to the multi-objective nature of solved problems, because as
was mentioned in the presentation by Eckart Zitzler during the EUROGEN 2001 conference
[Zitzler et al., 2001]:

Single objective optimization is a special case of multi-objective optimization (and
not vice versa).

The main difference between single-objective and multi-objective optimization is that in the
former case all solutions can be completely ordered according to the objective functionf . In the
latter case the solutions inXf can be ordered only partially [Pareto, 1896]. As a consequence, in
the case of single-objective problems (SOPs) only one global optimum exists1, but in the case of
multi-objective problems (MOPs) conflicting objectives can cause situation where no solution
is superior to others. For the mathematical expression of the above mentioned statement we
need to define the so-calledPareto dominance, see also Fig. 2.1.

Pareto dominance.For any two decision vectorsa andb,

a � b (a dominatesb) iff ∀i : fi(a) ≤ fi(b) ∧ ∃i : fi(a) < fi(b), (2.4)

a � b (a weakly dominatesb) iff ∀i : fi(a) ≤ fi(b), (2.5)

a ∼ b (a is indifferent tob) iff ∃i : fi(a) < fi(b) ∧ ∃j : fj(a) > fj(b). (2.6)

The definitions of the opposite binary relations(≺,�,∼) are analogical2.

Then, a set of optimal trade-offsXp ⊆ Xf is called the globalPareto optimal set, iff

∀xp ∈ Xp : @x ∈ Xf : x � xp . (2.7)

In other words, solutions fromXp cannot be improved in any ofk objectives unless the remain-
ing objectives deteriorate3. Also note that the image ofXp in the objective spaceYp = f(Xp)
is called thePareto optimal front or surface, see also Fig. 2.2.

The traditional ways of solving theMOP are based on summations and/or different weight-
ing methods, i.e. conversion of theMOP into the single criterion optimization, see e.g. the work
[Miettinen, 1999] or the overview of all multi-objective algorithms [Marler and Arora, 2003]
and its shorter version [Marler and Arora, 2004]. As a practical example, the author of this
contribution in his previous research [Matouš et al., 2000] and [Lepš et al., 2002] used the total
price of a structure as the unifying variable among different antagonistic constraints. As an
unfavorable result, however, the multi-modal response of the objective function is obtained and
the resulting optimization problem is very difficult to solve, see Section 2.2.4. Other problems
cited in the literature for traditional solutions for theMOP are the sensitivity to the shape of
the Pareto optimal front and the necessity to have extended knowledge about the given prob-
lem [Zitzler, 1999].

1 or several solutions with the same objective value
2 Recall, that we assume minimization here. For the maximization case consult e.g. [Zitzler, 1999].
3 The difference between� and� is only in the possibility of coexistence of two solutionsa andb with the same
profit, i.e. the case off(a) = f(b) component-wise, which is a rare case in the engineering practice but can be
important for a decision process.
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Figure 2.2: A basic notation for a multi-objective optimization.

In the last decades, Evolutionary Algorithms proved to be the proper solution strategy for
the above mentioned problems. They can cover large domains and discover multiple trade-offs
during one optimization run. Therefore, Section 2.2.1 willbe devoted to a short description of
Evolutionary Algorithms and their modification for theMOP.

2.2 Stochastic algorithms

Although we have promised to introduce Evolutionary Algorithms, the starting point must be at
a higher level, in the area of global stochastic optimization methods. The term “global” stands
hereafter for the ability to find the global optimum in the case of an infinite number of iterations.
This is usually handled by some random function, which explains the word “stochastic” in
the title. The representatives of this group are blindrandom search(euphemistically called
Monte Carlo simulation) [Pincus, 1970],Tabu search, see e.g. [Youssef et al., 2001],Simulated
Annealing[Vidal, 1993] and its modifications [Ingber, 1995], differentHill-climbing algorithms
[Yuret, 1994] or the already mentionedEvolutionary Algorithmswhich are described in more
detail in the next subsection. For a more comprehensive summary of several stochastic methods
see e.g. [Van Iwaarden, 1996].

2.2.1 Evolutionary Algorithms

What mainly distinguishes Evolutionary Algorithms from others is the fact that they employ
a set of possible solutions, often calledpopulation, instead of only one single search point.
Therefore a new terminology must be introduced. The notation in this work is derived from
theEvolution Strategies(ESs) [Bäck and Schwefel, 1995] and can be probably extended toall
Evolutionary Algorithms.
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Evolutionary Algorithm’s notation. Let µ be the number of independently stored possi-
ble solutions for the given optimization problem (OP) that form a populationP (t); t stands
for time or number of cycles. Then, if in every cycle of theEA, usually calledgeneration,
λ new solutions are created, this algorithm will be denoted(µ+, λ)-EA. Moreover,(µ+λ)
stands for selection of a new population for the next cycleP (t+1) from the union ofµ + λ
solutions and(µ , λ) denotes selection only fromλ members, respectively4. Next, three
types of operators usually constitute the core of the algorithm:

recombination5 recj
i : I i → Ij i ≤ µ , j ≤ λ

mutation6 mut11 : I → I

selection selji : I i → Ij i ≤ µ || µ+λ , j ≤ µ

where the operatoroprj
i ∈ {rec,mut, sel} denotes an output ofj solutions fromi input

individuals7, tI is a potential solution for a given problem8 and tI i is a set ofi possible
solutions in time or generationt. The final scheme of an appropriate algorithm is the
combination of the above mentioned operatorsopr and is repeated until some stopping
criterion, usually the maximum number of function calls, ismet.

To show the versatility of the proposed terminology and to highlight differences among
evolutionary and single-point optimization methods, a number of (previously mentioned) very
different and well-known optimization algorithms are classified according to the introduced
scheme. Also note that all of the below mentioned algorithmsare for theSOPonly.

Gradient methods from the Mathematical Programming group are the best examples of the
(1 , 1)-algorithm. They contain only one operatorxt+1 = mut11(xt) = xt + αtdt, where
dt is a direction of the descent andαt is the step in the directiondt. Since the stepdt

is assumed to be in a descent direction, the selection is redundant. Hence the general
gradient-based algorithms can be written as

optGRAD(t+1I) = mut11(
tI) . (2.8)

Simulated Annealing (SA) is another traditional optimization method, which will bethe best
example of(1+1)-algorithm. Again, withµ = 1, the only operator is mutation, in this
case some random function. The actual implementation of themutation operator is not
important, it must be only ensured that each point in the space is visited at least once in
the infinite number of runs. The core of this algorithm is a selection process

sel12(a,b) =







a , iff u(0, 1) ≤ p =
1

1 + e∆E/T

b otherwise,
(2.9)

4 The mark || will be used in the sense ofOR operator, i.e. the statementµ || µ+λ will denoteµ OR µ+λ.
5 The termrecombinationwill be used for cross-operations on more than one individual.
6 A mutationwill identify any change within one individual, no matter whether it is random or not.
7 This notation is in contradiction to definitions in [Bäck and Schwefel, 1995], where indicesi andj are swapped.
The indexing used herein is more close to mathematical expressions like summations

∑to

from or progres-
sions{}to

from .
8 An individualI is the encoded vector of design variablesx (see Section 2.4) and in someEAs can also contain
information on its history and/or parameters used in the time of its origin.
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Figure 2.3: The cross-over operator.

where the energy difference is given by∆E = f(b)−f(a), T is the artificial temperature
determined by the so-called cooling schedule, usually in the form

T ≈ T0

ln t
(2.10)

providedT0 is sufficiently large, see e.g. [Ingber, 1993], and finally,u ∼ U(·, ·) is a re-
alization of a uniformly distributed random variable from agiven domain. The beauty
of this algorithm is a non-zero probabilityp that enables replacement of a better solution
with a worse one. Therefore, the whole algorithm can be written in the following form

optSA(t+1I) = sel12(mut11(
tI), tI) . (2.11)

Simple Genetic Algorithms (SGAs) are often cited as the oldest Evolutionary Algorithms,
even though the Evolution Strategies (ESs) are actually older, see below. The reason why
is thatSGAs had been predicted (but not discovered yet) by J. Holland in[Holland, 1975]
during his work onCellular Automata. Later on, the topic was studied in more detail, in-
cluding the proofs of convergence. Especially a book by D. E.Goldberg [Goldberg, 1989]
is the most popular publication that deals with this topic. TheSGAs follow an analogy
of processes that occur in living nature within the evolution of live organisms during
a period of many millions of years. Simple genetic algorithms treat individual solutions,
here calledchromozomes, as binary strings (see Section 2.4.2). This kind of representa-
tion seems to be very convenient9 for optimization problems coming from a combinatoric
area (e.g., the traveling salesman problem).

Based on binary coding, the cross-over and mutation operators have usually the following
form. Firstly, the cross-over operator chooses two chromozomes, so-calledparents, and
then creates their two descendants (children) using the following operation: it selects
a position inside the binary string and starting from this position exchanges the remaining
parts of the two chromozomes (see Figure 2.3). Secondly, themutation randomly alters
one or more bits in the binary strings of new solutions.

The next specific feature of theSGA is the selection for a reproduction cycle at the begin-
ning of the algorithm. New solutions are created with cross-over or are copied into a new
population. This can be classified as a(µ+λ)-algorithm. Therefore, the scheme of the
algorithm is

optSGA(t+1Iµ) = mut11(rec2
2(

t+1Īλ), t+1Īλ) , t+1Īλ = selλµ(tIµ) , (2.12)

9 The main cited advantage of a binary coding is the maximum information carried by a one bit.
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where the “elitist” sett+1Īλ of theλ ≤ µ cardinality is usually called themating pool.

Although the codings, operators and proofs of convergence were initially based on the
binary basis, nowadays real-encoded and other alphabets based genetic algorithmsGAs
have proved their reliability and are widely used for solutions of real-world problems, see
e.g. [Michalewicz, 1999, and references therein].

Evolution Strategies (ESs) were developed as(1+1) strategy in 1964 at the Technical Uni-
versity of Berlin by Rechenberg and Schwefel as an experimental optimization tech-
nique. As the entirely firstEvolutionary Algorithmcan be considered the(µ+1) − ES
strategy presented in [Rechenberg, 1973]. Since thenESs have developed into very ro-
bust tools with many(µ+λ) and(µ , λ) alternatives. The comprehensive notation used
and extended herein, see [Bäck and Schwefel, 1995], as wellas the proofs of conver-
gence [Schwefel and Bäck, 1995] and self-adaptive control[Eiben et al., 1999] predeter-
mines these algorithms for a wide range of applications. Moreover, the fact that from the
starting point they were developed as real-coded, movesESs into engineering methods
rather than mathematical10. To conclude this paragraph, the notation of these methods
cannot be missed:

opt(µ+λ)−ES(t+1Iµ) = selµµ+λ(mut(rec(tIµ)), tIµ) , (2.13)

opt(µ ,λ)−ES(t+1Iµ) = selµλ(mut(rec(tIµ))) , (2.14)

where the recombination operator is more or less similar to real-coded genetic algorithms’
cross-over operators and the mutation usually alters a solution by a normally (Gaussian)
distributed random number.

A huge number of other evolutionary methods not explicitly cited above are usually a combina-
tion of the above mentioned ideas and in the view of theNo free lunch theoremany of them
can be successful in solving the given single-objective optimization problem.

2.2.2 Parameters tuning

Besides many advantages that Evolutionary Algorithms have, they are connected with several
difficulties. In addition to the demand for thousands of evaluations of an objective function, it
must be noted, that one of the most important obstacles is thefinding of proper parameters - ei-
ther the cooling scheme inSA, see Eq. (2.10) or Eqs. (3.18) and (3.27), or several cross-over and
mutation parameters, see Appendix C for parameters of fourEAs used within this work. Dur-
ing last several years, this problem has been solved usuallyby minimizing needed parameters
[Harik and Lobo, 1999], usually in some form of self-adaptation [Saravanan et al., 1995]. For
an overview of self-adaptation see references [Hinterdinget al., 1997] and [Eiben et al., 1999].
However, it can be stated, that there is a dependency betweena number of parameters and the
popularity of the method - lower a number of parameters, higher a number of satisfied users.
See also Section 3.3.1 and 3.3.2 for such examples of low-number-of-parameters methods.

10 The place of origin, too, plays an important role - theSGAs are favored in English-speaking countries, on the
other side, theESs are very popular in Europe.
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2.2.3 Multi-objective Evolutionary Algorithms

As mentioned earlier, the group ofEAs seems to be suitable for solvingmulti-objective prob-
lems (MOP). The reason is that the use of a population of possible solutions can easily cover
a searched Pareto optimal set. Referring to [Coello, 2003],two generations ofMulti-objective
Evolutionary Algorithms (MOEA s) can be distinguished. In the case of the first one, to evalu-
ate each individual its distance (or Pareto dominance) to already found or a-priori known Pareto
optimal set is used. This relatively simple idea was firstly implemented in 1984 by David
Schaffer in his Vector Evaluated Genetic Algorithm (VEGA ) [Schaffer, 1984]. The core of
this first group is built upon algorithms like the Multi-Objective Genetic Algorithm (MOGA )
[Fonseca and Fleming, 1993], the Niched-Pareto Genetic Algorithm (NPGA), presented e.g. in
[Horn and Nafpliotis, 1993], and also the Nondominated Sorting Genetic Algorithm (NSGA)
[Srinivas and Deb, 1994]. The second generation ofMOEA s is characterized by the idea of
elitism which is usually implemented in the form of externally stored solutions from an al-
ready found Pareto optimal set11. This group is represented by algorithms like the Strength
Pareto Evolutionary Algorithm (SPEA) [Zitzler and Thiele, 1999] and especially its second
versionSPEA2 [Zitzler et al., 2001]. It is also worth to mention the secondversion of the
NSGA algorithm -NSGA II [Deb et al., 2000], the Micro Genetic Algorithm (MGA ), see e.g.
[Coello and Pulido, 2001] or [Annicchiarico, 2003], and finally, the Pareto Archived Evolution
Strategy (PAES) [Knowles and Corne, 2000].

From a general point of view, two conflicting objectives in solving multi-objective problems
are often cited: the exploration and the exploitation. The first one deals with the level of diver-
sity in a population and the second with the convergence to the Pareto optimal set. The former
one must be solved inevitably using evolution of a population and therefore will be solved as
a part of the current Evolutionary Algorithm. In spite of this, exploration should be the basic
ability of all EAs and hence fulfilment of this criterion should always be ensured. Therefore
the important (but not unique) characteristic of anyMOEA will be its ability to get close to an
optimal set. As mentioned previously, the convergence to the desired Pareto optimal set is in
the most modern algorithms tackled by a set ofelitist solutions. And following ideas presented
in [Zitzler, 1999], the approach used in many of the previously mentioned multi-objective al-
gorithms can be generalized for anySOPEvolutionary Algorithm. Particularly, for theSPEA
algorithm, the management of an elitist set obtained fromANY −EA can be written as

optSPEA(t+1Iµ, t+1Ī µ̄) = (selµ̄µ+µ̄(t+1Iµ, tĪ µ̄), t+1Iµ) , (2.15)
t+1Iµ = optANY −EA(tIµ || tIµ+tĪ µ̄) ,

where tĪ µ̄ is an elitist set (archive) of already found Pareto optimal solutions in timet that
containsµ̄ items. Note that in theSPEA algorithm theµ̄ is not constant during time, but is
increasing from some starting value, e.g.0, to a given limit valuēµmax.

This area is still unexplored and many applications and research results on this subject are
published every month. For example, Carlos A. Coello Coello’s “List of References on Evo-
lutionary Multi-objective Optimization” [Coello, 2004] actually contains more than 1,400 ref-
erences of papers or technical reports dealing with evolutionary multi-objective optimization.
Note also, that theNo free lunch theoremis valid here too, see [Corne and Knowles, 2003] for
more details.
11 Usually calledarchive.
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To conclude this section, it must be emphasized that the difference between single and multi-
objective optimization is not only at the programming level, but also in the system of gathering
information from an output. While in the case of the single-objective optimization, the designer
is forced to use usually one global optimum found by any algorithm, in the second case there is
a set of different solutions and the designer must decide andchoose the appropriate structure.
This domain of research is called Decision Making and is usually solved by algorithms from
Operational Research. For a small review on Decision Makingconcerning evolutionary multi-
objective optimization (EMOO ), see e.g. [Coello, 2000b].

2.2.4 Note on multi-modal optimization

Themulti-modal optimization term is usually used for problems with a several number of local
minima. Such a response (or landscape) is typical for engineering problems, where especially
constraints can cause a local valley on the path to the globaloptimum. The problem of being
trapped in a local minimum, in theEAs area called thepremature convergence, goes through-
out all optimization algorithms, starting from gradient optimizers and ending in Evolutionary
Algorithms. Even when using the Simulated Annealing methodsuch a situation can frequently
emerge. At this point, several optimization problems can bedistinguished. The most common
and in this situation the “minimal” task is searching for theexactly one global optimum. On
the opposite side, and therefore here called “maximal” problem, is finding all local optima for
a given multi-modal function. However, the requirement from engineering practice will be typ-
ically a combination of these extreme cases. The traditional “in-direct” solution for the minimal
problem is restarting a search from a different point in gradient methods or a new search with
a different starting population in Evolutionary Algorithms. In the Simulated Annealing method,
except re-starting, also re-annealing (change of temperature) can be used for the same purposes
(see Section 3.3.3 for one particular implementation). As a“direct” solution we understand the
management of previously discovered local minima and some procedure for avoiding the next
visit in these points. This is done by the so-callednichingalgorithms, which store the found
local optima and penalize solutions in their close neighborhood. These methods are also used
for the maximal case, where one needs to discover all sub-optimal solutions. A comprehen-
sive review and many suggestions on the maximal case can be found in [Mahfoud, 1995b, and
references therein]. For the minimal case different solutions exist, concerning this topic the
most recent work of A. Kučerová [Hrstka and Kučerová, 2004] looks promising. Nevertheless,
the existence of a huge number of multi-modal solvers leads to an idea that theNo free lunch
theorem can be extended to these methodologies, too. This can be supported e.g. by research
done in [Mahfoud, 1995a], where different niching methods were superior in solving different
levels of difficulty. In spite of this, the main conclusion from Mahfoud’s work is that parallel
methods are better than sequential ones, not only from the point of reliability but also in terms
of speed. These findings are in agreement with the results obtained from the area of parallel
Evolutionary Algorithms (see the next section).

Last but not least, let us note that the multi-modal behaviorin engineering problems is
mainly caused by single-objectivization [Knowles et al., 2001], i.e. by the combination of dif-
ferent, usually conflicting, objectives into only one. Thisis so inappropriate intervention into
the process of finding an optimal solution that the multi-objective methodology presented above
in Section 2.1 and later seems to be rather a necessity than a choice.
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2.2.5 Parallel Evolutionary Algorithms

The most common reason for using parallel implementation ofEAs (except for utilization of
existing parallel computers) is the shortening of a computational demand of an optimization pro-
cess. The requirement on computational resources leads to the development ofparallel or, as
they are more often called,distributed Evolutionary Algorithms (PEAs)12. Moreover, it was
also discovered, that these algorithms are superior in solving multi-modal objective functions
(see previous section), but still, such algorithm can be implemented on a sequential platform.
Therefore, the term parallel Evolutionary Algorithm will be hereafter devoted only to algo-
rithms implemented in parallel environment like shared memory systems or clusters of personal
computers. Especially the latter case will be the most emphasized one in this work, mainly be-
cause it aims at small engineering companies usually equipped with this type of networks and
computers.

Throughout the last two decades the terminology used withinPEAs became stable, there-
fore one can distinguish three kinds (or topologies) ofPEAs [Cantú-Paz, 1997]. The first one
is created by thefine-grainedEvolutionary Algorithms, where small subpopulations are spread
into grid-like space. The connection among subpopulationsis characterized by high frequency
communication with the nearest neighbors. This scheme is well suited for massively parallel
systems, where the nearest processors are directly connected and therefore the communication
cost is low. The second one, thecoarse-grained(or island) EAs, consists of much smaller
number of subpopulations, usually formed in star or circular shapes. The arbitrary connectivity
is followed by a low frequency exchange of optimal solutions, here calledmigrants, among
individual “islands”. Although the topology predetermines this methodology to the cluster of
computers, other platforms can be used as well. The last one -theglobal parallel model - is
based on the master-slave paradigm, where themaster, or root, processor runs an optimization
algorithm and other processors, calledslaves, solve only the objective function. This is based
on the idea of the independence of individual solutions within one generation, here called “im-
plicit parallelism” [Mahfoud and Goldberg, 1995]13. The first advantage of this last model is
independence on the hardware platform, i.e. it can be run on shared memory systems as well
as on the distributed memory ones. The second main feature isthat the global parallel model
produces the same behavior as his serial ancestor. This is mainly characterized by the same
number of tuning (or control) parameters, which is not fulfilled for the first two topologies. And
again, our goal usually deals with optimization of a design process that inevitably contains finite
element analysis, which is usually the most expensive part of an optimization process. There-
fore, the distribution of a more complex analysis part is suitable. Moreover, the chosen parallel
computing scheme ensures constant distribution of the workamong the processors provided
that the time spent on evaluation of two solutions does not differ. Although this condition is
not regularly met, especially for nonlinear analyses, it appears that the sufficiently high number
of solutions assigned to each processor eliminates this disadvantage. The missing multi-modal
solving ability (because it has no parallel subpopulation)is the main disadvantage in compari-
son with two others, but can be solved with previously mentioned methods, see Section 2.2.4.

To sum the above lines up, it seems that the global parallel model is the proper choice for
the optimization of engineering tasks. The last cited advantage is the possibility to easily check

12 The bibliography [Alander, 1995] contains more than 500 references on this topic
13 An Evolutionary Algorithm in this case is not divided into processors and hence it is notdistributed, but the

whole algorithm is parallel and therefore belongs toPEAs.
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the optimum amount of required processors for a given problem. It can be simply estimated by
the following relation [Cantú-Paz, 2001]

P ∗ =

√

nTf

Tc
, (2.16)

whereP ∗ is the optimal number of processors,n is the number of solutions in a population,
Tf is time for one evaluation of an objective function andTc is the latency time - hardware
dependent variable which is spent on starting communication between two processors.

2.3 Handling of constraints

Thus far we have supposed that the optimal solution is chosenfrom the feasible set of solu-
tions, i.e. fromXf . In the case of constrained optimization there arises the need to tackle the
problem of promising solutions that, unfortunately, violate some constraints. In the literature
several strategies can be found, but we will limit our attention only to methods that are easily
applicable to the Evolutionary Algorithms nature and have proved their reliability for engineer-
ing optimization tasks. Note that traditional methods comefrom theSOP area and therefore
the adopted notation will be for one objective function only. One example of multi-objective
approaches will be introduced in the last part of this section.

2.3.1 Death penalty approach

The term “death penalty” stands for the rejection of an infeasible solution from a search process.
The advantage of this strategy is its easiness, the disadvantage can occur in problems, where the
feasible domain is not convex or is divided into a number of disjoint parts. Also in the case of
highly constrained problems, where the problem of finding the first feasible solution can arise,
this method usually fails. To overcome these obstacles, the“death penalty” is often combined
with repair or problem-dependent search operators, see e.g. [Michalewicz and Nazhiyath, 1995]
or [Schoenauer and Michalewicz, 1997].

2.3.2 Penalty function methods

Note that in the present work we use onlyexterior penalty functions which penalize infeasi-
ble solutions, which is in contrast with theinterior penalty approach that penalizes feasible
solutions near the boundary of a feasible domain. The formerone admits infeasible solutions
during the whole optimization process and therefore cannotensure the feasibility of the found
optimum. On the other hand, the big advantage is that the optimization can start everywhere.
Therefore this procedure is much more flexible than the otherone. The latter works only with
feasible vectors, therefore the found optimum as well as intermediate solutions always fulfill
the given conditions. The disadvantages are clear - this procedure cannot work with equality
constraints (because it is almost impossible not to violatethem) and must start in the feasible
area.

Theexteriorpenalty approach is one of the most often used approaches forhandling con-
straints, especially within the Evolutionary Algorithms community. The basic idea is to move
the solution from the infeasible to feasible space by addingsome value to the objective function,
i.e.

ff(x) = f(x) +Q(x) , (2.17)
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whereQ is equal to zero if the solution is feasible or equals some positive value (in minimization
problems) otherwise. The value ofQ can be defined on the three different bases:

1. An individual is penalized only for its unfeasibility, with its distance from the feasible set
playing no role.

2. The value can be defined as a measure of distance from the feasible domain or

3. as a price or energy spent to repair such a solution.

In practice, the definition of a penalty function can take several forms. In a general form, the
most common implementation can be written as

Q(x) = λ(τ)

ne
∑

j=1

gj(x)α + λ(τ)

ne+ni
∑

j=ne+1

min[0, gj(x)β ] , (2.18)

whereα andβ are usually constants equal to1 or 2. In the case that the functionλ(τ) does not
change in time, it is calledstatic, in the opposite casedynamic. In the latter case, the function is
usually assumed to be increasing with respect to “time” or “temperature”τ to ensure feasibility
in the last stages of the optimization process. For a more comprehensive overview of different
forms of penalty functions, see e.g. [Coello, 2000c]. The not-so-strict requirements on penalty
functions enable formulation of a problem-dependent penalty function or different engineering-
like forms of penalty terms (see e.g. [Lepš and Bittnar, 2001] or Eq. 3.4 in Section 3.2.3) and
hence increase the popularity of this approach.

2.3.3 Constraints as objectives

A completely new and revolutionary approach has been presented by Carlos A. Coello Coello
in [Coello, 2000a]. Even though his work is not the first one onthis subject, it is closer to an op-
timal solution than other approaches. The idea is very straightforward. During an optimization
process we admit infeasible solutions but in the end we want to obtain only the feasible ones,
i.e the Pareto set. This can be done by minimizing the distance between infeasible and feasible
regions. And this is nothing more than next optimization process and, therefore, it can be in-
cluded in the original multi-objective one. Generally speaking, we deal with a new optimization
problem:
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Multi-objective solution for constrained problems. Again, we deal with a set ofn pa-
rameters (decision variables), a set ofk objective functions, and a set ofm constraints. The
optimization goal is to

minimize y = e(x) = (e1(x), e2(x), . . . , eK(x)) , K = k +m , (2.19)

where ei(x) = fi(x) , i = 1, . . . , k , (2.20)

ei(x) = g2
j (x) , i = k + 1, . . . , k + ne ; j = 1, . . . , ne , (2.21)

ei(x) =

{

gj(x) , iff gj(x) > 0 ,

0 otherwise, i = k + ne + 1, . . . , K ,
(2.22)

j = ne+ 1, . . . , m = ne + ni .

Now this problem has become an unconstrainedMOP and any appropriate multi-objective
solver can be applied. Note that in the equation (2.21), the absolute value instead of the
square power of the equalitiesgj(x) can be used.

The next advantage can be seen in the ability of finding promising solutions in problems with
no feasible regions, i.e. solutions with the minimal distance to an admissible domain. As
we assume the application of Evolutionary Algorithms, the disadvantage will be theO(KN2)
computational cost, whereN is the number of simultaneously compared solutions in the Pareto
dominance procedure. To overcome this obstacle, the methodology based on the order of solu-
tions in terms of violated constraints is also proposed in [Coello, 2000a]. This procedure and
other possibilities have not been systematically studied yet and await a more detailed investiga-
tion.

Figure 2.4: The division of optimization algorithms in accordance with [NEOS Guide, 1996].

2.4 Discrete vs. continuous optimization

If an interested reader visits e.g. web pages of the NEOS server [NEOS Guide, 1996] with
a huge number of global optimization methods, one thing he orshe can find is some classi-
fication of these algorithms. In this particular example, the tree of optimization methods, as
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depicted in Fig. 2.4, can be found. If we recall different forms of structural optimization (Sec-
tion 1.2), two representations of design variables are mainly used - discrete and continuous,
respectively. From Fig. 2.4 it seems that only one sort of methods, particularly the stochastic
programming, can be used for problems with both representations. The real situation is not
so strict because the transformations among different encodings are available. It is worthwhile
to mention that we presume a computer implementation of the proposed procedures, therefore
internal representation of variables in a computer must be taken into account too.

In historical context, several codings or alphabets have been studied and applied within
the optimization methods area. Until now the most often usedcodings have been the fol-
lowing ones: real or continuous, integer, binary - popular especially in the starting years of
Evolutionary Algorithms [Goldberg, 1989],trees- nowadays e.g. inGenetic Programming
methods [Koza, 1992],lists - for the so-calledtraveling salesman problem(TSP) and sim-
ilar tasks, see e.g. [Michalewicz, 1999], or different alphabetic codings, e.g.DNA comput-
ing [Adleman, 1994]. We will limit our attention only to the firstthree cited and their computer
implementation. Also the speculation on the influence of these codings on the algorithms per-
formance will be left out14. Moreover, as shown in the next chapter, the results of real and
integer coding-based Evolutionary Algorithms are comparable.

2.4.1 Integer coding

Recall the fact that we deal with integers or continuous realnumbers. In the case of a dis-
crete set of real numbers, the indices will play the role of alternative variables. Consider
x = {x1, x2, . . . , xn} as a vector ofn variables, integer or real numbersxi, defined on a closed
intervalmini ≤ xi ≤ maxi on an appropriate domainx ∈ {� , �}n. Further assume that each
variablexi is to be represented with some required precisionpi, defined as the smallest unit
the numberxi can attain. Then, each variablexi can be transformed into a nonnegative integer
numberzi ∈

�+
0 as

zi =

⌊

xi −mini

pi

⌋

, (2.23)

where operatorb·c denotes the integer truncation. The inverse transform is given by

xi = zi pi +mini . (2.24)

For instance, the real number314.159 with precisionp = 0.001 and minimummin = 0.0 is
transformed into the integer number314159 and vice versa.

This is also the meet-point to the binary coding, because theencoded vectorz can be oper-
ated as a binary string using native properties of computer memory data and/or can be used as
a vector of integer numbers.

2.4.2 Binary coding

In accordance with the previous section, we may deal with a problem of decoding an integer
vectorz into a binary string provided that this operation is not covered by the selected program-
ming language. First, the lengthq of the final binary string is needed and can be computed e.g.

14 Actually, there is a mathematical proof, that these representations are equivalent, see e.g. [Fogel, 1999].
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by

q =

⌊

ln(maxi −mini) − ln(pi)

ln 2

⌋

+ 1 , (2.25)

where the notation is the same as in the previous section. Then the binary stringBi ∈ {0; 1}q

pertinent to the integer numberzi can be obtained by

Bi
j = zi/2

j−1 mod 2 , j = 1, . . . , q . (2.26)

As a result,Bi will contain the list of bits of the numberzi in the ascending order, i.e. from the
least to the most important one. The recursive relationshipis given by

zi =

q
∑

j=1

Bi
j 2j−1 . (2.27)

2.4.3 Real coding

The beauty of this encoding can be seen in its easiness, because in common programming
languages the assignment

z = x , z ∈ �n , x ∈ {� , �}n (2.28)

will usually work. The opposite direction can be handled with some truncation or rounding
procedure. For example,

xi = bzi / pi + 0.5c pi (2.29)

is the most common.



Chapter 3

A COMPETITIVE COMPARISON OF FOUR EVOLUTIONARY
ALGORITHMS

Who cares how it works, just as
long as it gives the right answer?

Jeff Scholnik

Preface

This chapter was originally produced as a joint work of four authors: O. Hrstka, A. Kučerová,
J. Zeman and the author of this thesis. This contribution wasfirstly published as a conference
paper [Hrstka et al., 2001] and later on it was, in a revised form, accepted to the international
journal [Hrstka et al., 2003]. Because this research is an essential part of the author’s work, it is
presented here, enhanced by the notation introduced in the first chapter.

A comparison of several stochastic optimization algorithms developed by the above-introdu-
ced authors in their previous works for the solution of some problems arising in Civil Engineer-
ing is presented. These optimization methods are: Integer Augmented Simulated Annealing
(IASA ), Real-coded Augmented Simulated Annealing (RASA) [Matouš et al., 2000], Differ-
ential Evolution (DE) in its original fashion developed by R. Storn and K. Price [Storn, 1996]
and Simplified Real-coded Differential Evolution (SADE) [Hrstka and Kučerová, 2000]. Each
of these methods was developed for some specific optimization problem; namely the Cheby-
chev trial polynomial problem, the so-calledtype 0function and two engineering problems –
the reinforced concrete beam layout and the periodic unit cell problem respectively. Detailed
and extensive numerical tests were performed to examine thestability and efficiency of the pro-
posed algorithms. The results of our experiments suggest that the performance and robustness
of the RASA, IASA andSADE methods are comparable, while theDE algorithm performs
slightly worse. This fact together with a small number of internal parameters promotes the
SADE method as the most robust one for practical use.

3.1 Introduction

Nowadays, optimization has become one of the most discussedtopics of engineering and ap-
plied research. Advantages coming from using optimizationtools in engineering design are
obvious. They allow to choose an optimal layout of a certain structure or a structural compo-
nent from the huge space of possible solutions based on a morerealistic physical model, while
the traditional designing methods usually rely only on somesimple empirical formulas or guide-
lines resulting in a feasible but not necessarily an (sub-)optimal solution. Using optimization as
a method of design can raise engineering job to a higher level, both in terms of efficiency and
reliability of obtained results.
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Typically, optimization methods arising in engineering design problems are computation-
ally demanding because they require evaluation of quite a complicated objective function many
times for different potential solutions. Moreover, the objective function is often multi-modal,
non-smooth or even discontinuous, which means that traditional, gradient-based optimization
algorithms fail andglobal optimization techniques, which generally need even a larger num-
ber of function calls, must be employed. Fortunately, the rapid development of computational
technologies and hardware components allows us to treat these problems within a reasonable
time.

As indicated previously, the optimization methods can be divided generally into two groups:
the gradient methods, which operate on a single potential solution and look for some improve-
ments in its neighborhood, and global optimization techniques – represented here byEvolution-
ary Algorithms– that maintain large sets (populations) of potential solutions and apply some
recombination and selection operators on them. During the last decades, Evolutionary Algo-
rithms have received considerable attraction and have experienced a rapid development. Good
compendium of these methods can be found for example in [Michalewicz et al., 1997] and ref-
erences therein. The main paradigms are:Genetic Algorithms(binary or real coded),Aug-
mented Simulated Annealing(binary or real coded),Evolution StrategiesandDifferential Evo-
lution. Each of these methods has many possible improvements (see,e.g., [Andre et al., 2000]
or [Fan et al., 2000]).

Many researchers all over the world are united in an effort todevelop an Evolutionary Al-
gorithm that would be able to solve reliably any problem submitted to it. Currently, there is
no such method available. Each method is able to outperform others for certain type of opti-
mization problem, but it extremely slows down or even fails for another one. Moreover, many
authors do not introduce a reliable testing methodology forranking their methods. For example
they introduce results of a single run of a given method, which is rather questionable for the case
of stochastic algorithms. Finally, the methods are often benchmarked on some test functions,
that even if presented as complicated, are continuous and have few local extremes.

This paper presents several optimization methods that weredeveloped and tested for dif-
ferent types of optimization tasks. Integer Augmented Simulated Annealing (IASA ), derived
from a binary version of the algorithm [Lepš andŠejnoha, 2000], was developed to optimize
a reinforced concrete beam layout from the economic point ofview. For solving the prob-
lem of a periodic unit cell layout [Zeman andŠejnoha, 2001], Real-coded Augmented Simu-
lated Annealing was applied. Differential Evolution aroseto solve the famous Chebychev
polynomial problem [Storn, 1996],[Storn, WWW]. The last ofthe introduced methods is the
so-calledSADE technology. It is a simplified real-coded differential Genetic Algorithm that
was developed as a specific recombination of a Genetic Algorithm and Differential Evolution
intended to solve problems on high-dimensional domains represented by thetype 0test func-
tion [Hrstka and Kučerová, 2000]. All these methods may aspire to be a universal optimization
algorithm. So, detailed numerical tests of all these four optimization methods for the aforemen-
tioned optimization problems to examine their behavior andperformance have been conducted.

The chapter is organized as follows. Section 3.2 provides brief description of each opti-
mization task, while individual optimization algorithms are discussed in Section 3.3. Numerical
results appear in Section 3.4. Summary of the performance ofindividual methods is presented
in Section 3.5. For the sake of completeness, the parameter settings of algorithms are shown in
Appendix C.
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Figure 3.1: A graph of a Chebychev polynomial (n = 8).

3.2 Optimization tasks

The optimization problems that are used as a set of test functions can be divided into two groups:
the “test suite”, containing “artificial functions” and the“engineering problems”, which collect
more (hopefully) practical optimization tasks. Specifically, these problems are :

Test suite containing the Chebychev trial polynomial problem andType 0benchmark trial
function and

Engineering problems consisting of the Reinforced concrete beam layout and the Periodic
unit cell problem.

The following section provides description of selected functions in more detail.

3.2.1 Chebychev problem

The Chebychev trial polynomial problem is one of the most famous optimization problems. Our
goal is to find such coefficients of a polynomial constrained by the condition that the graph of
the polynomial can be fitted into a specified area (see Fig. 3.1).

Thus, the optimized values are the parametersai of a polynomial expression:

f(x) =

n
∑

i=0

aix
i, (3.1)

and the value of objective function is determined as a sum of the areas, where the function graph
exceeds a given boundary (hatched areas in Fig. 3.1).

3.2.2 Type 0 function

This trial optimization problem was proposed in [Hrstka andKučerová, 2000] to examine the
ability of the optimization method to find a single extreme ofa function with a high number
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Figure 3.2: An example of atype 0function.

of parameters and growth of computational complexity with the problem dimension. For this
reason, we used a function with a single extreme on the top of the high and narrow peak:

f(x) = y0

(

π

2
− arctan

‖x − x0‖
r0

)

, (3.2)

wherex is a vector of unknown variables,x0 is the point of the global extreme (the top of the
peak) andy0 andr0 are parameters that influence the height or the width of the peak, respec-
tively. An example of such a function on one dimensional domain is shown in Fig. 3.2.

Although this example function has only a single extreme, tofind it even with a moderate
precision is a non-trivial task for several reasons. First,in the very neighborhood of the extreme
the function is so steep that even a futile change of the coordinates causes a large change of the
function value; in such a case it is very difficult for the algorithm to determine which way leads
to the top. Second, the peak is located on a very narrow part ofa domain and this disproportion
increases very quickly with the problem dimension.

3.2.3 Reinforced concrete beam layout

An effort to create an optimal design of a steel-reinforced concrete structure is as old as the
material itself. In present times emphasis is put on this problem due to widespread use of
RC structures in Civil Engineering. Frame structures are a major part in this field with beams
playing an important role as one of the basic building blocksof this construction system. An ob-
jective is to choose the best design from all possible configurations that can create the requested
structure – in our case a continuous beam (see Fig. 3.3).

The total cost of the structure is used as a comparison factor. An advantage of the financial
rating is its natural meaning to non-experts and easiness ofconstraints implementation. In our
particular case, the objective function reads

f(X) = VcPc +WsPs +
∑

pfi , (3.3)

whereVc is the volume of concrete andWs is the weight of steel;Pc andPs are the price of
concrete per unit volume and steel per kilogram, respectively. From the mathematical point
of view the penalty functionpfi is the distance between a solution and the feasible space, or
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Figure 3.3: A continuous beam subjected to a uniform loading.

equivalently, a price spent on the fulfillment of the condition i. Suppose that a variableΦi

should not exceed a certain allowable limitΦi,max. Then, the penaltypfi assumes the form

pfi =

{

0 if Φi ≤ Φi,max,

wi · (Φi/Φi,max)
2 otherwise,

(3.4)

wherewi is the weight of thei-th constraint.
The constraints in this procedure deal with allowable strength and serviceability limits given

by a chosen standard – in our case EUROCODE 2 (EC2) [Eurocode 2, 1991]. An interested
reader can find implementation details for example in [LepšandŠejnoha, 2003].

Consider a rectangular cross-section of a beam. There is thewidth b and the heighth
to optimize. Other variables inX come from the model of a general RC beam which was
presented in [Matouš et al., 2000] : the beam is divided intothree elements between supports
with the same diameter of longitudinal reinforcement alongthe top surface and another one
along the bottom. The differences are only in numbers of steel reinforcement bars in particular
elements. The shear reinforcement is designed alike. Thereare three shear-dimension parts
- each of them with different spacing of stirrups but the samediameter in the whole element.
This partitioning reflects the characteristic distribution of internal forces and moments in frame
structures, where the extremal values usually occur at three points–at mid-span and two end
joints. The novelty of our approach is the assumption that the length of parts may attain only
the discrete values, in our case corresponding to 0.025 m precision. The same principle is used
for the cross-section dimensionsb andh.
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Figure 3.4: An example of a microstructure of a unidirectional fiber composite.

3.2.4 Periodic unit cell construction

The motivation for this problem comes from the analysis of unidirectional fiber composite ma-
terials. Such materials consist of a large number of fibers (which serve as a reinforcement)
embedded in the matrix phase. The goal is to determine the overall behavior of such a material
system provided that material properties of the matrix and fibers are known. It turns out that for
this prediction, the geometrical arrangement of fibers mustbe taken into account.

Unfortunately, the distribution of fibers in real compositematerials is quite complex (see
Fig. 3.4). To avoid such an obstacle, we attempt to replace a complicated microstructure with
a large number of fibers by a certainperiodic unit cell, which resembles the original material
sample. More specifically, we describe the actual distribution of fibers by a suitable microstruc-
tural function and then determine the parameters of the periodic unit cell such that the differ-
ence between the function related to the periodic unit cell and function related to the original
microstructure is minimized (for detailed discussion see [Zeman anďSejnoha, 2001]).

The microstructural function used in the present approach is thesecond order intensity func-
tionK(r), which gives the number of further points expected to lie within a radial distancer of
an arbitrary point divided by the number of particles (fibers) per unit area ([Ripley, 1977])

K(r) =
A

N2

N
∑

k=1

Ik(r), (3.5)

whereIk(r) is the number of points within a circle with center at the particle k and radiusr,N
is the total number of particles (fibers) in the sample andA is the sample area.

An objective function related to this descriptor can be defined as

F (xN , H1, H2) =
Nm
∑

i=1

(

K0(ri) −K(ri)

πr2
i

)2

, (3.6)

where vectorxN = {x1, y1, . . . , xN , yN} stands for the position of particle centers of the peri-
odic unit cell;xi andyi correspond tox andy coordinates of thei-th particle,H1 andH2 are the
dimensions of the unit cell (see Fig. (3.5a)),K0(ri) is the value ofK function corresponding to
the original medium calculated in the pointri andNm is the number of points, in which both
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(a) (b)

Figure 3.5: (a) Geometry of a periodic unit cell, (b) An example of the objective function.

functions are evaluated. Throughout this study, we assume square periodic unit cell (H1 = H2)
and determine its dimensions in such a way that the volume fraction of the fiber phase in the pe-
riodic unit cell is the same as in the original micrograph. Anexample of the objective function
is shown in Fig. 3.5(b).

3.3 Applied methods

During last few years, we have developed and tested several Evolutionary Algorithms that are
based on both binary/integer and real-valued representation of searched variables. Each of them
has been primarily applied to one particular optimization problem of the four introduced above.
These methods are (in order of appearance):

• Differential Evolution (DE), developed by R. Storn and K. Price [Storn and Price, 1995]
to solve the Chebychev trial polynomial problem.

• Simplified Atavistic Differential Evolution (SADE), developed by the authors for re-
search on high-dimensional problems [Hrstka and Kučerov´a, 2000],[Hrstka, WWWb].

• Integer Augmented Simulated Annealing (IASA ), a combination of an integer-coded Ge-
netic Algorithm and Simulated Annealing; it was primarily applied to the reinforced con-
crete beam layout optimization problem.

• Real-coded Augmented Simulated Annealing (RASA), a combination of a real-coded
Genetic Algorithm by Michalewicz [Michalewicz et al., 1994] and Simulated Annealing;
it was developed for solving the periodic unit cell problem.

3.3.1 Differential Evolution (DE)

Differential Evolution was invented as the solution methodfor the Chebychev trial polynomial
problem by R. Storn and K. Price [Storn, 1996]. It operates directly on real valued chromosomes
and uses the so-called differential operator, which works with real numbers in natural manner
and fulfills the same purpose as the cross-over operator in a Simple Genetic Algorithm.
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Figure 3.6: The geometric meaning of a certain subtype of thedifferential operator.

The differential operator has a sequential character: LetCHi(t) be thei-th chromosome of
generationt

CHi(t) = (chi1(t), chi2(t), ..., chin(t)), (3.7)

wheren is the chromosome length (which means the number of variables of the fitness function
in the real encoded case). Next, letΛ be a subset1 of {1, 2, ..., n}. Then for eachj ∈ Λ holds

chij(t+ 1) = chij(t) + F1 (chpj(t) − chqj(t))

+ F2 (chbestj(t) − chij(t)) , (3.8)

and for eachj /∈ Λ we get
chij(t+ 1) = chij(t), (3.9)

wherechpj andchqj are thej-th coordinates of two randomly chosen chromosomes andchbestj

is the j-th coordinate of the best chromosome in generationt. F1 andF2 are then coefficients
usually taken from interval(0, 1). Fig. 3.6 shows the geometrical meaning of this operator.

The method can be understood as a stand-alone evolutionary method or it can be taken
as a special case of a Genetic Algorithm. The algorithmic scheme is similar to the Genetic
Algorithms but it is much simpler:

1. At the beginning an initial population is randomly created and the fitness function value
is assigned to each individual.

2. For each chromosome in the population, its possible replacement is created using the
differential operator as described above.

3. Each chromosome in the population has to be compared with its possible replacement
and if an improvement occurs, it is replaced.

4. Steps 2 and 3 are repeated until some stopping criterion isreached.

As it can be seen, there are certain features that distinguish this method from the Simple
Genetic Algorithm, namely:

1 The determination ofΛ is influenced by the parameter calledcrossrate(CR), see [Storn, 1996].
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• the crossing-over is performed by applying the differential operator (3.8), (3.9),

• the selection operation like the roulette wheel, for example, is not performed, the individ-
uals that are going to be affected by the differential operator, are chosen purely randomly,

• selection of individuals to survive is simplified to the mentioned fashion: each chromo-
some has its possible replacement and if an improvement occurs, it is replaced,

• the mutation operator is not introduced as the authors ofDE claim that the differential
operator is able to replace both mutation and uniform crossover known from basicGAs.

Further details together with the source codes ofDE can be obtained from the web page
[Storn, WWW].

And finally, in a sketchy form presented in Section 2.2.1, thealgorithm can be written as

optDE(t+1Iµ) = selµµ+1(
tI, rec1

4(
tI, tIbest)) (3.10)

and can be also understood as a nice example of a(µ+1)-optimization algorithm.

3.3.2 Simplified Atavistic Differential Evolution (SADE)

This method was proposed as an adaptation of the differential evolution in order to acquire
an algorithm which will be able to solve optimization problems on real domains with a high
number of variables. This algorithm combines features of Differential Evolution with traditional
Genetic Algorithms. It uses the differential operator in the simplified form and an algorithmic
scheme similar to Evolution Strategies.

The differential operator has been taken from the Differential Evolution in a simplified ver-
sion for the same purpose as the cross-over is used in a SimpleGenetic Algorithm. This operator
has the following fashion: Let (again)CHi(t) be thei-th chromosome in generationt,

CHi(t) = (chi1(t), chi2(t), ..., chin(t)), (3.11)

wheren is the number of variables of the fitness function. Then, the simplified differential
operator can be written as

chij(t+ 1) = chpj(t) + CR (chqj(t) − chrj(t)) , (3.12)

wherechpj, chqj andchrj are thej-th coordinates of three randomly chosen chromosomes and
CR is the so-calledcross-rate. Due to its simplicity this operator can be rewritten also inthe
vector form:

CHi(t+ 1) = CHp(t) + CR(CHq(t) − CHr(t)). (3.13)

Contrary to the Differential Evolution, this method uses analgorithmic scheme very similar to
Evolution Strategies:

1. As the first step, the initial population is generated randomly and the fitness function value
is assigned to all chromosomes in the population.
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2. Several new chromosomes are created using the mutation operators - the mutation and the
local mutation (number of them depends on a value a of parameter calledradioactivity,
which gives the mutation probability).

3. Other new chromosomes are created using the simplified differential operator as was
described above; the whole amount of chromosomes in the population doubles.

4. The fitness function values are assigned to all the newly created chromosomes.

5. The selection operator is applied to the double-sized population, so the amount of indi-
viduals is decreased to its original value.

6. Steps 2-5 are repeated until some stopping criterion is reached.

And again, using the introduced notation, theSADE method can be easily written as

optSADE(t+1Iµ) = selµ2µ(rec1
3(

tI),mut11(
tI)) (3.14)

and can be characterized as a(µ+µ)-optimization algorithm.
Next, we introduce the description of the mentioned operators in detail:

Mutation: If a certain chromosomeCHi(t) is chosen to be mutated, a new random chromo-
someRP is generated and the mutated oneCHk(t+ 1) is computed using the following
relation:

CHk(t+ 1) = CHi(t) +MR(RP − CHi(t)), (3.15)

whereMR is a parameter calledmutation-rate.

Local mutation: If a certain chromosome is chosen to be locally mutated, all its coordinates
have to be altered by a random value from a given (usually verysmall) range.

Selection: This method uses modified tournament strategy to reduce the population size: two
chromosomes are randomly chosen, compared and the worse of them is rejected, so the
population size is decreased by1; this step is repeated until the population size reaches
its original size2.

Detailed description of theSADE method including source codes in C/C++ and the tests
documentation for the high-dimensional problems can be obtained directly on the web-page
[Hrstka, WWWb] and also from the article [Hrstka and Kučerová, 2000] .

2 Contrary to the traditional tournament strategy this approach can ensure that the best chromosome will not be
lost even if it was not chosen to any tournament.
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3.3.3 Real-valued Augmented Simulated Annealing (RASA)

The Augmented Simulated Annealing method is the combination of two stochastic optimization
techniques – a Genetic Algorithm and Simulated Annealing. It uses basic principles of Genetic
Algorithms ( selection, recombination by genetic operators ), but controls replacement of par-
ents by the Metropolis criterion (see Eq. (3.17)). This increases the robustness of the method,
since we allow a worse child to replace its parent and thus escape from local minima, which is
in contrary withDE methods described in Section 3.3.1.

The algorithmic scheme of the present implementation is summarized as follows.

1. Randomly generate an initial population and assign fitness to each individual. The initial
temperature is set toT0 = Tmax = T_fracFavg and the minimal temperature is de-
termined asTmin = T_frac_minFavg , whereFavg is the average fitness value of the
initial population.

2. Select an appropriate operator. Each operator is assigned a certain probability of selection.

3. Select an appropriate number of individuals (according to the operator) and generate pos-
sible replacements. To select individuals, we applynormalized geometric rankingscheme
([Houck et al., 1995]): The probability of selection of thei-th individual is given by

pi = q′(1 − q)r−1, q′ =
q

1 − (1 − q)pop size
, (3.16)

whereq is the probability of selecting the best individual in the population,r is the rank
of thei-th individual with respect to its fitness, andpop_size is the population size.

4. Apply operators to selected parent(s) to obtain possiblereplacement(s).

4a. Look for an individual identical to possible replacement(s) in the population. If such
individual(s) exists, no replacement is performed.

4b. Replace an old individual if

u(0, 1) ≤ e(F (Iold)−F (Inew))/Tt , (3.17)

whereF (·) is fitness of a given individual,Tt is the actual temperature andu(·, ·) is
a random number with the uniform distribution on a given interval.

5. Steps 2–4 are performed until the number of successfully accepted individuals reaches
success_max or selected number of steps reachescounter_max.

6. Decrease temperature
Tt+1 = T multTt. (3.18)

If actual temperatureTt+1 is smaller thanTmin, performreannealing– i.e. perform step
#1 for one half of the population.

7. Steps 2–6 are repeated until the termination condition isattained.
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This algorithm can be therefore seen also as a(µ+µ)-Evolutionary Algorithm and its sim-
plified notation can be formulated as

optRASA(t+1Iµ) = selµ2µ(tI, rec(tI)||mut(tI)) . (3.19)

List of operators The set of real-valued operators proposed in [Michalewicz et al., 1994] was
implemented as follows. In the sequel, we will denoteL andU as vectors of lower/upper bounds
on unknown variables,u(a, b) andu[a, b] as a real or integer random variable with the uniform
distribution on a closed interval〈a, b〉. Otherwise we use the same notation as employed in the
previous sections.

Uniform mutation: Let k = [1, n]

chij(t+ 1) =

{

u(Lj, Uj), if j = k
chij(t), otherwise,

(3.20)

Boundary mutation: Let k = u[1, n], p = u(0, 1) and set:

chij(t+ 1) =







Lj , if j = k, p < .5
Uj , if j = k, p ≥ .5

chij(t), otherwise
(3.21)

Non-uniform mutation: Let k = [1, n], p = u(0, 1) and set:

chij(t+ 1) =







chij(t) + (Lj − chij(t))f, if j = k, p < .5
chij(t) + (Uj − chij(t))f, if j = k, p ≥ .5

chij(t), otherwise
(3.22)

wheref = u(0, 1)(Tt/T0)
b andb is the shape parameter.

Multi-non-uniform mutation: Apply non-uniform mutation to all variables ofCHi.

Simple crossover: Let k = [1, n] and set:

chil(t+ 1) =

{

chil(t), if l < k
chjl(t), otherwise

chjl(t+ 1) =

{

chjl(t), if l < k
chil(t), otherwise

Simple arithmetic crossover: Let k = u[1, n], p = u(0, 1) and set:

chil(t+ 1) =

{

pchil(t) + (1 − p)chjl(t), if l = k
chil(t), otherwise

(3.23)

chjl(t+ 1) =

{

pchjl(t) + (1 − p)chil(t), if l = k
chjl(t), otherwise

(3.24)

Whole arithmetic crossover: Simple arithmetic crossover applied to all variables ofCHi and
CHj.

Heuristic crossover: Let p = u(0, 1), j = [1, n] andk = [1, n] such thatj 6= k and set:

CHi(t+ 1) = CHi(t) + p(CHj(t) − CHk(t)). (3.25)

If CHi(t + 1) is not feasible then a new random numberp is generated until the fea-
sibility condition is met or the maximum number of heuristiccrossover applications
num_heu_max is exceeded.
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3.3.4 Integer Augmented Simulated Annealing (IASA )

The Integer Augmented Simulated Annealing method is based on the same ideas as the previ-
ously mentionedRASA algorithm. This procedure effectively exploits the essentials of GAs
(a population of chromosomes, rather then a single point in space is optimized) together with
the basic concept of a Simulated Annealing method guiding the search towards minimal energy
states. To avoid well-known problems with binary coding theinteger coding was used, see
Section 2.4.1. Together with new operators such as differential crossover and a new mutation
operator encouraging results were obtained.

The description of the algorithm does not substantially differ from theRASA algorithm, but
for the sake of completeness all steps are briefly reviewed here.

1. The initial population consisting ofOldSize individuals is created randomly and fit-
nesses are assigned to each individual. Starting and endingtemperaturesT_min and
T_max are set by the user.

2. If a real random numberp = u(0, 1) is smaller thanCrossoverProb the crossover is
used, otherwise the mutation is applied. This step is repeated until the numberNewSize
of new solutions is obtained.

3. For each individual in a “new” population one “parent” from “old” part is selected. The
“old” solution is replaced if

u(0, 1) ≤ 1

1 + e(F (Iold)−F (Inew))/Tt
, (3.26)

whereF (·), Tt andu(·, ·) have the same meaning as in the previous section. Equation
(3.26) ensures the 50% probability of survival when comparing two solutions with same
fitness.

4. Steps 2–3 are performed until the number of successfully accepted individuals reaches
SuccessMax or the selected number of steps reachesCounterMax.

5. The actual temperature is decreased by

Tt+1 = Tt

(

T min

T max

)

(

CounterMax

TminAtCallsRate ∗ MaxCalls

)

, (3.27)

whereTminAtCallsRate determines a fraction of the maximum allowable number of
function callsMaxCalls in which the minimum temperatureT_min will occur. The
reannealingstep is represented here by setting actual temperatureTt+1 equal toT_max.

6. Steps 2–5 are repeated until the termination condition isattained.

This algorithm can be added to the group of(µ+λ)-Evolutionary Algorithms and its notation
can be formulated as

optIASA(t+1Iµ) = selµµ+λ(
tI, rec1

3(
tI),mut12(

tI)) (3.28)

and in connection with the operators presented in previous sections, integer operators within the
IASA algorithm have the following form:
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Differential crossover: This operator is inspired by theDE. A new individualCHj(t) is cre-
ated from three randomly selected solutionsCHp(t), CHq(t) andCHr(t) according to

CHj(t+ 1) = CHp(t) + u(0.0, CR)(CHq(t) − CHr(t)). (3.29)

Note that all vectorsCHi are integer numbers and also that the influence of the difference
on the right-hand side randomly varies between zero andcross-rateCR.

Mutation: The mutation operator is provided by modifying each variable inCHj(t) to

chij(t+ 1) = chij(t) +N(0,
| chij(t) − chpj(t) |

2
+ 1) , (3.30)

whereN(·, ·) is a random integer number derived from the Gauss normal distribution and
chpj(t) is thej-th variable of a randomly selected vectorCHp(t).

3.4 Test computations and results

Each of the methods introduced in the previous section has been tested on all of the presented
optimization problems. The methodology that has been used for our computations is based on
the following criteria:

• For each problem and each method the computation was run 100 times to avoid an influ-
ence of random circumstances.

• For all cases, the number of successful runs (which can be traded as the probability of
success or the reliability of the method) is presented.

• If the number of successful runs is non-zero, the average number of fitness calls of all
successful runs is also presented.

Further details of individual function settings and methodology for results evaluation can be
found in the next subsections.

3.4.1 Results for the Chebychev problem

Method IASA RASA DE SADE
Successful runs 100 100 100 100
Average number of fitness calls10342 47151 25910 24016

Table 3.1: Results for the Chebychev polynomial problem.

The computations were performed for the Chebychev problem with a degree of the poly-
nomial expressionn = 8 (the T8 problem), which corresponds to the nine dimensions of the
problem. The computation was terminated if the algorithm reached a value of the objective
function smaller then10−5 or the number of function evaluations exceeded100, 000. Upper
bounds on individual coefficients were set to512, while lower bounds were equal to−512. The
results of individual algorithms are shown in Table 3.1 and Figure 3.8.
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Figure 3.7: A comparison of results for thetype 0function.

3.4.2 Results for thetype 0 trial function

Test computations for thetype 0problem were performed for a wide set of problem dimensions,
ranging from1 to 200. The upper bound on each variable was set to400, while the lower bound
value was−400. For each run, the position of the extreme was randomly generated within these
bounds and the height of the peaky0 was generated from the range0–50. The parameterr0 was
set to1. The computation was terminated when the value of the objective function was found
with a precision greater than10−3. The results are given in the form of the growth of computa-
tional complexity with respect to the problem dimension. For each dimension, the computation
was run 100 times and the average number of fitness calls was recorded (see Fig. 3.7 and Ta-
ble 3.2).

Problem dimension IASA RASA DE SADE
10 246,120 13,113 39,340 46,956
30 611,760 74,375 653,600 171,539
50 926,100 183,882 N/A 304,327
100 2,284,590 526,492 N/A 663,084
140 3,192,800 793,036 N/A 948,197
200 4,184,200 1,220,513 N/A 1,446,540

Table 3.2: Average number of fitness calls for the type-0 function
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3.4.3 Results for the reinforced concrete beam layout problem

The basic parameters subjected to optimization were the beam width b, which was assumed to
take discrete values between0.15 m and0.45 m with the step0.025 m and the beam heighth
ranging from0.15 m to 0.85 m with the step0.025 m. For each of the three parts of a beam,
the diameter and the number of longitudinal reinforcing bars located at the bottom and the top
of the beam, spacing and the diameter of stirrups and the length of the corresponding part were
optimized. Lower bounds were selected for the sake of structural requirements; solutions ex-
ceeding upper bounds were considered to be irrelevant for the studied examples. However,
from the optimization point of view, bounds can be easily adjusted to any reasonable value.The
number of longitudinal bars was restricted to the range0–15, the spacing of stirrups was as-
sumed to vary from0.05 m to 0.40 m with the 0.025 m step. The profiles of longitudinal
bars were drawn from the list of16 entries while for the stirrups, only4 diameters were con-
sidered. This finally results in18 independent variables. Note that the maximal number of
longitudinal bars presents only the upper bound on the searched variable; the specific restric-
tions given by Codes of Practice are directly incorporated in the objective function. For more
details see [Lepš anďSejnoha, 2000, Matouš et al., 2000]. The computation was terminated if
an individual with a price smaller than573.5 CZK was found or the number of objective func-
tion calls exceeded1, 000, 000. Table 3.3 stores the obtained results of different optimization
algorithms, see also Figure 3.8.

Method IASA RASA DE SADE
Successful runs 100 100 100 100
Average number of fitness calls108732 131495 196451 185819

Table 3.3: Results for the reinforced concrete beam layout

3.4.4 Results for the periodic unit cell problem

Test computations for the periodic unit cell construction were performed for the10-fiber unit
cell (i.e. the dimension of the problem was20). The computation was terminated if the algo-
rithm returned value smaller than6 × 10−5 or the number of function calls exceeded400, 000.
Variables were constrained to the box0 ≤ xi ≤ H1 ≈ 25.8 (see Section (2.4)) . The required
numbers of function are stored in Table 3.4 and displayed in Figure 3.8.

Method IASA RASA DE SADE
Successful runs 100 100 100 100
Average number of fitness calls13641 12919 93464 55262

Table 3.4: Results for the periodic unit cell problem
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Figure 3.8: A comparison of results for Chebychev polynomial, reinforced concrete beam lay-
out and periodic unit cell problems.

3.5 Conclusions for comparison

Differential Evolution The Differential Evolution algorithm showed to be very efficient and
robust for moderate-sized problems, but its performance for higher dimensions deteriorated.
Moreover, the small number of parameters, see Table C.2, is another advantage of this method3.
However, the results suggest that the absence of mutation-type operator(s) is a weak point of
the algorithm.

Simplified Atavistic Differential Evolution TheSADE algorithm was able to solve all prob-
lems of our test set with high reliability and speed. Although it needed a larger number of
function calls than other methods (see Table 3.5), the differences are only marginal and do not
present any serious disadvantage. Another attractive feature of this method is the relatively
small number of parameters, see Table C.3.

Real-valued Augmented Simulated Annealing TheRASA algorithm was successful for all
presented problems; the average number of function calls was comparable to the other methods.

3 This is the base-stone of the popularity of this method and itis probably a reason why theDE was modified
also for multi-objective problems, see [Kukkonen and Lampinen, 2004].
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The obvious disadvantage of this algorithm is a large numberof parameters (Table C.1), which
can result in a tedious tuning procedure. On the other hand, as follows from Appendix C, only
two types of parameter settings were necessary – one for the continuous and one for the discrete
functions.

Integer Augmented Simulated Annealing TheIASA algorithm was the most successful and
fastest method on problems with small dimensions. But on theproblems with larger dimensions
and with a higher number of local minima, the algorithm suffers from premature convergence
and limited precision due to integer coding of variables. Inaddition, initial tuning of individual
parameters, see Table C.4, presents another drawback of this method.

Method IASA RASA DE SADE
Chebychev problem 1 4 3 2
Type 0 test function 3 1 4∗ 2
Concrete beam layout 1 2 4 3
Periodic unit cell 3 1 4 2
Σ 8 8 14 9

Table 3.5: Overall performance of methods. (∗ : Not successful for all runs)

The summary results are given in Table 3.5 to quantify the overall performance of the in-
dividual methods. Each of the method is ranked primarily with respect to its success rate and
secondary with respect to the average number of fitness calls. The sum then reveals the overall
performance of the method.

Final comments In our opinion, several interesting conclusions and suggestions can be made
from the presented results. Each of them is discussed in moredetail.

• The performance and robustness of theSADE method was distinguishly better than for
theDE algorithm. This supports an important role of a mutation operator(s) in the opti-
mization process.

• Although algorithms were developed independently, all usesome form of differential
operator. This shows the remarkable performance of this operator for both real-valued
and discrete optimization problems.

• The most successful methods, theSADE andRASA algorithms, both employ a variant of
“local mutation”. This operator seems to be extremely important for higher-dimensional
type-0functions, where these methods clearly outperform the others.

• Slightly better results of theRASA method can be most probably attributed to the re-
annealing/restarting phase of the algorithm (a trivial butefficient tool for dealing with
local minima) and to the search for an identical individual.The procedure for local min-
ima assessment was implemented to theSADE method (see [Hrstka and Kučerová, 2004,
Hrstka, WWWa] for results), incorporation into theIASA algorithm is under develop-
ment.
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• When comparing methods based on the discrete coding of variables with real-encoded
ones it becomes clear that for continuous functions the methods with the real coding per-
form better. Nevertheless, after implementing new features, like those mentioned before,
the performance is expected to be similar. On the other hand,the advantage of theIASA
algorithm is the possibility of its use for discrete combinatorial problems like the Travel-
ing salesman problem.

Therefore, from the practical point of view, theSADE method seems to be the most flexible
alternative due to its simplicity and small number of parameters.



Chapter 4

DESIGN OF REINFORCED CONCRETE FRAMES

For it is unworthy of excellent men
to lose hours like slaves in the
labour of calculation which would
safely be relegated to anyone else if
machines were used.

Gottfried Wilhelm Von Leibniz

Previous Chapter 3 deals mainly with problems that can be understood as black-box func-
tions, even though for the periodic unit cell problem some knowledge can be added into an
optimization process and the performance of optimization can be significantly improved, see
e.g. [Matouš et al., 2000]. A humble goal of this chapter is to show that adding more informa-
tion into the system of a design can enable us to optimize suchtype of structures which was not
manageable in previous decades.

4.1 Introduction

From the global point of view and following the classification introduced in Section 1.2, every
design of a frame structure can be seen as a simultaneous topology, sizing and shape optimiza-
tion problem. The designer can vary several possible topologies of the desired structure with
different cross-sectional shapes, which can be selected from a predefined list of available pro-
files. Still our current knowledge and computer equipment donot enable us to solve this specific
task in its full generality. On the other hand, the width, theheight of a building and even the
position of columns are given a long time before the final design starts. Therefore the topology
optimization is not studied within this work and attention will be only paid to the shape and/or
sizing tasks.

Research within the design of steel structures seems to be almost complete, see e.g. the
works by D. Greiner [Greiner et al., 2001] and [Greiner et al., 2003]. On the other hand, the
actual state of the art in the design of reinforced concrete (RC) structures is not so clear. The
main reason is that steel structures design requirements typically belong to the pure sizing area,
while reinforced concrete structures are on a half-way to shape optimization problems. Steel
structures are characterized by a small set of available, usually standardized, cross-sections,
on the other side, combinations of reinforcement within almost arbitrary shapes of a concrete
structure lead to an enormous number of possible solutions.The objective of this chapter is
therefore to fill in several gaps within the research of the design of reinforced concrete framed
structures.

At this point a step-by-step description for the rest of an optimization-design process of
frame structures will be presented and several possible solutions will be proposed. Logically,
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the first variable studied is theshapeof members that the frame structure is composed of1. The
shapes will be most likely selected from a small list of available sections limited by form-work
abilities and moreover the economical aspect will usually lead to mostly uniform forms within
one building. This reduction of the searched space therefore enables this part of design to be
rationally tackled by the size optimization methods.

To continue the above mentioned ideas, let us assume that theshape is fixed. Then, the
second and possibly the most challenging task is theplacement of reinforcing bars within
concrete members, often calleddetailing. And again, from the optimization point of view, this
task generally belongs to the field of topology optimization, where the number of bars, their
shape and material and even their mutual space position are searched for. The type and form
of a chosen parameterization of the shape will determine thecomputational complexity of the
problem in question. Although this solution is the most straightforward one in terms of both
analysis and the design phase, it is obvious that this approach is unmanageable with the current
computational resources and has to be solved by simpler methods2.

Therefore the usual scenario is to divide the reinforcementdesign into the shear and bending
parts. The optimization of shear reinforcement is not a difficult task especially if we limit
the use of reinforcement to stirrups only. For comparison ofdifferent standard shear-design
methodologies see [ASCE-ACI, 1998]. Also several papers dealing with optimization of shear
reinforcement can be found, see e.g. the contribution [Lepˇs andŠejnoha, 2003]. Hence the
main effort will be put on the design of longitudinal, also called flexural, reinforcement. From
the design point of view, the most important spot is the most critical cross-section within each
structural member. Therefore this task is reduced to the mere detailing of the limited number of
cross-sections and as such is often solved by many researchers.

4.1.1 Design of reinforced concrete cross-sections

It is probably a historical consequence that many researchers who have been solving the de-
sign of a RC cross-section by optimization methods have followed procedures defined in the
appropriate Codes of Practice, see e.g. [Hadi, 2001] and [Coello et al., 1997]. The uniting char-
acteristic of this approach is the use of a steel area insteadof individual reinforcing bars. As
a consequence, this methodology is adequate for analysis but not for practical use. This is nicely
formulated in [Koumousis et al., 1996]:

In practice, there are many cases where the design is excellent from the analysis
point of view, but its constructibility is poor or impossible.

Even though these approaches do not seem to be appropriate for implementation into prac-
tice, they can lead to new designing and optimization methods for different problems of re-
search, see e.g. [Rizzo et al., 2000] and [Chen et al., 2001],or can serve as benchmarks for
optimization algorithms [Coello et al., 1997].

Therefore, the methodology presented in the paper [Choi andKwak, 1990] (and a very
similar procedure [Rafiq and Southcombe, 1998]), called thedeclarative approach, looks like

1 To propose general methodology all possible shapes are considered, the only limiting condition being the
availability of their parameterization.

2 Nevertheless, a similar methodology can be found in the so-called strut and tieapproaches usually used for
non-linear analysis of reinforced concrete structures, see e.g. [Abdallaa et al., 1996] and [ASCE-ACI, 1998].
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a breakthrough into the usual system of a design. Firstly, all possibilities of designing a cross-
section are defined to meet structural requirements like steel cover or mutual distances between
reinforcing bars, and after that the optimal solutions are selected or searched. This can be
done by the brute force method or by any available optimization algorithms presented earlier.
Hence this approach ensures not only the fulfillment of the load-bearing conditions but also the
constructibility of the structure. Also the automation of this procedure by computers can be
efficiently used.

4.1.2 Design of frame members

If we follow the above mentioned ideas, the problem of combining the designs of individual
cross-sections must be now solved along with the search for the parameters of cross-sectional
shapes. All these variables come from a discrete domain and therefore some combinatorial
algorithm, like presentedEAs, can be used. Hence the declarative approach can move the
design of the RC frame structure from the topology or mixed continuous-discrete to the pure
sizing optimization, which can be relatively easily managed by the available computational re-
sources. One particular and very promising example of the declarative approach can be found
in [Koumousis et al., 1996], where the database of possible cross-sectional designs was com-
bined with logical programming to produce a practical design of a spatial frame structure up to
a detailed drawing in a CAD program.

4.2 Proposed design procedure

In this work, the multi-objective version of a hybrid optimization procedure is applied to the de-
sign and consequent detailing of structural members withinsteel-reinforced concrete frames.
The implemented strategy relies on splitting this difficultoptimization task into two parts.
Firstly, the detailing of a reinforced concrete cross-section is solved by the “brute force” method
using an efficient procedure for fast evaluation of internalforces for a polygonal cross-section
and an arbitrary stress-strain relationship. Secondly, the optimization of a whole structure in
terms of basic structural characteristics, e.g. types of materials, dimensions or profiles, is tack-
led with a multi-objective stochastic optimization method. For this purpose, two important
objectives are selected and defined - the total price of a resulting structure and the maximum
deflection of structural members. As a result of the presented research, the Pareto-optimal so-
lutions can be plotted to demonstrate the non-linearity of this design problem and also to show
the applicability of this approach in Civil Engineering practice.

4.2.1 Design parameterization

As already mentioned above, we search for a frame structure simultaneously considering price
of the structure and maximum deflection as the objectives of optimization. For simplicity, we
limit our attention to 2D problems and elements with rectangular cross-sections. Hence, we
consider frame structures located in thexz plane and our interest is restricted to internal forces
acting in this plane: the bending momentMy, the normal forceNx and the shear forceVz.

From the construction point of view as well as optimization itself it appears to be advan-
tageous to decompose the whole structure intond design elements(see Fig. 4.1). These user-
defined blocks are parts of a structure which a-priori possess identical optimized parameters
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Figure 4.1: An example of a frame structure
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Figure 4.2: An example of a design element

like dimensions of the cross-section, the area and the diameter of the bending reinforcement
etc. In addition, we assume that the structure is discretized intone finite elements, used for the
determination of an internal forces distribution. In the sequel, we will denote a quantityX re-
lated to thei-th finite element asX [i] while a quantity related to thei-th design element asX(i),
i.e., values related to finite elements are indexed by squarebrackets, while quantities connected
with design elements are denoted by round ones. Further,e[i] ande(i) are used for thei-th finite
and design elements, respectively. The symbolE(i) is reserved for the set of finite elements,
related to thei-th design element, i.e.,

E(i) =
{

e[j] : e[j] ∩ e(i) 6= ∅, j = 1, . . . , ne

}

. (4.1)

Furthermore, the analyzed structure is supposed to be loaded bync user-supplied load cases.
A quantityX related to thei-th design element and thec-th load case is denoted ascX(i).

As described in the previous paragraph, the design element is used for the definition of basic
optimization parameters (see Fig. 4.2). In our context, thedesign optimization parameters are
the cross-section dimensionsb andh, the diameter of bending reinforcementφb, the number
of reinforcing bars located at the upper and the bottom surfaces of the design element denoted
by ns1 andns2 and, alternatively, the diameter of shear reinforcementφw and the spacing of
stirrupssw. We assume that the cross-sectional dimensions and stirrupspacing vary with a given
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Figure 4.3: The cross-section scheme: (a) a plane of deformation, (b) an interaction diagram

discrete difference (e.g., 0.025 m), whileφb andφw are selected from a given list of available
dimensions.

4.2.2 Ultimate limit state

Generally speaking, the structural requirements imposed by a chosen design standard (e.g.,
EC2 [Eurocode 2, 1991] considered in this work) can be divided into two basic categories: load-
bearing capacity and serviceability requirements. In the present work, the load-bearing capacity
requirements, discussed in the present section, are directly incorporated into the reinforcement
design. The serviceability requirements, on the other hand, are taken into account as the second
optimization objective, see Section 4.2.3.2.

In our previous works, see e.g. [Lepš et al., 1999], the optimization of cross-section rein-
forcement was carried out simultaneously with the determination of geometrical parameters of
the structure. This approach, however, does not seem to be feasible for larger structures be-
cause it would result in a huge amount of optimized variables, rendering the whole problem
unmanageable (see Section 3.2.3, where a design problem of one beam consists of eighteen
variables!). Thus, we employ a conceptually simple procedure aimed at the reduction of the
problem size based on powerful algorithms for fast evaluation of internal forces that were de-
veloped in [Vondráček, 2001].

First of all, we briefly list the basic ideas of the procedure of the evaluation of inter-
nal forces employed in this work and refer an interested reader either to Appendix A or to
works [Vondráček, 2001] or [Vondráček and Bittnar, 2002] for more detailed discussion. To
that end, we assume that a given polygonal cross-section is subjected to a given linear distribu-
tion of theεx strain given by

εx(z) = ε0 + zκ, (4.2)

whereε0 is the strain at the coordinate system origin andκ is the curvature in thez direction
(see Fig. 4.3a). Further, the response of a material is governed by a constitutive equation

σx = σ(εx). (4.3)
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The internal forcesNx andMy are then provided by the well-known relations

Nx =

∫∫

A

σx dA, My =

∫∫

A

σxz dA. (4.4)

Converting the area integrals (4.4) into boundary integrals by the Gauss-Green formula to-
gether with the fact, that the cross-section is polygonal, yield after some manipulations (see
again Appendix A)

Nx = − 1

κ2

np−1
∑

i=0

1

ki

(

ss(ε(i+1)) − ss(ε(i))
)

, (4.5)

My = − 1

κ3

np−1
∑

i=0

1

ki

[

(ξ − ε0)ss(ξ) − 2ss(ξ) − 2sss(ξ)
]ε(i+1)

ε(i)
, (4.6)

wherenp is the number of polygon segments,ki is the tangent ofi-th polygon segment,ε(i)

is the value of the strain at thei-th polygon vertex and valuesss(·) and sss(·) follow from
recursions

sss(ε) =

∫ ε

0

ss(ξ) dξ =

∫ ε

0

[

∫ ξ

0

s(η) dη
]

dξ =

∫ ε

0

[

∫ ξ

0

[

∫ η

0

σ(ψ) dψ
]

dη
]

dξ. (4.7)

For detailed derivation and discussion of these relations together with the treatment of
degenerate cases (i.e.,κ → 0 or ki → 0) we again refer to Appendix A and the works
[Vondráček, 2001] and [Vondráček and Bittnar, 2002].

Once we are able to evaluate internal forces for a given planeof deformation determined by
κ andε0, the boundary of theinteraction diagramI (see Fig. 4.3b) for a given cross-section can
be simply constructed by evaluating the values of the bending momentMy and the normal force
Nx for a given set of extremal deformation planes (see Section A.4). Then, the cross-section
can sustain the given normal forceNSd and the bending momentMSd iff

(NSd,MSd) ∈ I. (4.8)

In the design procedure, we assume that we are provided with the dimensions of a cross-
sectionb andh and the diameter of the longitudinal reinforcing barsφb. Next, the Codes of
Practice provide us with the minimum and maximum values of reinforcement areasAs1 + As2,
which can be easily converted to a minimum/maximum number ofreinforcing barsns,min and
ns,max. Then, one can find the minimum reinforcement area such that the condition (4.8) holds
for all elements and load cases, i.e.

(cN
[j]
Sd,

cM
[j]
Sd) ∈ I, j ∈ E(i), i = 1, . . . , nd, c = 1, . . . , nc. (4.9)

Although the proposed procedure is extremely simple, it performs satisfactorily thanks to
the very efficient implementation of internal forces evaluation. Furthermore, it effectively elim-
inates infeasible solutions and thus substantially decreases the dimensionality of the problem.
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4.2.3 Objective functions

Having defined (and appropriately reduced) the domain of alladmissible structures, the most
suitable solution from this set is to be selected. For this purpose we need to measure the quality
of each structure. As mentioned previously, we have selected both the total price of a struc-
ture and the maximum deflection as the objectives to be optimized. Note that some deflection
limit usually serves as constraint during an optimization process while here is an objective. In
fact, this is the direct application of the methodology presented in Section 2.3.3 - a shift from
constraints to objectives.

4.2.3.1 Design economy

The total price of the structure follows from the expression

f(X) = VcPc +WsPs + AcPAc, (4.10)

whereX stands for the vector of design variables,Vc is the volume of concrete,Ws is the
weight of steel andAc is the area of concrete connected with form-work;Pc, Ps are the prices
of concrete per unit volume and steel per kilogram,PAc is the price of form-work per square
meter, which is added to simulate construction costs3.

4.2.3.2 Serviceability limit state

As the second objective of the optimization, the maximum deflection of the analyzed structure
will be considered. In the current implementation, the maximum sagging of thei-th design ele-
ment due to thec-th load case is determined on the basis of a simple numericalintegration algo-
rithm. To this end, suppose for simplicity that the internalforces distribution for the given load
case and design element is known from the elastic analysis. For the given values of the bend-
ing momentMy and the normal forceNx

4, the parameters of the deformation planeε0 andκ,
recall Fig. 4.3a, can be efficiently found by the Newton-Raphson algorithm [Vondráček, 2001,
Chapter 5]. Then, under the assumptions of small deformations and small initial curvature, the
deflection curve follows from the familiar relation,

d2w(x)

dx2
= −κ(My(x)), (4.11)

which yields, after integrating Eq. (4.11) twice,

w(x) = −
∫ x

0

[

∫ ξ

0

κ(My(η)) dη
]

dξ + C1x+ C2 (4.12)

with integration constantsC1 andC2 determined from boundary conditions for a given design
element. Also the analyzed element can be split into severalequidistant parts with the length
∆x and Eqs. (4.11) and (4.12) can be replaced by their discretized counterparts. The maximum
deflection of the design element is then straightforwardly determined as the extremal value
found for all load cases.

3 See the work [Sarma and Adeli, 1998] for more than seventy references dealing with cost optimization of rein-
forced concrete structures.

4 Note that for the notational simplicity, indicesc andi are omitted in the present section.
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4.2.4 Multi-objective optimization algorithm

The Strength Pareto Evolutionary Algorithm (SPEA), firstlyintroduced by Zitzler and Thiele
[Zitzler and Thiele, 1999] in 1999, was selected as the multi-objective optimizer in the present
study. The key ideas of this algorithm can be summarized as [Zitzler and Thiele, 1999]: storing
non-dominated solutions externally in a second, continuously updated population, fitness as-
signment with respect to the number of external non-dominated points that dominate it, preserv-
ing population diversity using the Pareto dominance relationship and incorporating a clustering
procedure for the reduction of the non-dominated set. Moreover, all these features are actually
independent of the form of crossover and mutation operators. Therefore, it is possible to use
operators developed for the single-objective optimization problem [Lepš anďSejnoha, 2000]
without any changes. Last, but certainly not least, advantage of this algorithm is its conceptual
simplicity and freely available C++ source code. An interested reader is referred to the arti-
cle [Zitzler and Thiele, 1999] and the Ph.D. thesis [Zitzler, 1999] for more detailed description
of the algorithm as well as extensive numerical investigation of its performance.

4.3 Examples and results

We demonstrate the aforementioned design procedure on the benchmark problems, already con-
sidered in [Lanı́ková, 1999]. In particular, two different statically determined structures are
examined.

N 2

N 1

4 m

Figure 4.4: First example - a cantilever beam.

4.3.1 A cantilever beam

Firstly, a cantilever beam, see Fig. 4.4, with the 4.0 meter span was studied. A concrete model
with cylindrical ultimate strength equal to 20 MPa (Class C 16/20) was considered with steel
model with the 410 MPa yield stress (Class V 10 425). The cantilever was loaded with two
loading cases: (1N1 = 1800 kN, 1N2 = 100 kN) and (2N1 = 300 kN, 2N2 = 100 kN).
The theoretical cover of steel reinforcement was set to0.05 m and the supposed diameter of
shear reinforcement was0.06 m. In the design procedure, the beam width was restricted to
b ∈ {0.3, 0.35, 0.4, 0.45} m while the heightsh ∈ {0.4, 0.5, 0.6} m were considered. The
longitudinal reinforcement profiles were selected from thelist φb ∈ {10, 12, 14, 16, 18, 20,
22, 25, 28, 32, 36} mm. The individual unit prices appearing in Eq. (4.10) were considered
Pc = 2, 500 CZK/m3, Ps = 25 CZK/kg andPAc = 1, 250 CZK/m2, respectively5. Finally, the

5 The symbol CZK stands for Czech Crowns.
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(a) (b)

(c) (d)

Figure 4.5: Results for the cantilever beam example: (a) Pareto-front and Pareto sets - (b) steel
profilesd, (c) the widthb and the heighth, (d) the number of steel barsn and the amount of
steelws.

Figure 4.6: Results for the cantilever beam example depicted in 3D.

integration step∆x = 0.25 m was considered for the deflection analysis, see Section 4.2.3.2.
The results are shown in Fig. 4.5 and Fig. 4.6 by the methodology presented in Appendix B.

It can be seen that there are 39 non-dominated solutions, which are characterized by the maximal
value of the height of the beamh and by non-monotonously increasing amount of steel, see
Fig. 4.5(d). It is also important, that solutions are not created by the small steel profiles which
are probably not able to sustain applied internal forces.
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N 1

p 1

6 m

Figure 4.7: Second example - a simply supported beam.

4.3.2 A simply supported beam

The second example studied was a simply supported beam, see Fig. 4.7. The span was con-
sidered 6 m. The concrete and the steel models were the same asin the previous example, as
well as a reinforcement cover, a shear reinforcement profile, geometrical parametersb, h and
φb. The beam was loaded with three loading cases: (1p1 = 62.5 kN/m, 1N1 = −240 kN),
(2p1 = 62.5 kN/m, 2N1 = −1440 kN) and (3p1 = 62.5 kN/m, 3N1 = 480 kN).

In this example, we simulated the scenario of a growing priceof steel. The question placed
here is: “What will happen if a price of steel grows by 20%?”. Therefore, Case 1 is characterized
by unit pricesPc = 2, 500 CZK/m3, Ps = 25 CZK/kg andPAc = 1, 250 CZK/m2 and Case 2
by the same values forPc andPAc, but the value ofPs is set to30 CZK/kg.

Results are shown again in 2D in Fig. 4.8 and in 3D in Fig. 4.9 and Fig. 4.10. Case 1 is
created by 30 non-dominated solutions and Case 2 by 29 and both cases are characterized by
the maximal value of the height of the beamh. At first sight, the growth of the steel price shifts
the Pareto-front of the more expensive Case 2 to the right, see Fig. 4.8(a). But still, there are
some designs, where both cases meet each other. The next interesting point is the decrease of
the amount of steel, as can be visible in Fig. 4.8(d). And finally, by inspecting both Pareto-sets
it comes that the last 15 solution are the same - they differ only in the price. Thus, such optimal
designs can be seen as stable (or at least less sensitive) with respect to perturbation of steel price
and hence more “robust” from the practical point of view.

4.4 Conclusion for the design of RC frames

The results of the SPEA algorithm have revealed that there are 39, 30 and 29 non-dominated
solutions for the cantilever and simply supported beam problems, respectively. The trade-off
surfaces for both problems appear in Fig. 4.5(a) and Fig. 4.8(a). It is clearly visible that even
for these rather elementary design tasks, both Pareto-optimal fronts are non-convex and non-
smooth due to the discrete nature of the optimization problem. This fact justifies the choice
of the selected optimization strategy and suggests its applicability to more complex structural
design problems.
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(a)

(b)

(c)

(d)

Figure 4.8: Results for the simply supported beam example: (a) Pareto-fronts and Pareto sets
- (b) steel profilesd, (c) the widthsb and the heightsh, (d) the number of steel barsn and the
amount of steelws.
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Figure 4.9: Results for the simply supported beam example depicted in 3D, cheaper Case 1.

Figure 4.10: Results for the simply supported beam example depicted in 3D, more expensive
Case 2.



Chapter 5

SOFT-COMPUTING METHODS APPLIED ON MICROPLANE
MODEL PARAMETERS IDENTIFICATION

The purpose of computation is
insight, not numbers.

Richard Hamming

5.1 Introduction

The great class of technical and scientific tasks leads to problems, described by a system of
partial differential equations. In the last few decades theso-called artificial intelligence or soft-
computing methods have been developed as alternatives to the traditional solutions of prob-
lems, which are difficult to be defined, described or resolvedusing traditional methods. Our
research deals particularly with one part of soft-computing methods called artificial neural net-
works (NN)1 [Tsoukalas and Uhrig, 1997, Yagawa and Okuda, 1996]. They were developed to
simulate the processes in a human brain but later on it was discovered that they can be effectively
used for many problems like pattern recognition, differentapproximations and predictions, con-
trol of systems, etc. In this work, they will be used “only” asgeneral approximation tools.

The behavior of such neural network is determined by an initial training process. It con-
sists of finding the so-called synaptic weights, which have influence on the response of a neural
network, depending on the different components of an input signal. The training of a neural
network could be considered as an optimization process, because it can be seen as a minimiza-
tion of neural network output error. Therefore, Evolutionary Algorithms, see Section 2.2.1, can
be used and can outperform traditional gradient-based methods that are usually applied here.
The current implementation is then easy, because the synaptic weights of a neural network act
as variables of the Evolutionary Algorithm’s fitness function.

Using Evolutionary Algorithms for training neural networks is not a new idea, see e.g. the
work [Tsoukalas and Uhrig, 1997]. The results show that due to their ability to avoid local ex-
tremes, it is an efficient way. This work also deals with theSADE algorithm (see Section 3.3.2)
in the training process. First, we compareSADE training with the traditional Backpropagation
method on a simple task. Then we will useSADE training as well as theSADE algorithm
alone for solving a much more complicated Civil Engineeringproblem - an estimation of pa-
rameters of a constitutive model for concrete called microplane model. One way to do this is to
fit these values using an experimenter’s own experience. As one of more up-to-date approaches
to estimate these parameters the neural network simulationcould be employed.

This chapter is organized as follows. Section 5.2 presents acomparison of the Backprop-
agation and theSADE algorithm for neural network training. In Section 5.3, the microplane

1 Hereafter we will use only the termneural networkinstead ofartificial neural networkfor the sake of simplicity.
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Figure 5.1: A neural network architecture.

material model will be introduced. Section 5.3.1 brings an estimation of microplane parame-
ters by a neural network trained on approximations of the stress-strain curves. It shows that
some properties can be predicted well, especially Young’s modulusE, the parameterk1 and
coefficientc20. In Section 5.3.2, a parallel version of the algorithmSADE is directly applied to
obtain required parameters by varying them within a nonlinear finite element analysis (see also
the conference paper [Kučerová et al., 2003] for more details). The first main result is that this
time consuming analysis can be solved by a parallel analysisin reasonable time. The second
outcome is the fact that the objective function corresponding to the tuning problem has several
local minima, which are characterized by similar values butare far from each other. To solve
the above mentioned obstacles and in the view of recent research in this domain [Lehký, 2003],
a new methodology is presented in Section 5.3.3. Particularly, an application of the Latin Hy-
percube Sampling method is applied to investigate the influence of individual material model
parameters. Finally, several results along with some concluding remarks are presented.

5.2 Optimizing synaptic weights of neural networks

This section (already presented as a conference paper [Drchal et al., 2002]) deals with an ap-
plication of theSADE algorithm introduced earlier in the process of training a neural net-
work (NN). We would like to show, that this problem is multi-modal and hence an Evolutionary
Algorithm is much better than the traditionally used gradient-based Backpropagation method.
This work does not aim at systematic research on neural networks and therefore the description
of a neural network will be presented only in a sketchy form.

5.2.1 Description of a neural network

Here, an artificial neural network, which will be later used for material parameters prediction,
is presented. More precisely, a layered fully connected feed-forward neural network with bias
neurons [Tsoukalas and Uhrig, 1997] is used. Its architecture is shown in Figure 5.1.

In general, a neural network is created to map the input vector I = (I0, I1, . . . , Im) on a tar-
get vectorT = (T0, T1, . . . , Tn). There areL layers denoted asl0, l1, . . . , lL−1, wherel0 is the in-
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put layer andlL−1 is the output layer. The layerli hasNi neurons denoted asni,1, ni,2, . . . , ni,Ni
.

Each layer except the output layer has the bias neuronni,0. The connections are given the so-
called synaptic weightswl,i,j, wherel denotes a layer,i = 0, 1, . . . , Nl−1 is the index number
of a neuron in the preceding layer (i = 0 for bias neurons) andj = 1, 2, . . . , Nl is the index
number of a neuron in the layerl. The output of the neuronnl,j is then defined as

Ol,j = fact

(

Nl−1
∑

i=0

Ol−1,i · wl,i,j

)

, l = 1, 2, . . . , L− 1 , j = 1, 2, . . . , Nl , (5.1)

O0,j = Ij , j = 1, 2, . . . , N0 , (5.2)

Ol,0 = 1 , l = 0, 1, . . . , L− 1 , (5.3)

wherefact is an activation function. In our current implementation the activation function has
the following form:

fact(Σ) =
1

(1 + e−α/Σ)
, (5.4)

whereα is the gain of thefact. The valueα = 0.8 is used in the next calculations. The output
vector of each layerli is denoted asOi = (Oi,1, Oi,2, . . . , Oi,Ni

). Finally, the neural network is
propagated as follows:

1. Let l = 1.

2. CalculateOl,i for i = 1, 2, . . . , Nl.

3. l = l + 1.

4. If l < L go to 2, elseOL−1 is the network’s approximation ofT .

The output error, which is used as a measure of training accuracy, is defined as

ε =
1

2

NL−1
∑

i=1

(Ti −OL−1,i)
2 . (5.5)

5.2.2 Backpropagation

For the training of a neural network, we employed the well-known Backpropagation algorithm.
More specifically, the momentum version [Tsoukalas and Uhrig, 1997] is used to speed up the
convergence. A short description of the method follows. Note that the error connected with
the output of the neuronnl,i is devoted asel,i. The algorithm could be written in the following
form:

1. for i = 1, 2, . . . , NL−1 calculateeL−1,i = α ·OL−1,i · (1 − OL−1,i) · (Ti −OL−1,i).

2. Setl = L− 1.

3. el−1,i = α ·Ol−1,i · (1 − Ol−1,i) ·
(

∑Nl

j=1wl,i,j · el,j

)

for each neuroni in (l − 1)th layer.
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Figure 5.2: A function used for testing:f(x) = 0.2x sin(20x) + 0.5.

4. l = l − 1.

5. While l > 1 go to 3.

6. All the weights are adjusted:wl,i,j = wl,i,j + ∆wl,i,j + µ · ∆w′

l,i,j, where∆wl,i,j =
η · el,j ·Ol−1,i .

The term∆w′

l,i,j stands for the value from the previous training iteration,η is the learning
constant, andµ is the momentum coefficient. The typical values areη = 0.5 andµ = 0.9.

5.2.3 SADE training vs. Backpropagation

As competitor, the algorithmSADE was selected - not only because it is directly based on real
numbers, but also for its ability to solve problems with highnumber of variables, see Chapter 3.

The training ability was tested on a simple task. A goniometric function

f(x) = ax sin(bx) + c (5.6)

was used. The following sequence of consecutive pointsx1, x2, . . . , xn was generated:

x1 = a random number from training interval,

xi = xi−1 + d , i = 2, 3, . . . , n , d is a constant, (5.7)

i.e., all points are equidistant and the sequence starts at arandom point. A network input
vector was created asI = (f(x1), f(x2), . . . , f(xn−1)) and the next sequential pointf(xn) was
expected on the output. Typically, two input points (n = 3) were used. The three-layered
neural network had two neurons in the input layer, three neurons in the hidden layer and one
neuron in the output layer, and, as an addition, bias neurons(see Section 5.2.1). The output
error according to (5.5) is

ε =
1

2
(f(xn) −O2,1)

2 . (5.8)
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Figure 5.3: An error function in estimation of neural network weights during an optimization
process.

The constants were set toa = 0.2, b = 20, c = 0.5 in order to avoid the necessity of
normalization (the network output ranges from0 to 1). Other functions were also tested and the
results were similar. The situation is shown in Figure 5.2.

We compared both optimization methods in100 runs of testing computations, each starting
from a new random generator seed. Each run comprised300, 000 iterations. The value of an
error function was saved every1000th iteration. The minimum, maximum, and average values
of the error function (calculated from100 independent testing runs) are shown in Figure 5.3 for
both theSADE and the Backpropagation method. The graph shows thatSADE training clearly
outperforms the Backpropagation methodology. Figure 5.4 also shows the distribution of the
error inf(x) approximation on the interval〈0.1; 0.9〉.

5.3 Microplane model parameters prediction

Concrete as a man-made heterogeneous material shows very complex non-linear behavior,
which is extremely difficult to model both theoretically andnumerically. The microplane ma-
terial model [Bažant et al., 2000], [Jirásek and Bažant., 2001] is a fully three-dimensional ma-
terial law that includes tensional and compressive softening, damage of the material, different
combinations of loading, unloading and cyclic loading. It can also describe the development
of anisotropy within the material. As a result, it is fully capable of predicting behavior of real-
world concrete structures [Němeček et al., 2002] once provided with proper input data.

The major disadvantage of this model is, however, a large number of phenomenological
material parameters. Although the authors of the model proposed a heuristic calibration proce-
dure [Caner and Bažant, 2000], it is based on the trial-and-error method and provides guide to
determination of only selected material parameters. Therefore, a reliable procedure for param-
eters identification is on demand. In particular, a certain type of concrete is described by eight
parameters: Young’s modulusE, Poisson’s ratioν, and six other parameters (k1, k2, k3, k4, c3,
c20), which do not have a simple physical interpretation, and therefore it is difficult to determine
their values from experiments.
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Figure 5.4: An error distribution in the approximation off(x) = 0.2x sin(20x) + 0.5.

The common practice for an experimenter is to employ the trial and error method to tune
stress-strain diagrams by varying individual model parameters, see [Caner and Bažant, 2000] or
[Němeček, 2000]. This is not a trivial task because of highly non-linear behavior. Nevertheless,
several limits can be found in the literature for these parameters. In the current implementation,
the suggested appropriate bounds were set to the values shown in Table 5.1.

E ∈ 〈20.0, 50.0〉 GPa
ν ∈ 〈0.1, 0.3〉
k1 ∈ 〈0.00008, 0.00025〉
k2 ∈ 〈100.0, 1000.0〉
k3 ∈ 〈5.0, 15.0〉
k4 ∈ 〈30.0, 200.0〉
c3 ∈ 〈3.0, 5.0〉
c20 ∈ 〈0.2, 5.0〉

Table 5.1: Boundaries for the microplane model parameters.

To define the problem more formally, the goal is to find microplane parameters from the
stress-strain diagram of a test specimen in a uniaxial compression, see Figure 5.5.

The rather severe disadvantage of the microplane model is anextreme demand of computa-
tional time. As it was shown e.g. in [Němeček, 2000], the above presented example of a uniaxial
test (Fig. 5.5) consumed more than 23 hours on a single processor PC with the Pentium II Xeon
400 MHz processor and 512 MB RAM. Therefore, a single finite element is used instead of the
whole specimen. It was demonstrated in [Němeček, 2000] that this simplified model is not so
unrealistic as it may appear at first sight; the differences in fitted parameters found by these two
approaches were not significant.
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(a) (b)

Figure 5.5: The computational model of a compression test a)at the start and b) at the end of
loading.

5.3.1 Application of a NN on parameterized diagrams

To start neural network training, it is necessary to preparea sufficiently rich set of training data -
these are the strain-stress diagrams for different kinds ofa material, for which the corresponding
values of the microplane model parameters are already known. For satisfactory training, such
a set of training data should contain several hundred patterns. The results of the microplane
model computer simulations were used as these patterns. Thetrial parameters were generated
randomly from given intervals, see Tab. 5.1.

Next, the Pearson product moment correlation coefficient2, defined as

cor =

∑

(xi − x̄)(yi − ȳ)
√

∑

(xi − x̄)2
∑

(yi − ȳ)2
, (5.9)

is used as an sensitivity measure to investigate the influence of individual parameters to a struc-
tural response. From the results in the twenty consecutive points, see Fig. 5.6, the impact of
Young’s modulusE especially in the elastic part of the curves is clearly visible. Also two pa-
rameters,k1 andc20, seem to be important. An effect of the other parameters is small and hence,
for a neural network only hardly recognizable. This is why the following computations were
focused only on an estimation of these two mentioned parameters.

At this point, a question arises, which representation of data should serve as an input for
a neural network to produce its optimal performance. The first option that came into sight was
to take the function values in determined points. This approach seemed to be inappropriate be-
cause the shapes of the strain-stress curves differ one fromanother too much (see Section 5.3.3
for such implementation). Also the size of the input layer ofa neural network must correspond
to the number of approximation points. Therefore if the number of approximation points is
high enough to represent all the complexity of the function graph, the size of the neural network
grows significantly and it leads to an enormous computation complexity.

An approximation of the strain-stress graph using a parametric function with a simple ana-
lytic description can be considered as another option. In this way, the parameters of the analytic

2 For the comparison of influence of different types of correlation coefficients, see Appendix D.
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Figure 5.6: Pearson product moment correlation coefficientas sensitivity parameter of individ-
ual parameters to the stress-strain curve.

function can be used as an input vector for a neural network. Asimple choice is to use a low
order polynomial function. For certain patterns it was discovered that the polynomial function
oscillates in the descending part of the graph which makes this approach of a less value. An
approximation that consists of several partial elementaryfunctions has proved to be more ef-
fective. In more detail,3 linear and1 exponential functions were used in the approximation
of the strain-stress function in the intervals between points 0, ε1, ε2, ε3 andεlast. The analytic
description of these elementary functions is as follows:

ε ∈ 〈0; ε1〉 : σ1(ε) = k1ε ,
ε ∈ 〈ε1; ε2〉 : σ2(ε) = k2ε+ q2 ,
ε ∈ 〈ε2; ε3〉 : σ3(ε) = k3ε+ q3 ,
ε ∈ 〈ε3; εlast〉 : σ4(ε) = ce−aε+b + d .

In the following, we call this approximationcombined approximation. It uses12 parame-
ters: ε1, ε2, ε3, k1, k2, q2, k3, q3, a, b, c, d. Three of them could be eliminated using conditions of
continuity in the connecting points:

ε1 : σ1(ε1) = σ2(ε1) → q2 = (k1 − k2)ε1 ,
ε2 : σ2(ε2) = σ3(ε2) → q3 = (k2 − k3)ε2 + q2 ,
ε3 : σ3(ε3) = σ4(ε3) → d = k3ε3 + q3 − ce−aε3+b .

The approximation is thus given by nine independent parametersε1, ε2, ε3, k1, k2, k3, a, b,
c. TheSADE algorithm was used to search for the values of these parameters. The optimized
function was the least square function, which contained thedifference among values of a stress-
strain curve and an approximation function. Fig. 5.7 shows an example of a computed strain-
stress curve, itscombined approximationand (for comparison) also its approximation using
a polynomial function of the eighth degree, which has also nine parameters.
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Figure 5.7: Approximations of a strain-stress curve.

The nine parameters of thecombined approximationare used as the input data for a neural
network, but they also contain some interesting information about the material as well. For
instance, the slopes of linear sections have the meaning of the secant moduli. For neural network
training itself, the input data as well as the target data (the known microplane model parameters)
have to be normalized to the interval〈0; 1〉.

It is supposed that the neural network training process should run only once. Hence empha-
sis is put on the reliability of the estimation. Two different networks were trained - each for
estimating one parameter and each of these networks had three layers. The size of the input
layer was nine, which corresponds to the number of parameters of thecombined approxima-
tion. In the second (hidden) layer, there were three neurons while there was only one neuron
in the output layer. One bias neuron was added to the first and the second layer. This neural
network layout contains thirty-one synaptic weights whichmeans thirty-one variables of the
optimized function. The training data set consisted of606 patterns3. During the training of
neural networks, one single evaluation of the optimized function is equal to an average error of
estimation of the target value on one hundred patterns. The training was stopped after a given
number of iterations (set to one million) and then the average error of an estimation of the target
values was computed on all the606 patterns. To avoid the stochasticity of theSADE algorithm,
the whole training process was run hundred times. Tab. 5.2 shows the average error and the
standard deviation in estimating the parametersK1 andC20 for hundred runs after one million
iterations. Because the outputs of the neural network are from the interval〈0; 1〉, it was easier
to evaluate the error based on these scaled values.

The influence of the error in the estimation by the neural network is shown in Figs. 5.8 and
5.9. The curves differ only by the values of the estimated parameter. Fig. 5.8 shows the curves
for two different values of the parameterK1 which differ just by1.3525%, which is the average
error of the estimation of this parameter. Fig. 5.9 shows four curves with varying value of the
parameterC20, two curves represent the boundary values ofC20 and the other two differ by

3 Originally, there were1000 sets, but the missing parameters constitute a non-realistic material that was not able
to describe a compression test.
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Figure 5.8: The influence of the error in the estimation of theparameterK1 using the neural
network.

parameter Avg. error [%] Std. [%]
K1 1,3525 0,2962
C20 6,9758 0,8216

Table 5.2: An error in estimating the microplane model parameters employing the neural net-
work using thecombined approximation.

6.9758% which is the average error for this parameter.
For comparison, the computation was made also for the approximation using the polyno-

mial function of the eighth degree. The nine parameters of the polynomial function for the
corresponding strain-stress curve were used as an input vector for the neural network. The
results of this computation are shown in Tab. 5.3 in the same format as in Tab. 5.2.

parameter Avg. error [%] Std. [%]
K1 1,2480 0,2458
C20 20,875 2,2510

Table 5.3: The errors in the estimation of the microplane model parameters employing the
polynomial approximation.

5.3.2 Direct application of the parallelSADE algorithm

In the previous section, the microplane models parameters were predicted from already known
stress-strain curves. But the whole problem can be seen as minimizing the difference between
an experiment and an output from static analysis. Therefore, the objective is to minimize the
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Figure 5.9: The influence of the error in the estimation of theparameterC20 using the neural
network.

least square error function, which contains the differencebetween values of a known stress-
strain curve (from an experiment or from structural analysis) and values from the microplane
model simulation.

As was mentioned previously, we will use only one microplaneelement, but still, the total
computational time is not negligible. Results for one element non-linear analysis on different
types of single processor PCs are presented in Table 5.4. Thecomputations were executed one
hundred times with randomly chosen material parameters andminimum, average and maximum
values are shown. Note the big differences between minimum and maximum times, which result
from the non-linear response of the structure.

Processor Min. [s] Avg. [s] Max. [s]
Intel Pentium III 450 MHz 47.96 89.76 213.32
Intel Pentium III 1000 MHz 22.45 47.95 97.73
Intel Xeon 1700 MHz 16.80 38.63 87.81

Table 5.4: Obtained times of one computation on different processors.

The whole problem is therefore single-objective, but is very multi-modal, i.e. there are
many local minima with approximately the same profit (see also Section 2.2.4). Figure 5.10
shows an example of the “real” stress-strain curve from an experiment, and its five, locally op-
timal, approximations with a microplane model. These results were obtained using theSADE
algorithm after3, 000 evaluations of the optimization method. The application ofthe stochastic
global optimization method brings here new possibilities as the optimized function apparently
possesses several (at least five) local minima, which introduces considerable obstacles to suc-
cessful application of gradient-based optimization procedures.

When inspecting Tab. 5.4, it is clear that running analysis3, 000 times on the fastest proces-
sor will require (in average) more than32 hours of computing. Therefore, we have applied the
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Figure 5.10: Five different results and an original stress-strain curve.

global parallel model, see Section 2.2.5, to minimize computational demands. This parallel
computing scheme ensures constant distribution of the workamong the processors provided
that the time spent on evaluation of two solutions does not differ. Although this condition is not
strictly met for the current problem (see Table 5.4), it appears that the sufficiently high number
of solutions assigned to each processor eliminates this disadvantage.

To be sure that the parallel algorithm is well-designed withrespect to the number of avail-
able processors, the optimum amount of processors is checked. It can be simply estimated by
Eq. (2.16)

P ∗ =

√

nTf

Tc

.
= 440 processors (5.10)

where

P ∗ is the optimal number of processors,
n is the number of solutions in population, in our case80,
Tf is time for one evaluation of a function, set to47.95 s, see Table 5.4,
Tc is latency time - hardware dependent variable, which is spent

on creating communication between two processors,
in our case equal to20 ms.

It is clear that in this particular case, the linear speedup can be expected even for substantially
higher number of processors than it is available at the author’s research department. Therefore,
the obtained near-linear speedup is nothing surprising (see Fig. 5.11).



Soft-computing methods applied on microplane model parameters identification 64

1

1.71

2.34

3.29

4.19

5.14

0 1 2 3 4 5 6 7

Number of CPUs

0

1

2

3

4

5

6

S
pe

ed
up

Figure 5.11: Speedup of the parallel SADE algorithm on a cluster of PCs.

Resulting times were obtained by running the presented optimization problem on a PC clus-
ter, installed at the Department of Structural Mechanics, Faculty of Civil Engineering, CTU
in Prague. The PC cluster consists of ten two-processor DELLworkstations. Parameters of
the three used computers (the fastest ones) are described inTable 5.5. The workstations are
connected by Fast Ethernet 100 Mb network using 3Com Superstack II switch. Note that this
cluster represents a heterogeneous parallel computing platform.

Processor No. processors Memory [MB]
Intel Pentium III 1000 MHz 2 512
Intel Pentium III 1000 MHz 2 2048
Intel Xeon 1700 MHz 2 1024

Table 5.5: Parameters of used computers.

The total times for the present problem are summarized in Fig. 5.12. The results were obtained
for 880 evaluations (10 generations per 80 solutions, the first generation needs twice more data).
It is obvious that for obtaining useful results in a reasonable time, the number of processors
needs to be much higher.

5.3.3 Application of the Latin Hypercube Sampling method (LHS)

To enrich the previous work on this subject, a neural networkpresented in Section 5.2.1 is en-
hanced by the application of the Latin Hypercube Sampling method [Iman and Conover, 1980],
which is used to generate training sets for a neural network.This procedure enables to minimize
an amount of needed simulations to reliably train a neural network, see e.g. [Lehký, 2003] or
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Figure 5.12: Obtained times during10 generations of the parallel SADE algorithm.

[Lehký and Novák, 2004]. Moreover, the Simulated Annealing optimization method (see also
Section 2.2.1) available in the software package FREET [Novák et al., 2003], or the most recent
work [Vořechovský, 2004, Appendix A], is used to ensure the independence among individual
samples. As results from this procedure, outputs from the stochastic non-linear analysis can be
seen in the Figure 5.13.

At this point, the neural network presented earlier in this paper is trained by the optimization
strategySADE on the thirty simulations from the LHS method. The level of trained accuracy
is tested on the set of ten different independent curves. Theprecision of predicted parameters
is shown in Table 5.6. The stress-strain curves generated from these predicted parameters are
depicted in the Figs. 5.14 and 5.15 and from the same picturesthey can be easily compared with
the corresponding original stress-strain diagrams.

5.4 Conclusions

The test results have shown thatSADE algorithm-lead training is a method fully capable to
train a neural network. The number of iterations needed to achieve the same output error is
significantly lower than with the Backpropagation method. Also the minimal output error is
by about three orders lower, which could be explained by the Evolutionary Algorithm’s higher
resistance to falling into local extremes.

Section 5.3 and the later sections demonstrate the neural network utilization in one part
within the Civil Engineering. The results of computations show that the neural network trained
by theSADE algorithm has the ability to predict the microplane model parameters with a satis-
fying level of precision. The parameters of the strain-stress curve approximation were chosen as
the input data for the prediction. Thecombined approximationby three linear functions and one
exponential seems to be an effective way. In the engineeringpractice, a neural network could
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Figure 5.13: Stress-strain curves as results from 30 simulations generated by the Latin Hyper-
cube Sampling method.

save a lot of experimenter’s time needed for searching parameters of the microplane model by
the trial and error method. It is supposed that when using theneural network for a parameter
prediction of a real material and its measured strain-stress curve, this curve must fit the set of
modeled examples on which the network was trained.

The main outcome of the present study, however, is the conclusion that the determination of
the microplane model parameters needs at least two test cases rather than a sole uniaxial com-
pression test. Indeed, this conclusion directly follows from the large scatter of values of Young’s
modulusE and Poisson’s ratioν among identified local minima during direct optimization (see
the embedded table in the Fig. 5.10). Since these two parameters are usually the only known
values in engineering practice, such a difference is not acceptable and additional data must be
supplied to reliably classify individual local minima. Therefore, in this optimization problem,

Table 5.6: Errors in the estimated parameters obtained fromten independent tests by the trained
neural network.

parameter relative error [%]
average maximal

E 2.84 5.30
ν 36.33 117.94
k1 1.70 4.93
k2 45.82 102.78
k3 36.51 224.68
k4 64.08 153.22
c3 33.74 78.68
c20 22.27 38.00
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the application of the optimization procedure does producenot only (sub)-optimal values of
optimized parameters but also provides deeper insight intothe analyzed problem.

The parallel solution then appears to be an appropriate toolfor tackling the enormous com-
putational demand of the microplane material model. The obtained nearly-linear speedup to-
gether with the possibility to use many more processors promise new interesting results and
potential applications of the presented method in the future.

When using a neural network, a number of needed simulations can be reduced by the ap-
plication of the Latin Hypercube Sampling method. The sensitivity analysis shows not only
the influence of individual parameters, see Figure 5.6, but also approximately predicts the er-
rors produced by the neural network, see Table 5.6. Althoughthe obtained predictions are not
identical, they can be further improved by much longer training process and/or by changing the
topology of a neural network. Nevertheless, the main advantage of this approach can be still
employed - the trained neural network can be used for the nextestimation phase in the future
without the need of expensive numerical simulations.
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Figure 5.14: A comparison of the first five stress-strain diagrams for the original and for the
estimated parameters.
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Figure 5.15: A comparison of the second five stress-strain diagrams for the original and for the
estimated parameters.



Chapter 6

CONCLUSIONS AND FUTURE PERSPECTIVES

Nothing is older than yesterday’s
success.

Robert M. Knight

The proposed thesis brings an insight into global optimization methods applied to several
Civil Engineering tasks. To describe problems, which are usually encountered in engineering
practice as well as science, basic notation and classification is introduced. Namely, the Global
and Structural optimizations are presented and the latter one is divided into four categories,
which, hopefully, cover all structural optimization tasksfrom the Civil Engineering area.

Next, a new classification for Evolutionary Algorithms (EAs) is presented. It is based on the
well-known notation developed for the Evolution Strategies (ESs) [Bäck and Schwefel, 1995]
and appropriately modified for single- as well as multi-objective optimization algorithms. The
leading idea is that everyEA can be described by a combination of three basic operations,
namely recombination, mutation and selection mechanisms.Based on this notation, the most
popular algorithms from the Global optimization area are introduced and described.

In engineering practice, we usually deal with multi-objective, constrained and often mixed
integer-continuous optimization problems. Solutions forall these phenomena are presented:
the multi-objective nature can be solved by Pareto-optimality approaches, constraints by penalty
functions and different types of variables by an appropriate encoding. Several other possibilities
are discussed in the text as well.

Although research within the Evolutionary Algorithms domain seems to be almost finished,
still there are several phenomena that need to be studied. Recently, multi-objective algorithms
have drawn a lot of attention and new developments in this area can be expected. Also in
the domain of the Global optimization, new discoveries havebeen made. Especially, the No
free lunch theorem changed dramatically the view on optimization algorithms. Now comes the
question if it is possible to find a superior algorithm for oneparticular function. The answer for
all optimization algorithms is “Not”, see e.g. [Macready and Wolpert, 1995], but if the number
of available algorithms is limited, then the answer is stillmissing.

Then, based on the above mentioned notation, four particular examples ofEAs are described
and compared. These optimization algorithms are used to solve several tasks from engineering
practice as well as two test functions and advantages and disadvantages of these methods are
shown. As a result, theSADE algorithm is recommended due to its simplicity and a small
number of parameters.

The next part is devoted to the application of the presented optimization methods to the
design of reinforced concrete frames. Generally, this taskis multi-modal, multi-objective and
highly constrained. To solve this problem as a whole, it is shown that this inevitably leads to an
integer formulation of the problem and hence presented qualities of Evolutionary Algorithms
are utilized. As an illustrative result, typical examples are solved and the Pareto-fronts in terms
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of the total price of a structure against its deflection are depicted. A new system of visualization
is also presented as an addition to the multi-objective optimization domain.

As an example of a single-objective optimization problem, training of an artificial neural
network and its use for a microplane material model parameters prediction is presented. The
Evolutionary Algorithm can be used here for the same purposeand has shown that the obtained
errors are much lower than the outputs obtained from the Backpropagation algorithm. More-
over, an identification of the microplane material model is investigated. Several approaches are
tested to solve the introduced problem. An estimation by an artificial neural network trained
on approximations of stress-strain curves shows that some properties can be predicted well but
a significant error in other coefficients is obtained. One reason can be an inappropriate de-
scription of a load-deflection curve. A new possibility hereis to use Genetic Programming
methods [Koza, 1992]. As was shown in [Rudnicki et al., 2003], it is nowadays possible to find
the most suitable approximation even as an analytical expression in a closed form1.

Next, a parallel version of theSADE algorithm is directly used to obtain the required pa-
rameters. The first main result is that this time consuming analysis can be solved by a parallel
analysis in a reasonable time. The second outcome is the factthat the objective function cor-
responding to the identification problem has several local minima, which are characterized by
similar values but are far from each other. This is usually solved by niching methods which have
still not been investigated enough. The opposite is true fora general parallelization, which is
nowadays no more a research topic, but an everyday approach.Today’s most promising area is
the domain of approximate models, where either a simpler computational tool can be used, e.g.
a static instead of non-linear static or non-linear static instead of non-linear dynamic analysis
can be utilized, etc., or a domain of a general approximation, usually called as Response Surface
methods [Lee and Hajela, 2001], Diffuse Approximations [Ibrahimbegović et al., 2004] or Sur-
rogate models [Karakasis and Giannakoglou, 2004]. If such amodel exists, then different and
usually a hybrid parallelization scheme can be effectivelyapplied, see e.g. [Wang et al., 2002]
and [González et al., 2004]. Moreover, traveling between an approximate and original functions
can be also seen as a multi-objective problem. One recent example of such application can be
found e.g. in [Quagliarella, 2003].

To solve the above mentioned obstacles in microplane parameters identification and in the
view of recent research in this domain, a new methodology is also presented: an application
of the Latin Hypercube Sampling method (LHS) as well as a sensitivity analysis are applied
not only to investigate the influence of individual materialmodel parameters, but also to mini-
mize the need of training samples for an artificial neural network. This application of the LHS
method along with the Simulated Annealing seems to be too robust, because it is primarily
aimed at fulfilling correlation dependencies rather than independence of training samples, see
e.g. [Vořechovský et al., 2002] or [Vořechovský, 2004]. This can be done by simpler meth-
ods, for instance, the so-called Quasi-random generators seem to be a proper choice. Recently
two authors have been investigating these methods - Heikki Maaranen has compared several
Quasi-random generators and their influence on the behaviorof Genetic Algorithms, see the
works [Maaranen et al., 2004a] and [Maaranen et al., 2004b],and Felix F. Tong has studied the
same topic directly within neural network training [Tong and Liu, 2004] and both authors report
interesting and promising results.

1 By the way, the Genetic Programming can be also seen as a multi-objective problem, see e.g. the work
[Bleuler et al., 2001] for more details.
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[Lepš andŠejnoha, 2003] Lepš, M. anďSejnoha, M. (2003). New approach to optimization of
reinforced concrete beams.Computers & Structures, 81(18–19):1957–1966.
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Appendix A

INELASTIC BIAXIAL BENDING ANALYSIS

The aim of this chapter is to introduce the current state of the art within the analysis of
biaxial bending of arbitrary composite sections and to utilize the gathered knowledge for the
design of reinforced concrete cross-sections. Although the most important algorithm used here-
after - the contour summation technique- has been known for more than twenty years, the
general knowledge of this methodology is probably not widely known in the engineering prac-
tice, because till nowadays many papers are being publishedabout improving not-so-enhanced
procedures.

A.1 Introduction

The main goal here is the analysis of beam members loaded dominantly with the combination of
axial force and bending moments with regard to the non-linear behavior of the material. There
are usually two different tasks to be solved: the construction of an interaction surface and
the assembly ofa tangent stiffness matrix. The second task is not presented in this work, but
the procedure presented later can be used as well and the resulting equations for the analytical
solution can be found e.g. in [Rotter, 1985].

In the case of the interaction surface construction, we havethree internal forces in the cross-
section: one axial forceNx and two bending momentsMy andMz. These forces are defined as
the area integrals over the cross-sectional areaA:

Nx =

∫∫

A

σx dA , (A.1)

My =

∫∫

A

σxz dA , (A.2)

Mz = −
∫∫

A

σxy dA . (A.3)

As long as we are working with an uniaxial strain(εx 6= 0, εy = εz = γxy = γxz = γyz = 0),
a material of the cross-section can be described using the following constitutive equation:

σx = σ(εx) . (A.4)

In other words, a stress is a general function of a strain. This function is explicitly defined
and known for each particular material and also represents the stress-strain diagram of the mate-
rial. Moreover, the next assumption hereafter is the Bernoulli-Navier Hypothesis assuming that
the plane section remains planar after deformation and perpendicular to the centerline. This also
means that strain can be presented as a plane constructed over cross-section, where the track of
the plane represents the neutral axis.
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A.2 Historical overview

In the history, the usual scenario of computing integrals (A.1) – (A.3) was to use well-known
equations for the most common cross-sections and a given stress-strain relationship. However,
in the time of fast computers and the finite element method, this procedure becomes too sim-
plistic.

It would certainly be nice if there existed a closed-form solution for any cross-sectional
shape as well as for an arbitrary stress-strain diagram. Unfortunately, there is no such to the
knowledge of the author and probably does not exist. Therefore, inevitably some simplification
or approximation must be used.

Firstly, we can distinguish the limitation ona shapeor ona stress function, respectively. If
the precise description of cross-section boundaries is notimportant, we can simplify them and
hence we can have almost any stress-strain relationship. Another possibility is to restrict the
description of material behavior to a linear, parabolic, mixed-linear and so on, which enables us
to use precise delineation of a cross-section.

The next division can be done for theclosed-formsolutions and for thenumerical integra-
tion. Based on the above-mentioned assumptions, there exist closed-form solutions for special
cases of both simplification, the shape as well as material ones. If these premises do not hold,
numerical integration is often used. And, of course, the main advantage of the former ones is
the speed and easiness in comparison to the latter methods.

Finally, the algorithms can also be divided into two groups:area-basedand boundary
based. The former ones follow the second-order area integrals as such by dividing the area
of a cross-section into smaller pieces - pixels [Sfakianakis, 2002], fibers [Romero et al., 2002],
parallel layers [Bonet et al., 2002] or subsections [Chen etal., 2001], and then summing re-
quired quantity among these sub-parts. The boundary based ones are based on Green’s Theorem
by transforming integrals over the domain into boundary integrals, as will be shown later.

Till nowadays, there have been more than twenty papers dealing with these topics, several
of them cited above and below. The most important and cited ones are to be shown here in more
detail and their advantages and disadvantages will be discussed.

The first example is the work [Sfakianakis, 2002], which usessmall graphical pixels to de-
scribe the cross-section and therefore it can be characterized as a shape-approximate, numerical
and area-based procedure. Although opponents of this method argue that, except the proximity
of these methods, it is slow especially due to the division topixels, nowadays this argument must
be rehabilitated. In this work this obstacle is solved by theusually unexplored computational
power of current graphical devices to compose pixels of the composite concrete sections.

Next approach, e.g. [Chen et al., 2001], is nowadays an oftenused method (see also the
work [Charalampakis and Koumousis, 2004] for the most recent references). It is based on the
decomposition of the shape into trapezoids and circles. Because the stress-strain relationship
is limited here only to linear and/or low-order polynomial curves and their combination, it
enables us to find closed-form solutions for these shapes. The final values are then computed
as the summation over these smaller pieces. Using our notation, it is limited in the stress-strain
description as well as in the form of a shape (enables only lines and circles) and finally, this
procedure is a closed-form and area-based method.

If the stress-strain diagram does not fulfill piecewise polynomial description, there still exist
procedures to evaluate internal forces. Even though the procedure presented in [Fafitis, 2001]
is not the oldest one and also is not the best, it can serve hereas the introduction to boundary-
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based procedures. Green’s Theorem is applied here to transform the area integration over an
areaA into a line integration along the closed lineL that encloses the area:

∫∫

A

(

∂Q/∂y − ∂P/∂z
)

dy dz =

∮

L

P dy +

∮

L

Q dz , (A.5)

whereP andQ are two arbitrary functions ofy andz. Now, let us set

P = 0 and (A.6)

Q =
1

r + 1

∫

yr+1zsg(z) dz , (A.7)

wherer ands are nonnegative integers. Based on this choice the Eq. (A.5)becomes
∫∫

A

yrzsg(z) dy dz =
1

r + 1

∮

L

yr+1zsg(z) dz . (A.8)

This re-formulation of the original problem is very suitable, because ifg(z) = 1, the left-
hand side represents

• the areaA, for r = 0 ands = 0,

• the area momentSy, for r = 0 ands = 1,

• the area momentSz, for r = 1 ands = 0,

• the moment of inertiaIy, for r = 0 ands = 2,

• the moment of inertiaIz, for r = 2 ands = 0,

• the moment of inertiaIyz, for r = 1 ands = 1

and, moreover, ifg(z) = σ(εx(z)), the left-hand side is

• the axial forceNx, for r = 0 ands = 0,

• the bending momentMy, for r = 0 ands = 1 and, finally,

• the bending momentMz, for r = 1 ands = 0.

Moreover, as noted in [Fafitis, 2001], the right-hand side ofthe Eq. (A.8) is a line integration
along the sides of integration areaA. And, in the case of polygonal boundaries, this integral
diminishes into the summation over the individual lines creating the polygon. At this point
A. Fafitis has applied numerical integration to evaluate line integrals, which, at least in this
author’s opinion, is not the right choice to follow. Even A. Fafitis admits that if the stress-strain
functionσ(z) is integrable there exists closed-form formula for this line integral. This way was
firstly discovered and developed by [Rotter, 1985]. We think, that closed-form solution is not
only the computationally fastest enumeration but also a conceptually very simple method and,
therefore, it seems that the work of J.M. Rotter is not widelyknown in the engineering practice.
Otherwise the number of applications will be higher. This fact can be also illustrated by the work
of R. Vondráček, see e.g. [Vondráček, 2001] and [Vondr´aček and Bittnar, 2002], who derived
independently the same equations several years later. Next, this procedure is described in detail.
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Figure A.1: Modification of a cross-section with openings.

A.3 Internal forces evaluation - the contour summation technique

Let us suppose we have a cross-section of a general beam. Thiscross-section consists of several
subsections, where each subsection is assumed to be of one material.

A.3.1 Subsection shape

The subsection can be either a small simple shape, e.g. a steel bar, which is described by its 2D-
coordinate and the area, or the subsection that can be described as an area bounded by a general
polygon. This polygon must be closed and oriented counterclockwise. This description can be
also used for openings (see A.1). When we run around the wholeboundary of a subsection we
can add one imaginary edge going from the last vertex of the boundary to the first vertex of the
opening. We go along this edge and then we follow the boundaryof the opening in clockwise
direction. When we reach the last vertex of opening (which issimultaneously the first vertex),
we go back along the imaginary edge in the opposite direction. We end up in the starting vertex
again.

Finally, we can arrange coordinates of polygon vertexes into a vectorA = {A(0), A(1),. . .,
A(np)}, whereA(i) = {a(i)

y , a
(i)
z }T , np is a number of the vertexes anda(i)

y , a
(i)
z are the Cartesian

coordinates in the cross-section local coordinate system.

A.3.2 Coordinate system transformation

According to the Bernoulli-Navier hypothesis mentioned previously, we can write the strainεx

as a function of the position in the plane, i.e.

εx(y, z) = ε0 + zκz + yκy , (A.9)

wherey, z are the local coordinates of the specific point on the cross-section,ε0 is the strain in
the cross-section origin (sometimes denoted asu′), κz, κy are the curvatures in both directions
(sometimes denoted asv”, w”).

To integrate stress over the cross-section, we also have to consider the fact thatσx is, in
first row, function ofεx, see Eq. (A.4), and that this strain is dependent both ony as well on
z coordinate, see (A.9). To solve this obstacle, we define a newcoordinate system on the cross-
section. This Cartesian system is defined by two axesu, v, whereu is parallel to the neutral
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axis. This means that strain is only a function ofv coordinate of a specific cross-sectional point

εx(u, v) = εx(v) = ε0 + vκ . (A.10)

Consequently, stress is also a function only ofv coordinate of the specific cross-sectional
point. The transformation fromy, z system tou, v system is defined by means of transformation
matrixT as

{

u
v

}

=





κy

κ

κz

κ
−κz

κ

κy

κ





{

y
z

}

= [T]

{

y
z

}

, (A.11)

where
κ =

√

κ2
y + κ2

z . (A.12)

We can expressu, v coordinates of each vertex of the cross-section also inu,v system as
well as the whole polygon. If the boundary of the areaA consists ofnp straight lines then each
can be described parametrically by

X(i)(t) = A(i) + tB(i) , 0 ≤ t ≤ 1 , i = 0, . . . , np − 1 . (A.13)

By substituting

B(i) = A(i+1) −A(i) , whereB(i) = {b(i)u , b
(i)
v } and (A.14)

b(i)u = a
(i+1)
u − a

(i)
u , b(i)v = a(i+1)

v − a(i)
v , (A.15)

we obtain

u(t) = a(i)
u + tb(i)u du = b

(i)
u dt (A.16)

v(t) = a(i)
v + tb(i)v dv = b

(i)
v dt (A.17)

and for each line of the polygon the following relation between differentials is valid

du =
b
(i)
u

b
(i)
v

dv =
1

ki

dv , (A.18)

whereki is the tangent ofi-th polygonal segment.

A.3.3 Stress integrals substitution

As the stressσx is a function of the strainεx and the strainεx is a function of the coordinatev,
we have, for a given cross-section and a given plane of strain,

σx = σx(εx) = σx(εx(v)) . (A.19)

Finally, we define stress integrals as

s(ε) =

∫ ε

0

σ(ξ) dξ , (A.20)

ss(ε) =

∫ ε

0

s(ξ) dξ =

∫ ε

0

∫ ξ

0

σ(η) dη dξ , (A.21)

sss(ε) =

∫ ε

0

ss(ξ) dξ =

∫ ε

0

∫ ξ

0

s(η) dη dξ =

∫ ε

0

∫ ξ

0

∫ η

0

σ(ψ) dψ dη dξ . (A.22)
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Based on this definition, now the right-hand side of the Eq. (A.8) can be expressed analyt-
ically and summed over individual lines. The stress resultants are then as follows, including
also degenerate cases (i.e.,κ → 0 or ki → 0). For a detailed derivation, see again the works
[Vondráček, 2001] or [Vondráček and Bittnar, 2002].

A.3.3.1 Axial forceNx

Nx =

np−1
∑

i=0

N (i)
x , (A.23)

N (i)
x = − 1

κ2

1

ki
[ss(ε)]ε

(i+1)

ε(i) , (A.24)

lim
κ→0

N (i)
x = −σ(ε0)b

(i)
u

(

a(i)
v +

b
(i)
v

2

)

, (A.25)

lim
b
(i)
v →0

N (i)
x = −b

(i)
u

κ

[

s(ε(i))
]

. (A.26)

A.3.3.2 Bending momentMu

Mu =

np−1
∑

i=0

M (i)
u , (A.27)

M (i)
u = − 1

κ3

1

ki
[(ε− ε0)ss(ε) − 2sss(ε)]ε

(i+1)

ε(i) , (A.28)

lim
b
(i)
v →0

M (i)
u = −b

(i)
v

κ2

[

κa(i)
v s(ε(a

(i)
v )) − ss(ε(a(i)

v ))
]

, (A.29)

lim
κ→0

Mu = −1

6
σ(ε0)

np−1
∑

i=0

b(i)u

[

3a(i)
v b

(i)
v + 3(a(i)

v )2 + (b(i)v )2
]

. (A.30)

A.3.3.3 Bending momentMv

Mv =

np−1
∑

i=0

M (i)
v , (A.31)

M (i)
v = −1

κ

[

1

2
u2(ε)s(ε) − 1

kiκ
u(ε)ss(ε)− 1

k2
i κ

2
sss(ε)

]ε(i+1)

ε(i)

, (A.32)

lim
b
(i)
v →0

M (i)
v = 0 , (A.33)

lim
κ→0

Mv = −1

6
σ(ε0)

np−1
∑

i=0

b(i)v

[

3a(i)
u b

(i)
u + 3(a(i)

u )2 + (b(i)u )2
]

, (A.34)

whereu(ε(i)) (respectivelyu(ε(i+1))) means theu coordinate of the beginning (respectively end)
of the line segment of the boundary polygon.
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Figure A.2: Construction of the ultimate deformation border for one- and two-sided reinforce-
ment and the EC 2 constraint. (a) Limit deformations, (b) Ultimate borders.

A.3.4 Transformation of internal forces

After the integration we have three internal forcesNx, Mu andMv in u,v coordinate system.
To getMy andMz we have to compute the following transformation using the transformation
matrixT shown in Eq. (A.11).

{

My

Mz

}

= [T]T
{

Mu

Mv

}

. (A.35)

A.4 Construction of an interaction diagram

From the practical point of view, the construction of the interaction surface of a cross-section
subject to biaxial bending seems to be the most prominent problem to be solved. The aim
of the current section is to employ the general procedure forevaluation of internal forces for
a given plane of deformation, Eqs. (A.24) – (A.34), to provide a suitable framework for solving
more advanced tasks of reinforced concrete cross-section analysis and design. Note, that for the
simplicity we will limit our attention to the 2D problem only, but the procedure presented here
is general and can be extended to 3D problems, too.
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Figure A.3: Construction of interaction surface. (a) Discretization of deformation border, (b)
Interaction surface

A.4.1 Ultimate deformation border

Before proceeding with the interaction surface construction, it appears to be advantageous to
introduce the notion of anultimate deformation borderfirst. Consider again a cross-section
subject to a given normal strainε0 and principal curvatureκv, see Fig. A.2a.

Then, the cross-section will be in the ultimate state if the normal strain in the concrete parts
or the reinforcing members with the largest distance from the neutral axis reaches the limit
value. In order to characterize the set of all possible deformation planes, consider the limit
deformations A–D, schematically depicted in Fig. A.2a, corresponding to extremal values of
normal strainε0 and principal curvatureκv, respectively. As a consequence of the Bernoulli-
Navier hypothesis, all deformations corresponding to the ultimate state can be expressed as
a convex combination of the corresponding two limit deformations. Therefore, plotting the
points A–D in theκv × ε0 coordinate system defines the polygon representing all possible ul-
timate deformations of a cross-section, see Fig. A.2b. Notethat the introduced construction of
the ultimate deformation border can be easily augmented to incorporate additional constraints
imposed by design codes. For example, the EC2 standard [Eurocode 2, 1991] suggests a differ-
ent value of maximal concrete compressive strain for a full compression (dominant axial force)
than for a bending. This requirement can be easily incorporated into the ultimate border by
inserting an additional point E between vertices A and D (seeagain Figs. A.2a and A.2b).

A.4.2 Construction of interaction surface

Having introduced the ultimate deformation border, the construction of the interaction surface
for a given cross section proceeds in a straightforward manner. To that end, each segment of the
ultimate deformation border polygon is divided into a givennumber of intervals, see Fig. A.3a
and for each point of the resulting discretization of ultimate border, the values of the normal
forceNx and bending momentMv are evaluated by Eqs. (A.24) – (A.26) and (A.31) – (A.34)
which yields the polygonal approximation to the interaction surface, Fig. A.3b.

Two different indicators can be then defined to quantify the cross-section utilization for
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a given load corresponding to a pointP in theMv × Nx coordinate system. In particular, the
parameterηN serves to characterize the load-carrying capacity reservefor a load with an in-
creasing normal force and a constant momentMv while the ratioηp measures the utilization of
the cross section for the case of proportional loading. These quantities have a simple geometri-
cal interpretation once the interaction surface has been constructed, see Fig. A.3b,

ηN =
‖QP‖
‖QS‖ , ηp =

‖OP‖
‖OR‖ (A.36)

and allow us to determine the admissibility of the design pointP simply by checking one of the
inequalitiesηN ≤ 1 or ηp ≤ 1.



Appendix B

GRAPHICAL ILLUSTRATION

B.1 Introduction

Without any doubt, the graphical illustration is very important not only for decision making but
can also play an important role during the optimization process. While the former is an essential
part of both the research work as well as the practical one, the latter can help to understand the
behavior of the optimization algorithm. The proper visualization can also bring a new insight
into the studied problem, as will be shown in Section B.4.

This chapter is organized as follows: Firstly, several types of illustration of data are pre-
sented. Secondly, their combination is proposed to build aneffective tool for graphical rep-
resentation of the solutions of multi-objective optimization. The advantage of the proposed
methodology is shown in the last section.

B.2 Illustrating the pareto optimal set

B.2.1 Illustrating real vectors

A lot of researches have dealt with the problem how to displaythe sets of data to be clearly
visible and understandable. During solving the multi-objective problems, the task of visual-
ization of the Pareto-optimal set or Pareto-optimal front must be done. A vectorx ∈ �2 can
be drawn in a plane,x ∈ �3 in 3D and corresponding axonometries, but for more dimensions
this approach can be enhanced only by time, color or sound without loosing general overview,
e.g surfaces can be lost. If we limit our attention only to visualizations of vectors, i.e. the
surfaces created by these vectors are not important, there exist several ways how to display
them. For a comprehensive overview, see e.g. the work done byK. Miettinen [Miettinen, 1999,
Chapter III.3], where several possibilities are describedin detail. Namely, thevalue path(some-
times calledparallel axisor vertical scales) in relative or absolute values can be used, see e.g.
Fig. B.6 (left) and Fig. B.7. Another favorite ones are thepetal diagramsor bar charts, see e.g.
Fig. B.5 and Fig. B.6 (right), respectively. It is also worthwhile to mention other possibilities
such asstar coordinate systems, spider-web chartsor scatterplot matrixes, see again the work
[Miettinen, 1999] for more details.

The advantage of visualization in the decision making process needs no comments because
its profits are clear. The use of the presented illustration methods during an optimization run
will be shown on the example of theType 0function introduced previously in Section 3.2.2. The
method used is the SADE algorithm (see Section 3.3.2) together with the CERAF technology
for multi-modal optimization [Hrstka and Kučerová, 2004]. The results for five dimensions, i.e.
x ∈ �5, nine local and one global optimum are depicted in the Fig. B.1 using thevalue path
methodology. Each variable has its own vertical axis with individual scale. The vectors of
solutions are characterized by piece-wise linear lines crossing the variables’ axes in the corre-
sponding points.
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(a) Initial population. (b) Intermediate population.

(c) First local minimum found. (d) Population at the 125th generation.

(e) Population at the 323rd generation. (f) Second local minimum found.

(g) Population at the 607th. generation. (h) Global optimum found.

Figure B.1: A typical convergence of the multi-modal optimization algorithm. Pictures are
provided by courtesy of Anna Kučerová.
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Figure B.2: Binary hypercube (left) and mapping to its corresponding hyperplane (right) pro-
posed in [Wiles and Tonkes, 2002]. Rows and columns of the graph are labelled by their hyper-
plane templates and dotted arrows show the neighbors of000.

Following consecutive generations, the algorithm quicklyproceeds from an initial popula-
tion (a) to the valley of a local minimum (b). In the 100th generation, the local minimum is
selected (c) and new solutions are created. The population in Fig. B.1 (d) is characterized by
the simultaneous search at two valleys. One of them (e) leadsto the second minimum (f). And
after some iterations (g) we have finally obtained the globalminimum (h). This tracking of
an optimization algorithm can say a lot of the behavior and isvery useful in the developing of
a new algorithm.

B.2.2 Illustrating discrete vectors

When dealing with discrete values like integer or binary values, the conditions stated above for
displaying vectors are valid too. Moreover, if we limit attention to the finite set of possible
values, more options come to view. For instance, in the work [Wiles and Tonkes, 2002] a pro-
cedure for displaying moderate-dimensional binary spaces({0, 1}n for n ≤ 16) was proposed.
It is based on the idea of unfolding a binary hypercube into a plane hypergraph, see Fig. B.2.
Authors suggest, that this visualization can show not only values of an objective function in
then-dimensional binary space (usually by different colors or the extension into the 3D space),
but also fitness surfaces, sizes and shapes of basins of attraction of local minima and other
properties can be seen from such graph.

Moreover, this procedure can be easily extended to the integer or discrete sets. This is also
more appropriate for engineering problems, where usually bounded values and also discrete
ones come under investigation. One particular implementation can be defined on the basis of
odd and even positions of variables in the vector: Letx = {x1, x2, . . . , xn}, n ∈ �

, xi ∈
Di, is then-dimensional vector of discrete values. Then, this spatialvector can be unfolded
into the plane hypergraph havingΠ2k−1

i=1 |Di| × Π2k
i=2|Di|, k = dn/2e, cells. The term|Di|

states for the size of the discrete domainDi. More particularly, odd positions are depicted in
columns and their perturbation with even positions is made by the means of raws. For particular
implementation, see section B.4 and especially Fig. B.9.

B.3 Illustrating a set of alternatives

When studying multi-objective literature, one may have thefeeling that the visualization of
Pareto-optimal fronts is enough for an optimization process. Even more, usually only plane
plots are shown and the 3D visualizations are very rare, see e.g. the works [Zitzler, 1999]
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Figure B.3: The Pareto-optimum front (top) and the variableb of the corresponding Pareto-
optimal set (bottom).

or [Chiba et al., 2003]. The design/decision space is usually fully omitted. But this does not
correspond to the usual practice needs, where the final decision is done in both - in the objective
as well as the decision space. As is presented above, both spaces can be suitably drawn, but the
connection between them is missing. Therefore the combination of these two spaces is proposed
here: When inspecting the Pareto-optimality and all Pareto-optimal fronts, it is obvious, that two
solutions can never be in one vertical line, because one would be dominant over the second one.
Hence all Pareto-optimal solutions can be sorted in the terms of individual functions and also
theirx values can be sorted/drawn in this order. See Fig. B.3, wherethe Pareto-optimal front of
the example studied later in this chapter is depicted above with correspondingly sorted values
of the variableb of individual solutions. This picture can give us “sensitivity” information on
the variables’ influence on the objective function and, therefore, significantly help the designer
to choose the proper solution.

The proposed methodology can be further enhanced be puttingparticular variables together.
This is possible, if all variables have similar scales. In the opposite case of different scales,
the relative measure for the values can be used. See e.g. Fig.B.8, where the0 % means the
minimum and the100 % maximum of the variable, respectively. To show individualsolutions
and their variables together, the whole Pareto-optimal setis plotted in 3D.
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Figure B.4: The welded beam design multi-objective problem.

B.4 An engineering example

To illustrate the advantages of the proposed methodologies, let us assume an often cited engi-
neering example: a weld of two beams, see Fig. B.4. The goal isto minimize the cost of the
welded beam and concurrently to minimize the end-deflectionof this beam by changing four
parameters (thickness of the beamb, width of the beamt, length of the weldl and weld thick-
nessh) formed in the design vector~x = {b, t, l, h}. The cantilevered part has a length of14
inches and a6, 000 lb forceF is applied at the end of the beam. The variables are bounded by
the following constraints:0.125 ≤ h, b ≤ 5.0 and0.1 ≤ l, t ≤ 10.0, all of them in inches.
Following the description presented in [Deb, 1999], the whole problem can be formalized as
follows:

minimize f1(~x) = 1.10471h2l + 0.04811tb(14.0 + l) , (B.1)

minimize f2(~x) = δ(~x) , (B.2)

subjected to g1(~x) = 13, 600 − τ(~x) ≥ 0 , (B.3)

g2(~x) = 30, 000 − σ(~x) ≥ 0 , (B.4)

g3(~x) = b− h ≥ 0 , (B.5)

g4(~x) = Pc(~x) − 6, 000 ≥ 0 , (B.6)

Figure B.5: Petal diagrams of six solutions from Pareto-optimal front.
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Figure B.6: Relative value paths (left) and 3D bar charts (right) of six solutions from Pareto-
optimal front.

Figure B.7: Value paths of six solutions from Pareto-optimal front.

where the deflection termδ(~x) is given by

δ(~x) =
2.1952

t3b
. (B.7)

The first constraintg1 deals with shear stress at the support location and the second constrain
g2 with normal stress at the same place. The third constraintg3 ensures that the thickness of the
beam is not smaller than the weld and the last constraintg4 controls the allowable buckling load
along thet direction. The corresponding stress and buckling terms aredefined as

τ(~x) =

√

(τ ′)2 + (τ ′′)2 + (lτ ′τ ′′)/
√

0.25(l2 + (h+ t)2) , (B.8)

τ ′ =
6, 000√

2hl
, (B.9)

τ ′′ =
6, 000(14 + 0.5l)

√

0.25(l2 + (h+ t)2)

2{0.707hl(l2/12 + 0.25(h+ t)2)} , (B.10)

σ(~x) =
504, 000

t2b
, (B.11)

Pc(~x) = 64, 746.022(1− 0.0282346t)tb3 . (B.12)
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Figure B.8: Pareto-optimal set (left) and Pareto-optimal front (right) of the example studied.

For the solution, the Internet-based interactive multi-objective optimization system NIMBUS
[Miettinen and Mäkelä, 2004] was used. Because the interactive mode does not enable the ef-
fective search for the whole Pareto-optimal set, only six solutions found are depicted. The
comparisons of these solutions in the objective space are shown in different graphs in Fig-
ures B.5–B.7. Unfortunately, the NIMBUS system has no visualization tool for the decision
space and offers only text view of the found Pareto-optimal set. Therefore, it is very difficult to
discover the most important feature of the solutions for this engineering problem such that the
solutions in the Pareto-optimal front are almost created only by changes in the variableb and
other variables are fixed in constant values [Deb, 1999]. If the proposed visualization is used,
this fact is clearly visible, see Fig. B.8. The Pareto-optimal set is depicted on the left in relative
measures. The six solutions are characterized by the minimal values of variablesl andh, al-
most maximal allowable values of the variablet and, which is the most important information,
by the increasing values of the variableb in the connection with the decreasing deflection in the
objective space, what is drawn on the right in Fig. B.8.

To show a possibility of proposed discrete visualization, imagine the discrete definition of
the weld problem example. Let us assume the discreteness of the variables as discrete sets,
particularlyl = {1.0, 2.0, . . . , 10.0}, b = {0.5, 1.0, . . . , 5.0}, t = {1.0, 2.0, . . . , 10.0}, andh =
{0.5, 1.0, . . . , 5.0}. Therefore, the whole domain is a10× 10 × 10 × 10 hypercube. Following
description given in section B.2.2, this hypercube can be unfolded e.g. into the|l||t| × |b||h|
hypergraph containing100 × 100 cells. To illustrate the possibilities of this visualization, the
feasible set is depicted by the gray color, see Fig. B.9. Note, that in this case the{i, j} position
of the vector~x = {l, b, t, h} is given by thei-th row, i = b|Dh| + h, and thej-th column,
j = l|Dt| + t, respectively. It can be easily gathered from this graph, that the feasible set is
bounded by the(1.0, 10.0) × (2.0, 5.0) × (2.0, 3.0) × (0.5, 5.0) prism. This can be very useful
in the design process to designer to track new feasible solutions.
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Figure B.9: The hypergraph of the feasible space in the discrete formulation of the studied
example.



Appendix C

PARAMETERS SETTINGS FOR FOUR EVOLUTIONARY
ALGORITHMS

C.1 Parameter settings for RASA

Parameter Beam Others
pop_size 64 32
q 0.04 0.04
p_uni_mut 0.525 0.05
p_bnd_mut 0.125 0.05
p_nun_mut 0.125 0.05
p_mnu_mut 0.125 0.05
p_smp_crs 0.025 0.15
p_sar_crs 0.025 0.15
p_war_crs 0.025 0.15
p_heu_crs 0.025 0.35
b 0.25 2.0
T_frac 10−2 10−10

T_frac_min 10−4 10−14

T_mult 0.9 0.9
num_success_max 10×pop_size 10×pop_size
num_counter_max 50×pop_size 50×pop_size
num_heu_max 20 20
precision (step 4a) see Section 3.3.310−4

Table C.1: Parameter settings for RASA

C.2 Parameter settings for DE

Parameter Chebychev, Type 0 Beam PUC
pop_size 10 × dim 11 × dim 10 × dim

F1 = F2 0.85 0.85 0.75
CR 1 0.1 1

Table C.2: Parameter settings for DE
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C.3 Parameter settings for SADE

Parameter Chebychev Type 0 Beam PUC
pop_size 10×dim 25×dim 10×dim 10×dim
CR 0.44 0.1 0.3 0.2
radioactivity 0 0.05 0.05 0.3
MR 0.5 0.5 0.5 0.5

Table C.3: Parameter settings for SADE

C.4 Parameter settings for IASA

Parameter Chebychev Type 0 Beam PUC
OldSize 80 900 180 200
NewSize 5 600 250 100
T_max 10−5 10−5 10−4 10−1

T_min 10−7 10−10 10−5 10−5

SuccessMax 1000 1000 1000 1000
CounterMax 5000 5000 5000 5000
TminAtCallsRate 19% 100% 25% 20%
CrossoverProb 97% 92% 60% 90%
CR 0.5 0.6 1.3 1.0

Table C.4: Parameter settings for IASA



Appendix D

COMPARISON OF DIFFERENT CORRELATION COEFFICIENTS

When computing a correlation coefficient, one may be confused, which of the many formu-
las to select. In the literature, see e.g. [Holmes, 2001], there can be found the three most often
used ones:

D.1 Pearson product moment correlation coefficient

This coefficient is only based onx,y positions of individual samples and defined as

cor =

∑

(xi − x̄)(yi − ȳ)
√

∑

(xi − x̄)2
∑

(yi − ȳ)2
. (D.1)

D.2 Spearman rank correlation coefficient

This coefficient uses the knowledge of individual ranks and,hence it is given by

cor = 1 − 6
∑

d2
i

n(n− 1)(n+ 1)
, (D.2)

wheredi = r(xi)− r(yi) andr(xi) stands for the rank ofxi value and the same relation is valid
for yi.

D.3 Kendall rank correlation coefficient

This rank coefficient is based on the comparison of all possible pairs and can be written as

cor =
2(C −D)

n(n− 1)
, (D.3)

whereC andD are numbers of growing and descending pairs, respectively.

How individual coefficients work and why is nicely presentedin [Holmes, 2001]. Our aim
is to select the most appropriate one from the point of view ofstochastic sensitivity analysis
of microplane material model parameters. For example, in the work [Teplý and Novák, 1999],
the rank coefficient is claimed to be superior to the remaining ones due to its ability to better
describe non-linear dependencies. Therefore, we have tried all these three coefficient on the
stochastic sensitivity analysis described in Section 5.3.1. The results are shown in Figs. D.1–
D.2. It can be clearly visible that, for this particular example, the differences are not significant
and any of these coefficients can be used.



Comparison of different correlation coefficients 105

0 0.005 0.01 0.015 0.02 0.025
[-]

-0.2

0

0.2

0.4

0.6

0.8

1

co
r 

[-
]

k3 - Kendall
E - Kendall
k3 - Spearman
E - Spearman
k3 - Pearson
E - Pearson

ε

0 0.005 0.01 0.015 0.02 0.025
 [-]

-0.2

0

0.2

0.4

0.6

0.8

1

co
r 

[-
]

nu - Kendall
c20 - Kendall
c20 - Spearman
nu - Spearman
c20 - Pearson
nu - Pearson

ε

Figure D.1: Three coefficients as a sensitivity analysis of material model parameters on the
shape of a stress-strain diagram (Part I).



Comparison of different correlation coefficients 106

0 0.005 0.01 0.015 0.02 0.025
[-]

-0.2

0

0.2

0.4

0.6

0.8

1

co
r 

[-
]

k1 - Kendall
k2 - Kendall
k1 - Spearman
k2 - Spearman
k1 - Pearson
k2 - Pearson

ε

0 0.005 0.01 0.015 0.02 0.025
[-]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
r 

[-
]

k4 - Kendall
c3 - Kendall
k4 - Spearman
c3 - Spearman
k4 - Pearson
c3 - Pearson

ε

Figure D.2: Three coefficients as a sensitivity analysis of material model parameters on the
shape of a stress-strain diagram (Part II).


