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Abstract

Single and Multi-Objective Optimization in Civil Engineeg with
Applications

by Matéj Leps

The proposed thesis mainly deals with problems associatédhe Civil Engineering area
and therefore the methods as well as problems have beetesklgth emphasis on applications
to Civil Engineering topics. And also as nowadays very papaptimization methods, Evolu-
tionary Algorithms EAS) will be presented as one of the possible ways how to soblayte
challenging optimization problems that we are often facing

First of all, two main optimization tasks are described -@tebal optimization as a “math-
ematical” problem and th&tructural optimization as an “engineering” one. Several categories
among Structural optimization problems are described antessolutions from the Global op-
timization area are cited.

Next, a new classification for Evolutionary Algorithms isepented. It is based on the
well-known notation developed for Evolution StrategiES$) [Back and Schwefel, 1995] and
appropriately modified. The leading idea is that evéfy can be described by a combination
of three basic operations, namegcombination, usually presented by different cross-overs,
mutation andselectionmechanisms.

Traditionally, theEAs have been developed for single-objective probled@Hs) and there-
fore they are not so suitable for problems coming from erajing practice where we usu-
ally deal withmulti-objective, constrainedand oftermixed integer-continuousoptimization
problems CMOPSs). Solutions for all the three phenomena are presentedi-ohjéctive na-
ture can be solved by Pareto-optimality approaches, aingtiby penalty functions and differ-
ent types of variables by an appropriate encoding. Sevéhnal @ossibilities are discussed in
the text as well.

Based on the above mentioned notation, four particular pl@srofEAs that have been
developed in recent years at the workplace of the authoremerithed and compared. In partic-
ular, three of them are based on the combination of GenegjorRhms [Goldberg, 1989] with
the Differential Evolution [Storn, 1996]; the last algbwit is the Differential Evolution alone.
These optimization algorithms are then used to solve sktasies from engineering practice as
well as two test functions and their advantages and disadgas are shown.

The next part is devoted to the application of the presenptinization methods to the
design of reinforced concrete frames. Generally, this teskulti-modal, multi-objective and
highly constrained. To solve this problem as a whole, it swahthat this inevitably leads to
an integer formulation of the problem and hence presentatitigs of multi-objective Evolu-
tionary Algorithms are utilized. As an illustrative resulgpical examples are solved and the
Pareto-fronts in terms of the total price of a structure agfats deflection are depicted. A new
system of visualization is also presented as an additiongartulti-objective optimization do-
main.
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As an engineering example of a single-objective optimaraproblem, training of an ar-
tificial neural network and its use for a microplane matenmldel parameters prediction is
presented. A traditional method for neural network traggnused herein is the well-known
Backpropagation method, which uses a gradient-based topéoaminimize an output error.
As a novel approach, the Evolutionary Algorithm can be usse ffior the same purpose. Itis
shown that obtained errors are much lower than the outptésraal from the Backpropagation
algorithm.

Next, an identification of the microplane material model 4Bat et al., 2000] is investi-
gated. This model is a fully three-dimensional material that includes tensional and com-
pressive softening, damage of the material, different doatlons of loading, unloading and
cyclic loading along with the development of damage-induaeisotropy of the material. The
rather severe disadvantage of a microplane model is amestiemand of computational time
and, therefore, an appropriate procedure is on demand. fireedbe problem more formally,
the optimization goal is to find microplane parameters frostrass-strain diagram of a test
specimen in a uniaxial compression. The objective funasdhen the least square error func-
tion, which contains differences between values of a kndvass-strain curve and values from
a microplane model simulation.

Several approaches are tested here to solve the introduaieleim. An estimation by an ar-
tificial neural network trained on approximations of strefigin curves shows that some proper-
ties can be predicted well but a significant error in othefffadent is obtained. Next, a parallel
version of the evolutionary-algorithms-based globalmjter SADE is directly used to obtain
required parameters by varying them within a nonlineardiviement analysis. The first main
result is that this time consuming analysis can be solved pgrallel analysis in reasonable
time. The second outcome is the fact that the objective fonaorresponding to the identifi-
cation problem has several local minima, which are charaeig by similar values but are far
from each other. To solve the above mentioned obstaclesnathe iview of recent research in
this domain, a new methodology is also presented: an apiplicaf a Latin Hypercube Sam-
pling method as well as a sensitivity analysis are appligdonty to investigate the influence
of individual material model parameters, but also to mizierthe need of training samples for
an artificial neural network. Several promising resultsiglaith some concluding remarks are
presented.
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Ceské vysoké ugeni technické v Praze
Fakulta stavebni

Abstrakt
Jedno a Vcekriteralni Optimalizace s Aplikacemi ve Staveiom InZzenyrstv
Matej Leps

Rozvoj vypocetni techniky v soucasné dobé& umogingela nové pristupy k feSeni mnoha
teoretickych i praktickych problemi. Konkrétné vlagti stavebni mechaniky je modelovani
jednotlivych materialll a diky tomu nasledné i premtikchovani konstrukci daleko presng;jsi
nez dfive. Snahou této prace je tedy ukazat nej$dypEjstupy v oblasti globalni optimalizace
a jejich aplikace na vybrané Glohy stavebniho inZetvjr

Nejprve je popsan rozdil meglobalni optimalizaé, kterou Ize pokladat za typickou ,,mate-
matickou” oblast, aptimaliza¢ konstrukg, ktera se obvykle zabyva Glohami ,,inzenyrskymi”.
Pro lepsi pochopeni navrhovanych postupll jsou nejpredstaveny rtizné formy optimalizace
konstrukci, jmenovitéopologicla optimalizacgtopology optimization)fvarova optimalizace
(shape optimization)ioznerova optimalizace(size optimization)topograficla optimalizace
(topography optimization) aptimalizace skladdy(layout optimization). Pro kazdou z téchto
forem optimalizace je vhodna jina optimalizacni metadoblasti globalnich optimalizaci. Je
také nutné zdUraznit, Ze typicka Gloha bude negidmbinaci nékolika téchto forem.

DalSi ¢ast prace se zabyva klasifikaci a popisentuénich algoritmll. Jsou vyuzity a dale
obohaceny poznatky z oblasti evolu€nich strategiivhflanySlenkou je skute€nost, Ze se valna
vétsina evoluénich algoritmtl da rozepsat jako keétkir kombinace tfi operatorti — rekombi-
nace, nebo-li kfizeni, mutace a vybéru.

Plivodné byly evoluéni algoritmy navrzeny pouze pranjkriterialni funkce a z tohoto
dtvodu nejsou v této plivodni formé prilis vhodné peSeni inzenyrskych Gloh, kde se velice
Casto potkavame s vicekriterialni podminénouroptizaci (CMOP). Vicekriterialni optimal-
izace jsou zejména charakteristické tim, Ze jejichlggtkem neni jedno optimum, ale mnozina
dominantnich feSeni. Proto byly objeveny vicekiékr evolucni algoritmy. Jejich viyhodou
je, Zze k hledani optima vyuzivaji mnozinu moznyeBeni a diky této vlastnosti jsou dobfe pfi-
zpUsobitelné pro hledani vétsiho mnozstvi daanimich feSeni. Proto je znatna cast této prace
vénovana Gpravé evolucnich algoritmt pro victkialni optimalizaci.

S poznatky jiz pfedstavené klasifikace evolu¢nicloatgili jsou predstaveny Ctyfi evoluéni
algoritmy, které byly vyvinuty na pracovisti autora v pednich letech. T¥i z nich jsou zalozeny
na kombinaci genetickych algoritmll a diferencialrolexce, posledni metodou je samotna difer-
encialni evoluce. Tato kolekce algoritmi je nasledo&zita pfi feSeni dvou inzenyrskych Gloh
a dvou optimalizagnich problemt. Vyhody a nevyhoéighto Etyt algoritml jsou diskutovany
VvV zaveru této casti prace.

DalSi Cast prace se zabyva vytvorenim navrimavéastroje, ktery by jednoduse a spole-
hlivé navrhl a zoptimalizoval Zelezobetonovou ramovaunstrukci. Obecné Ize tuto Glohu
oznacit jako multimodalni, multikriterialni a podn€nou optimalizaci. Aby bylo mozné vyresit
navrh takovéto konstrukce jako jednu optimalizaCldhii, je nezbytné nutné ji formulovat
v diskrétnich proménnych a to nasledné nevyhnetetde k aplikaci multikriterialnich evoluc-

L\VoIné prelozeno.
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nich algoritm{l. Navrhovany postup je dokumentovan @ékotika typickych Glohach. Domi-
nantni feSeni jsou pak vykreslena v prostoru celkbwgen a pFislusnych deformaci konstrukce.
Pro tyto UCely je téZ navrhnut novy systém grafickegbbrazovani dominantnich feSeni.

Prikladem inZenyrské jednokriterialni Glohy &byt trénovani (uceni) umélé neuronové
sité a jeji nasledné vyuziti pro ziskani paramehikroploskového (microplane) modelu be-
tonu. V praci je porovnano uceni neuronoveé sitéitmsidnetodou zpétného Sifeni (Backpropa-
gation) s jednim zastupcem evolu¢nich algoritmi. KEzéno, ze navrhovany postup vykazuje
na vystupu mnohem mensi chyby nez tradicni feSeni

Takto natrénovana neuronova sit je nasledné gakzziskani parametrli mikroploskovéeho
modelu betonu. Vyhodou tohoto modelu je, Ze je schopdistiety popsat rlizné druhy odezvy
betonu. Velkou nevyhodou se naopak ukazuje jeho vypbdgeirocnost. Prvni feSeni tedy
vyuziva neuronové sité naucené na aproximaciquaich diagrami. Vysledky ukazuji, ze
nékteré z parametrll se daji ziskat pomérné snadima, zbylych byla chyba od poZzadovanych
hodnot pfFilis velka. Proto byla pouzita pfimo patai verze algoritmu SADE. Prvni pod-
statny vysledek je ten, Ze se tato vypocCetné n@aaptimalizace da diky paralelizaci vypocitat
v realném Case. Druhym vysledkem je skuteCnostaieiloha je znacné multimodalni a tudiz
vede na nékolik rozdilnych optim. Jako nejnovéjSstop byla pouzita metoda Latin Hyper-
cube Sampling a stochasticka senzitivni analyza nejgcekéni vlivu jednotlivych parametr,
ale téz k lepSimu natrénovani neuronoveé sitgsl®¥dky ziskané touto metodou Ize do budoucna

oznacit za velice slibné.



Chapter 1
INTRODUCTION

Everything that you could possibly
imagine, you will find that nature
has been there before you.

John Berrill

Preface

Nowadays a rapid growth of computer performance enablegmacourages new developments
in Civil Engineering as well as related areas. Particulavithin the field of structural mechan-
ics, the modeling of materials and therefore the prediabiostructural response is more accu-
rate than in past decades. These are new challenges thatrwéoveiscover, but there are also
several problems, that must be solved. For instance, tleamas within applied optimization
is mainly lead by automotive and aerospace industries. efbis, the emphasis is put mainly
on the computational fluid dynamics domain and structuréhtpation area, especially on the
shape optimizatioh Because Civil Engineering problems are dominantly cotatewith static
problems and topology and/or size optimization, there is@lgetween current research and the
application of new methods into a Civil Engineering area.

Therefore, the main goal of the proposed thesis is to revieveamhance the current state
of the art within the single and multi-objective optimizatiarea and to show possibilities of
these methods in several areas, such as the design of oeidfooncrete (RC) structures and
a material model parameters estimation.

1.1 Global vs. structural optimization

When dealing with engineering problems, one may discovevedlifferent areas of optimiza-
tion - the first is usually calle@lobal optimization?. By this term we will understand the
optimization of a function or functions without any a-pri@nowledge of the problem within
these functions (sometimes called as “black-box” fun&)onThis is an area where genera-
tions of mathematicians and also many economists have gparg of research. The second
area, usually calle&tructural optimization, can be described as an applied science, where
the methods from the Global optimization area are appliea nwodel of a structure or a ma-
terial. At this point, the optimized function is no more tdoox and adding some knowledge

I See Section 1.2 for notation of several types of structystihdzation.

2 From the mathematical point of view, the tefatobal is not correct, the term “numerical” will be more appro-
priate. Even though, the mathematical term “global” is ligussed for problems, where the “global” optimum
is sought, in the case of engineering tasks the methods vsexactly those of global optimization. Therefore,
we will use the ternGlobal in this general manner.
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to help the optimization process to find desired solutiomoisonly advantage, but more often
necessity.

Because this work deals with the application of several ousHrom the first area to the
second, both domains will be investigated in very detail. Wilestart with the introduction of
several forms of structural optimization with emphasisegivo the design of frame structures.
Chapter 2 aims to introduce and clarify several definitioesns and methods from the Global
optimization area, both for single and multi-objectiveioptation. As an addition, the han-
dling of constraints will be discussed together with theent state of the art in parallelization
of used algorithms. Chapter 3 is devoted to the comparisdouwfevolutionary algorithms
applied to the suite of four black-box functions. Detailed &xtensive numerical tests have
been performed to examine the stability and efficiency ofpifegosed algorithms and several
interesting results have been found. In Chapter 4, proesdior detailing and design of rein-
forced concrete structures will be presented together pitiposed innovations in the field of
the RC design. In particular, as one of the most frequenstgpstructures, the reinforced con-
crete frame structures will be investigated. Chapter 5gsrihe problem of the applications of
a genetic algorithm-based optimizer and an artificial newgtwork to material model parame-
ters identification. The current application of this methodhe microplane constitutive model
reveals the limitations of the formulated identificatiomiplem and offers possible means for
its regularization. The last Chapter 6 offers conclusionagks as well as future perspectives in
the domain of applied optimization within Civil Engineegiapplications.

1.2 Forms of structural optimization

For better understanding of a new procedure proposed int€héf is worthwhile to introduce
the forms of structural optimization. In accordance witlofPrGrant Steven [Steven, 2003],
four different forms of structural optimization can be diguished. Each can be solved with
a distinct optimization strategy and each form can includeiaforced concrete structure as
a particular case. Note that solving real-world problenpsaglly calls for combination of these
forms.

1.2.1 Topology optimization

By topology optimization we understand finding a structuiitheut knowing its final form
beforehand [Bendsge and Sigmund, 2003]. Only the envirahrogptimality criteria and con-
straints are known. These tasks usually come from the mexdiangineering area, where
designing parts of cars or aircraft are the most frequentsopThe major civil engineering
representatives serve as a decision tool in selecting arojpipgte static scheme of a desired
structure. They are mostly applied to the pin-jointed gtres, where the nodal coordinates of
joints are optimization variables. Based on the positiosupiports and objective functions, sev-
eral historically well-known schemes can be discovered [8g. 1.1). The typical example of
this optimization form within the reinforced concrete aleplacement of steel reinforcing bars
into a concrete block. In other words, we search for the maisalsie strut-and-tie model, see
e.g. [Kim and Baker, 2002] or [Liang et al., 1999], in whiclethosition of steel is not known
in advance. In this case, the objective is usually mininnirabf amount of steel subjected to
structural requirements.

In the first years of numerical optimization the traditiopebcedure for solving these tasks



Introduction 3

v avavav;twavawav: i BET
21 e e Ll b L B

[ g
- | P=200in

(@) (b)

(d)

Figure 1.1: (a) Diagram for the calculation of the probleh), ¢ptimal solution of the prob-
lem, (c) optimized configuration formed by concatenatingibanodules and (d) the First
of Forth Bridge, built 1883-1890 as an example of the topplogtimization presented
in [Gil and Andreu, 2001].

was a fully stressed design, where stresses in all memleesido be as close as possible to the
material limits. The disadvantage is clearly visible forltiplle loading cases or several support
cases. Nevertheless, this approach leads to, in some sezighting result with application of
the Lagrange multipliers for violated constraints.

Nowadays, the most frequently used methods herein to soivelass of problems are the
Optimality Criteria® approach based on duality theory or convex programmingdfIh996],
homogenizatiorin connection withMathematical Programmingnethods [Allaire, 2002] or
[Cherkaev, 2000]Evolutionary Structural OptimizatioQESO) [Xie and Steven, 1997] - an-
otherhard-kill method based on removing ineffective members from FE m@shular Au-
tomata- a very old dynamic simulation method studied since the $966n Neumann, 1966]
based on building block schemes with pre-defined behaviotffam, 2002] and, finallyEvo-
lutionary AlgorithmgEAs) based on the principles of natural selection. For moraldetbout
theEAs, see Chapter 2.

1.2.2 Shape optimization

In this form of optimization the topology of structure is kmo a-priori but there can be some
part and/or detail of the structure, in which, for instarftigh stresses can produce problems.
Therefore the objective is usually to find the best shapeahiatsult in the most suitable stress

3 Referring to e.g. [Saka, 2003], the teMathematical Programmingill be assigned for gradient or approxima-
tion based methods while yptimality Criteriawe will understand the application of Karush-Kuhn-Tucker’
optimality conditions.
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distribution. Parameters of shapes are dimensions of thmiaped parts or a set of variables
describing the shape, e.g. coefficients of spline functi@xeamples for the reinforced concrete
area herein can be finding the proper shape of holes withie pi@mbers [Pedersen, 2000],
the shape of a beam with holes [Yoshimura et al., 2002], thienapshape of pre-cast retaining
structures [Ceranic et al., 2001] or the ribs within box cohs [Yoshimura and Inoue, 1995].
From the mathematical point of view, two representationsaoiables - continuous and discrete
ones - can be found within the shape optimization area. Tlkevaw of the first case can be
found, e.g. in [Sokolowski and Zolesio, 1992], and the fattese for the structural optimization
is comprehensively summarized, for instance in [Bauer amitk@vski, 1995].

Available algorithms for solving these tasks are represgems ofMathematical Program-
ming [Haslinger and Neittaanmaki, 1996], again tB80, a new method in this context is
the Simulated Biological Growtlbased on the definition of a “fake” or artificial temperature
[Mattheck and Burkhardt, 1990] and once méi&s.

1.2.3 Size optimization

In this form of an optimizatioha structure is defined by a set of sizes, dimensions or cross-
sections. These are combined to achieve the desired oftjiroateria. Within this area two
main groups of structures can be distinguished.

Discrete structures. Here pin and rigid jointed structures can occur. In the cdssteel
structures in particular, nearly all possible optimizatgroblems have been subjected
to some form of investigation. To list a few successfullygol problems, optimization of
structures with semi-rigid connections [Kameshki and $S2kQ1], optimization against
buckling [Rong et al., 2001] or a finding minimum weight in c@ation with a minimum
number of steel profiles used in a design [Greiner et al., p@0d [Greiner et al., 2003]
can be found in the corresponding literature. Many smak-gixamples from this area
serve as benchmarks for different types of optimizatiow@dlgms, with the 10-bar truss
[Belegundu, 1982] and the 25-bar space truss, e.g. [AddlKamal, 1986] being the
most often cited ones. Again, here all variables are saldoben the pre-defined discrete
admissible set. But this is not exactly the case of reinfbroencrete frame structures
which are more likely to be part of the next group of strucsure

Continuum structures. This group contains beam-like structures defined by coatiswari-
ables, which are not known in advance in contrast to the puswtase. The basic example
is a beam with moments of inertia defined as a continuoushlarjaagaros et al., 2002].
All reinforced concrete optimization tasks, where the akeeinforcing steel is an un-
known, will be the proper representatives of this group, ®ame examples of this class
of problems are discussed in Chapter 4.

Once again, available optimization methods are gradiesgdiathematical Programming
Optimality Criteriaalgorithms hard-kill methods like the previously mentionE&O and again
EAs.

As a consequence of the definitions introduced above, we istingliish one additional
form of structural optimization. If a design variable - theesof a member or the material prop-
erty - can reach zero value, i.e. it is not necessary in thetstre and can be removed, then

4 Also known asSizing problems
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this type of optimization is often callddayout Optimization, e.g. [Kirsch, 1995]. The corner-
stone of this approach is the so-calggodund structurewhich defines all possible positions of
nodes and the set of all possible members/connections athesg nodes. Then the goal is the
removal of inefficient members to obtain an optimal struetdf coordinates of nodes are also
unknown, this form becomes part of topology optimizaticge Section 1.2.1. Therefore the
layout optimization can be seen as the connection pointdmivthe previously cited two kinds
of optimization.

An interesting feature in solving this form of optimizatisthe possibility of failure of
hard-kill methods. In some cases a weak member is removed althougheitéssary for the
efficiency of the static scheme, see [Zhou and Rozvany, 200 hhore detailed discussion.

1.2.4 Topography optimization

This form is the least investigated part of structural optation. Here you can find the search
for a proper shape for shell, membrane or tent like strustu@aly few papers on this topic can
be found in the literature, e.g. [Goslingt and Lewist, 1986]Schwarz et al., 2001], with even
fewer dealing with reinforced concrete structures. Andliinthe Mathematical Programming
methods are known as the only efficient solutions for thigtgpoptimization problems.



Chapter 2
OPTIMIZATION METHODS

Natural selection can be seen as
cheating for scientists who want to
find discoveries only by perfect
deduction.

Peter Convey, Roger Highfield:
Frontiers of Complexity

At the beginning, it is perhaps worthwhile to recall that g of this work is to improve
the current state of the optimization methods applied taresgging problems with emphasis
on (although not restricted to) the area of Civil Enginegrames. As was stated already in
the Introduction part, we will deal almost exclusively wiiiobal optimization methods, used
below. This work is not aimed at thorough introduction andee of these methods. For a very
complete overview, see the works of Arnold Neumaier [Ne@m&004] and [Neumaier, 2003].

From the mathematical point of view, an engineering tasklmaminderstood as multi-
objective, constrained and oftenmixed integer-continuousoptimization problemCMOP).
Below we offer a formal definition:

Constrained Multi-objective Optimization Problem. A generalCMOP includes a set of
n parameters (decision variables), a set objective functions, and a set of constraints,
The optimization goal is to

minimize y = =f(x) = (/i(x), f2(x),. .., fe(x)) (2.1)
subjectedto gj(x) =0, j=1,...,ne, (2.2)
gj(x) <0, j=ne+l,...,m=ne+ni, (2.3)
where x = (zy,29,...,2,) € X, XC{N,R}",
y =Ly %)€Y, YCR",

ne andni are the numbers of equalities and inequalities, respéygtixeis the decision
vector,y is the objective vectorX is denoted as the decision space anhds called the
objective space. Note that the set of all feasible solutioas all solutionsx for which
conditions (2.2) and (2.3) are satisfied, is dendgdand its image in the objective space
is referred to a&' s, i.e. Y, = f(X;). Also note that we assume minimization hereafter,
the statements for maximization or combined minimizateximization are similar.

The most ambitious task of an optimization method is usuailying theglobal minimum or
maximum, which yet fulfills the given constraints. Whethecls a solution is “optimal” (from
the point of view of achieving the desired practical goal)ot, is another question, which
depends on the formulation of the problem, but not on theesysif finding the optimum by
the search method. Therefore, we will understand the op#tian method as alack box



Optimization methods 7

2 2
A A
Fe Fe
Ee Ee ,
o dominates
B. (@] B P
indifferent
feasible region De i A Do
A C. C ®
/ is dominated ° indifferent

Pareto—optimal front o

> f1 - f1

Figure 2.1: A graphical interpretation of the Pareto domo®a

application and the only “interesting” evaluation of a s&del algorithm is its performance,
i.e. usually reliability, in finding global optimum. Thent l@ast from the designer’s point of
view, the problem might be seen as “simple” - “only” to find theperior optimization method
for his problem. But relatively recently, the so-callbid free lunch theoremwas proven
in [Wolpert and Macready, 1997] and therefore, as stateBag¢l, 1999],

... there is no best algorithm, whether or not that algorithneigftutionary”, and
moreover whatever an algorithm gains in performance on @ss of problems is
necessarily offset by that algorithm’s performance on #émaining problems.

In other words, there is no best optimization algorithm. @& other hand, it does not mean
that for a specific problem you cannot find a superior optitioraalgorithm. Furthermore,
this is why there are so many available algorithms and tawigfobal optimization, see e.g.
[Neumaier, 2003].

Yet, keeping in mind that our goal is to apply some optim@matmethod to engineering
problems, we cannot choose an arbitrary optimization #lyor For example, a huge number
of mathematical programming methods require continuitganvexity of the objective func-
tion. Many others require that derivatives of this functexist. But practice shows that engi-
neering problems are not always continuous and, morededdrivatives cannot be obtained.
This is the reason why Evolutionary Algorithms are so popatathe only input they need are
the values of objective functions. Therefore, this work wilmarily deal with these methods.

The next part will be devoted to the description of three npaoblems/aspects of optimiza-
tion methods: tackling multi-objective nature, handlifgonstraints and selecting discrete or
continuous domains to represent optimized variables. ifmykihe presented procedures closer
to everyday use, one part of this section will focus on thalpelization of Evolutionary Algo-
rithms.
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2.1 Solving multi-objective problems

In this work, attention is paid to the multi-objective nauwf solved problems, because as
was mentioned in the presentation by Eckart Zitzler durtrey EUROGEN 2001 conference
[Zitzler et al., 2001]:

Single objective optimization is a special case of mulfiegbve optimization (and
not vice versa).

The main difference between single-objective and muljecive optimization is that in the
former case all solutions can be completely ordered aaegttdithe objective functiosi. In the
latter case the solutions X, can be ordered only partially [Pareto, 1896]. As a consecgign
the case of single-objective problen&JPs) only one global optimum existsbut in the case of
multi-objective problemsNIOPs) conflicting objectives can cause situation where no gwiut
is superior to others. For the mathematical expressione@fitiove mentioned statement we
need to define the so-call&hreto dominance see also Fig. 2.1.

Pareto dominance.For any two decision vectoesandb,

a-b (a dominated) iff Vi:fi(a) < fi(b)AFi: fi(a) < fi(b), (2.4)
a>~ b (aweakly dominated) iff Vi: fi(a) < fi(b), (2.5)
a~b (aisindifferenttob) iff 3i: fi(a) < fi(b) A3dj: fi(a) > f;(b).(2.6)

The definitions of the opposite binary relatians, <, ~) are analogical

Then, a set of optimal trade-ofls,, C X is called the globaPareto optimal set iff
vx, € X, Ix € X; i x = x,. (2.7)

In other words, solutions frorX,, cannot be improved in any éfobjectives unless the remain-
ing objectives deteriorate Also note that the image &, in the objective spack, = f(X,)
is called thePareto optimal front or surface see also Fig. 2.2.

The traditional ways of solving thHdOP are based on summations and/or different weight-
ing methods, i.e. conversion of tMOP into the single criterion optimization, see e.g. the work
[Miettinen, 1999] or the overview of all multi-objectivegdrithms [Marler and Arora, 2003]
and its shorter version [Marler and Arora, 2004]. As a prattexample, the author of this
contribution in his previous research [Matous et al., 3@01@i [LepS et al., 2002] used the total
price of a structure as the unifying variable among différ@magonistic constraints. As an
unfavorable result, however, the multi-modal responsé@bibjective function is obtained and
the resulting optimization problem is very difficult to sel\see Section 2.2.4. Other problems
cited in the literature for traditional solutions for tMOP are the sensitivity to the shape of
the Pareto optimal front and the necessity to have extendedlkdge about the given prob-
lem [Zitzler, 1999].

! or several solutions with the same objective value

2 Recall, that we assume minimization here. For the maxintizaiase consult e.g. [Zitzler, 1999].

3 The difference between and> is only in the possibility of coexistence of two soluticmandb with the same
profit, i.e. the case df(a) = f(b) component-wise, which is a rare case in the engineerindipedaut can be
important for a decision process.
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Figure 2.2: A basic notation for a multi-objective optintiza.

In the last decades, Evolutionary Algorithms proved to leephoper solution strategy for
the above mentioned problems. They can cover large domachdiacover multiple trade-offs
during one optimization run. Therefore, Section 2.2.1 dldevoted to a short description of
Evolutionary Algorithms and their modification for théOP.

2.2 Stochastic algorithms

Although we have promised to introduce Evolutionary Algfums, the starting point must be at
a higher level, in the area of global stochastic optimizatiethods. The term “global” stands
hereafter for the ability to find the global optimum in theea$an infinite number of iterations.
This is usually handled by some random function, which a@rpléhe word “stochastic” in
the title. The representatives of this group are bliaddom search{euphemistically called
Monte Carlo simulatioh[Pincus, 1970]Tabu searchsee e.g. [Youssef et al., 200§jmulated
AnnealingVidal, 1993] and its modifications [Ingber, 1995], diffetédill-climbing algorithms
[Yuret, 1994] or the already mention&dolutionary Algorithmsvhich are described in more
detail in the next subsection. For a more comprehensive suynof several stochastic methods
see e.g. [Van lwaarden, 1996].

2.2.1 Evolutionary Algorithms

What mainly distinguishes Evolutionary Algorithms fromhets is the fact that they employ
a set of possible solutions, often callpdpulation instead of only one single search point.
Therefore a new terminology must be introduced. The natatiathis work is derived from
the Evolution Strategie¢ESs) [Back and Schwefel, 1995] and can be probably extendad to
Evolutionary Algorithms.
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Evolutionary Algorithm’s notation. Let i be the number of independently stored possi-
ble solutions for the given optimization proble@R) that form a populatio®®; ¢ stands
for time or number of cycles. Then, if in every cycle of A, usually calledyeneration
A new solutions are created, this algorithm will be dendjed \)-EA. Moreover,(u+\)
stands for selection of a new population for the next cyfe!) from the union ofy + A
solutions andy., \) denotes selection only froth members, respectively Next, three
types of operators usually constitute the core of the algaori

recombination rec/ : I' =7 i<p, j<A\
mutatio? mutl : [ — T
selection sel : I' =1 i<pl|lp+r, j<upu

where the operatompr{ € {rec, mut, sel} denotes an output gf solutions from: input
individuals, I is a potential solution for a given problérand‘/’ is a set ofi possible
solutions in time or generation The final scheme of an appropriate algorithm is the
combination of the above mentioned operatops and is repeated until some stopping
criterion, usually the maximum number of function callsmst.

To show the versatility of the proposed terminology and tghhght differences among
evolutionary and single-point optimization methods, a banof (previously mentioned) very
different and well-known optimization algorithms are d&idi®d according to the introduced
scheme. Also note that all of the below mentioned algoritanesor theSOP only.

Gradient methods from the Mathematical Programming group are the best exasnpf the
(1,1)-algorithm. They contain only one operatar,; = mut}(x;) = x; + a;d;, where
d; is a direction of the descent and is the step in the directiod;. Since the stepl;
is assumed to be in a descent direction, the selection iswdasht. Hence the general
gradient-based algorithms can be written as

OptGRAD(tJrl[) = mut%(t[) . (28)

Simulated Annealing (SA) is another traditional optimization method, which will thee best
example of(1+1)-algorithm. Again, withu = 1, the only operator is mutation, in this
case some random function. The actual implementation ofilm@tion operator is not
important, it must be only ensured that each point in theemuisited at least once in
the infinite number of runs. The core of this algorithm is a&egbn process

1

. < s —
a, iff w(0,1)<p 1+ AE/T (2.9)

seb(a,b) =
b otherwise,

4The mark || will be used in the sense 6IR operator, i.e. the statememt| 1+ will denotey OR i+ .

5 The termrecombinatiorwill be used for cross-operations on more than one individua

6 A mutationwill identify any change within one individual, no matter ather it is random or not.

7 This notation is in contradiction to definitions in [BackdaBichwefel, 1995], where indicéand; are swapped.
The indexing used herein is more close to mathematical sgjmes like summationg’}‘;_om or progres-
sions{}%,,,,, -

8 An individual I is the encoded vector of design variabiesee Section 2.4) and in sorEés can also contain
information on its history and/or parameters used in the tirfits origin.
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Figure 2.3: The cross-over operator.

where the energy difference is given Ay = f(b)— f(a), T is the artificial temperature
determined by the so-called cooling schedule, usuallyerfdinm

~ Lo

“Int
providedTy is sufficiently large, see e.g. [Ingber, 1993], and finally;- U(-,-) is a re-
alization of a uniformly distributed random variable frongi@en domain. The beauty

of this algorithm is a non-zero probabilipythat enables replacement of a better solution
with a worse one. Therefore, the whole algorithm can be @it the following form

optsa(*T1) = seb(muti('),'T) . (2.11)

(2.10)

Simple Genetic Algorithms (SGAs) are often cited as the oldest Evolutionary Algorithms,
even though the Evolution Strategi€sSs) are actually older, see below. The reason why
is thatSGAs had been predicted (but not discovered yet) by J. Hollaftdotland, 1975]
during his work orCellular Automata Later on, the topic was studied in more detail, in-
cluding the proofs of convergence. Especially a book by >&dberg [Goldberg, 1989]
is the most popular publication that deals with this topibe BGAs follow an analogy
of processes that occur in living nature within the evolutef live organisms during
a period of many millions of years. Simple genetic algorighimeat individual solutions,
here callecchromozomesas binary strings (see Section 2.4.2). This kind of reprtase
tion seems to be very conveniéfdr optimization problems coming from a combinatoric
area (e.g., the traveling salesman problem).

Based on binary coding, the cross-over and mutation opsragwe usually the following
form. Firstly, the cross-over operator chooses two chrames, so-callegarents and
then creates their two descendantkildren) using the following operation: it selects
a position inside the binary string and starting from thisipon exchanges the remaining
parts of the two chromozomes (see Figure 2.3). Secondlyntitation randomly alters
one or more bits in the binary strings of new solutions.

The next specific feature of tI&GA is the selection for a reproduction cycle at the begin-
ning of the algorithm. New solutions are created with crogsr or are copied into a new
population. This can be classified ag;a+ \)-algorithm. Therefore, the scheme of the
algorithm is

optsea("TI*) = mutj(rec; ("), ), I = Se',i(t]“) ; (2.12)

9 The main cited advantage of a binary coding is the maximuorinétion carried by a one bit.
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where the “elitist” set*'/* of the A\ < p cardinality is usually called theating pool

Although the codings, operators and proofs of convergeree witially based on the
binary basis, nowadays real-encoded and other alphabstsl lg@netic algorithmSAs
have proved their reliability and are widely used for sauos of real-world problems, see
e.g. [Michalewicz, 1999, and references therein].

Evolution Strategies (ESs) were developed &g + 1) strategy in 1964 at the Technical Uni-
versity of Berlin by Rechenberg and Schwefel as an expetiaheptimization tech-
nique. As the entirely firsEvolutionary Algorithnmcan be considered tHe+1) — ES
strategy presented in [Rechenberg, 1973]. Since Ef#have developed into very ro-
bust tools with many .+ \) and(x, \) alternatives. The comprehensive notation used
and extended herein, see [Back and Schwefel, 1995], asasdlhe proofs of conver-
gence [Schwefel and Back, 1995] and self-adaptive cofttiben et al., 1999] predeter-
mines these algorithms for a wide range of applications.ddweer, the fact that from the
starting point they were developed as real-coded, m&&ssinto engineering methods
rather than mathemati¢él To conclude this paragraph, the notation of these methods
cannot be missed:

opt en)—rs () = sel,, (mut(rec('1")),'1") , (2.13)

opt (. n—ps (") = sek (mut(rec('T"))) , (2.14)

where the recombination operator is more or less similagabcoded genetic algorithms’
cross-over operators and the mutation usually alters digolby a normally (Gaussian)
distributed random number.

A huge number of other evolutionary methods not expliciitga above are usually a combina-
tion of the above mentioned ideas and in the view ofNleefree lunch theoremany of them
can be successful in solving the given single-objectivenogation problem.

2.2.2 Parameters tuning

Besides many advantages that Evolutionary Algorithms hiénsy are connected with several
difficulties. In addition to the demand for thousands of eaibns of an objective function, it
must be noted, that one of the most important obstacles fathi@g of proper parameters - ei-
ther the cooling scheme BA, see Eq. (2.10) or Egs. (3.18) and (3.27), or several cressamd
mutation parameters, see Appendix C for parameters oféw used within this work. Dur-
ing last several years, this problem has been solved udopaliginimizing needed parameters
[Harik and Lobo, 1999], usually in some form of self-adajota Saravanan et al., 1995]. For
an overview of self-adaptation see references [Hinterdirag., 1997] and [Eiben et al., 1999].
However, it can be stated, that there is a dependency betaveamber of parameters and the
popularity of the method - lower a number of parameters, dighnumber of satisfied users.
See also Section 3.3.1 and 3.3.2 for such examples of lowbathof-parameters methods.

10 The place of origin, too, plays an important role - ®@As are favored in English-speaking countries, on the
other side, th&Ss are very popular in Europe.
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2.2.3 Multi-objective Evolutionary Algorithms

As mentioned earlier, the group BAs seems to be suitable for solvingulti-objective prob-
lems (MOP). The reason is that the use of a population of possibleisolsitan easily cover
a searched Pareto optimal set. Referring to [Coello, 2Q08)] generations ofMulti-objective
Evolutionary Algorithms (MOEA s) can be distinguished. In the case of the first one, to evalu-
ate each individual its distance (or Pareto dominance)éadl found or a-priori known Pareto
optimal set is used. This relatively simple idea was firsthpiemented in 1984 by David
Schaffer in his Vector Evaluated Genetic AlgorithMEHGA) [Schaffer, 1984]. The core of
this first group is built upon algorithms like the Multi-Olsjere Genetic AlgorithmMOGA)
[Fonseca and Fleming, 1993], the Niched-Pareto GenetiorAlgn NPGA), presented e.g. in
[Horn and Nafpliotis, 1993], and also the Nondominated i8grGenetic Algorithm NSGA)
[Srinivas and Deb, 1994]. The second generatioM@EA s is characterized by the idea of
elitism which is usually implemented in the form of externally stbsolutions from an al-
ready found Pareto optimal &t This group is represented by algorithms like the Strength
Pareto Evolutionary Algorithm3PEA) [Zitzler and Thiele, 1999] and especially its second
version SPEA2 [Zitzler et al., 2001]. It is also worth to mention the secoretsion of the
NSGA algorithm -NSGA Il [Deb et al., 2000], the Micro Genetic AlgorithriMiGA ), see e.g.
[Coello and Pulido, 2001] or [Annicchiarico, 2003], and flgathe Pareto Archived Evolution
Strategy PAES) [Knowles and Corne, 2000].

From a general point of view, two conflicting objectives imvéiog multi-objective problems
are often cited: the exploration and the exploitation. Thst bne deals with the level of diver-
sity in a population and the second with the convergencegd#reto optimal set. The former
one must be solved inevitably using evolution of a poputatiad therefore will be solved as
a part of the current Evolutionary Algorithm. In spite ofghexploration should be the basic
ability of all EAs and hence fulfilment of this criterion should always be esdu Therefore
the important (but not unique) characteristic of M@EA will be its ability to get close to an
optimal set. As mentioned previously, the convergence eodigsired Pareto optimal set is in
the most modern algorithms tackled by a se¢ldist solutions. And following ideas presented
in [Zitzler, 1999], the approach used in many of the previpusentioned multi-objective al-
gorithms can be generalized for aBPP Evolutionary Algorithm. Particularly, for thEPEA
algorithm, the management of an elitist set obtained fralY” — E'A can be written as

optsppa( TN = (sefl (T, T (2.15)

i = optany_ga('T" || T +1T7Y)

where'l* is an elitist set drchive) of already found Pareto optimal solutions in tiréhat
containsp items. Note that in th&PEA algorithm theg is not constant during time, but is
increasing from some starting value, edgto a given limit valuei, ...

This area is still unexplored and many applications andareseresults on this subject are
published every month. For example, Carlos A. Coello Céelioist of References on Evo-
lutionary Multi-objective Optimization” [Coello, 2004]ctually contains more than 1,400 ref-
erences of papers or technical reports dealing with evwiaty multi-objective optimization.
Note also, that thdlo free lunch theoremis valid here too, see [Corne and Knowles, 2003] for
more details.

11 Usually calledarchive
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To conclude this section, it must be emphasized that therdifice between single and multi-
objective optimization is not only at the programming le\elt also in the system of gathering
information from an output. While in the case of the singlgeative optimization, the designer
is forced to use usually one global optimum found by any aligor, in the second case there is
a set of different solutions and the designer must decidechodse the appropriate structure.
This domain of research is called Decision Making and is issalved by algorithms from
Operational Research. For a small review on Decision Mak&orgerning evolutionary multi-
objective optimizationEMOOQO), see e.g. [Coello, 2000b].

2.2.4 Note on multi-modal optimization

Themulti-modal optimization term is usually used for problems with a several number aflloc
minima. Such a response (or landscape) is typical for eegimg problems, where especially
constraints can cause a local valley on the path to the glgiiahum. The problem of being
trapped in a local minimum, in thEAs area called thpremature convergencgoes through-
out all optimization algorithms, starting from gradientiopizers and ending in Evolutionary
Algorithms. Even when using the Simulated Annealing methuch a situation can frequently
emerge. At this point, several optimization problems cadibgnguished. The most common
and in this situation the “minimal” task is searching for #aeactly one global optimum. On
the opposite side, and therefore here called “maximal” lgrabis finding all local optima for
a given multi-modal function. However, the requirementrirengineering practice will be typ-
ically a combination of these extreme cases. The traditiomairect” solution for the minimal
problem is restarting a search from a different point in ggatdmethods or a new search with
a different starting population in Evolutionary Algoritlsmin the Simulated Annealing method,
except re-starting, also re-annealing (change of temy@atan be used for the same purposes
(see Section 3.3.3 for one particular implementation). Adir@ct” solution we understand the
management of previously discovered local minima and samesgdure for avoiding the next
visit in these points. This is done by the so-calfedhing algorithms, which store the found
local optima and penalize solutions in their close neighbod. These methods are also used
for the maximal case, where one needs to discover all subapsolutions. A comprehen-
sive review and many suggestions on the maximal case carubd fo [Mahfoud, 1995b, and
references therein]. For the minimal case different sohdiexist, concerning this topic the
most recent work of A. Kucerova [Hrstka and Kuc€erova)Z0ooks promising. Nevertheless,
the existence of a huge number of multi-modal solvers leadstidea that thélo free lunch
theorem can be extended to these methodologies, too. This can berseg®.g. by research
done in [Mahfoud, 1995a], where different niching methodsewsuperior in solving different
levels of difficulty. In spite of this, the main conclusiorofn Mahfoud’s work is that parallel
methods are better than sequential ones, not only from timé gloreliability but also in terms
of speed. These findings are in agreement with the resultésnaat from the area of parallel
Evolutionary Algorithms (see the next section).

Last but not least, let us note that the multi-modal behawioengineering problems is
mainly caused by single-objectivization [Knowles et all02], i.e. by the combination of dif-
ferent, usually conflicting, objectives into only one. Thisso inappropriate intervention into
the process of finding an optimal solution that the multiezhive methodology presented above
in Section 2.1 and later seems to be rather a necessity tHaviaec
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2.2.5 Parallel Evolutionary Algorithms

The most common reason for using parallel implementatioBAé (except for utilization of
existing parallel computers) is the shortening of a comjputal demand of an optimization pro-
cess. The requirement on computational resources leatie tevelopment gbarallel or, as
they are more often calledjstributed Evolutionary Algorithms (PEAs)'2. Moreover, it was
also discovered, that these algorithms are superior irirgpwmulti-modal objective functions
(see previous section), but still, such algorithm can belemgnted on a sequential platform.
Therefore, the term parallel Evolutionary Algorithm wilethereafter devoted only to algo-
rithms implemented in parallel environment like shared rmgnsystems or clusters of personal
computers. Especially the latter case will be the most esipbd one in this work, mainly be-
cause it aims at small engineering companies usually eqdipith this type of networks and
computers.

Throughout the last two decades the terminology used wRiiAs became stable, there-
fore one can distinguish three kinds (or topologiesP&fAs [Cantl-Paz, 1997]. The first one
Is created by théne-grained Evolutionary Algorithms, where small subpopulations greead
into grid-like space. The connection among subpopulat®okaracterized by high frequency
communication with the nearest neighbors. This scheme lisswiged for massively parallel
systems, where the nearest processors are directly cexneat therefore the communication
cost is low. The second one, tlkearse-grained(or island) EAs, consists of much smaller
number of subpopulations, usually formed in star or cincskapes. The arbitrary connectivity
is followed by a low frequency exchange of optimal solutionere calledmigrants among
individual “islands”. Although the topology predetermgéthis methodology to the cluster of
computers, other platforms can be used as well. The last treeglobal parallel model - is
based on the master-slave paradigm, wherertaster or root, processor runs an optimization
algorithm and other processors, calidves solve only the objective function. This is based
on the idea of the independence of individual solutions witine generation, here called “im-
plicit parallelism” [Mahfoud and Goldberg, 1998] The first advantage of this last model is
independence on the hardware platform, i.e. it can be rurhared memory systems as well
as on the distributed memory ones. The second main feattinatishe global parallel model
produces the same behavior as his serial ancestor. Thisiidyncharacterized by the same
number of tuning (or control) parameters, which is not fidélifor the first two topologies. And
again, our goal usually deals with optimization of a desigptpss that inevitably contains finite
element analysis, which is usually the most expensive gah @ptimization process. There-
fore, the distribution of a more complex analysis part isaale. Moreover, the chosen parallel
computing scheme ensures constant distribution of the \@orkng the processors provided
that the time spent on evaluation of two solutions does n&rdiAlthough this condition is
not regularly met, especially for nonlinear analyses, jiesgys that the sufficiently high number
of solutions assigned to each processor eliminates thaslditage. The missing multi-modal
solving ability (because it has no parallel subpopulatierihe main disadvantage in compari-
son with two others, but can be solved with previously mer@dmethods, see Section 2.2.4.

To sum the above lines up, it seems that the global paralléleirie the proper choice for
the optimization of engineering tasks. The last cited athgais the possibility to easily check

12 The bibliography [Alander, 1995] contains more than 50@refices on this topic
13 An Evolutionary Algorithm in this case is not divided intogmessors and hence it is ndistributed but the
whole algorithm is parallel and therefore belongf©As.
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the optimum amount of required processors for a given problecan be simply estimated by
the following relation [Cantl-Paz, 2001]

an
P = 2.1
Vo (2.16)

where P* is the optimal number of processorsjs the number of solutions in a population,
Ty is time for one evaluation of an objective function afidis the latency time - hardware
dependent variable which is spent on starting communicéteiween two processors.

2.3 Handling of constraints

Thus far we have supposed that the optimal solution is chiveem the feasible set of solu-
tions, i.e. fromX;. In the case of constrained optimization there arises tied h@tackle the
problem of promising solutions that, unfortunately, vieldome constraints. In the literature
several strategies can be found, but we will limit our attenbnly to methods that are easily
applicable to the Evolutionary Algorithms nature and harnayed their reliability for engineer-
ing optimization tasks. Note that traditional methods cdroen the SOP area and therefore
the adopted notation will be for one objective function on@ne example of multi-objective
approaches will be introduced in the last part of this sectio

2.3.1 Death penalty approach

The term “death penalty” stands for the rejection of an isilgle solution from a search process.
The advantage of this strategy is its easiness, the disty@nan occur in problems, where the
feasible domain is not convex or is divided into a number sjaiint parts. Also in the case of
highly constrained problems, where the problem of findirgftrst feasible solution can arise,
this method usually fails. To overcome these obstacles dbath penalty” is often combined
with repair or problem-dependent search operators, sefMianalewicz and Nazhiyath, 1995]
or [Schoenauer and Michalewicz, 1997].

2.3.2 Penalty function methods

Note that in the present work we use omdyterior penalty functions which penalize infeasi-
ble solutions, which is in contrast with theterior penalty approach that penalizes feasible
solutions near the boundary of a feasible domain. The fooneradmits infeasible solutions
during the whole optimization process and therefore caanstire the feasibility of the found
optimum. On the other hand, the big advantage is that thenggation can start everywhere.
Therefore this procedure is much more flexible than the ather The latter works only with
feasible vectors, therefore the found optimum as well asrinédiate solutions always fulfill
the given conditions. The disadvantages are clear - thisepitre cannot work with equality
constraints (because it is almost impossible not to vidiagen) and must start in the feasible
area.

The exterior penalty approach is one of the most often used approachésfaling con-
straints, especially within the Evolutionary Algorithmsnemunity. The basic idea is to move
the solution from the infeasible to feasible space by addorge value to the objective function,
ie.

fi(x) = f(x) +Q(x), (2.17)
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whereQ is equal to zero if the solution is feasible or equals soméigesalue (in minimization
problems) otherwise. The value @fcan be defined on the three different bases:

1. Anindividual is penalized only for its unfeasibility, thiits distance from the feasible set
playing no role.

2. The value can be defined as a measure of distance from gibléedomain or

3. as a price or energy spent to repair such a solution.

In practice, the definition of a penalty function can takeesalforms. In a general form, the
most common implementation can be written as

ne+ni

Q(x) = A7) Zgj(X)“ +A(m) D minf0,g;(x)"] (2.18)

j=ne+1

wherea and/3 are usually constants equalt@r 2. In the case that the functiox(r) does not
change in time, it is callestatic, in the opposite cas#ynamic In the latter case, the function is
usually assumed to be increasing with respect to “time” emjperature’ to ensure feasibility
in the last stages of the optimization process. For a moreoemensive overview of different
forms of penalty functions, see e.g. [Coello, 2000c]. Theswstrict requirements on penalty
functions enable formulation of a problem-dependent ggmmahction or different engineering-
like forms of penalty terms (see e.g. [LepS and Bittnar,13@% Eq. 3.4 in Section 3.2.3) and
hence increase the popularity of this approach.

2.3.3 Constraints as objectives

A completely new and revolutionary approach has been predday Carlos A. Coello Coello
in [Coello, 2000a]. Even though his work is not the first ondlus subject, it is closer to an op-
timal solution than other approaches. The idea is verygittiirward. During an optimization
process we admit infeasible solutions but in the end we wanbtain only the feasible ones,
i.e the Pareto set. This can be done by minimizing the disthebween infeasible and feasible
regions. And this is nothing more than next optimizationgeiss and, therefore, it can be in-
cluded in the original multi-objective one. Generally dgag, we deal with a new optimization
problem:
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Multi-objective solution for constrained problems. Again, we deal with a set of pa-
rameters (decision variables), a setafbjective functions, and a setof constraints. The
optimization goal is to

minimize y =e(x) = (e1(x),e2(x),...,ex(x)), K=k+m, (2.19)

where ¢;(x) = fi(x), i=1,...,k, (2.20)
ei(x) :g?(x), i=k+1,....k+ne; j=1,...,ne, (2.21)
. iff o
e(x) =9, M g(x)>0, (2.22)
0 otherwise, i=k+ne+1,...,K,
j=ne+1,... m=ne+ni.

Now this problem has become an unconstraik&P and any appropriate multi-objectiye
solver can be applied. Note that in the equation (2.21), bs®late value instead of the

square power of the equalitieg(x) can be used.

The next advantage can be seen in the ability of finding priowgpisolutions in problems with
no feasible regions, i.e. solutions with the minimal dis&mo an admissible domain. As
we assume the application of Evolutionary Algorithms, tleadvantage will be th&(K N?)
computational cost, wher® is the number of simultaneously compared solutions in tmetBa
dominance procedure. To overcome this obstacle, the metibgylbased on the order of solu-
tions in terms of violated constraints is also proposed iogl®, 2000a]. This procedure and
other possibilities have not been systematically studetcipd await a more detailed investiga-

tion.
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Figure 2.4: The division of optimization algorithms in aogance with [NEOS Guide, 1996].

2.4 Discrete vs. continuous optimization

If an interested reader visits e.g. web pages of the NEOSs@JEOS Guide, 1996] with
a huge number of global optimization methods, one thing hehercan find is some classi-
fication of these algorithms. In this particular examples tfee of optimization methods, as
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depicted in Fig. 2.4, can be found. If we recall differentnfigrof structural optimization (Sec-

tion 1.2), two representations of design variables are Iyaised - discrete and continuous,
respectively. From Fig. 2.4 it seems that only one sort otho@s$, particularly the stochastic
programming, can be used for problems with both representat The real situation is not

so strict because the transformations among differentdéngs are available. It is worthwhile

to mention that we presume a computer implementation of tbpgsed procedures, therefore
internal representation of variables in a computer musakert into account too.

In historical context, several codings or alphabets hawnlsudied and applied within
the optimization methods area. Until now the most often ussdings have been the fol-
lowing ones:real or continuous integer, binary - popular especially in the starting years of
Evolutionary Algorithms [Goldberg, 1989{rees- nowadays e.g. itGenetic Programming
methods [Koza, 1992]jsts - for the so-calledraveling salesman problem(TSP) and sim-
ilar tasks, see e.qg. [Michalewicz, 1999], or different apétic codings, e.gDNA comput-
ing [Adleman, 1994]. We will limit our attention only to the firgtree cited and their computer
implementation. Also the speculation on the influence o$¢heodings on the algorithms per-
formance will be left out'. Moreover, as shown in the next chapter, the results of nedl a
integer coding-based Evolutionary Algorithms are complara

2.4.1 Integer coding

Recall the fact that we deal with integers or continuous reahbers. In the case of a dis-
crete set of real numbers, the indices will play the role ¢o¢raktive variables. Consider
x = {xy,z9,...,x,} as a vector of variables, integer or real numbers defined on a closed
intervalmin; < x; < max; on an appropriate domas € {IN, R}". Further assume that each
variablez; is to be represented with some required precigigrdefined as the smallest unit
the number; can attain. Then, each variabtecan be transformed into a nonnegative integer

numberz; € N as
T; — min;
2 = LiJ : (2.23)
i
where operatof- | denotes the integer truncation. The inverse transformvisngby

T, = z; pi +min; . (2.24)

For instance, the real numb&t4.159 with precisionp = 0.001 and minimummsin = 0.0 is
transformed into the integer numkEr4159 and vice versa.

This is also the meet-point to the binary coding, becauseiiceded vectaz can be oper-
ated as a binary string using native properties of computnany data and/or can be used as
a vector of integer numbers.

2.4.2 Binary coding

In accordance with the previous section, we may deal withohlpm of decoding an integer
vectorz into a binary string provided that this operation is not cedsby the selected program-
ming language. First, the lengitof the final binary string is needed and can be computed e.g.

14 Actually, there is a mathematical proof, that these repregions are equivalent, see e.g. [Fogel, 1999].
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by

. {ln(maxi —lmi;%) — ln(pi)J 1, (2.25)
n

where the notation is the same as in the previous sectiom ffeebinary strind3’ € {0; 1}¢
pertinent to the integer numbercan be obtained by

i i—1 .
B =2/2"" mod 2, j=1,...,q. (2.26)

As a resultB? will contain the list of bits of the numbes; in the ascending order, i.e. from the
least to the most important one. The recursive relationistgven by

q
n=Y B2t (2.27)
j=1

2.4.3 Real coding

The beauty of this encoding can be seen in its easiness, $eaalcommon programming
languages the assignment

z=x, z€R", x¢e{NR}" (2.28)

will usually work. The opposite direction can be handledrmsbme truncation or rounding
procedure. For example,

is the most common.



Chapter 3

A COMPETITIVE COMPARISON OF FOUR EVOLUTIONARY
ALGORITHMS

Who cares how it works, just as
long as it gives the right answer?

Jeff Scholnik

Preface

This chapter was originally produced as a joint work of fouthars: O. Hrstka, A. KuCerova,
J. Zeman and the author of this thesis. This contributionfivstly published as a conference
paper [Hrstka et al., 2001] and later on it was, in a revisethfaccepted to the international
journal [Hrstka et al., 2003]. Because this research is sargml part of the author’'s work, it is
presented here, enhanced by the notation introduced irrsheliapter.

A comparison of several stochastic optimization algorglteveloped by the above-introdu-
ced authors in their previous works for the solution of somodlems arising in Civil Engineer-
ing is presented. These optimization methods are: Integgm#ented Simulated Annealing
(IASA), Real-coded Augmented Simulated AnnealiRAGA) [Matous et al., 2000], Differ-
ential Evolution DE) in its original fashion developed by R. Storn and K. Priceo[8§, 1996]
and Simplified Real-coded Differential EvolutioBADE) [Hrstka and Ku€erova, 2000]. Each
of these methods was developed for some specific optimizatioblem; namely the Cheby-
chev trial polynomial problem, the so-callégpe Ofunction and two engineering problems —
the reinforced concrete beam layout and the periodic ullipceblem respectively. Detailed
and extensive numerical tests were performed to examingdhéity and efficiency of the pro-
posed algorithms. The results of our experiments suggasthi performance and robustness
of the RASA, IASA and SADE methods are comparable, while tBé& algorithm performs
slightly worse. This fact together with a small number ofemmial parameters promotes the
SADE method as the most robust one for practical use.

3.1 Introduction

Nowadays, optimization has become one of the most discuepéts of engineering and ap-
plied research. Advantages coming from using optimizatamis in engineering design are
obvious. They allow to choose an optimal layout of a certaincsure or a structural compo-
nent from the huge space of possible solutions based on aneadigtic physical model, while

the traditional designing methods usually rely only on sem&le empirical formulas or guide-
lines resulting in a feasible but not necessarily an (sydti)@al solution. Using optimization as
a method of design can raise engineering job to a higher,lbo#h in terms of efficiency and

reliability of obtained results.
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Typically, optimization methods arising in engineeringid@ problems are computation-
ally demanding because they require evaluation of quitargdtioated objective function many
times for different potential solutions. Moreover, theedijve function is often multi-modal,
non-smooth or even discontinuous, which means that toawitj gradient-based optimization
algorithms fail andglobal optimization techniquesvhich generally need even a larger num-
ber of function calls, must be employed. Fortunately, thpdaevelopment of computational
technologies and hardware components allows us to tres¢ fw®blems within a reasonable
time.

As indicated previously, the optimization methods can beldd generally into two groups:
the gradient methods, which operate on a single potentiaiiso and look for some improve-
ments in its neighborhood, and global optimization techag} represented here Byolution-
ary Algorithms— that maintain large sets (populations) of potential sohg and apply some
recombination and selection operators on them. Duringdledecades, Evolutionary Algo-
rithms have received considerable attraction and haveriexped a rapid development. Good
compendium of these methods can be found for example in [Aigeticz et al., 1997] and ref-
erences therein. The main paradigms aBenetic Algorithmgbinary or real coded)Aug-
mented Simulated Annealifiginary or real coded}:volution StrategieandDifferential Evo-
lution. Each of these methods has many possible improvements(gedAndre et al., 2000]
or [Fan et al., 2000]).

Many researchers all over the world are united in an effoddeelop an Evolutionary Al-
gorithm that would be able to solve reliably any problem siited to it. Currently, there is
no such method available. Each method is able to outperfoner® for certain type of opti-
mization problem, but it extremely slows down or even fadsdnother one. Moreover, many
authors do not introduce a reliable testing methodologydoking their methods. For example
they introduce results of a single run of a given method, tvigcather questionable for the case
of stochastic algorithms. Finally, the methods are oftemchenarked on some test functions,
that even if presented as complicated, are continuous ameiféa local extremes.

This paper presents several optimization methods that d&reloped and tested for dif-
ferent types of optimization tasks. Integer Augmented $ated Annealing IASA), derived
from a binary version of the algorithm [LepS a8éjnoha, 2000], was developed to optimize
a reinforced concrete beam layout from the economic pointi@f. For solving the prob-
lem of a periodic unit cell layout [Zeman a&&jnoha, 2001], Real-coded Augmented Simu-
lated Annealing was applied. Differential Evolution ardsesolve the famous Chebychev
polynomial problem [Storn, 1996],[Storn, WWW]. The lasttbe introduced methods is the
so-calledSADE technology. It is a simplified real-coded differential Geoné\lgorithm that
was developed as a specific recombination of a Genetic Algorand Differential Evolution
intended to solve problems on high-dimensional domainseesgmted by théype Otest func-
tion [Hrstka and Kucerova, 2000]. All these methods mayirasto be a universal optimization
algorithm. So, detailed numerical tests of all these fodmoation methods for the aforemen-
tioned optimization problems to examine their behavior pedormance have been conducted.

The chapter is organized as follows. Section 3.2 providesf description of each opti-
mization task, while individual optimization algorithmeeadiscussed in Section 3.3. Numerical
results appear in Section 3.4. Summary of the performangedofidual methods is presented
in Section 3.5. For the sake of completeness, the paranedtargs of algorithms are shown in
Appendix C.
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Figure 3.1: A graph of a Chebychev polynomial-€ 8).

3.2 Optimization tasks

The optimization problems that are used as a set of testifunrsotan be divided into two groups:
the “test suite”, containing “artificial functions” and thengineering problems”, which collect
more (hopefully) practical optimization tasks. Specifigaghese problems are :

Test suite containing the Chebychev trial polynomial problem ahge Obenchmark trial
function and

Engineering problems consisting of the Reinforced concrete beam layout and thedte
unit cell problem.

The following section provides description of selectedctions in more detail.

3.2.1 Chebychev problem

The Chebychev trial polynomial problem is one of the mostdasoptimization problems. Our
goal is to find such coefficients of a polynomial constraingdhe condition that the graph of
the polynomial can be fitted into a specified area (see Fig. 3.1

Thus, the optimized values are the parameierd a polynomial expression:

flx) = Z a;z", (3.1)
i=0

and the value of objective function is determined as a sumedateas, where the function graph
exceeds a given boundary (hatched areas in Fig. 3.1).
3.2.2 Type Ofunction

This trial optimization problem was proposed in [Hrstka &uterova, 2000] to examine the
ability of the optimization method to find a single extremeadiunction with a high number
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Figure 3.2: An example of gype Ofunction.

of parameters and growth of computational complexity whth problem dimension. For this
reason, we used a function with a single extreme on the tdpedfigh and narrow peak:

f(x) =y (z — arctanw) , (3.2)
2 To

wherex is a vector of unknown variablegy is the point of the global extreme (the top of the

peak) andy, andr, are parameters that influence the height or the width of tlaé,pespec-

tively. An example of such a function on one dimensional donsashown in Fig. 3.2.

Although this example function has only a single extremdird it even with a moderate
precision is a non-trivial task for several reasons. Findhe very neighborhood of the extreme
the function is so steep that even a futile change of the coates causes a large change of the
function value; in such a case it is very difficult for the afitfom to determine which way leads
to the top. Second, the peak is located on a very narrow partiomain and this disproportion
increases very quickly with the problem dimension.

3.2.3 Reinforced concrete beam layout

An effort to create an optimal design of a steel-reinforcedarete structure is as old as the
material itself. In present times emphasis is put on thiblem due to widespread use of
RC structures in Civil Engineering. Frame structures areaponpart in this field with beams
playing an important role as one of the basic building blaxfithis construction system. An ob-
jective is to choose the best design from all possible cordigans that can create the requested
structure — in our case a continuous beam (see Fig. 3.3).

The total cost of the structure is used as a comparison faktoadvantage of the financial
rating is its natural meaning to non-experts and easinessrdtraints implementation. In our
particular case, the objective function reads

f(X) =VoPo+ WP+ Y pfi, (3.3)

whereV/, is the volume of concrete and’; is the weight of steelP. and P, are the price of
concrete per unit volume and steel per kilogram, respdgtiderom the mathematical point
of view the penalty functionp f; is the distance between a solution and the feasible space, or
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Figure 3.3: A continuous beam subjected to a uniform loading

equivalently, a price spent on the fulfillment of the coratiti. Suppose that a variablg;
should not exceed a certain allowable limhit,,,.,. Then, the penalty;; assumes the form

0 if (I)l S q)i,mama
pfz B { wj - (®i/®i7max)2 OtherW|Se (34)

whereuw; is the weight of the-th constraint.

The constraints in this procedure deal with allowable sjtieand serviceability limits given
by a chosen standard — in our case EUROCODE 2 (EC2) [Eurocdd#92]. An interested
reader can find implementation details for example in [LepdSejnoha, 2003].

Consider a rectangular cross-section of a beam. There iwittth b and the height
to optimize. Other variables iX come from the model of a general RC beam which was
presented in [Matous et al., 2000] : the beam is divided thtee elements between supports
with the same diameter of longitudinal reinforcement altimg top surface and another one
along the bottom. The differences are only in numbers of st&&forcement bars in particular
elements. The shear reinforcement is designed alike. Tdrer¢hree shear-dimension parts
- each of them with different spacing of stirrups but the sahaeneter in the whole element.
This partitioning reflects the characteristic distribataf internal forces and moments in frame
structures, where the extremal values usually occur aetpoents—at mid-span and two end
joints. The novelty of our approach is the assumption thatehgth of parts may attain only
the discrete values, in our case corresponding to 0.025 amsppe. The same principle is used
for the cross-section dimensiohandh.
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Figure 3.4: An example of a microstructure of a unidirecdildiber composite.

3.2.4 Periodic unit cell construction

The motivation for this problem comes from the analysis afliractional fiber composite ma-
terials. Such materials consist of a large number of fibetsidfwserve as a reinforcement)
embedded in the matrix phase. The goal is to determine thalblehavior of such a material
system provided that material properties of the matrix ameré are known. It turns out that for
this prediction, the geometrical arrangement of fibers rhageken into account.

Unfortunately, the distribution of fibers in real compositaterials is quite complex (see
Fig. 3.4). To avoid such an obstacle, we attempt to replacavglicated microstructure with
a large number of fibers by a certgeriodic unit cell which resembles the original material
sample. More specifically, we describe the actual distidlouaf fibers by a suitable microstruc-
tural function and then determine the parameters of thegeerunit cell such that the differ-
ence between the function related to the periodic unit cedl fainction related to the original
microstructure is minimized (for detailed discussion s&enjan andejnoha, 2001]).

The microstructural function used in the present approstesecond order intensity func-
tion K (r), which gives the number of further points expected to lidimita radial distance of
an arbitrary point divided by the number of particles (fipgrasr unit area ([Ripley, 1977])

K(r) = 5 SO 1), 35)
k=1

wherel,(r) is the number of points within a circle with center at the jotett and radius:, N
Is the total number of particles (fibers) in the sample dnd the sample area.
An objective function related to this descriptor can be aefias

N, 2
~ ((Ko(r:) — K(ri)
F(xN Hy, Hy) = 3.6
(x, Hy, Hy) ;( 2 5 (3.6)
where vectox = {1, 3!, ..., 2", ¢y} stands for the position of particle centers of the peri-

odic unit cell;z* andy® correspond ta: andy coordinates of théth particle, 4, andH, are the
dimensions of the unit cell (see Fig. (3.5a)(r;) is the value ofK” function corresponding to
the original medium calculated in the pointand /V,, is the number of points, in which both
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(a) (b)
Figure 3.5: (a) Geometry of a periodic unit cell, (b) An exdenpf the objective function.

functions are evaluated. Throughout this study, we assaune periodic unit cellf; = H,)
and determine its dimensions in such a way that the voluneséidraof the fiber phase in the pe-
riodic unit cell is the same as in the original micrograph. é&ample of the objective function
is shown in Fig. 3.5(b).

3.3 Applied methods

During last few years, we have developed and tested seveodutibnary Algorithms that are
based on both binary/integer and real-valued representatisearched variables. Each of them

has been primarily applied to one particular optimizatiooipem of the four introduced above.
These methods are (in order of appearance):

¢ Differential Evolution DE), developed by R. Storn and K. Price [Storn and Price, 1995]
to solve the Chebychev trial polynomial problem.

e Simplified Atavistic Differential Evolution $ADE), developed by the authors for re-
search on high-dimensional problems [Hrstka and Ku&era@00],[Hrstka, WWWD].

¢ Integer Augmented Simulated Annealing$A), a combination of an integer-coded Ge-
netic Algorithm and Simulated Annealing; it was primarilypdied to the reinforced con-
crete beam layout optimization problem.

e Real-coded Augmented Simulated AnnealifRRASA), a combination of a real-coded
Genetic Algorithm by Michalewicz [Michalewicz et al., 19%hd Simulated Annealing;
it was developed for solving the periodic unit cell problem.

3.3.1 Differential Evolution OE)

Differential Evolution was invented as the solution mett@dthe Chebychev trial polynomial
problem by R. Storn and K. Price [Storn, 1996]. It operatesadiy on real valued chromosomes
and uses the so-called differential operator, which workhk veal numbers in natural manner
and fulfills the same purpose as the cross-over operatoriimpl&Genetic Algorithm.
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CR(CH,(1)-CH,(t) T -~ _ cH®
+

+ CHON +
~ CH{(H)-CH, (1)
+

Figure 3.6: The geometric meaning of a certain subtype oflitfierential operator.

The differential operator has a sequential character(Liét(¢) be thei-th chromosome of
generatiort

CH;(t) = (chi(t), chia(t), ..., chi(t)), (3.7)

wheren is the chromosome length (which means the number of vagalflie fitness function
in the real encoded case). Next, lebe a subsétof {1,2,...,n}. Then for eacly € A holds

chyy(t +1) = chiz(t) +  Fi(chy;(t) = ch;(t))
+ By (Chpesty(t) — chi(t)) (3.8)

and for eacly ¢ A we get

wherech,; andch,; are thg-th coordinates of two randomly chosen chromosomescang ;

is thej-th coordinate of the best chromosome in generatiof, and F; are then coefficients

usually taken from interval0, 1). Fig. 3.6 shows the geometrical meaning of this operator.
The method can be understood as a stand-alone evolutiorgthyothor it can be taken

as a special case of a Genetic Algorithm. The algorithmi@swhis similar to the Genetic
Algorithms but it is much simpler:

1. At the beginning an initial population is randomly crehtand the fitness function value
is assigned to each individual.

2. For each chromosome in the population, its possible cepient is created using the
differential operator as described above.

3. Each chromosome in the population has to be compared isifossible replacement
and if an improvement occurs, it is replaced.

4. Steps 2 and 3 are repeated until some stopping criteri@ached.

As it can be seen, there are certain features that distinghis method from the Simple
Genetic Algorithm, namely:

I The determination oA is influenced by the parameter callewssrate(C R), see [Storn, 1996].
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e the crossing-over is performed by applying the differdrdgerator (3.8), (3.9),

o the selection operation like the roulette wheel, for examiglnot performed, the individ-
uals that are going to be affected by the differential omerare chosen purely randomly,

e selection of individuals to survive is simplified to the miened fashion: each chromo-
some has its possible replacement and if an improvement®atis replaced,

¢ the mutation operator is not introduced as the authof3fclaim that the differential
operator is able to replace both mutation and uniform crgssknown from basi6GAS.

Further details together with the source code®&f can be obtained from the web page
[Storn, WWW].
And finally, in a sketchy form presented in Section 2.2.1 algerithm can be written as

optpr (") = sel,, (T, reci('T, Tex)) (3.10)

and can be also understood as a nice exampl€ pfid )-optimization algorithm.

3.3.2 Simplified Atavistic Differential Evolution$ADE)

This method was proposed as an adaptation of the diffefesvadution in order to acquire
an algorithm which will be able to solve optimization pratlke on real domains with a high
number of variables. This algorithm combines features &ebantial Evolution with traditional
Genetic Algorithms. It uses the differential operator ie gimplified form and an algorithmic
scheme similar to Evolution Strategies.

The differential operator has been taken from the Diffee¢volution in a simplified ver-
sion for the same purpose as the cross-over is used in a SBepletic Algorithm. This operator
has the following fashion: Let (agaid)H;(t) be thei-th chromosome in generation

CHi(t) = (chir(t), chia(t), ..., chin(t)), (3.11)

wheren is the number of variables of the fithess function. Then, thegobfied differential
operator can be written as

wherech,;, ch,; andch,; are thej-th coordinates of three randomly chosen chromosomes and
CR is the so-callectross-rate Due to its simplicity this operator can be rewritten alsaha
vector form:

CH;(t+ 1) =CHp(t) + CR(CH,(t) — CH,(t)). (3.13)

Contrary to the Differential Evolution, this method usesaégorithmic scheme very similar to
Evolution Strategies:

1. Asthe first step, the initial population is generated canly and the fitness function value
is assigned to all chromosomes in the population.
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2. Several new chromosomes are created using the muta#oators - the mutation and the
local mutation (number of them depends on a value a of pamratiedradioactivity,
which gives the mutation probability).

3. Other new chromosomes are created using the simplifiéerelitial operator as was
described above; the whole amount of chromosomes in thegogudoubles.

4. The fitness function values are assigned to all the newlgted chromosomes.

5. The selection operator is applied to the double-sizediladipn, so the amount of indi-
viduals is decreased to its original value.

6. Steps 2-5 are repeated until some stopping criteriorashed.
And again, using the introduced notation, 8&DE method can be easily written as
optsapr("I") = setz‘u(rec},)(t]), mut; (7)) (3.14)

and can be characterized a§a+1¢)-optimization algorithm.
Next, we introduce the description of the mentioned opesatodetail:

Mutation: If a certain chromosomé'H;,(t) is chosen to be mutated, a new random chromo-
someRP is generated and the mutated ané/, (¢ + 1) is computed using the following
relation:

CHi(t+1)=CH;(t) + MR(RP — CH,(t)), (3.15)

whereM R is a parameter calleghutation-rate

Local mutation: If a certain chromosome is chosen to be locally mutatedisattoordinates
have to be altered by a random value from a given (usually segll) range.

Selection: This method uses modified tournament strategy to reducedpelgtion size: two
chromosomes are randomly chosen, compared and the worlserofi$ rejected, so the
population size is decreased bythis step is repeated until the population size reaches
its original sizé.

Detailed description of th& ADE method including source codes in C/C++ and the tests
documentation for the high-dimensional problems can baiobtl directly on the web-page
[Hrstka, WWWhb] and also from the article [Hrstka and Kudgxp2000] .

2 Contrary to the traditional tournament strategy this apphocan ensure that the best chromosome will not be
lost even if it was not chosen to any tournament.
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3.3.3 Real-valued Augmented Simulated Annealirl@XSA)

The Augmented Simulated Annealing method is the combinatiéwo stochastic optimization
technigues — a Genetic Algorithm and Simulated Annealihgsés basic principles of Genetic
Algorithms ( selection, recombination by genetic opemioibut controls replacement of par-
ents by the Metropolis criterion (see Eq. (3.17)). This @ases the robustness of the method,
since we allow a worse child to replace its parent and thuspesfrom local minima, which is
in contrary withDE methods described in Section 3.3.1.

The algorithmic scheme of the present implementation issarized as follows.

1. Randomly generate an initial population and assign sth@gach individual. The initial
temperature is set 6, = 7,,,, = T_frack,,, and the minimal temperature is de-
termined asl},;, = T_frac_m nF,,, , whereF,,, is the average fitness value of the
initial population.

2. Selectan appropriate operator. Each operator is askegrertain probability of selection.

3. Select an appropriate number of individuals (accordirtyé operator) and generate pos-
sible replacements. To select individuals, we apyplymalized geometric rankirgcheme
([Houck et al., 1995]): The probability of selection of théh individual is given by

, q
1 — (1 _ q)pop_size’

pi=d(l—-a) " ¢ (3.16)

whereq is the probability of selecting the best individual in thepptation,r is the rank
of thei-th individual with respect to its fithess, apodp_si ze is the population size.

4. Apply operators to selected parent(s) to obtain possdpkcement(s).

4a. Look for an individual identical to possible replacenignin the population. If such
individual(s) exists, no replacement is performed.

4b. Replace an old individual if
u(0,1) < el Uata)=Fnew))/Te (3.17)

where F'(+) is fitness of a given individuall; is the actual temperature and-, -) is
a random number with the uniform distribution on a given v

5. Steps 2—4 are performed until the number of successfatig@ed individuals reaches
success_max or selected number of steps reachesint er _nax.

6. Decrease temperature
Tt+1 = T_multTt. (318)
If actual temperaturé; ., is smaller thart,,,;,,, performreannealing- i.e. perform step
#1 for one half of the population.

7. Steps 2-6 are repeated until the termination conditiattzgsned.
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This algorithm can be therefore seen also &g-a.)-Evolutionary Algorithm and its sim-
plified notation can be formulated as

optrasa("1") = seb, (1, rec('T)||mut (7)) . (3.19)

List of operators The set of real-valued operators proposed in [Michalewict.e1994] was
implemented as follows. In the sequel, we will denbtendU as vectors of lower/upper bounds
on unknown variables,(a, b) andu[a, b] as a real or integer random variable with the uniform
distribution on a closed intervék, b). Otherwise we use the same notation as employed in the
previous sections.

Uniform mutation: Letk = [1,n)]

Ch@'j(t +1)

{ chi;(t),  otherwise, (3.20)
Boundary mutation: Letk = u[l,n], p = u(0,1) and set:

chi;(t), otherwise
Non-uniform mutation: Letk = [1,n],p = u(0,1) and set:

chij(t) + (Lj — chi;(1) f, it j =k,p<.5
chi;(t), otherwise

wheref = u(0, 1)(T;/Tp)® andb is the shape parameter.
Multi-non-uniform mutation:  Apply non-uniform mutation to all variables 6fH;.

Simple crossover: Letk = [1,n] and set:

f ocha(t), ifl<k
chy(t+1) = { ch;i(t), otherwise

3l
Simple arithmetic crossover: Let k = u[1,n], p = u(0, 1) and set:

chj(t), ifl<k
chy(t), otherwise

chj(t+1) = {

A B pchy(t) + (1 —p)chy(t), ifl=k

chalt +1) = { chy(t), otherwise (3.23)
‘ B pchj(t) + (1 —p)chy(t), ifl=k

ch(t+1) = { chji(t), otherwise (3.24)

Whole arithmetic crossover: Simple arithmetic crossover applied to all variableg’'@f; and
CH;.
Heuristic crossover: Letp = u(0, 1), j = [1,n] andk = [1, n] such thatj # k and set:
CH;(t+1)=CH,(t)+p(CH;(t) — CHy(t)). (3.25)
If CH;(t + 1) is not feasible then a new random numbes generated until the fea-

sibility condition is met or the maximum number of heuristi®ssover applications
num _heu_nax is exceeded.
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3.34

Integer Augmented Simulated AnnealingASA)

The Integer Augmented Simulated Annealing method is baseti@same ideas as the previ-
ously mentionedRASA algorithm. This procedure effectively exploits the esgdatof GAs
(a population of chromosomes, rather then a single poinpace is optimized) together with
the basic concept of a Simulated Annealing method guidiagé#arch towards minimal energy
states. To avoid well-known problems with binary coding ihkeger coding was used, see
Section 2.4.1. Together with new operators such as diffedesrossover and a new mutation
operator encouraging results were obtained.

The description of the algorithm does not substantiallfedfirom theRASA algorithm, but
for the sake of completeness all steps are briefly reviewssl he

1.

The initial population consisting d@l dSi ze individuals is created randomly and fit-
nesses are assigned to each individual. Starting and emelimgerature§_m n and
T_max are set by the user.

If a real random number = «(0, 1) is smaller tharCr ossover Pr ob the crossover is
used, otherwise the mutation is applied. This step is repaattil the numbeNewSi ze
of new solutions is obtained.

For each individual in a “new” population one “parent’rftdold” part is selected. The
“old” solution is replaced if

1
u(0,1) <

- 1 + e(F(Iold)_F(Inew))/Tt ’ (326)

whereF (), T, andu(-, -) have the same meaning as in the previous section. Equation
(3.26) ensures the 50% probability of survival when compmatwo solutions with same
fitness.

Steps 2-3 are performed until the number of successfatlg@ed individuals reaches
SuccessMax or the selected number of steps reacBesnt er Max.

The actual temperature is decreased by

CounterMax
Tmin\ \ TminAtCallsRate % MaxCalls (3.27)
T_max ’ )

Eﬂzﬂ(

whereTm nAt Cal | sRat e determines a fraction of the maximum allowable number of
function callsMaxCal | s in which the minimum temperaturg_mi n will occur. The
reannealingstep is represented here by setting actual temperaiureequal toT_max.

6. Steps 2-5 are repeated until the termination conditiatt@gsned.

This algorithm can be added to the grougd @f\)-Evolutionary Algorithms and its notation
can be formulated as

optrasa("I") = sl (T, recy(T), muty (7)) (3.28)

and in connection with the operators presented in previecis®s, integer operators within the
IASA algorithm have the following form:
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Differential crossover: This operator is inspired by tHRE. A new individualC H,(t) is cre-
ated from three randomly selected solutiérs,,(t), C H,(t) andC' H,(t) according to

CH,(t+1) = CH,(t) + u(0.0, CR)(CH,(t) — CH,(t)). (3.29)

Note that all vector§' H; are integer numbers and also that the influence of the diftere
on the right-hand side randomly varies between zerocapsk-rateC' R.

Mutation: The mutation operator is provided by modifying each vagahlC' H;(t) to
| chij(t) — chy;(2) |
2

whereN(-, -) is a random integer number derived from the Gauss normailaisbn and
chy;(t) is thej-th variable of a randomly selected vectof,(t).

+1), (3.30)

3.4 Test computations and results

Each of the methods introduced in the previous section has tested on all of the presented
optimization problems. The methodology that has been usedur computations is based on
the following criteria:

e For each problem and each method the computation was runm@¢ to avoid an influ-
ence of random circumstances.

e For all cases, the number of successful runs (which can bedras the probability of
success or the reliability of the method) is presented.

¢ If the number of successful runs is non-zero, the averagebruwr fithess calls of all
successful runs is also presented.

Further details of individual function settings and metblody for results evaluation can be
found in the next subsections.

3.4.1 Results for the Chebychev problem

Method IASA | RASA DE | SADE
Successful runs 100 100 100 100
Average number of fitness callsl0342| 47151| 25910 24016

Table 3.1: Results for the Chebychev polynomial problem.

The computations were performed for the Chebychev probléim avdegree of the poly-
nomial expressiom = 8 (the T8 problem), which corresponds to the nine dimensidrike
problem. The computation was terminated if the algorithached a value of the objective
function smaller thei0~> or the number of function evaluations exceedéd, 000. Upper
bounds on individual coefficients were sebtti®, while lower bounds were equal t6512. The
results of individual algorithms are shown in Table 3.1 aiguFe 3.8.
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Figure 3.7: A comparison of results for thge Ofunction.

3.4.2 Results for theéype Otrial function

Test computations for thtgpe Oproblem were performed for a wide set of problem dimensions,
ranging froml to 200. The upper bound on each variable was sebty while the lower bound
value was—400. For each run, the position of the extreme was randomly géeervithin these
bounds and the height of the peakwas generated from the ran@e50. The parameter, was

set tol. The computation was terminated when the value of the abgefitnction was found
with a precision greater thal) 3. The results are given in the form of the growth of computa-
tional complexity with respect to the problem dimensiont &ach dimension, the computation
was run 100 times and the average number of fithess calls wasdesl (see Fig. 3.7 and Ta-
ble 3.2).

Problem dimension IASA RASA DE SADE
10 246,120 13,113 39,340 46,956
30 611,760 74,375| 653,600] 171,539
50 926,100 183,882 N/A 304,327
100 2,284,590 526,492 N/A 663,084
140 3,192,800, 793,036 N/A 948,197
200 4,184,200| 1,220,513 N/A | 1,446,540

Table 3.2: Average number of fitness calls for the t9danction
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3.4.3 Results for the reinforced concrete beam layout perhl

The basic parameters subjected to optimization were thm bedth b, which was assumed to
take discrete values between5 m and0.45 m with the ste.025 m and the beam heiglt
ranging from0.15 m to 0.85 m with the stef.025 m. For each of the three parts of a beam,
the diameter and the number of longitudinal reinforcingsblacated at the bottom and the top
of the beam, spacing and the diameter of stirrups and théherighe corresponding part were
optimized. Lower bounds were selected for the sake of stractequirements; solutions ex-
ceeding upper bounds were considered to be irrelevant éostildied examples. However,
from the optimization point of view, bounds can be easilyatkd to any reasonable value.The
number of longitudinal bars was restricted to the rafges, the spacing of stirrups was as-
sumed to vary fron).05 m to 0.40 m with the 0.025 m step. The profiles of longitudinal
bars were drawn from the list d6 entries while for the stirrups, only diameters were con-
sidered. This finally results ih8 independent variables. Note that the maximal number of
longitudinal bars presents only the upper bound on the Bedreariable; the specific restric-
tions given by Codes of Practice are directly incorporatethe objective function. For more
details see [LepS aréejnoha, 2000, Matous et al., 2000]. The computation wasitated if

an individual with a price smaller th&aiv3.5 CZK was found or the number of objective func-
tion calls exceeded, 000, 000. Table 3.3 stores the obtained results of different optatndn
algorithms, see also Figure 3.8.

Method IASA | RASA DE | SADE
Successful runs 100 100 100 100
Average number of fitness callsl08732| 131495| 196451| 185819

Table 3.3: Results for the reinforced concrete beam layout

3.4.4 Results for the periodic unit cell problem

Test computations for the periodic unit cell constructioerevperformed for thé0-fiber unit
cell (i.e. the dimension of the problem wa8). The computation was terminated if the algo-
rithm returned value smaller thanx 10~° or the number of function calls exceedsD, 000.
Variables were constrained to the box< »; < H; ~ 25.8 (see Section (2.4)) . The required
numbers of function are stored in Table 3.4 and displayedguarg 3.8.

Method IASA | RASA DE | SADE
Successful runs 100 100 100 100
Average number of fitness callsl3641| 12919| 93464 | 55262

Table 3.4: Results for the periodic unit cell problem
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Figure 3.8: A comparison of results for Chebychev polyndmenforced concrete beam lay-
out and periodic unit cell problems.

3.5 Conclusions for comparison

Differential Evolution  The Differential Evolution algorithm showed to be very d#fitt and
robust for moderate-sized problems, but its performancéiigher dimensions deteriorated.
Moreover, the small number of parameters, see Table C.Apihar advantage of this method
However, the results suggest that the absence of mutatpmeperator(s) is a weak point of
the algorithm.

Simplified Atavistic Differential Evolution TheSADE algorithm was able to solve all prob-

lems of our test set with high reliability and speed. Althbugneeded a larger number of

function calls than other methods (see Table 3.5), therdifiees are only marginal and do not
present any serious disadvantage. Another attractiverieatf this method is the relatively

small number of parameters, see Table C.3.

Real-valued Augmented Simulated Annealing TheRASA algorithm was successful for all
presented problems; the average number of function caiamparable to the other methods.

3 This is the base-stone of the popularity of this method aislprobably a reason why tHeE was modified
also for multi-objective problems, see [Kukkonen and Lamapi, 2004].
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The obvious disadvantage of this algorithm is a large nurobparameters (Table C.1), which
can result in a tedious tuning procedure. On the other hanfillaws from Appendix C, only
two types of parameter settings were necessary — one footitenaous and one for the discrete
functions.

Integer Augmented Simulated Annealing ThelASA algorithm was the most successful and
fastest method on problems with small dimensions. But optbblems with larger dimensions
and with a higher number of local minima, the algorithm stgffieEom premature convergence
and limited precision due to integer coding of variablesadition, initial tuning of individual
parameters, see Table C.4, presents another drawbacls ofi¢ttihod.

Method IASA | RASA | DE | SADE
Chebychev problem 1 4 3 2
Type 0 test function 3 1 4+ 2
Concrete beam layout| 1 2 4 3
Periodic unit cell 3 1 4 2
pX 8 8 14 9

Table 3.5: Overall performance of methods: Not successful for all runs)

The summary results are given in Table 3.5 to quantify thealvperformance of the in-
dividual methods. Each of the method is ranked primarilhwéspect to its success rate and
secondary with respect to the average number of fitness daléssum then reveals the overall
performance of the method.

Final comments In our opinion, several interesting conclusions and sumescan be made
from the presented results. Each of them is discussed in debed.

e The performance and robustness of 8&DE method was distinguishly better than for
the DE algorithm. This supports an important role of a mutationrapi(s) in the opti-
mization process.

e Although algorithms were developed independently, all ssme form of differential
operator. This shows the remarkable performance of thisabpefor both real-valued
and discrete optimization problems.

e The most successful methods, 8&DE andRASA algorithms, both employ a variant of
“local mutation”. This operator seems to be extremely intgiirfor higher-dimensional
type-Ofunctions, where these methods clearly outperform thersthe

¢ Slightly better results of th®@RASA method can be most probably attributed to the re-
annealing/restarting phase of the algorithm (a trivial éfficient tool for dealing with
local minima) and to the search for an identical individdidle procedure for local min-
ima assessment was implemented toSA®E method (see [Hrstka and Kuc€erova, 2004,
Hrstka, WWWa] for results), incorporation into th&SA algorithm is under develop-
ment.
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e When comparing methods based on the discrete coding ofl@siavith real-encoded
ones it becomes clear that for continuous functions the oakstivith the real coding per-
form better. Nevertheless, after implementing new featuike those mentioned before,
the performance is expected to be similar. On the other Hhedidvantage of théASA

algorithm is the possibility of its use for discrete comhaor&l problems like the Travel-
ing salesman problem.

Therefore, from the practical point of view, tIBADE method seems to be the most flexible
alternative due to its simplicity and small number of parterse



Chapter 4
DESIGN OF REINFORCED CONCRETE FRAMES

For it is unworthy of excellent men
to lose hours like slaves in the
labour of calculation which would
safely be relegated to anyone else if
machines were used.

Gottfried Wilhelm Von Leibniz

Previous Chapter 3 deals mainly with problems that can benstabd as black-box func-
tions, even though for the periodic unit cell problem somewedge can be added into an
optimization process and the performance of optimizatiam lose significantly improved, see
e.g. [Matous et al., 2000]. A humble goal of this chaptepishow that adding more informa-
tion into the system of a design can enable us to optimize typehof structures which was not
manageable in previous decades.

4.1 Introduction

From the global point of view and following the classificatimtroduced in Section 1.2, every
design of a frame structure can be seen as a simultaneousdgpsizing and shape optimiza-
tion problem. The designer can vary several possible tgpesoof the desired structure with
different cross-sectional shapes, which can be selected & predefined list of available pro-
files. Still our current knowledge and computer equipmemakenable us to solve this specific
task in its full generality. On the other hand, the width, kieéght of a building and even the
position of columns are given a long time before the final glestarts. Therefore the topology
optimization is not studied within this work and attentioiil e only paid to the shape and/or
sizing tasks.

Research within the design of steel structures seems tonb@sacomplete, see e.g. the
works by D. Greiner [Greiner et al., 2001] and [Greiner et2003]. On the other hand, the
actual state of the art in the design of reinforced conciet@) (structures is not so clear. The
main reason is that steel structures design requiremepitatly belong to the pure sizing area,
while reinforced concrete structures are on a half-way &psloptimization problems. Steel
structures are characterized by a small set of availablellysstandardized, cross-sections,
on the other side, combinations of reinforcement within@trarbitrary shapes of a concrete
structure lead to an enormous number of possible solutidhe. objective of this chapter is
therefore to fill in several gaps within the research of theigleof reinforced concrete framed
structures.

At this point a step-by-step description for the rest of atiroation-design process of
frame structures will be presented and several possiblgigns will be proposed. Logically,
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the first variable studied is trehapeof members that the frame structure is composédTie
shapes will be most likely selected from a small list of aafalié sections limited by form-work
abilities and moreover the economical aspect will usuaadito mostly uniform forms within
one building. This reduction of the searched space therefnables this part of design to be
rationally tackled by the size optimization methods.

To continue the above mentioned ideas, let us assume thah#pe is fixed. Then, the
second and possibly the most challenging task isplaeement of reinforcing bars within
concrete members, often callddtailing. And again, from the optimization point of view, this
task generally belongs to the field of topology optimizatiatmere the number of bars, their
shape and material and even their mutual space positiorearehed for. The type and form
of a chosen parameterization of the shape will determinedhgputational complexity of the
problem in question. Although this solution is the mostigti€forward one in terms of both
analysis and the design phase, it is obvious that this apprisainmanageable with the current
computational resources and has to be solved by simpleoa&th

Therefore the usual scenario is to divide the reinforcerdesign into the shear and bending
parts. The optimization of shear reinforcement is not adaliffitask especially if we limit
the use of reinforcement to stirrups only. For comparisodifierent standard shear-design
methodologies see [ASCE-ACI, 1998]. Also several papeading with optimization of shear
reinforcement can be found, see e.g. the contribution s{laarpjéejnoha, 2003]. Hence the
main effort will be put on the design of longitudinal, alsdled flexural, reinforcement. From
the design point of view, the most important spot is the mastal cross-section within each
structural member. Therefore this task is reduced to the ihetailing of the limited number of
cross-sections and as such is often solved by many resesrche

4.1.1 Design of reinforced concrete cross-sections

It is probably a historical consequence that many reseeschieo have been solving the de-
sign of a RC cross-section by optimization methods haveviat procedures defined in the
appropriate Codes of Practice, see e.g. [Hadi, 2001] andll€et al., 1997]. The uniting char-
acteristic of this approach is the use of a steel area ingikandlividual reinforcing bars. As
a consequence, this methodology is adequate for analysi®bior practical use. This is nicely
formulated in [Koumousis et al., 1996]:

In practice, there are many cases where the design is excélen the analysis
point of view, but its constructibility is poor or impossibl

Even though these approaches do not seem to be appropriatgtementation into prac-
tice, they can lead to new designing and optimization mettHod different problems of re-
search, see e.g. [Rizzo et al., 2000] and [Chen et al., 2@01¢an serve as benchmarks for
optimization algorithms [Coello et al., 1997].

Therefore, the methodology presented in the paper [ChoKavak, 1990] (and a very
similar procedure [Rafiqg and Southcombe, 1998]), calleddinearative approachlooks like

I To propose general methodology all possible shapes arédeved, the only limiting condition being the
availability of their parameterization.

2 Nevertheless, a similar methodology can be found in theadleetstrut and tieapproaches usually used for
non-linear analysis of reinforced concrete structuresesg. [Abdallaa et al., 1996] and [ASCE-ACI, 1998].
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a breakthrough into the usual system of a design. Firstlypaasibilities of designing a cross-

section are defined to meet structural requirements liled sterer or mutual distances between
reinforcing bars, and after that the optimal solutions aleced or searched. This can be
done by the brute force method or by any available optinonasilgorithms presented earlier.

Hence this approach ensures not only the fulfillment of tiaglibearing conditions but also the
constructibility of the structure. Also the automation bistprocedure by computers can be
efficiently used.

4.1.2 Design of frame members

If we follow the above mentioned ideas, the problem of conmlgrthe designs of individual
cross-sections must be now solved along with the searcihéoparameters of cross-sectional
shapes. All these variables come from a discrete domain leeréfore some combinatorial
algorithm, like presente@As, can be used. Hence the declarative approach can move the
design of the RC frame structure from the topology or mixedtiomous-discrete to the pure
sizing optimization, which can be relatively easily marchbg the available computational re-
sources. One patrticular and very promising example of tickadsive approach can be found

in [Koumousis et al., 1996], where the database of possiagssesectional designs was com-
bined with logical programming to produce a practical desifja spatial frame structure up to

a detailed drawing in a CAD program.

4.2 Proposed design procedure

In this work, the multi-objective version of a hybrid optiation procedure is applied to the de-
sign and consequent detailing of structural members wateel-reinforced concrete frames.
The implemented strategy relies on splitting this difficofitimization task into two parts.
Firstly, the detailing of a reinforced concrete cross4isaadt solved by the “brute force” method
using an efficient procedure for fast evaluation of intefoates for a polygonal cross-section
and an arbitrary stress-strain relationship. Secondég/ofptimization of a whole structure in
terms of basic structural characteristics, e.g. types @énas, dimensions or profiles, is tack-
led with a multi-objective stochastic optimization methoHor this purpose, two important
objectives are selected and defined - the total price of dtmggstructure and the maximum
deflection of structural members. As a result of the preskergsearch, the Pareto-optimal so-
lutions can be plotted to demonstrate the non-linearityhisf design problem and also to show
the applicability of this approach in Civil Engineering ptiae.

4.2.1 Design parameterization

As already mentioned above, we search for a frame strudiudtaneously considering price
of the structure and maximum deflection as the objectiveptfnzation. For simplicity, we
limit our attention to 2D problems and elements with rectdagcross-sections. Hence, we
consider frame structures located in theeplane and our interest is restricted to internal forces
acting in this plane: the bending mome¥y,, the normal forceV, and the shear forcg..

From the construction point of view as well as optimizatitself it appears to be advan-
tageous to decompose the whole structure intdesign element&see Fig. 4.1). These user-
defined blocks are parts of a structure which a-priori pasg#Entical optimized parameters
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Figure 4.1: An example of a frame structure
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Figure 4.2: An example of a design element

like dimensions of the cross-section, the area and the deréthe bending reinforcement
etc. In addition, we assume that the structure is discigiiz® . finite elementsused for the
determination of an internal forces distribution. In theel, we will denote a quantity re-
lated to thei-th finite element as(!! while a quantity related to thieth design element a% @,
I.e., values related to finite elements are indexed by sduakkets, while quantities connected
with design elements are denoted by round ones. Furtfieande® are used for the-th finite
and design elements, respectively. The symbB6l is reserved for the set of finite elements,
related to the-th design element, i.e.,

EW = {em celllne® £ ¢, 5= L...,n}. 4.1)

Furthermore, the analyzed structure is supposed to beddade. user-supplied load cases.
A quantity X related to theé-th design element and theth load case is denoted &% (),

As described in the previous paragraph, the design elemesed for the definition of basic
optimization parameters (see Fig. 4.2). In our contextdésgn optimization parameters are
the cross-section dimensiohsnd i, the diameter of bending reinforcemefyt the number
of reinforcing bars located at the upper and the bottom sasf@f the design element denoted
by n,; andn,, and, alternatively, the diameter of shear reinforcemgnand the spacing of
stirrupss,,. We assume that the cross-sectional dimensions and stpaging vary with a given
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Figure 4.3: The cross-section scheme: (a) a plane of defaméb) an interaction diagram

discrete difference (e.g., 0.025 m), whitg and¢,, are selected from a given list of available
dimensions.

4.2.2 Ultimate limit state

Generally speaking, the structural requirements imposed bhosen design standard (e.g.,
EC2 [Eurocode 2, 1991] considered in this work) can be divide two basic categories: load-
bearing capacity and serviceability requirements. In tles@nt work, the load-bearing capacity
requirements, discussed in the present section, arelglinecbrporated into the reinforcement
design. The serviceability requirements, on the other haredtaken into account as the second
optimization objective, see Section 4.2.3.2.

In our previous works, see e.g. [LepS et al., 1999], thenogation of cross-section rein-
forcement was carried out simultaneously with the deteatmon of geometrical parameters of
the structure. This approach, however, does not seem toasélke for larger structures be-
cause it would result in a huge amount of optimized varighiesdering the whole problem
unmanageable (see Section 3.2.3, where a design problemedbeam consists of eighteen
variables!). Thus, we employ a conceptually simple procedumed at the reduction of the
problem size based on powerful algorithms for fast evaduatif internal forces that were de-
veloped in [Vondracek, 2001].

First of all, we briefly list the basic ideas of the procedufettee evaluation of inter-
nal forces employed in this work and refer an interestedeeather to Appendix A or to
works [Vondracek, 2001] or [Vondracek and Bittnar, 2D@or more detailed discussion. To
that end, we assume that a given polygonal cross-sectiajected to a given linear distribu-
tion of thee, strain given by

£(2) = €9 + 2K, 4.2)

whereg, is the strain at the coordinate system origin anid the curvature in the direction
(see Fig. 4.3a). Further, the response of a material is geddry a constitutive equation

Oy = 0'(81). (43)
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The internal forcesV, and M, are then provided by the well-known relations

N, = // o, dA, M, = // 0,2 dA. (4.4)
A A

Converting the area integrals (4.4) into boundary intepigl the Gauss-Green formula to-
gether with the fact, that the cross-section is polygon@ldyafter some manipulations (see
again Appendix A)

np—1

N, — _% z; %(88(5(%1)) _ 55(€<z’>)>, (4.5)
np—1 g(i+1)
M, = 3 ; i [(g —e9)ss(&) — 2ss(§) — 2555({)] o (4.6)

wheren, is the number of polygon segments,is the tangent of-th polygon segment®
is the value of the strain at thieth polygon vertex and valuess(-) and sss(-) follow from
recursions

ssst) = [ sstoya= [ [ st o] de - I b [ ewavafa. @

For detailed derivation and discussion of these relatiogether with the treatment of
degenerate cases (i.e., — 0 or k; — 0) we again refer to Appendix A and the works
[Vondracek, 2001] and [Vondracek and Bittnar, 2002].

Once we are able to evaluate internal forces for a given m&deformation determined by
x andey, the boundary of thenteraction diagrani (see Fig. 4.3b) for a given cross-section can
be simply constructed by evaluating the values of the benlioment)/, and the normal force
N, for a given set of extremal deformation planes (see Sectidi. AThen, the cross-section
can sustain the given normal forég;; and the bending momenft g, iff

(Ngd, MSd) cT. (48)

In the design procedure, we assume that we are provided matkdimensions of a cross-
sectionb and h and the diameter of the longitudinal reinforcing bafs Next, the Codes of
Practice provide us with the minimum and maximum values iofoecement aread; + Ao,
which can be easily converted to a minimum/maximum numbeeioforcing bars ,,;, and
Nsmaz- 1NEN, ONE can find the minimum reinforcement area suchhleatdndition (4.8) holds
for all elements and load cases, i.e.

N My eZ je B i=1, . ngc=1,... n. (4.9)

Although the proposed procedure is extremely simple, itqoers satisfactorily thanks to
the very efficient implementation of internal forces evélua Furthermore, it effectively elim-
inates infeasible solutions and thus substantially deeethe dimensionality of the problem.
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4.2.3 Objective functions

Having defined (and appropriately reduced) the domain cddhissible structures, the most
suitable solution from this set is to be selected. For thippse we need to measure the quality
of each structure. As mentioned previously, we have saldote¢h the total price of a struc-
ture and the maximum deflection as the objectives to be opsiniNote that some deflection
limit usually serves as constraint during an optimizatiomcess while here is an objective. In
fact, this is the direct application of the methodology preasd in Section 2.3.3 - a shift from
constraints to objectives.

4.2.3.1 Design economy

The total price of the structure follows from the expression
f(X) = V.P.+ W, P, + A Py, (4.10)

where X stands for the vector of design variablés,is the volume of concretdl, is the
weight of steel andi.. is the area of concrete connected with form-waFk; P, are the prices
of concrete per unit volume and steel per kilogram, is the price of form-work per square
meter, which is added to simulate construction cbsts

4.2.3.2 Serviceability limit state

As the second objective of the optimization, the maximumedgitbn of the analyzed structure
will be considered. In the current implementation, the maxn sagging of thé-th design ele-
ment due to the-th load case is determined on the basis of a simple numéniegjration algo-
rithm. To this end, suppose for simplicity that the interfwates distribution for the given load
case and design element is known from the elastic analysisthE given values of the bend-
ing moment)/, and the normal forcéV,*, the parameters of the deformation plapeand ,
recall Fig. 4.3a, can be efficiently found by the Newton-Ragrhalgorithm [Vondracek, 2001,
Chapter 5]. Then, under the assumptions of small deforma&md small initial curvature, the
deflection curve follows from the familiar relation,

d*w(x)
da?

= —r(My(x)), (4.11)

which yields, after integrating Eq. (4.11) twice,

w(z) = —/Om [/Ogn(My(n))dn dé + Chz + Gy (4.12)

with integration constants; andC, determined from boundary conditions for a given design
element. Also the analyzed element can be split into seegualdistant parts with the length
Az and Egs. (4.11) and (4.12) can be replaced by their diserttaunterparts. The maximum
deflection of the design element is then straightforwardifednined as the extremal value
found for all load cases.

3 See the work [Sarma and Adeli, 1998] for more than sevengreetes dealing with cost optimization of rein-
forced concrete structures.
4 Note that for the notational simplicity, indicesandi are omitted in the present section.
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4.2.4 Multi-objective optimization algorithm

The Strength Pareto Evolutionary Algorithm (SPEA), firgtiroduced by Zitzler and Thiele
[Zitzler and Thiele, 1999] in 1999, was selected as the nuldjective optimizer in the present
study. The key ideas of this algorithm can be summarizedigd¢Zand Thiele, 1999]: storing
non-dominated solutions externally in a second, contislyoupdated population, fithess as-
signment with respect to the number of external non-dorathpbints that dominate it, preserv-
ing population diversity using the Pareto dominance refeinip and incorporating a clustering
procedure for the reduction of the non-dominated set. M@ea@ll these features are actually
independent of the form of crossover and mutation operafbinerefore, it is possible to use
operators developed for the single-objective optimizagooblem [LepS anéejnoha, 2000]
without any changes. Last, but certainly not least, adgntd this algorithm is its conceptual
simplicity and freely available C++ source code. An inteedsreader is referred to the arti-
cle [Zitzler and Thiele, 1999] and the Ph.D. thesis [ZitzIed99] for more detailed description
of the algorithm as well as extensive numerical investayagf its performance.

4.3 Examples and results

We demonstrate the aforementioned design procedure oetiobimark problems, already con-
sidered in [Lanikova, 1999]. In particular, two diffetestatically determined structures are
examined.

N

| 4m |
I |

Figure 4.4: First example - a cantilever beam.

4.3.1 A cantilever beam

Firstly, a cantilever beam, see Fig. 4.4, with the 4.0 mgiansvas studied. A concrete model
with cylindrical ultimate strength equal to 20 MPa (Class &2D) was considered with steel
model with the 410 MPa vyield stress (Class V 10 425). The evati was loaded with two
loading cases: '(V; = 1800 kN, 'N, = 100 kN) and ¢N; = 300 kN, 2N, = 100 kN).

The theoretical cover of steel reinforcement was sét.@ m and the supposed diameter of
shear reinforcement was06 m. In the design procedure, the beam width was restricted to
b € {0.3,0.35,0.4,0.45} m while the heights» € {0.4,0.5,0.6} m were considered. The
longitudinal reinforcement profiles were selected from like¢, € {10, 12, 14, 16, 18, 20,

22, 25, 28, 32, 36} mm. The individual unit prices appearing in Eq. (4.10) weoesidered

P. = 2,500 CZK/m?, P, = 25 CZK/kg andP,. = 1,250 CZK/m?, respectively. Finally, the

® The symbol CZK stands for Czech Crowns.
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Figure 4.5: Results for the cantilever beam example: (agtBdront and Pareto sets - (b) steel
profilesd, (c) the widthb and the height., (d) the number of steel barsand the amount of
steelws,.

Deflection

Figure 4.6: Results for the cantilever beam example degpiat8D.

integration ste@\z = 0.25 m was considered for the deflection analysis, see Sectiod.4.2

The results are shown in Fig. 4.5 and Fig. 4.6 by the methagygdcesented in Appendix B.
It can be seen that there are 39 non-dominated solutionshwihné characterized by the maximal
value of the height of the beamand by non-monotonously increasing amount of steel, see
Fig. 4.5(d). It is also important, that solutions are nottee by the small steel profiles which
are probably not able to sustain applied internal forces.
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| 6 m |

Figure 4.7: Second example - a simply supported beam.

4.3.2 A simply supported beam

The second example studied was a simply supported beamjge&F The span was con-
sidered 6 m. The concrete and the steel models were the saméhasprevious example, as
well as a reinforcement cover, a shear reinforcement prafdemetrical parametets ~ and
¢,. The beam was loaded with three loading caség; & 62.5 kKN/m, 1N, = —240 kN),
(®p1 = 62.5 KN/m,2N; = —1440 kN) and {p; = 62.5 kN/m,3N; = 480 kN).

In this example, we simulated the scenario of a growing prfcgeel. The question placed
here is: “What will happen if a price of steel grows by 20%?hefefore, Case 1 is characterized
by unit pricesP, = 2,500 CZK/m?, P, = 25 CZK/kg andP,. = 1,250 CZK/m? and Case 2
by the same values fdr. and P,.., but the value of>; is set to30 CZK/kg.

Results are shown again in 2D in Fig. 4.8 and in 3D in Fig. 4@ kig. 4.10. Case 1 is
created by 30 non-dominated solutions and Case 2 by 29 ahdchees are characterized by
the maximal value of the height of the beamAt first sight, the growth of the steel price shifts
the Pareto-front of the more expensive Case 2 to the rightFge 4.8(a). But still, there are
some designs, where both cases meet each other. The negsiimg point is the decrease of
the amount of steel, as can be visible in Fig. 4.8(d). And limhl inspecting both Pareto-sets
it comes that the last 15 solution are the same - they diffgriarthe price. Thus, such optimal
designs can be seen as stable (or at least less sensitikeggjiect to perturbation of steel price
and hence more “robust” from the practical point of view.

4.4 Conclusion for the design of RC frames

The results of the SPEA algorithm have revealed that thexe88y 30 and 29 non-dominated
solutions for the cantilever and simply supported beam lprob, respectively. The trade-off
surfaces for both problems appear in Fig. 4.5(a) and Figa®.8t is clearly visible that even

for these rather elementary design tasks, both Paretoraptronts are non-convex and non-
smooth due to the discrete nature of the optimization probl&his fact justifies the choice

of the selected optimization strategy and suggests itdcghylity to more complex structural

design problems.
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Figure 4.8: Results for the simply supported beam examplePéreto-fronts and Pareto sets
- (b) steel profilesi, (c) the widthsh and the height#, (d) the number of steel barsand the

amount of steelv,.
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Deflection

Figure 4.9: Results for the simply supported beam exampletssl in 3D, cheaper Case 1.

Deflection

Figure 4.10: Results for the simply supported beam examgpécted in 3D, more expensive

Case 2.



Chapter 5

SOFT-COMPUTING METHODS APPLIED ON MICROPLANE
MODEL PARAMETERS IDENTIFICATION

The purpose of computation is
insight, not numbers.

Richard Hamming

5.1 Introduction

The great class of technical and scientific tasks leads tblgmts, described by a system of
partial differential equations. In the last few decadessibvealled artificial intelligence or soft-
computing methods have been developed as alternative® twatiitional solutions of prob-
lems, which are difficult to be defined, described or resolvgidg traditional methods. Our
research deals particularly with one part of soft-computivethods called artificial neural net-
works (NN)Y [Tsoukalas and Uhrig, 1997, Yagawa and Okuda, 1996]. Theg developed to
simulate the processes in a human brain but later on it wasksed that they can be effectively
used for many problems like pattern recognition, diffeigproximations and predictions, con-
trol of systems, etc. In this work, they will be used “only” gsneral approximation tools.

The behavior of such neural network is determined by anainitaining process. It con-
sists of finding the so-called synaptic weights, which hawieience on the response of a neural
network, depending on the different components of an infgrtas. The training of a neural
network could be considered as an optimization processusedt can be seen as a minimiza-
tion of neural network output error. Therefore, Evolutipnalgorithms, see Section 2.2.1, can
be used and can outperform traditional gradient-basedadstthat are usually applied here.
The current implementation is then easy, because the sgvagights of a neural network act
as variables of the Evolutionary Algorithm'’s fitness fuocti

Using Evolutionary Algorithms for training neural netwsrls not a new idea, see e.g. the
work [Tsoukalas and Uhrig, 1997]. The results show that duéeir ability to avoid local ex-
tremes, it is an efficient way. This work also deals with 8&DE algorithm (see Section 3.3.2)
in the training process. First, we comp&ADE training with the traditional Backpropagation
method on a simple task. Then we will uUSADE training as well as th&ADE algorithm
alone for solving a much more complicated Civil Engineenimgblem - an estimation of pa-
rameters of a constitutive model for concrete called milenog@ model. One way to do this is to
fit these values using an experimenter’s own experience na®bmore up-to-date approaches
to estimate these parameters the neural network simulebioid be employed.

This chapter is organized as follows. Section 5.2 presentsrgarison of the Backprop-
agation and th&ADE algorithm for neural network training. In Section 5.3, theeraplane

1 Hereafter we will use only the termeural networknstead ofrtificial neural networkor the sake of simplicity.
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Figure 5.1: A neural network architecture.

material model will be introduced. Section 5.3.1 brings atineation of microplane parame-
ters by a neural network trained on approximations of thesststrain curves. It shows that
some properties can be predicted well, especially Youngdutus £, the parametek; and
coefficientcy. In Section 5.3.2, a parallel version of the algoritBADE is directly applied to
obtain required parameters by varying them within a noalirimite element analysis (see also
the conference paper [KuCerova et al., 2003] for moreild¢ta he first main result is that this
time consuming analysis can be solved by a parallel analyssasonable time. The second
outcome is the fact that the objective function correspogdid the tuning problem has several
local minima, which are characterized by similar valuesdretfar from each other. To solve
the above mentioned obstacles and in the view of recentn@siethis domain [Lehky, 2003],
a new methodology is presented in Section 5.3.3. Partigukam application of the Latin Hy-
percube Sampling method is applied to investigate the infdeef individual material model
parameters. Finally, several results along with some colireg) remarks are presented.

5.2 Optimizing synaptic weights of neural networks

This section (already presented as a conference paperdDethl., 2002]) deals with an ap-
plication of theSADE algorithm introduced earlier in the process of training araé net-
work (NN). We would like to show, that this problem is multietal and hence an Evolutionary
Algorithm is much better than the traditionally used gradlileased Backpropagation method.
This work does not aim at systematic research on neural metvemd therefore the description
of a neural network will be presented only in a sketchy form.

5.2.1 Description of a neural network

Here, an artificial neural network, which will be later used faterial parameters prediction,
is presented. More precisely, a layered fully connected-feewvard neural network with bias
neurons [Tsoukalas and Uhrig, 1997] is used. Its architedtushown in Figure 5.1.

In general, a neural network is created to map the input vécto (1, 11, ..., I,,) on a tar-
getvectofl’ = (Ty, T4, ...,T,). There ard. layers denoted dg, [+, . .., .1, wherel, is the in-
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put layer and;,_, is the output layer. The layérhasN; neurons denoted as 1, n; 2, ..., 7 n;-
Each layer except the output layer has the bias nenygnThe connections are given the so-
called synaptic weights), ; ;, wherel denotes a layet, = 0,1, ..., N;_; is the index number
of a neuron in the preceding layer £ 0 for bias neurons) angd = 1,2, ..., N, is the index
number of a neuron in the layérThe output of the neuron, ; is then defined as

N1
Ol,j = fact (Z Ol—l,i : wl,i,j) ) [ = ]-727 .. '7L —1 ) j = 1727' . '7Nl ) (51)
=0

O(],j - [] j:1,27...,N0, (52)
O = 1, 1=0,1,...,.L—1, (5.3)

where f,.; IS an activation function. In our current implementatios #ctivation function has
the following form:

1
act(X) = ————, 5.4
(%) = Ty (5.4)
whereq is the gain of thef,.;. The valuenr = 0.8 is used in the next calculations. The output
vector of each layel; is denoted a®); = (O, 1,0, 2, ..., O; n,). Finally, the neural network is
propagated as follows:
1. Letl =1.
2. Calculate),;; fori =1,2,..., N,.
3.1=1+1.
4. If | < L goto 2, els&);_; is the network’s approximation af.
The output error, which is used as a measure of training acguis defined as
1 Np_1
2
e=1 > (Ti—01-14) . (5.5)

i=1

5.2.2 Backpropagation

For the training of a neural network, we employed the weltwn Backpropagation algorithm.

More specifically, the momentum version [Tsoukalas and @JHr997] is used to speed up the
convergence. A short description of the method follows. eNibiat the error connected with
the output of the neuron, ; is devoted ag; ;. The algorithm could be written in the following

form:

1. fori = 1,2,..., Ni_q C&lCUlateeL_l’Z‘ =Q- OL—l,i . (1 — OL—l,i) . (E — OL—l,i)-
2. Setl =L — 1.

Boei=a-011,;- (1 =01_1,) - (Z?f;l Wy em) for each neuronin (I — 1) layer.
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Figure 5.2: A function used for testing{z) = 0.2z sin(20x) + 0.5.

4. 1=1-1.
5. Whilel > 1 goto 3.
6. All the weights are adjustedw;;; = wy;; + Awy;; + p - Awy, 5, Where Aw; ; =
n-ej- O
The termAuwy;; ; stands for the value from the previous training iteratigris the learning
constant, ang: is the momentum coefficient. The typical valuesare 0.5 andu = 0.9.
5.2.3 SADE training vs. Backpropagation

As competitor, the algorithrBADE was selected - not only because it is directly based on real
numbers, but also for its ability to solve problems with highmber of variables, see Chapter 3.
The training ability was tested on a simple task. A goniormdtmction

f(z) = az sin(bx) + ¢ (5.6)
was used. The following sequence of consecutive paints,, . . ., =, was generated:
x1 = arandom number from training interval
r = r,1+d, i=23,...,n, disaconstant (5.7)

i.e., all points are equidistant and the sequence startsrahdom point. A network input
vector was created ds= (f(x1), f(x2),..., f(z,_1)) and the next sequential poifitz,, ) was
expected on the output. Typically, two input points £ 3) were used. The three-layered
neural network had two neurons in the input layer, three oreuim the hidden layer and one
neuron in the output layer, and, as an addition, bias neuis®es Section 5.2.1). The output
error according to (5.5) is

(f(zn) — O021)" . (5.8)

DO | —

E =
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Figure 5.3: An error function in estimation of neural netlwareights during an optimization
process.

The constants were set to= 0.2, b = 20, ¢ = 0.5 in order to avoid the necessity of
normalization (the network output ranges froro 1). Other functions were also tested and the
results were similar. The situation is shown in Figure 5.2.

We compared both optimization methodsliid runs of testing computations, each starting
from a new random generator seed. Each run compfged)00 iterations. The value of an
error function was saved eveirg00™ iteration. The minimum, maximum, and average values
of the error function (calculated froir)0 independent testing runs) are shown in Figure 5.3 for
both theSADE and the Backpropagation method. The graph showsSABIE training clearly
outperforms the Backpropagation methodology. Figure &d shows the distribution of the
error in f(x) approximation on the intervd0.1; 0.9).

5.3 Microplane model parameters prediction

Concrete as a man-made heterogeneous material shows veplexonon-linear behavior,
which is extremely difficult to model both theoretically andmerically. The microplane ma-
terial model [BaZant et al., 2000], [Jirasek and Baz&t01] is a fully three-dimensional ma-
terial law that includes tensional and compressive saftgrdamage of the material, different
combinations of loading, unloading and cyclic loading. dhcalso describe the development
of anisotropy within the material. As a result, it is fullypable of predicting behavior of real-
world concrete structures [Némecek et al., 2002] onceigea with proper input data.

The major disadvantage of this model is, however, a largebeurof phenomenological
material parameters. Although the authors of the modelgseg a heuristic calibration proce-
dure [Caner and Bazant, 2000], it is based on the trialemnoF method and provides guide to
determination of only selected material parameters. Toexea reliable procedure for param-
eters identification is on demand. In particular, a certgo®tof concrete is described by eight
parameters: Young's modulus, Poisson’s ratiav, and six other parameters, ( ko, k3, k4, c3,
¢90), Which do not have a simple physical interpretation, amdefore it is difficult to determine
their values from experiments.
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Figure 5.4: An error distribution in the approximationfifr) = 0.2x sin(20x) + 0.5.

The common practice for an experimenter is to employ thé and error method to tune
stress-strain diagrams by varying individual model patansesee [Caner and Bazant, 2000] or
[Némecek, 2000]. This is not a trivial task because of ligion-linear behavior. Nevertheless,
several limits can be found in the literature for these patans. In the current implementation,
the suggested appropriate bounds were set to the values shdable 5.1.

E € (20.0,50.0) GPa
v € (0.1,0.3)

ki € (0.00008,0.00025)
ky € (100.0,1000.0)
ks € (5.0,15.0)

ki € (30.0,200.0)

cs € (3.0,5.0)

¢ € (0.2,5.0)

Table 5.1: Boundaries for the microplane model parameters.

To define the problem more formally, the goal is to find miceo@ parameters from the
stress-strain diagram of a test specimen in a uniaxial cessgn, see Figure 5.5.

The rather severe disadvantage of the microplane modelegtaeme demand of computa-
tional time. As it was shown e.g. in [Némecek, 2000], thexapresented example of a uniaxial
test (Fig. 5.5) consumed more than 23 hours on a single ocPE with the Pentium Il Xeon
400 MHz processor and 512 MB RAM. Therefore, a single finigarednt is used instead of the
whole specimen. It was demonstrated in [NémecCek, 20@]tths simplified model is not so
unrealistic as it may appear at first sight; the differenodgted parameters found by these two
approaches were not significant.
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Figure 5.5: The computational model of a compression teat #)e start and b) at the end of
loading.

5.3.1 Application of a NN on parameterized diagrams

To start neural network training, it is necessary to prepasefficiently rich set of training data -
these are the strain-stress diagrams for different kindswdterial, for which the corresponding
values of the microplane model parameters are already knBamnsatisfactory training, such
a set of training data should contain several hundred pattefhe results of the microplane
model computer simulations were used as these patternstrilhparameters were generated
randomly from given intervals, see Tab. 5.1.

Next, the Pearson product moment correlation coeffiéjelafined as

2@ —7)(yi —Y) .
\/Z(% — )2 (yi — y)? ’ (5.9)

Is used as an sensitivity measure to investigate the infuehimdividual parameters to a struc-
tural response. From the results in the twenty consecubtuatqy see Fig. 5.6, the impact of
Young’s modulusF especially in the elastic part of the curves is clearly VesilAlso two pa-
rametersk; andcyy, seem to be important. An effect of the other parametersalsmd hence,
for a neural network only hardly recognizable. This is whg thllowing computations were
focused only on an estimation of these two mentioned paemset

At this point, a question arises, which representation ¢& dhould serve as an input for
a neural network to produce its optimal performance. Thedpsion that came into sight was
to take the function values in determined points. This appincseemed to be inappropriate be-
cause the shapes of the strain-stress curves differ oneginother too much (see Section 5.3.3
for such implementation). Also the size of the input layeaafeural network must correspond
to the number of approximation points. Therefore if the nemtsf approximation points is
high enough to represent all the complexity of the functicapd, the size of the neural network
grows significantly and it leads to an enormous computatompiexity.

An approximation of the strain-stress graph using a panaorfeinction with a simple ana-
lytic description can be considered as another option.igwvhy, the parameters of the analytic

cor

2 For the comparison of influence of different types of cotielacoefficients, see Appendix D.
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Figure 5.6: Pearson product moment correlation coeffi@srgensitivity parameter of individ-
ual parameters to the stress-strain curve.

function can be used as an input vector for a neural networkin#le choice is to use a low
order polynomial function. For certain patterns it was disgred that the polynomial function
oscillates in the descending part of the graph which makiesatiproach of a less value. An
approximation that consists of several partial elemenfiangtions has proved to be more ef-
fective. In more detail3 linear andl exponential functions were used in the approximation
of the strain-stress function in the intervals between {dine;, s, €3 ande;,,;. The analytic
description of these elementary functions is as follows:

e € (0;€) : o1(€) = ke ,
€ € (e1;€9) : oo(€) = kae + qo
€ € (e2;€3) 1 o3(€) =kze g3 ,

€ € (€35 €last) : 0al€) = ce™ T +d .

In the following, we call this approximatiocombined approximationlt uses12 parame-
ters: ey, €2, €3, k1, ka2, qo, k3, 3, a, b, ¢, d. Three of them could be eliminated using conditions of
continuity in the connecting points:

€1 : 01(61) = 02(61) — (g2 = (kfl - k2)€1 )
€0 09(€2) = o03(€2) = g3 = (ko — k3)ea + ¢,
€31 o3(€3) = oy(€3) — d = kzez + qz — ce 3Tt

The approximation is thus given by nine independent pararset, es, €3, k1, ko, k3, a, b,
c. TheSADE algorithm was used to search for the values of these parandtke optimized
function was the least square function, which containedlitierence among values of a stress-
strain curve and an approximation function. Fig. 5.7 shows»xample of a computed strain-
stress curve, itsombined approximatioand (for comparison) also its approximation using
a polynomial function of the eighth degree, which has alse parameters.
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Figure 5.7: Approximations of a strain-stress curve.

The nine parameters of tle®mbined approximatioare used as the input data for a neural
network, but they also contain some interesting infornrabout the material as well. For
instance, the slopes of linear sections have the meanihg siicant moduli. For neural network
training itself, the input data as well as the target data Ktitown microplane model parameters)
have to be normalized to the interv@t 1).

It is supposed that the neural network training processldiran only once. Hence empha-
sis is put on the reliability of the estimation. Two diffeteretworks were trained - each for
estimating one parameter and each of these networks hagl ltyers. The size of the input
layer was nine, which corresponds to the number of parasmefathecombined approxima-
tion. In the second (hidden) layer, there were three neuronse\windre was only one neuron
in the output layer. One bias neuron was added to the firstlanddcond layer. This neural
network layout contains thirty-one synaptic weights whiabans thirty-one variables of the
optimized function. The training data set consisted@§ patterns. During the training of
neural networks, one single evaluation of the optimizedtfiam is equal to an average error of
estimation of the target value on one hundred patterns. rEmarng was stopped after a given
number of iterations (set to one million) and then the avergor of an estimation of the target
values was computed on all th@6 patterns. To avoid the stochasticity of tBADE algorithm,
the whole training process was run hundred times. Tab. ®/shhe average error and the
standard deviation in estimating the parameférsaandCy, for hundred runs after one million
iterations. Because the outputs of the neural network ara the intervak0; 1), it was easier
to evaluate the error based on these scaled values.

The influence of the error in the estimation by the neural nétws shown in Figs. 5.8 and
5.9. The curves differ only by the values of the estimatedipater. Fig. 5.8 shows the curves
for two different values of the paramet&r, which differ just by1.3525%, which is the average
error of the estimation of this parameter. Fig. 5.9 shows émuves with varying value of the
parameteiCy,, two curves represent the boundary value€’gf and the other two differ by

3 Originally, there werd 000 sets, but the missing parameters constitute a non-reatistierial that was not able
to describe a compression test.
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Figure 5.8: The influence of the error in the estimation of gaeameterk’; using the neural
network.

parameten Avg. error [%] | Std. [%]
K 1,3525 0,2962
Cyo 6,9758 0,8216

Table 5.2: An error in estimating the microplane model pat@rs employing the neural net-
work using thecombined approximation

6.9758% which is the average error for this parameter.

For comparison, the computation was made also for the appabion using the polyno-
mial function of the eighth degree. The nine parameters efptblynomial function for the
corresponding strain-stress curve were used as an inptdgrviec the neural network. The
results of this computation are shown in Tab. 5.3 in the samadt as in Tab. 5.2.

parameten Avg. error [%] | Std. [%]
K 1,2480 0,2458
Cho 20,875 2,2510

Table 5.3: The errors in the estimation of the microplane eh@érameters employing the
polynomial approximation.

5.3.2 Direct application of the paralleBADE algorithm

In the previous section, the microplane models parameters predicted from already known
stress-strain curves. But the whole problem can be seenrasiining the difference between
an experiment and an output from static analysis. Thergtbheeobjective is to minimize the
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Figure 5.9: The influence of the error in the estimation ofgheametelCs;, using the neural
network.

least square error function, which contains the differeme®veen values of a known stress-
strain curve (from an experiment or from structural analyand values from the microplane
model simulation.

As was mentioned previously, we will use only one microplalement, but still, the total
computational time is not negligible. Results for one eletm®n-linear analysis on different
types of single processor PCs are presented in Table 5.4carhputations were executed one
hundred times with randomly chosen material parametersmmdhum, average and maximum
values are shown. Note the big differences between minimehmaaximum times, which result
from the non-linear response of the structure.

Processor Min. [s] Avg. [s] Max. [s]
Intel Pentium 111 450 MHz 47.96 89.76  213.32
Intel Pentium 111 1000 MHz ~ 22.45 47.95 97.73
Intel Xeon 1700 MHz 16.80 38.63 87.81

Table 5.4: Obtained times of one computation on differeatessors.

The whole problem is therefore single-objective, but isyweulti-modal, i.e. there are
many local minima with approximately the same profit (se® &8sction 2.2.4). Figure 5.10
shows an example of the “real” stress-strain curve from geBment, and its five, locally op-
timal, approximations with a microplane model. These itssukre obtained using tHeADE
algorithm after3, 000 evaluations of the optimization method. The applicatiothefstochastic
global optimization method brings here new possibilitisgree optimized function apparently
possesses several (at least five) local minima, which iotresl considerable obstacles to suc-
cessful application of gradient-based optimization pdoces.

When inspecting Tab. 5.4, it is clear that running analgsi®)0 times on the fastest proces-
sor will require (in average) more th&2 hours of computing. Therefore, we have applied the
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Figure 5.10: Five different results and an original stretsain curve.

global parallel model, see Section 2.2.5, to minimize computational demandss paiallel
computing scheme ensures constant distribution of the \@orkng the processors provided
that the time spent on evaluation of two solutions does ritardiAlthough this condition is not
strictly met for the current problem (see Table 5.4), it agpehat the sufficiently high number
of solutions assigned to each processor eliminates thasldamtage.

To be sure that the parallel algorithm is well-designed weatspect to the number of avail-
able processors, the optimum amount of processors is cthettkean be simply estimated by
Eq. (2.16)
nT
TC

P = = 440 processors (5.10)

where

P* is the optimal number of processors,
n  is the number of solutions in population, in our ca&se
Ty istime for one evaluation of a function, set40.95 s, see Table 5.4,
T, islatency time - hardware dependent variable, which istspen
on creating communication between two processors,
in our case equal t20 ms.

It is clear that in this particular case, the linear speeduple expected even for substantially
higher number of processors than it is available at the asthesearch department. Therefore,
the obtained near-linear speedup is nothing surprisirgyfgg 5.11).
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Figure 5.11: Speedup of the parallel SADE algorithm on atelusf PCs.

Resulting times were obtained by running the presentednigdiion problem on a PC clus-
ter, installed at the Department of Structural MechaniegulRy of Civil Engineering, CTU
in Prague. The PC cluster consists of ten two-processor DEabitkstations. Parameters of
the three used computers (the fastest ones) are descrildedle 5.5. The workstations are
connected by Fast Ethernet 100 Mb network using 3Com Swodrét switch. Note that this
cluster represents a heterogeneous parallel computitfgnpia

Processor No. processors Memory [MB]
Intel Pentium Il 1000 MHz 2 512
Intel Pentium Il 21000 MHz 2 2048
Intel Xeon 1700 MHz 2 1024

Table 5.5: Parameters of used computers.

The total times for the present problem are summarized ing=i. The results were obtained
for 880 evaluations (10 generations per 80 solutions, teegeneration needs twice more data).
It is obvious that for obtaining useful results in a reasd@aime, the number of processors
needs to be much higher.

5.3.3 Application of the Latin Hypercube Sampling methodHIS)

To enrich the previous work on this subject, a neural netwodsented in Section 5.2.1 is en-
hanced by the application of the Latin Hypercube Samplinthog[Iman and Conover, 1980],
which is used to generate training sets for a neural netwidrls procedure enables to minimize
an amount of needed simulations to reliably train a neuraloik, see e.g. [Lehky, 2003] or



Soft-computing methods applied on microplane model paranters identification 65

15

11.4

10

Time [h]

2.23

Number of CPUs

Figure 5.12: Obtained times duriri@ generations of the parallel SADE algorithm.

[Lehky and Novak, 2004]. Moreover, the Simulated Annegloptimization method (see also
Section 2.2.1) available in the software package FREET @K@t al., 2003], or the most recent
work [Vofechovsky, 2004, Appendix A], is used to ensure ifdependence among individual
samples. As results from this procedure, outputs from thehststic non-linear analysis can be
seen in the Figure 5.13.

At this point, the neural network presented earlier in tlaipgr is trained by the optimization
strategySADE on the thirty simulations from the LHS method. The level @irtied accuracy
is tested on the set of ten different independent curves.pféasion of predicted parameters
is shown in Table 5.6. The stress-strain curves generabed tihese predicted parameters are
depicted in the Figs. 5.14 and 5.15 and from the same pictiseg<an be easily compared with
the corresponding original stress-strain diagrams.

5.4 Conclusions

The test results have shown tHaADE algorithm-lead training is a method fully capable to
train a neural network. The number of iterations needed lwese the same output error is
significantly lower than with the Backpropagation methodsoAthe minimal output error is
by about three orders lower, which could be explained by tr@Eonary Algorithm’s higher
resistance to falling into local extremes.

Section 5.3 and the later sections demonstrate the neunabrikeutilization in one part
within the Civil Engineering. The results of computatiohew that the neural network trained
by the SADE algorithm has the ability to predict the microplane modebpaeters with a satis-
fying level of precision. The parameters of the strainsgi®irve approximation were chosen as
the input data for the prediction. Tlkembined approximatioby three linear functions and one
exponential seems to be an effective way. In the engine@nactice, a neural network could
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Figure 5.13: Stress-strain curves as results from 30 simokgenerated by the Latin Hyper-
cube Sampling method.

save a lot of experimenter’s time needed for searching petemhof the microplane model by
the trial and error method. It is supposed that when usingnéwgal network for a parameter
prediction of a real material and its measured strain-stcasve, this curve must fit the set of
modeled examples on which the network was trained.

The main outcome of the present study, however, is the csiociuhat the determination of
the microplane model parameters needs at least two test &ber than a sole uniaxial com-
pression test. Indeed, this conclusion directly follovesrirthe large scatter of values of Young’s
modulusFE and Poisson’s ratio among identified local minima during direct optimizatiorés
the embedded table in the Fig. 5.10). Since these two paeasnate usually the only known
values in engineering practice, such a difference is na@eble and additional data must be
supplied to reliably classify individual local minima. Tredore, in this optimization problem,

Table 5.6: Errors in the estimated parameters obtainedteormdependent tests by the trained
neural network.

parameter relative error [%]
average maximal

E 2.84 5.30
v 36.33 117.94
ky 1.70 4.93
ko 45.82  102.78
ks 36.51  224.68
ky 64.08  153.22
3 33.74 78.68

Co0 22.27 38.00
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the application of the optimization procedure does produmeonly (sub)-optimal values of
optimized parameters but also provides deeper insighti@@nalyzed problem.

The parallel solution then appears to be an appropriatddothckling the enormous com-
putational demand of the microplane material model. Thaiabt nearly-linear speedup to-
gether with the possibility to use many more processors @®mew interesting results and
potential applications of the presented method in the éutur

When using a neural network, a number of needed simulatianse reduced by the ap-
plication of the Latin Hypercube Sampling method. The derisi analysis shows not only
the influence of individual parameters, see Figure 5.6, lsat @pproximately predicts the er-
rors produced by the neural network, see Table 5.6. Althdhbglobtained predictions are not
identical, they can be further improved by much longer fregmprocess and/or by changing the
topology of a neural network. Nevertheless, the main adgndf this approach can be still
employed - the trained neural network can be used for the estithation phase in the future
without the need of expensive numerical simulations.
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Figure 5.14: A comparison of the first five stress-strain diags for the original and for the
estimated parameters.
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Figure 5.15: A comparison of the second five stress-straigrdims for the original and for the
estimated parameters.



Chapter 6
CONCLUSIONS AND FUTURE PERSPECTIVES

Nothing is older than yesterday’s
success.

Robert M. Knight

The proposed thesis brings an insight into global optinramethods applied to several
Civil Engineering tasks. To describe problems, which angallg encountered in engineering
practice as well as science, basic notation and classdic&iintroduced. Namely, the Global
and Structural optimizations are presented and the latteri® divided into four categories,
which, hopefully, cover all structural optimization tasksm the Civil Engineering area.

Next, a new classification for Evolutionary AlgorithnisAs) is presented. It is based on the
well-known notation developed for the Evolution StratsgieSs) [Back and Schwefel, 1995]
and appropriately modified for single- as well as multi-alijge optimization algorithms. The
leading idea is that everlfA can be described by a combination of three basic operations,
namely recombination, mutation and selection mechanigased on this notation, the most
popular algorithms from the Global optimization area ateoduced and described.

In engineering practice, we usually deal with multi-obpeet constrained and often mixed
integer-continuous optimization problems. Solutionsddrthese phenomena are presented:
the multi-objective nature can be solved by Pareto-opitgnapproaches, constraints by penalty
functions and different types of variables by an appropraicoding. Several other possibilities
are discussed in the text as well.

Although research within the Evolutionary Algorithms damseems to be almost finished,
still there are several phenomena that need to be studiexkni®g multi-objective algorithms
have drawn a lot of attention and new developments in thia ae: be expected. Also in
the domain of the Global optimization, new discoveries hagen made. Especially, the No
free lunch theorem changed dramatically the view on opttion algorithms. Now comes the
guestion if it is possible to find a superior algorithm for guagticular function. The answer for
all optimization algorithms is “Not”, see e.g. [Macreadydaiolpert, 1995], but if the number
of available algorithms is limited, then the answer is sti§sing.

Then, based on the above mentioned notation, four partieméanples oEAs are described
and compared. These optimization algorithms are used ve selveral tasks from engineering
practice as well as two test functions and advantages aadwistages of these methods are
shown. As a result, th8 ADE algorithm is recommended due to its simplicity and a small
number of parameters.

The next part is devoted to the application of the presenptinization methods to the
design of reinforced concrete frames. Generally, this teskulti-modal, multi-objective and
highly constrained. To solve this problem as a whole, it mghthat this inevitably leads to an
integer formulation of the problem and hence presentedtasabf Evolutionary Algorithms
are utilized. As an illustrative result, typical examples solved and the Pareto-fronts in terms
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of the total price of a structure against its deflection apgated. A new system of visualization
Is also presented as an addition to the multi-objectivenmpttion domain.

As an example of a single-objective optimization probleraining of an artificial neural
network and its use for a microplane material model pararmmgteediction is presented. The
Evolutionary Algorithm can be used here for the same purpaséhas shown that the obtained
errors are much lower than the outputs obtained from the [@aglagation algorithm. More-
over, an identification of the microplane material modehigesstigated. Several approaches are
tested to solve the introduced problem. An estimation byréficgal neural network trained
on approximations of stress-strain curves shows that seapegies can be predicted well but
a significant error in other coefficients is obtained. Ones@eacan be an inappropriate de-
scription of a load-deflection curve. A new possibility héseto use Genetic Programming
methods [Koza, 1992]. As was shown in [Rudnicki et al., 20@3$ nowadays possible to find
the most suitable approximation even as an analytical egme in a closed forf

Next, a parallel version of th8ADE algorithm is directly used to obtain the required pa-
rameters. The first main result is that this time consumiradyas can be solved by a parallel
analysis in a reasonable time. The second outcome is théhfaicthe objective function cor-
responding to the identification problem has several logalma, which are characterized by
similar values but are far from each other. This is usuallyesbby niching methods which have
still not been investigated enough. The opposite is truafgeneral parallelization, which is
nowadays no more a research topic, but an everyday approaday’s most promising area is
the domain of approximate models, where either a simplepctational tool can be used, e.g.
a static instead of non-linear static or non-linear statgtead of non-linear dynamic analysis
can be utilized, etc., or a domain of a general approximatisunally called as Response Surface
methods [Lee and Hajela, 2001], Diffuse Approximationsghimbegovic et al., 2004] or Sur-
rogate models [Karakasis and Giannakoglou, 2004]. If suetodel exists, then different and
usually a hybrid parallelization scheme can be effectiagplied, see e.g. [Wang et al., 2002]
and [Gonzalez et al., 2004]. Moreover, traveling betweeagproximate and original functions
can be also seen as a multi-objective problem. One recent@®aof such application can be
found e.g. in [Quagliarella, 2003].

To solve the above mentioned obstacles in microplane paeasieentification and in the
view of recent research in this domain, a new methodologysis presented: an application
of the Latin Hypercube Sampling method (LHS) as well as aiteitg analysis are applied
not only to investigate the influence of individual matenaddel parameters, but also to mini-
mize the need of training samples for an artificial neuralvoek. This application of the LHS
method along with the Simulated Annealing seems to be toastplibecause it is primarily
aimed at fulfilling correlation dependencies rather thatependence of training samples, see
e.g. [Vofechovsky et al., 2002] or [Vofechovsky, 2004fhis can be done by simpler meth-
ods, for instance, the so-called Quasi-random generagera 0 be a proper choice. Recently
two authors have been investigating these methods - Heildarihen has compared several
Quasi-random generators and their influence on the behaf/iGenetic Algorithms, see the
works [Maaranen et al., 2004a] and [Maaranen et al., 20@4ta] Felix F. Tong has studied the
same topic directly within neural network training [Tongddriu, 2004] and both authors report
interesting and promising results.

1 By the way, the Genetic Programming can be also seen as a-objgtitive problem, see e.g. the work
[Bleuler et al., 2001] for more details.
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Appendix A
INELASTIC BIAXIAL BENDING ANALYSIS

The aim of this chapter is to introduce the current state efaft within the analysis of
biaxial bending of arbitrary composite sections and taagithe gathered knowledge for the
design of reinforced concrete cross-sections. Althougmtbst important algorithm used here-
after - the contour summation techniquénas been known for more than twenty years, the
general knowledge of this methodology is probably not widglown in the engineering prac-
tice, because till nowadays many papers are being publebheat improving not-so-enhanced
procedures.

A.1 Introduction

The main goal here is the analysis of beam members loadeddatty with the combination of
axial force and bending moments with regard to the non-tibedavior of the material. There
are usually two different tasks to be solved: the constoactf an interaction surface and
the assembly o tangent stiffness matrix The second task is not presented in this work, but
the procedure presented later can be used as well and thengsguations for the analytical
solution can be found e.g. in [Rotter, 1985].

In the case of the interaction surface construction, we taee internal forces in the cross-
section: one axial forcé&/,, and two bending moments, and)/.. These forces are defined as
the area integrals over the cross-sectional area

N, = //a dA (A.1)
A
M, = // o.zdA (A.2)

M, = — 7/ o,y dA . (A.3)
A

As long as we are working with an uniaxial str@i # 0,&, = €, = Yoy = Yoz = V- = 0),
a material of the cross-section can be described using Hogfog constitutive equation:

o, =0(gs) . (A.4)

In other words, a stress is a general function of a strains Tfiunction is explicitly defined
and known for each particular material and also represbatsttess-strain diagram of the mate-
rial. Moreover, the next assumption hereafter is the BdinNavier Hypothesis assuming that
the plane section remains planar after deformation ancepeipular to the centerline. This also
means that strain can be presented as a plane constructertas& section, where the track of
the plane represents the neutral axis.
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A.2 Historical overview

In the history, the usual scenario of computing integrald JA- (A.3) was to use well-known
equations for the most common cross-sections and a givesssstrain relationship. However,
in the time of fast computers and the finite element methad,pfocedure becomes too sim-
plistic.

It would certainly be nice if there existed a closed-formusioin for any cross-sectional
shape as well as for an arbitrary stress-strain diagramortinfately, there is no such to the
knowledge of the author and probably does not exist. Thegefoevitably some simplification
or approximation must be used.

Firstly, we can distinguish the limitation aashapeor ona stress function respectively. If
the precise description of cross-section boundaries ismadrtant, we can simplify them and
hence we can have almost any stress-strain relationshipth&npossibility is to restrict the
description of material behavior to a linear, parabolictedilinear and so on, which enables us
to use precise delineation of a cross-section.

The next division can be done for thlwsed-formsolutions and for theaumerical integra-
tion. Based on the above-mentioned assumptions, there exsgidzform solutions for special
cases of both simplification, the shape as well as materis.ot these premises do not hold,
numerical integration is often used. And, of course, themaaivantage of the former ones is
the speed and easiness in comparison to the latter methods.

Finally, the algorithms can also be divided into two groupsea-basedand boundary
based The former ones follow the second-order area integralsiels by dividing the area
of a cross-section into smaller pieces - pixels [Sfakiasigk®02], fibers [Romero et al., 2002],
parallel layers [Bonet et al., 2002] or subsections [Chaal.eR001], and then summing re-
quired quantity among these sub-parts. The boundary bawstaoe based on Green’s Theorem
by transforming integrals over the domain into boundarggnals, as will be shown later.

Till nowadays, there have been more than twenty papersndeaiih these topics, several
of them cited above and below. The most important and cited ane to be shown here in more
detail and their advantages and disadvantages will be siscu

The first example is the work [Sfakianakis, 2002], which usesll graphical pixels to de-
scribe the cross-section and therefore it can be charaetkas a shape-approximate, numerical
and area-based procedure. Although opponents of this chetigoe that, except the proximity
of these methods, it is slow especially due to the divisigrxels, nowadays this argument must
be rehabilitated. In this work this obstacle is solved byukaeally unexplored computational
power of current graphical devices to compose pixels of tdmposite concrete sections.

Next approach, e.g. [Chen et al., 2001], is nowadays an afée method (see also the
work [Charalampakis and Koumousis, 2004] for the most reeferences). It is based on the
decomposition of the shape into trapezoids and circlesal®xthe stress-strain relationship
is limited here only to linear and/or low-order polynomiairees and their combination, it
enables us to find closed-form solutions for these shapes fiftél values are then computed
as the summation over these smaller pieces. Using our ootdtis limited in the stress-strain
description as well as in the form of a shape (enables ongslend circles) and finally, this
procedure is a closed-form and area-based method.

If the stress-strain diagram does not fulfill piecewise polyial description, there still exist
procedures to evaluate internal forces. Even though theepgoe presented in [Fafitis, 2001]
is not the oldest one and also is not the best, it can servealsdfree introduction to boundary-
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based procedures. Green’s Theorem is applied here todramgiie area integration over an
areaA into a line integration along the closed lihethat encloses the area:

// (0Q /0y — OP/0z) dydzz%de—l—%de, (A.5)
A L L
where P and( are two arbitrary functions af andz. Now, let us set
P = 0 and (A.6)
1
@ = 7 [y, (A7)
wherer ands are nonnegative integers. Based on this choice the Eq. be&mes
1
r_s o r+1_s
//y 2°g(z)dydz = ] Yy T 2%g(z)dz . (A.8)
A L

This re-formulation of the original problem is very suitapbecause if(z) = 1, the left-
hand side represents

the aread, forr =0 ands = 0,

the area momer#f,, forr = 0 ands = 1,

the area momert,, forr = 1 ands = 0,

the moment of inertid,, for r = 0 ands = 2,

the moment of inertid,, forr = 2 ands = 0,

e the moment of inertid, ., forr =1 ands =1

Yz

and, moreover, if(z) = o(e,(z)), the left-hand side is

e the axial forceV,, forr = 0 ands = 0,
e the bending momenV/,, forr = 0 ands = 1 and, finally,

¢ the bending moment/,, forr = 1 ands = 0.

Moreover, as noted in [Fafitis, 2001], the right-hand sidéhefEq. (A.8) is a line integration
along the sides of integration area And, in the case of polygonal boundaries, this integral
diminishes into the summation over the individual linesatireg the polygon. At this point
A. Fafitis has applied numerical integration to evaluate limtegrals, which, at least in this
author’s opinion, is not the right choice to follow. Even Aaffis admits that if the stress-strain
functiono(z) is integrable there exists closed-form formula for thiglintegral. This way was
firstly discovered and developed by [Rotter, 1985]. We thihkt closed-form solution is not
only the computationally fastest enumeration but also @eptually very simple method and,
therefore, it seems that the work of J.M. Rotter is not widelgwn in the engineering practice.
Otherwise the number of applications will be higher. That taan be also illustrated by the work
of R. Vondracek, see e.g. [Vondracek, 2001] and [VaidK and Bittnar, 2002], who derived
independently the same equations several years later, thesqgprocedure is described in detail.
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Figure A.1: Modification of a cross-section with openings.

A.3 Internal forces evaluation - the contour summation techique

Let us suppose we have a cross-section of a general beantrdssssection consists of several
subsections, where each subsection is assumed to be of deaina

A.3.1 Subsection shape

The subsection can be either a small simple shape, e.g.l®ateehich is described by its 2D-
coordinate and the area, or the subsection that can belledes an area bounded by a general
polygon. This polygon must be closed and oriented courtekelise. This description can be
also used for openings (see A.1). When we run around the vidtmaiedary of a subsection we
can add one imaginary edge going from the last vertex of thedary to the first vertex of the
opening. We go along this edge and then we follow the bounafaitye opening in clockwise
direction. When we reach the last vertex of opening (whicsinsultaneously the first vertex),
we go back along the imaginary edge in the opposite directhéend up in the starting vertex
again.

Finally, we can arrange coordinates of polygon vertexasantectorA = {A©®, AM
A} whereA® = {af a’}7, n, is a number of the vertexes anfl, o\ are the Cartesian
coordinates in the cross-section local coordinate system.

A.3.2 Coordinate system transformation

According to the Bernoulli-Navier hypothesis mentioneeviously, we can write the strau)
as a function of the position in the plane, i.e.

e:(y, 2) = €0 + 2k, + Yy , (A.9)

wherey, z are the local coordinates of the specific point on the cresiem,c, is the strain in
the cross-section origin (sometimes denoted'gs-., ~, are the curvatures in both directions
(sometimes denoted a8, w”).

To integrate stress over the cross-section, we also havensider the fact that, is, in
first row, function ofe,, see Eq. (A.4), and that this strain is dependent both aa well on
z coordinate, see (A.9). To solve this obstacle, we define acoendinate system on the cross-
section. This Cartesian system is defined by two axes whereu is parallel to the neutral
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axis. This means that strain is only a functiorvafoordinate of a specific cross-sectional point
ex(u,v) =¢e,(v) = g9 + vk . (A.10)

Consequently, stress is also a function onlywafoordinate of the specific cross-sectional
point. The transformation from, z system ta:, v system is defined by means of transformation

matrix T as
Ky Ky
Uu o > Z Yy o )
C3 [ e |hmft) en
K K
where

K= \/K2+ KZ. (A.12)

We can express, v coordinates of each vertex of the cross-section alsaqdrsystem as
well as the whole polygon. If the boundary of the artaonsists of., straight lines then each
can be described parametrically by

XOt)=AD +¢BY  0<t<1, i=0,...,n,—1. (A.13)
By substituting
BW = AGD _ A® — whereBY = {p? )} and (A.14)
O — QD ) ) — g+ _ ) (A.15)
we obtain
u(t) = a® + b du =0 dt (A.16)
o(t) = al?) + b dv = b\ dt (A.17)

and for each line of the polygon the following relation beéwalifferentials is valid
by 1
du = @ dv = % dv , (A.18)

wherek; is the tangent of-th polygonal segment.

A.3.3 Stress integrals substitution

As the stresg, is a function of the straia, and the straii, is a function of the coordinate
we have, for a given cross-section and a given plane of strain

Oy = Uz(€x> = Uz(€x<v)) : (Alg)

Finally, we define stress integrals as

s0= [ oo, (A.20)

s5(e) = / / / n) dide | (A.21)
sss(e) = /ss // n)dndé = /// P)ydydnds . (A.22)
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Based on this definition, now the right-hand side of the Eg8)A&an be expressed analyt-
ically and summed over individual lines. The stress resatstare then as follows, including
also degenerate cases (i...— 0 or k; — 0). For a detailed derivation, see again the works
[Vondracek, 2001] or [Vondracek and Bittnar, 2002].

A.3.3.1 Axial forceN,

N, = > N, (A.23)
=0
; 11 S(i+1)
N = —?k—i[SS(G)]m ; (A.24)
_ N Q)
hn%Nggw = —0(g0)bW a§j>+7 : (A.25)
_ b _
lim N = —= [s(e")] . (A.26)
by —0 k
A.3.3.2 Bending momend/,
np—1
M, = M (A.27)
=0
MO = — L L yss(e) — 2sss(e (A.28)
U — K/g ; 0 5(7') ? *
. b ‘ ‘ ‘
lim MY = —— [rals(e(al!)) = ss(e(al?))] | (A.29)
b —0 K
1 np—1
lim M, = —éa(EO)Zbgﬁ 3026 + 3(a)2 + (67)?] . (A.30)
=0
A.3.3.3 Bending momend/,
np—1
M, = > MY, (A.31)
=0
1M1 1 1 s
MO = - [5“2(5)8(6)_kmu(6)88(6) kiQI{QSSS(S) o (A.32)
lim M) = 0, (A.33)
b -0
1 np—1
lim M, = —coleo) 3 60 380+ 3(af))? + (7] (A.34)

whereu(c") (respectively(c+1))) means the: coordinate of the beginning (respectively end)
of the line segment of the boundary polygon.
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Figure A.2: Construction of the ultimate deformation borfite one- and two-sided reinforce-
ment and the EC 2 constraint. (a) Limit deformations, (b)réite borders.

A.3.4 Transformation of internal forces

After the integration we have three internal fordg€s, M, and M, in u,v coordinate system.
To getM,, and M, we have to compute the following transformation using th@sformation

matrix T shown in Eq. (A.11).
M, | | M,
{ M. }_ [T] { M, } ) (A.35)

A.4 Construction of an interaction diagram

From the practical point of view, the construction of theenaiction surface of a cross-section
subject to biaxial bending seems to be the most prominerilgmoto be solved. The aim
of the current section is to employ the general procedur@vatuation of internal forces for
a given plane of deformation, Egs. (A.24) — (A.34), to prevadsuitable framework for solving
more advanced tasks of reinforced concrete cross-sectadpsas and design. Note, that for the
simplicity we will limit our attention to the 2D problem onliput the procedure presented here
is general and can be extended to 3D problems, too.
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Figure A.3: Construction of interaction surface. (a) Deration of deformation border, (b)
Interaction surface

A.4.1 Ultimate deformation border

Before proceeding with the interaction surface constomgtit appears to be advantageous to
introduce the notion of anltimate deformation bordefirst. Consider again a cross-section
subject to a given normal straiig and principal curvature,, see Fig. A.2a.

Then, the cross-section will be in the ultimate state if tbenmal strain in the concrete parts
or the reinforcing members with the largest distance fromributral axis reaches the limit
value. In order to characterize the set of all possible aeftion planes, consider the limit
deformations A-D, schematically depicted in Fig. A.2a,responding to extremal values of
normal straire, and principal curvature,, respectively. As a consequence of the Bernoulli-
Navier hypothesis, all deformations corresponding to thienate state can be expressed as
a convex combination of the corresponding two limit defotioves. Therefore, plotting the
points A-D in thex, x g coordinate system defines the polygon representing alilgeas-
timate deformations of a cross-section, see Fig. A.2b. Natethe introduced construction of
the ultimate deformation border can be easily augmentedcrporate additional constraints
imposed by design codes. For example, the EC2 standardd&aed, 1991] suggests a differ-
ent value of maximal concrete compressive strain for a futhpression (dominant axial force)
than for a bending. This requirement can be easily incotpdranto the ultimate border by
inserting an additional point E between vertices A and D égen Figs. A.2a and A.2b).

A.4.2 Construction of interaction surface

Having introduced the ultimate deformation border, thestattion of the interaction surface
for a given cross section proceeds in a straightforward o that end, each segment of the
ultimate deformation border polygon is divided into a giveimber of intervals, see Fig. A.3a
and for each point of the resulting discretization of ultimmborder, the values of the normal
force IV, and bending moment/, are evaluated by Egs. (A.24) — (A.26) and (A.31) — (A.34)
which yields the polygonal approximation to the interactsurface, Fig. A.3b.

Two different indicators can be then defined to quantify thess-section utilization for
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a given load corresponding to a poiitin the M, x N, coordinate system. In particular, the
parameten)y serves to characterize the load-carrying capacity redervea load with an in-
creasing normal force and a constant moméntwhile the ration, measures the utilization of
the cross section for the case of proportional loading. &lgesntities have a simple geometri-
cal interpretation once the interaction surface has beestaated, see Fig. A.3Db,

_ QP _ lor]

YIRS " |OR]|

and allow us to determine the admissibility of the desigmpgisimply by checking one of the
inequalities)y < 1orn, < 1.



Appendix B
GRAPHICAL ILLUSTRATION

B.1 Introduction

Without any doubt, the graphical illustration is very imfaot not only for decision making but
can also play an important role during the optimization pesc While the former is an essential
part of both the research work as well as the practical ordatier can help to understand the
behavior of the optimization algorithm. The proper visgalion can also bring a new insight
into the studied problem, as will be shown in Section B.4.

This chapter is organized as follows: Firstly, several yp€illustration of data are pre-
sented. Secondly, their combination is proposed to buil@féective tool for graphical rep-
resentation of the solutions of multi-objective optimigat The advantage of the proposed
methodology is shown in the last section.

B.2 lllustrating the pareto optimal set

B.2.1 lllustrating real vectors

A lot of researches have dealt with the problem how to disgit@ysets of data to be clearly
visible and understandable. During solving the multi-obye problems, the task of visual-
ization of the Pareto-optimal set or Pareto-optimal fromistbe done. A vectax € R? can
be drawn in a planes € R? in 3D and corresponding axonometries, but for more dimerssio
this approach can be enhanced only by time, color or sourftbuiioosing general overview,
e.g surfaces can be lost. If we limit our attention only touaiézations of vectors, i.e. the
surfaces created by these vectors are not important, tkeseseveral ways how to display
them. For a comprehensive overview, see e.g. the work doke Blettinen [Miettinen, 1999,
Chapter 111.3], where several possibilities are describatetail. Namely, thealue pathi'some-
times calledparallel axisor vertical scale¥in relative or absolute values can be used, see e.g.
Fig. B.6 (left) and Fig. B.7. Another favorite ones are ffeal diagramsr bar charts see e.g.
Fig. B.5 and Fig. B.6 (right), respectively. It is also wonthile to mention other possibilities
such asstar coordinate systemspider-web charter scatterplot matrixessee again the work
[Miettinen, 1999] for more details.

The advantage of visualization in the decision making psceeds no comments because
its profits are clear. The use of the presented illustratiethods during an optimization run
will be shown on the example of tAgpe Ofunction introduced previously in Section 3.2.2. The
method used is the SADE algorithm (see Section 3.3.2) tegetith the CERAF technology
for multi-modal optimization [Hrstka and Kucerova, 2Q0%he results for five dimensions, i.e.
x € RS, nine local and one global optimum are depicted in the Fid.&ing thevalue path
methodology. Each variable has its own vertical axis witthvidual scale. The vectors of
solutions are characterized by piece-wise linear linessng the variables’ axes in the corre-
sponding points.
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fitness_calls : 150 best value :  47.7344

(@) Initial population.

fitness_calls : 5150 best value :  ~1.79769+308

(c) First local minimum found.

fitness calls : 16300 best value :  24.7741

100 100 100 100 100

N

8041

.72
-100 -100 -100 -100 -100

(e) Population at the 328generation.

fitness calls : 30500 best value :  79.6457

100 100 100 100 100
\ 2481

47.73
-100 -100 -100 -100 -100

(9) Population at the 607. generation.

fitness calls : 2500 bestvalue : 477344

1

8041

-100 -100 -100 -100 -100

(b) Intermediate population.

fitness_calls : 6400 bestvalue :  4.99846

8041

73
-100 -100 -100 -100 -100

(d) Population at the ¥2§eneration.

fitness calls : 22700 best value :  -1.79769e+308

(f) Second local minimum found.

fitness calls : 36700 bestvalue :  80.4046
100 100 100 100 100
\ 2481
80.41
*100
*450
47.73
-100 100 100 100 100

(h) Global optimum found.

Figure B.1: A typical convergence of the multi-modal optzation algorithm. Pictures are

provided by courtesy of Anna Kucerova.
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Figure B.2: Binary hypercube (left) and mapping to its cepanding hyperplane (right) pro-
posed in [Wiles and Tonkes, 2002]. Rows and columns of theglgase labelled by their hyper-
plane templates and dotted arrows show the neighbdrgOof

Following consecutive generations, the algorithm quigkigceeds from an initial popula-
tion (a) to the valley of a local minimum (b). In the 0Qeneration, the local minimum is
selected (c) and new solutions are created. The populatiéigi B.1 (d) is characterized by
the simultaneous search at two valleys. One of them (e) lesitie second minimum (f). And
after some iterations (g) we have finally obtained the glebalimum (h). This tracking of
an optimization algorithm can say a lot of the behavior angery useful in the developing of
a new algorithm.

B.2.2 lllustrating discrete vectors

When dealing with discrete values like integer or binaryesl the conditions stated above for
displaying vectors are valid too. Moreover, if we limit attion to the finite set of possible
values, more options come to view. For instance, in the wafikfs and Tonkes, 2002] a pro-
cedure for displaying moderate-dimensional binary spéfed }" for n < 16) was proposed.
It is based on the idea of unfolding a binary hypercube inttaaghypergraph, see Fig. B.2.
Authors suggest, that this visualization can show not omlyes of an objective function in
then-dimensional binary space (usually by different colorshar éxtension into the 3D space),
but also fitness surfaces, sizes and shapes of basins dftiattraf local minima and other
properties can be seen from such graph.

Moreover, this procedure can be easily extended to theentagdiscrete sets. This is also
more appropriate for engineering problems, where usualynbed values and also discrete
ones come under investigation. One particular implememtatan be defined on the basis of
odd and even positions of variables in the vector: xet {zy,zs,...,2,}, n € N, z; €
D;, is then-dimensional vector of discrete values. Then, this spagator can be unfolded
into the plane hypergraph havifd@*!|D;| x T12%,|D;|, k = [n/2], cells. The termD;|
states for the size of the discrete domain More particularly, odd positions are depicted in
columns and their perturbation with even positions is maddéé means of raws. For particular
implementation, see section B.4 and especially Fig. B.9.

B.3 lllustrating a set of alternatives

When studying multi-objective literature, one may have fisgling that the visualization of
Pareto-optimal fronts is enough for an optimization presceBven more, usually only plane
plots are shown and the 3D visualizations are very rare, ggpe the works [Zitzler, 1999]
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Figure B.3: The Pareto-optimum front (top) and the varidbtd the corresponding Pareto-
optimal set (bottom).

or [Chiba et al., 2003]. The design/decision space is ugtiallly omitted. But this does not
correspond to the usual practice needs, where the finalidecssdone in both - in the objective
as well as the decision space. As is presented above, batesspan be suitably drawn, but the
connection between them is missing. Therefore the combimef these two spaces is proposed
here: When inspecting the Pareto-optimality and all Paogtomal fronts, it is obvious, that two
solutions can never be in one vertical line, because oneddmitlominant over the second one.
Hence all Pareto-optimal solutions can be sorted in thedexhindividual functions and also
theirx values can be sorted/drawn in this order. See Fig. B.3, wtherPareto-optimal front of
the example studied later in this chapter is depicted abatrecarrespondingly sorted values
of the variableb of individual solutions. This picture can give us “sensty information on
the variables’ influence on the objective function and, ¢fane, significantly help the designer
to choose the proper solution.

The proposed methodology can be further enhanced be pptitigular variables together.
This is possible, if all variables have similar scales. la tpposite case of different scales,
the relative measure for the values can be used. See e.gB.Bigwhere thé) % means the
minimum and thel 00 % maximum of the variable, respectively. To show individs@lutions
and their variables together, the whole Pareto-optimakgabtted in 3D.
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Figure B.4: The welded beam design multi-objective problem

B.4 An engineering example

To illustrate the advantages of the proposed methodolplgiess assume an often cited engi-
neering example: a weld of two beams, see Fig. B.4. The gdalnsinimize the cost of the
welded beam and concurrently to minimize the end-defleaifahis beam by changing four
parameters (thickness of the beamvidth of the beant, length of the weld and weld thick-
nessh) formed in the design vectaf = {b,t,[, h}. The cantilevered part has a lengthldf
inches and &, 000 Ib force F' is applied at the end of the beam. The variables are bounded by
the following constraints0.125 < h, b < 5.0 and0.1 < [, t < 10.0, all of them in inches.
Following the description presented in [Deb, 1999], the lehroblem can be formalized as
follows:

minimize f1(¥) = 1.10471A% + 0.04811tb(14.0 + 1) , (B.1)
minimize f>(Z) = 4(%), (B.2)
subjected to g, () = 13,600 —7(z) >0, (B.3)
g2(Z) = 30,000 — o(Z) >0, (B.4)

gs(&) =b—h>0, (B.5)

94(Z) = P.(Z) — 6,000 >0, (B.6)

PETAL DIAGRAM OF THE ALTERMATIVYES

Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5 Alternative &

Sl o oN

Figure B.5: Petal diagrams of six solutions from Paretarogl front.
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Figure B.6: Relative value paths (left) and 3D bar charigh)i of six solutions from Pareto-
optimal front.

WALUE PATHS IN THE ABSO0LUTE RANGE OF VALUES
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Figure B.7: Value paths of six solutions from Pareto-optifrant.

where the deflection tera(z) is given by

o 2.1952
o(F) = 3
The first constraing; deals with shear stress at the support location and the dewstrain
g With normal stress at the same place. The third constgai@hsures that the thickness of the
beam is not smaller than the weld and the last constgaioontrols the allowable buckling load
along thet direction. The corresponding stress and buckling termslafiaed as

(B.7)

(@) = @R+ ()24 () NOE T (R 0 (B.8)
. f;gff; , (8.9)

6,000(14 + 0.50)1/0.25(12 + (h + t)?)

- B.10

T 2{0.707hi(12/12 + 0.25(h + 1)2)} (540
504, 000

L 504, B.11

0'(37) +2b ) ( )

P.(¥) = 64,746.022(1 — 0.0282346t)tb° . (B.12)
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Figure B.8: Pareto-optimal set (left) and Pareto-optimahf (right) of the example studied.

For the solution, the Internet-based interactive muljeotive optimization system NIMBUS
[Miettinen and Makela, 2004] was used. Because the iowseamode does not enable the ef-
fective search for the whole Pareto-optimal set, only sixitsans found are depicted. The
comparisons of these solutions in the objective space awersim different graphs in Fig-
ures B.5-B.7. Unfortunately, the NIMBUS system has no \igaton tool for the decision
space and offers only text view of the found Pareto-optiraal Sherefore, it is very difficult to
discover the most important feature of the solutions fas #rigineering problem such that the
solutions in the Pareto-optimal front are almost creatdg by changes in the variableand
other variables are fixed in constant values [Deb, 1999hdfgroposed visualization is used,
this fact is clearly visible, see Fig. B.8. The Pareto-opliset is depicted on the left in relative
measures. The six solutions are characterized by the miviahzes of variable$ andh, al-
most maximal allowable values of the variablend, which is the most important information,
by the increasing values of the variabla the connection with the decreasing deflection in the
objective space, what is drawn on the right in Fig. B.8.

To show a possibility of proposed discrete visualizatiomagine the discrete definition of
the weld problem example. Let us assume the discretene$s® ofariables as discrete sets,
particularlyl = {1.0,2.0,...,10.0}, b = {0.5,1.0,...,5.0}, ¢t = {1.0,2.0,...,10.0}, andh =
{0.5,1.0,...,5.0}. Therefore, the whole domain isl@ x 10 x 10 x 10 hypercube. Following
description given in section B.2.2, this hypercube can Helded e.g. into thel||t| x |b||A|
hypergraph containing00 x 100 cells. To illustrate the possibilities of this visualizati the
feasible set is depicted by the gray color, see Fig. B.9. Nb#& in this case théi, j} position
of the vectorz = {l,b,t, h} is given by thei-th row, : = b|Dy| + h, and thej-th column,

j = l|D¢| + t, respectively. It can be easily gathered from this grapét tihe feasible set is
bounded by thé¢1.0,10.0) x (2.0,5.0) x (2.0,3.0) x (0.5,5.0) prism. This can be very useful
in the design process to designer to track new feasibleienhit
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Figure B.9: The hypergraph of the feasible space in the elisdormulation of the studied
example.



Appendix C

PARAMETERS SETTINGS FOR FOUR EVOLUTIONARY
ALGORITHMS

C.1 Parameter settings for RASA

Parameter Beam Others
pop_si ze 64 32

q 0.04 0.04

p_uni _mut 0.525 0.05
p_bnd_mut 0.125 0.05
p_nun_nut 0.125 0.05
p_mu_nut 0.125 0.05
p_snp_crs 0.025 0.15
p_sar_crs 0.025 0.15
p_war_crs 0.025 0.15

p_heu crs 0.025 0.35

b 0.25 2.0

T frac 1072 10710

T frac_mn 1074 1074

T mult 0.9 0.9

num success_max | 10xpop_si ze | 10xpop_si ze
num count er _max | 50xpop_si ze | 50xpop_si ze
num_heu_max 20 20

preci si on (step 4a)| see Section 3.3.31074

Table C.1: Parameter settings for RASA

C.2 Parameter settings for DE

Parameter | Chebychev, Type 0| Beam PUC
pop_si ze | 10 x dim 11 x dim | 10 X dim
F,=F 0.85 0.85 0.75

CR 1 0.1 1

Table C.2: Parameter settings for DE
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C.3 Parameter settings for SADE

Parameter | Chebychev| Type O | Beam PUC
pop_si ze | 10xdi m 25xdi m| 10xdi m| 10xdi m
CR 0.44 0.1 0.3 0.2
radioactivity | 0 0.05 0.05 0.3

MR 0.5 0.5 0.5 0.5

Table C.3: Parameter settings for SADE

C.4 Parameter settings for IASA

Parameter Chebychev| Type 0 | Beam | PUC
a dsi ze 80 900 180 200

NewSi ze 5 600 250 100

T _max 1075 1075 1074 | 107!
T mn 10~ 1071 | 107° | 10°°
SuccessMax 1000 1000 1000 | 1000
Count er Max 5000 5000 5000 | 5000
Tm nAt Cal | sRate | 19% 100% | 25% | 20%
Cr ossover Prob 97% 92% 60% | 90%
CR 0.5 0.6 1.3 1.0

Table C.4: Parameter settings for IASA



Appendix D
COMPARISON OF DIFFERENT CORRELATION COEFFICIENTS

When computing a correlation coefficient, one may be confuséich of the many formu-
las to select. In the literature, see e.g. [Holmes, 200&}etlcan be found the three most often
used ones:

D.1 Pearson product moment correlation coefficient
This coefficient is only based any positions of individual samples and defined as

cor = Z(xl — f)(?/z - g) . o1
V2 (wi =22 2y — §)? (D.1)

D.2 Spearman rank correlation coefficient

This coefficient uses the knowledge of individual ranks d@hce it is given by

6 d
nn—1)(n+1)’ (D-2)

cor =1 —

whered; = r(z;) — r(y;) andr(z;) stands for the rank of; value and the same relation is valid
for y;.

D.3 Kendall rank correlation coefficient

This rank coefficient is based on the comparison of all pésgdhirs and can be written as

_2(C-D)
cor = m , (D.3)

whereC' and D are numbers of growing and descending pairs, respectively.

How individual coefficients work and why is nicely presentedHolmes, 2001]. Our aim
Is to select the most appropriate one from the point of viewtothastic sensitivity analysis
of microplane material model parameters. For example,entbrk [Teply and Novak, 1999],
the rank coefficient is claimed to be superior to the remaimines due to its ability to better
describe non-linear dependencies. Therefore, we hawt dtighese three coefficient on the
stochastic sensitivity analysis described in Sectionl5.3he results are shown in Figs. D.1—-
D.2. It can be clearly visible that, for this particular exale the differences are not significant
and any of these coefficients can be used.
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Figure D.1: Three coefficients as a sensitivity analysis atanal model parameters on the

shape of a stress-strain diagram (Part I).
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Figure D.2: Three coefficients as a sensitivity analysis atarial model parameters on the
shape of a stress-strain diagram (Part II).



