GPLAB
A Genetic Programming Toolbox for MATLAB

Sara Silva
ECOS - Evolutionary and Complex Systems Group
University of Coimbra
Portugal

Version 3
April 2007
3. Operator probabilities in runtime
- Operator probabilities in runtime
- Initial operator probabilities
- Stop conditions
- Saving results to file
- Runtime textual output
- Runtime graphical output

4. State
- Population
- Tree depth/size
- Functions and terminals
- Operator probabilities and frequencies
- Population fitness
- Fitness statistics
- Best individual
- Control
- Complexity and diversity statistics/history
- Resources and variable size populations

5. Offline graphical output
- Accuracy versus Complexity
- Pareto front
- Desired versus Obtained
- Operator Evolution
- Tree visualization

6. Summary of toolbox functions
- Demonstration functions
- Running the algorithm and testing result
- Parameter and state setting
- Automatic variable checking
- Description of parameter and state variables
- Creation of new generations
- Creation of new individuals
- Filtering of new individuals
- Protected and logical functions
- Artificial ant functions
- Tree manipulation
- Data manipulation
- Expected number of children
- Sampling
- Genetic operators
- Fitness
- Survival
- Limited resources
- Dynamic populations
6.20 Diversity measures .. 62
6.21 Automatic operator probability adaptation 62
6.22 Runtime graphical output 62
6.23 Offline graphical output 62
6.24 Utilitarian functions ... 63
6.25 Text input files .. 63
6.26 Octave functions .. 64
6.27 License file .. 64

A Modified functions
 in GPLAB 3 ... 67

B New functions
 in GPLAB 3 ... 71
List of Tables

3.1 Location of parameters in this manual . 16
3.1 *continued* . 17
3.1 *continued* . 18
3.2 Possible and default values of the parameters 18
3.2 *continued* . 19
3.3 Protected and logical functions for use with GPLAB 23
3.4 List of filters for each combination of parameters 27
4.1 Location of state variables in this manual . 45
4.1 *continued* . 46
List of Figures

2.1 Operational structure of the GPLAB toolbox 9

3.1 Graphical output produced by the 'plotfitness' option in the
graphics parameter .. 43

3.2 Graphical output produced by the 'plotdiversity' option in the
graphics parameter .. 43

3.3 Graphical output produced by the 'plotcomplexity' option in
the graphics parameter 44

3.4 Graphical output produced by the 'plotoperators' option in the
graphics parameter .. 44

5.1 Graphical output produced by the function accuracy_complexity 53

5.2 Graphical output produced by the function plotpareto 54

5.3 Graphical output produced by the function desired_obtained 54

5.4 Graphical output produced by the function operator_evolution 55

5.5 Graphical output produced by the function drawtree 55
Chapter 1

Introduction

MATLAB [1] is a widely used programming environment available for a large number of computer platforms. Its programming language is simple and easy to learn, yet fast and powerful in mathematical calculus. Furthermore, its extensive and straightforward data visualization tools make it a very appealing programming environment. Toolboxes are collections of optimized, application-specific functions, which extend the MATLAB environment and provide a solid foundation on which to build.

GPLAB is a genetic programming toolbox for MATLAB. Versatile, generalist and easily extendable, it can be used by all types of users, from the layman to the advanced researcher. It was tested on different MATLAB versions and computer platforms, and it does not require any additional toolboxes. This manual is accompanied by a zip file containing all the functions that form the toolbox, released under the GNU General Public Licence. Both are freely available for download at http://gplab.sourceforge.net/.

Chapter 2 describes the operational structure of GPLAB. Details on the available parameters and state variables are found in Chaps. 3 and 4 respectively. Chapter 5 shows the available offline graphical capabilities of GPLAB, and Chapter 6 presents a summary of all toolbox functions, organized in functional groups.

1.1 Update from version 2.x

GPLAB is slowly growing and (hopefully) improving. The changes are always biased towards my own work, but I also try to incorporate different things that I have come to realize other users need. Version 3 implements several additional techniques for bloat control. Many of these techniques are new and rely on a dynamically changing population size, acting along the survival process. Another technique is based on the adjustment of fitness according to size, which implied keeping track of both the adjusted fitness and the raw fitness (equal when there is no adjustment), and using the adjusted values along the selection process.
All this implied major changes, resulting in a large extension of the operational structure itself. As always, modularity has been a priority, and GPLAB can now easily adopt new survival methods as well as new fitness adjustment functions. Some minor changes were also made to ensure minimal compatibility with Octave. The lists of modified and new functions of this new release are available in Appendices A and B. All the toolbox files had their timestamp changed.

1.2 Acknowledgements

I would like to address a big thank you to Henrik Schumann-Olsen, Jens Thielemann and Oddvar Kloster at SINTEF (http://www.sintef.no) for the extensive additional code they have provided for the first version of GPLAB. Thank you so much to Marc Schoenauer’s students Flavien Billard, Aurlien Boffy, and Thomas De Soza for spotting some nasty artificial ant bugs, and to Matthew Clifton for the fruitful exchange of ideas and for providing most of the artificial ant simulation code. Thank you all for providing ideas on how to solve the bugs, including the people on the MATLAB newsgroup (comp.soft-sys.matlab). Thank you also to Marco Medori and Bruno Morelli for providing a workaround to the “nesting 32” MATLAB error, which I truly hope will be solved by the people at The MathWorks soon. Many other users have steadily provided a wealth of comments, suggestions and useful code - thank you all, particularly Mehrashk Meidani, Ali Nazemi, Wo-Chiang Lee, Vladimir Crnojevic, and Peter J. Acklam. Please forgive me if I have forgotten someone!
Chapter 2

Operational structure

The architecture of GPLAB follows a highly modular and parameterized structure, which different users may use at various levels of depth and insight. What follows is a visual description of this structure, along with brief explanations of some operation details and control parameters, algorithm’s variables, a summary of three usage profiles appropriate for different types of users, and details on how to deal with “plug and play functions”.

2.1 Main modules

Figure 2.1 shows the operational structure of GPLAB. There are three main operation modules, namely SET VARS, GEN POP, and GENERATION, and each represents an interaction point with the user. Inside each main module the sub-modules are executed from top to bottom, the same happening inside INITIAL PROBS and ADAPT PROBS. The description of these two can be found in Sects. 3.16 and 3.15 respectively. Any module with a question mark can be skipped, depending on the parameter indicated above it. Each module may use one or more parameters and one or more user functions. User functions implement alternative or collective procedures for realizing a module, and they behave as plug and play devices.

2.1.1 GEN POP

This module generates the initial population (INIT POP) and calculates its fitness (FITNESS). The individuals in GPLAB are tree structures initialized with one of three available initialization methods - Full, Grow, Ramped Half-and-Half [9]. The functions available to build the trees include the if-then-else statement and some protected functions, plus any MATLAB function that verifies closure. The terminals include a random number generator and all the variables necessary, created in runtime. Fitness is, by default, the sum of absolute differences between the obtained and expected results in all fitness cases. The lower the
Figure 2.1: Operational structure of the GPLAB toolbox
fitness value, the better the individual. This is the standard for symbolic regression and parity problems ("regfitness" in Fig. 2.1), but GPLAB accepts any other plug and play function to calculate fitness, like the function for artificial ant problems, also provided ("antfitness").

GEN POP is called by the user. It starts by requesting some parameter initializations to SET VARS, and finishes by passing the execution to GENERATION. If the user only requests the creation of the initial generation, GENERATION is not used.

2.1.2 GENERATION

This module creates a new generation of individuals by applying the genetic operators to the previous population (OPERATORS). Standard tree crossover and tree mutation are the two genetic operators available as plug and play functions. They must have a pool of parents to choose from, created by a SAMPLING method, which may or may not base its choice on the EXPECTED number of offspring of each individual. Four sampling methods (Roulette [7], SUS [3], Tournament [4], Lexicographic Parsimony Pressure Tournament [10]) and three methods for calculating the expected number of offspring (Absolute [8], Rank85 [2], Rank89 [12]) are available as plug and play functions, and any combination of the two can be used. The genetic operators create new individuals until a new population is filled, a number determined by the generation gap (see Sect. 3.11).

Calculating fitness is followed by the SURVIVAL module, where the individuals that enter the new generation are chosen according to the elitism and survival parameters. The GENERATION module repeats itself until the stop condition is fulfilled, or when the maximum generation is reached. Several stop conditions can be used simultaneously (see Sect. 3.17). This module can be called either by the user or by GEN POP.

2.1.3 SET VARS

This module either initializes the parameters with the default values or updates them with the user settings. Besides the parameters directly related to the execution of the algorithm, other parameters affect the output of its results (see Chap. 3 for a description of all parameters). SET VARS can be called either by the user or by a request for parameter initialization from GEN POP.

2.2 Working variables

GPLAB uses a vast number of working variables, organized in a structure according to its role in the algorithm. This structure will be referred to as vars throughout this manual. It is composed of four fields, params, state, pop, data. Saving vars to a file stores all the information GPLAB uses, produces, and will ever need to continue a previously started run.
• **params** stores all the variables that determine different ways of running the different parts of the algorithm. These are settings that are not supposed to vary during the course of a run, although the user can continue a GPLAB run with a different set of parameters from how it started. Chapter 3 is dedicated to the different running aspects of GPLAB - each subsection refers to one or more parameters related to that aspect.

• **state** stores all the variables that represent the current state of the algorithm. These settings are constantly updated during the run, and should not be modified by the user. Chapter 4 is dedicated to describing the meaning of the various state variables.

• **pop** stores the current population. This variable is constantly updated as the population evolves. It can be considered a state variable and, accordingly, its description can be found in Chap. 4.

• **data** is the data set(s) used by the algorithm to guide the evolutionary process and, optionally, perform cross-validation, imported from files in the beginning of each run. Because it is stored along with the other algorithm's variables, continuing a previously started run does not require the user to provide the data files again.

2.3 Usage

The large amount of available control parameters may lead to the wrong conclusion that it will take a long time before one can start using the toolbox comfortably, and that only expert users will ever be able to use it properly. On the contrary, GPLAB is very easy to use and suits even the unknowledgeable users, due to the automatic parametrization of most parameters. Here is a summary of three different profiles of usage that may be given by different types of users: the layman, the regular user, and the advanced researcher.

2.3.1 The layman

This user wants to try a genetic programming algorithm to achieve a solution to a standard problem, without having to learn about available parameters, or how to set them. The available functions are

\[
\text{[vars,b]} = \text{gplab}(g,n);
\]

\[
\text{[vars,b]} = \text{gplab}(g,\text{vars});
\]

where \(g \) is the maximum number of generations to run the algorithm and \(n \) is the population size.

The first function initializes all the parameters of the algorithm with the default values and runs it for \(g \) generations with \(n \) individuals. The user will be asked about the location of the data files to use (see Sect. 3.8). It returns \(\text{vars} \), all the variables of the algorithm, and \(\text{b} \), the best individual found, which is the
same as `vars.state.bestsofar`. The second function continues a previously started run for another `g` generations, and also needs `vars` as an input argument. These two functions correspond to the operation modules GEN POP and GENERATION shown in Fig. 2.1.

GPLAB also provides some demonstration functions to illustrate its usage in different types of problems (see Chap. 6 for a complete list of functions):

- **demo** - runs a symbolic regression problem (the quartic polynomial) with 50 individuals for 25 generations, with automatic adaptation of operator probabilities, and performing cross-validation in a different data set (the exponential function). It draws all the available plots in runtime (see Sect. 6.22), and finishes with several additional output plots (see Sect. 5), including the pareto front and the drawing of the best individual found.

- **demoparity** - runs the parity-3 problem with 50 individuals for 20 generations, with fixed operator probabilities, drawing some of the available runtime plots, and finishing by drawing the best individual found.

- **demoant** - runs the artificial ant problem in the Santa Fe food trail with 20 individuals for 10 generations, drawing half of the available plots in runtime, and finishing by drawing the best individual found. Unlike the previous demos, this one does not calculate the population complexity measures (see Sect. 3.10). At the end of the run the user can choose to see the simulation of the best ant found.

- **demoplexer** - runs the 11-multiplexer problem with 200 individuals for 20 generations using resource-limited GP (see Sect. 3.13, with no graphical output except the drawing of the best individual found.

2.3.2 The regular user

This is the type of user who knows what the parameters mean and wants to test different sets of values besides the defaults. To set the parameters the available functions are

```matlab
params=resetparams;
params=setparams(params,'param1=value1,param2=value2,etc');
[vars,b]=gplab(g,n,params);
```

where `param1`, `param2` are the names of parameters, and `value1`, `value2` the values pretended.

The first function initializes and returns the parameters structured variable with the default values, and the second alters some of the parameters according to the list given as argument. The third acts like the first function described for the layman, except that it uses the parameter values previously set instead of initializing them with the default values. The parameter setting functions correspond to the module SET VARS in Fig. 2.1. **resetparams** is appropriate
for symbolic regression problems. For different types of problems, one should see the parameter settings used on the demo functions `demoparity` and `demoant`.

Please see Chap. 6 for a complete list of functions. There are also functions dedicated to setting some specific parameters, like the genetic operators, and the functions and terminals used to build the trees (see Sects. 3.4 and 3.3 for details).

2.3.3 The advanced researcher

Here is the user who wants to build and test new sampling methods, new genetic operators, in short, new user functions as shown in Fig. 2.1, without having to construct a new toolbox from the beginning. GPLAB allows this with a minimum amount of effort, thanks to its plug and play operational structure. As an example, the user who wants to test a new genetic operator only has to build a new function that implements it, using the tree manipulation functions provided. This function should use the same input and output arguments as the other genetic operators (a template for building new genetic operators is provided in Sect. 3.4). To tell the algorithm about the new genetic operator the available function is

```matlab
params=addoperators(params,'newoperator',nparents,nchildren);
```

where `newoperator` is the name of the new function, `nparents` is the number of parents the new operator needs, and `nchildren` is the number of offspring it produces. Details on how to build new plug and play user functions can be found in Chap. 3 (please search for the particular subsection that applies) and the way to integrate them into GPLAB is described in Sect. 2.4.

2.4 Plug and play

Figure 2.1 shows that most modules of the GPLAB operational structure are based on a set of user functions that act as plug and play devices. There are three important aspects related to these functions: how to build them, how to use them, and how to integrate them in GPLAB.

2.4.1 Building plug and play functions

Building a new plug and play function is like building any other MATLAB function while following the rules pertaining input and output arguments. Each module defines its own set of input and output arguments, so the interested user should refer to the appropriate section in Chap. 3.

2.4.2 Using new plug and play functions

To use a newly built plug and play function, the user must declare its existence in the algorithm’s parameters. Once again, each module is associated to different
parameters, and the user should refer to the appropriate section in Chap. 3, but the general form of doing this is

\[\text{vars.params.<specificvariable>='name_new_func'}; \]

where \(<\text{specificvariable}>\) is the parameter that refers to the module adopting the new function. This may look equivalent to doing

\[\text{params=setparams(params,'<specificvariable>=name_new_func');} \]

but this form of setting parameters will be refused for the new plug and play function until it is fully integrated as part of GPLAB.

2.4.3 Integrating new plug and play functions in GPLAB

Integrating a new function in GPLAB is done by editing the toolbox file availableparams. This file contains the declarations of the fields that constitute the structure variable \(\text{params}\), as well as their possible and default values - where the possible values may be the names of the plug and play functions. This file is divided in three parts: the first specifies which variables form the structure \(\text{params}\); the second specifies the possible values for each variable; the third specifies the default values for each variable. As an example, to integrate a new plug and play function called \(\text{newfitness}\) that implements a new way of measuring fitness, a new line should be added:

\[\text{myparams.calcfitness} = \{\text{regfitness'}, \text{antfitness'}, \text{newfitness'}\}; \]

where \(\text{regfitness}\) and \(\text{antfitness}\) are the standard procedures for calculating fitness already provided by GPLAB. This line tells GPLAB that all three procedures can be used for calculating fitness. When the algorithm begins, \(\text{regfitness}\) is still the default fitness procedure, but the user can change it before starting the run. Because \(\text{newfitness}\) is already declared as a standard GPLAB function, this change can be made with the \text{setparams} function:

\[\text{params=setparams(params,'calcfitness=newfitness');} \]

To make \(\text{newfitness}\) the default procedure without the need to change the setting before running the algorithm, the line

\[\text{defaults.calcfitness='''regfitness'''}; \]

in the availableparams file should be replaced with

\[\text{defaults.calcfitness='''newfitness'''}; \]

Names of functions have to be accompanied by the triple “’”, but numeric settings can be made like in this example:

\[\text{defaults.hits} = [100 0; 90 10]'; \]
The exceptions to the description above are all the cases when the new plug
and play function is to be used along with other plug and play functions,
like the genetic operators and the functions and terminals. Please see file
availableparams for examples.

Similarly, the file availablestates may also be edited to include new fields
in the structure variable state. This may have to be done if a new plug and play
function intends to use state variables other than the ones available. This is an
advanced action that should not be attempted without proper care.
Chapter 3

Parameters

The next sections describe aspects related to the parameters used by GPLAB - what are the parameters involved in each part of the algorithm, and how their modification affects its behavior. Each subsection concerns one or more parameters, and each parameter may appear in more than one subsection. Table 3.1 indicates the location of each parameter in this manual, and Table 3.2 specifies their possible and default values. When setting parameters, using the function `setparams` will ensure minimum range checking, whereas setting the fields of the variable `vars:params` directly will not. Some parameter settings are automatically corrected to allowed values (with a warning to the user) in case they are set incorrectly. Others are automatically set when left empty. Generally speaking, the only parameters that must be set by the user are the maximum number of generations, the population size, and the names of the files that contain the data set to be used (see Sect. 2.3).

Table 3.1: Location of parameters in this manual

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>adaptinterval</td>
<td>3.15</td>
<td>37</td>
</tr>
<tr>
<td>adaptwindowsize</td>
<td>3.15</td>
<td>37</td>
</tr>
<tr>
<td>adjustfitness</td>
<td>3.9</td>
<td>31</td>
</tr>
<tr>
<td>ajout</td>
<td>3.14</td>
<td>37</td>
</tr>
<tr>
<td>autovars</td>
<td>3.3</td>
<td>22</td>
</tr>
<tr>
<td>calccomplexity</td>
<td>3.10</td>
<td>33</td>
</tr>
<tr>
<td>calcdiversity</td>
<td>3.10</td>
<td>33</td>
</tr>
<tr>
<td>calcfitness</td>
<td>3.9</td>
<td>31</td>
</tr>
<tr>
<td>datafilex</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>datafiley</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>depthnodes</td>
<td>3.1,3.2.3.5</td>
<td>19,20,26</td>
</tr>
<tr>
<td>drawperspin</td>
<td>3.6</td>
<td>28</td>
</tr>
<tr>
<td>dynamiclevel</td>
<td>3.2.3.5</td>
<td>20,26</td>
</tr>
</tbody>
</table>

continued on next page
Table 3.1: continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamicresources</td>
<td>3.13</td>
<td>35</td>
</tr>
<tr>
<td>elitism</td>
<td>3.12</td>
<td>34</td>
</tr>
<tr>
<td>expected</td>
<td>3.7</td>
<td>29</td>
</tr>
<tr>
<td>files2data</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>filters</td>
<td>3.5</td>
<td>26</td>
</tr>
<tr>
<td>fixedlevel</td>
<td>3.2,3.5</td>
<td>20,26</td>
</tr>
<tr>
<td>functions</td>
<td>3.3</td>
<td>22</td>
</tr>
<tr>
<td>gengap</td>
<td>3.11</td>
<td>33</td>
</tr>
<tr>
<td>graphics</td>
<td>3.20</td>
<td>41</td>
</tr>
<tr>
<td>hits</td>
<td>3.17</td>
<td>39</td>
</tr>
<tr>
<td>inicdynamlevel</td>
<td>3.2</td>
<td>20</td>
</tr>
<tr>
<td>inicmaxlevel</td>
<td>3.1</td>
<td>19</td>
</tr>
<tr>
<td>initialfixedprobs</td>
<td>3.16</td>
<td>39</td>
</tr>
<tr>
<td>initialprobstype</td>
<td>3.16</td>
<td>39</td>
</tr>
<tr>
<td>initialvarprobs</td>
<td>3.16</td>
<td>39</td>
</tr>
<tr>
<td>initpoptype</td>
<td>3.1</td>
<td>19</td>
</tr>
<tr>
<td>keepevalsize</td>
<td>3.9</td>
<td>31</td>
</tr>
<tr>
<td>lowerisbetter</td>
<td>3.9</td>
<td>31</td>
</tr>
<tr>
<td>minprob</td>
<td>3.15</td>
<td>37</td>
</tr>
<tr>
<td>maxresources</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>numbackgen</td>
<td>3.15</td>
<td>37</td>
</tr>
<tr>
<td>numvars</td>
<td>3.3</td>
<td>22</td>
</tr>
<tr>
<td>operatornames</td>
<td>3.4</td>
<td>24</td>
</tr>
<tr>
<td>operatorchildren</td>
<td>3.4</td>
<td>24</td>
</tr>
<tr>
<td>operatorparents</td>
<td>3.4</td>
<td>24</td>
</tr>
<tr>
<td>operatorprobstype</td>
<td>3.15</td>
<td>37</td>
</tr>
<tr>
<td>output</td>
<td>3.19</td>
<td>40</td>
</tr>
<tr>
<td>percentback</td>
<td>3.15</td>
<td>37</td>
</tr>
<tr>
<td>percentchange</td>
<td>3.15</td>
<td>37</td>
</tr>
<tr>
<td>periode</td>
<td>3.14</td>
<td>37</td>
</tr>
<tr>
<td>precision</td>
<td>3.9</td>
<td>31</td>
</tr>
<tr>
<td>realmaxlevel</td>
<td>3.2</td>
<td>20</td>
</tr>
<tr>
<td>reproduction</td>
<td>3.4</td>
<td>24</td>
</tr>
<tr>
<td>resourcesfitness</td>
<td>3.13</td>
<td>35</td>
</tr>
<tr>
<td>resourcespopsize</td>
<td>3.13</td>
<td>35</td>
</tr>
<tr>
<td>sampling</td>
<td>3.6</td>
<td>28</td>
</tr>
<tr>
<td>savedir</td>
<td>3.18</td>
<td>40</td>
</tr>
<tr>
<td>savename</td>
<td>3.18</td>
<td>40</td>
</tr>
<tr>
<td>savetofile</td>
<td>3.18</td>
<td>40</td>
</tr>
<tr>
<td>smalldifference</td>
<td>3.16</td>
<td>39</td>
</tr>
<tr>
<td>survival</td>
<td>3.12</td>
<td>34</td>
</tr>
<tr>
<td>terminals</td>
<td>3.3</td>
<td>22</td>
</tr>
</tbody>
</table>

continued on next page
Table 3.1: continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>testdatafilex</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>testdatafiley</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>tournamentsize</td>
<td>3.6</td>
<td>28</td>
</tr>
<tr>
<td>usetestdata</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>veryheavy</td>
<td>3.2,3.13</td>
<td>20,35</td>
</tr>
</tbody>
</table>

Table 3.2: Possible and default values of the parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible values</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>adaptinterval</td>
<td>(n > 0)</td>
<td>(n), see Sect. 3.15</td>
</tr>
<tr>
<td>adaptwindowsize</td>
<td>integer(\geq 0)</td>
<td>({ }), see Sect. 3.15</td>
</tr>
<tr>
<td>adjustfitness</td>
<td>'linearppp'</td>
<td>({ })</td>
</tr>
<tr>
<td>ajout</td>
<td>'M1', 'M2'</td>
<td>'M1'</td>
</tr>
<tr>
<td>autovars</td>
<td>0.0, 1.0</td>
<td>1</td>
</tr>
<tr>
<td>calccomplexity</td>
<td>(list of diversity measures, see Sect. 3.10)</td>
<td>({ })</td>
</tr>
<tr>
<td>calcfitness</td>
<td>'regfitness', 'antfitness'</td>
<td>'regfitness'</td>
</tr>
<tr>
<td>datafile</td>
<td>(name of a valid input file)</td>
<td>(user provided, see Sect. 3.8)</td>
</tr>
<tr>
<td>datafiley</td>
<td>(name of a valid input file)</td>
<td>(user provided, see Sect. 3.8)</td>
</tr>
<tr>
<td>depthnodes</td>
<td>1, 2</td>
<td>1</td>
</tr>
<tr>
<td>drawperspin</td>
<td>integer(> 0)</td>
<td>({ }), see Sect. 3.6</td>
</tr>
<tr>
<td>dynamiclevel</td>
<td>0, 1, 2</td>
<td>1</td>
</tr>
<tr>
<td>dynamicresources</td>
<td>0, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>elitism</td>
<td>'replace', 'keepbest', 'halfelitism', 'totalelitism'</td>
<td>'replace'</td>
</tr>
<tr>
<td>expected</td>
<td>'absolute', 'rank85', 'rank89'</td>
<td>'rank85'</td>
</tr>
<tr>
<td>files2data</td>
<td>'xy2inout', 'anttrail'</td>
<td>'xy2inout'</td>
</tr>
<tr>
<td>filters</td>
<td>(list of filter functions, see Sect. 3.5)</td>
<td>({ })</td>
</tr>
<tr>
<td>fixedlevel</td>
<td>0.0, 1.0</td>
<td>1</td>
</tr>
<tr>
<td>functions</td>
<td>(see Sect. 3.3)</td>
<td>'plus', 'minus', 'times', 'sin', 'cos', 'mylog'</td>
</tr>
<tr>
<td>gengap</td>
<td>(> 0) (integer if (\geq 1))</td>
<td>({ }), see Sect. 3.11</td>
</tr>
<tr>
<td>graphics</td>
<td>(list of plot names, see Sect. 3.20)</td>
<td>({ })</td>
</tr>
<tr>
<td>hits</td>
<td>(list of stop conditions, see Sect. 3.17)</td>
<td>[100, 0]</td>
</tr>
<tr>
<td>inicdynlevel</td>
<td>integer(> 0)</td>
<td>6 if depthnodes='1', 28 if depthnodes='2'</td>
</tr>
<tr>
<td>inicmaxlevel</td>
<td>integer(> 0)</td>
<td>6 if depthnodes='1', 28 if depthnodes='2'</td>
</tr>
<tr>
<td>initialfixedprobs</td>
<td>(list of probability values)</td>
<td>({ }), see Sect. 3.16</td>
</tr>
<tr>
<td>initialprobtype</td>
<td>'fixed', 'variable'</td>
<td>'fixed'</td>
</tr>
<tr>
<td>initialprobs</td>
<td>(list of probability values)</td>
<td>({ }), see Sect. 3.16</td>
</tr>
<tr>
<td>initpoptype</td>
<td>'fullinit', 'growinit', 'rampedinit'</td>
<td>'rampedinit'</td>
</tr>
<tr>
<td>keepevalsize</td>
<td>integer(\geq 0)</td>
<td>({ }), see Sect. 3.9</td>
</tr>
</tbody>
</table>

continued on next page

18
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible values</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowerisbetter</td>
<td>0, 1</td>
<td>1</td>
</tr>
<tr>
<td>minprob</td>
<td>> 0 and ≤ 1</td>
<td>0.1</td>
</tr>
<tr>
<td>maxresources</td>
<td>integer > 0</td>
<td></td>
</tr>
<tr>
<td>numbackgen</td>
<td>integer > 0</td>
<td>3</td>
</tr>
<tr>
<td>numvars</td>
<td>[] or integer ≥ 0</td>
<td></td>
</tr>
<tr>
<td>operatornames</td>
<td>(list of operator names, see Sect. 3.4)</td>
<td>{'crossover', 'mutation'}</td>
</tr>
<tr>
<td>operatorchildren</td>
<td>(list of number of children produced)</td>
<td>[2, 1]</td>
</tr>
<tr>
<td>operatorparents</td>
<td>(list of number of parents needed)</td>
<td>[2, 1]</td>
</tr>
<tr>
<td>operatorprobtype</td>
<td>'fixed', 'variable'</td>
<td>fixed</td>
</tr>
<tr>
<td>output</td>
<td>'silent', 'normal', 'verbose'</td>
<td>normal</td>
</tr>
<tr>
<td>percentback</td>
<td>≥ 0 and ≤ 1</td>
<td>0.25</td>
</tr>
<tr>
<td>percentchange</td>
<td>> 0 and ≤ 1</td>
<td></td>
</tr>
<tr>
<td>periode</td>
<td>integer > 0</td>
<td>1</td>
</tr>
<tr>
<td>precision</td>
<td>integer > 0</td>
<td>12</td>
</tr>
<tr>
<td>realmaxlevel</td>
<td>integer > 0</td>
<td>17 if depthnodes='1', 512 if depthnodes='2'</td>
</tr>
<tr>
<td>reproduction</td>
<td>≥ 0 and < 1</td>
<td>0.1</td>
</tr>
<tr>
<td>resourcesfitness</td>
<td>'normal', 'light'</td>
<td>normal</td>
</tr>
<tr>
<td>resourcespopsize</td>
<td>'steady', 'low', 'free'</td>
<td>steady</td>
</tr>
<tr>
<td>sampling</td>
<td>'roulette', 'sus', 'tournament', 'lexictour'</td>
<td>lexictour</td>
</tr>
<tr>
<td>savedir</td>
<td>(name for a new directory)</td>
<td></td>
</tr>
<tr>
<td>savename</td>
<td>(name for result files)</td>
<td></td>
</tr>
<tr>
<td>savetofile</td>
<td>'every10', 'every100', 'always'</td>
<td>never</td>
</tr>
<tr>
<td>smalldifference</td>
<td>> 0 and ≤ 1</td>
<td></td>
</tr>
<tr>
<td>survival</td>
<td>Fixedpopsizel, 'resources', 'pivotfixe'</td>
<td>fixedpopsizel</td>
</tr>
<tr>
<td>terminals</td>
<td>(see Sect. 3.3)</td>
<td></td>
</tr>
<tr>
<td>testdatafilex</td>
<td>(name of a valid input file)</td>
<td></td>
</tr>
<tr>
<td>testdatafiley</td>
<td>(name of a valid input file)</td>
<td></td>
</tr>
<tr>
<td>tournamentsize</td>
<td>> 0 (integer if ≥ 1)</td>
<td></td>
</tr>
<tr>
<td>usetestdata</td>
<td>0, 1</td>
<td>0</td>
</tr>
<tr>
<td>veryheavy</td>
<td>0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

3.1 Tree initialization

The initial population of trees, created in runtime in the beginning of a GPLAB run, is done by choosing random functions and terminals from the respective sets (Sect. 3.3). The initial maximum depth/size of the new trees, determined by the parameter `inicmaxlevel`, must not be violated, but besides this rule there is still room for different options that may influence the structure of the initial trees. These options constitute what is called the generative method, specified by the parameter `initpotype`. There are three different methods available in GPLAB, used in the plug and play fashion described in Sect. 2.4,
and each of them uses either the standard procedure based on depth [9], or the new variation based on size, \(i.e., \) number of nodes [16], depending on the parameter depthnodes (‘1’ for depth, ‘2’ for size, see Sect. 3.2):

- **'fullinit'** - this is the Full method. In the standard procedure, the new tree receives non terminal (internal) nodes until the initial tree depth \(\text{inicmaxlevel} \) parameter is reached - the last depth level is limited to terminal nodes. As a result, trees initialized with this method will be perfectly balanced with all the branches of the same length. If size is used instead of depth, internal nodes are chosen until the size of the new tree is close to the specified size \(\text{inicmaxlevel} \), and only then terminals are chosen. Unlike the standard procedure, the size variation may not be able to create trees with the exact size specified, but only close (never exceeding).

- **'growinit'** - this is the Grow method. In the standard procedure, each new node is randomly chosen between terminals and non terminals, except nodes at the initial tree depth level, which must be terminals. Trees created with this method may be very unbalanced, with some branches much longer than others, and their depth may be anywhere from 1 to the value of the \(\text{inicmaxlevel} \) parameter. If using the size variation, nodes are also chosen randomly, but prior to reaching the size specified in \(\text{inicmaxlevel} \), care is taken on the choice of the internal nodes, based on their arity, so as to guarantee the \(\text{inicmaxlevel} \) will not be exceeded by the respective arguments (which now have to be terminals).

- **'rampedinit'** - this is the Ramped Half-and-Half method. In the standard procedure, an equal number of individuals are initialized for each depth between 2 and the initial tree depth value. For each depth level considered, half of the individuals are initialized using the Full method, and the other half using the Grow method. The population of trees resulting from this initialization method is very diverse, with balanced and unbalanced trees of several different depths. In the size variation, an equal number of individuals are initialized with sizes ranging from 2 to \(\text{inicmaxlevel} \). As in the standard procedure, for each size, half of the trees are initialized with the Full method, and the other half with the Grow method.

3.2 Tree depth and size limits

| fixedlevel, dynamiclevel, realmaxlevel, inicdynlevel, depthnodes, veryheavy |

Trees in GPLAB may be subject to a set of restrictions on depth or size (number of nodes), by setting appropriate parameters. These restrictions are meant to avoid bloat, a phenomenon consisting of an excessive code growth without
the corresponding improvement in fitness. The standard way of avoiding bloat is by setting a maximum depth on trees being evolved - whenever a genetic operator produces a tree that breaks this limit, one of its parents enters the new population instead [9].

GPLAB implements this strict limit on depth, as well as a dynamic limit, similar to the first, but with two important differences: it is initially set with a low value; it is increased when needed to accommodate an individual that is deeper than the dynamic limit but is better than any other individual found during the run. Both limits can be used in conjunction. For each new individual produced by a genetic operator there are three possible scenarios:

- The individual does not exceed the dynamic maximum depth - it can be used freely because no constraints have been violated.
- The individual is deeper than the dynamic maximum depth, but does not exceed the strict maximum depth stored in realmaxlevel - its fitness is measured. If the individual proves to be better than the best individual found so far, the dynamic maximum depth is increased and the new individual is allowed into the population; otherwise, the new individual is rejected and one of its parents enters the population instead.
- The individual is deeper than the strict maximum depth stored in realmaxlevel - it is rejected and one of its parents enters the population instead.

The dynamic maximum tree depth technique is a recent technique that has shown to effectively control bloat in two different types of problems (see [15] for details). The parameter dynamiclevel can be used to turn it on (dynamiclevel='1', the default) or off (dynamiclevel='0'). When on, its initial value is determined by the parameter initdynlevel. This should not be confounded with the maximum depth of the initial random trees, initmaxlevel (see Sect. 3.1). The strict depth limit can also be turned on (fixedlevel=1) or off (fixedlevel=0). When on, the strict maximum depth of trees is determined by the parameter realmaxlevel.

Even more recently, two variations on the dynamic limit technique have been introduced: a heavy dynamic limit (dynamiclevel='2'), where the dynamic limit can (unlike the original one) fall back to a lower value (but never lower than the initial limit) in case the new best individual allows it, and the dynamic limit on size (number of nodes), regardless of depth (see [16] for details). Yet another variant of the dynamic limit is available in version 3 of GPLAB. It is a “very heavy” version of the heavy limit that may fall back even below the initial value, in case the new best individual allows it. This can be turned on veryheavy=1 or off veryheavy=0 at will, but of course it will only have any effect if the heavy limit is being used (dynamiclevel='2'). The parameter depthnodes is used to switch between depth (depthnodes='1') and size (depthnodes='2') restrictions. Any combination of fixedlevel, dynamiclevel, veryheavy and
depthnodes is allowed. The default initial values for realmaxlevel and inic-dynlevel depend on the setting of depthnodes (see Table 3.2).

The dynamic limits are turned on in the demo functions of the toolbox, and the (original, non heavy) dynamic limit on depth is even used as default, along with the strict limit, because this combination seems to be very effective in controlling bloat. Nevertheless, the user should keep in mind that they are still experimental techniques.

3.3 Functions and terminals

As any genetic programming algorithm, GPLAB needs functions and terminals to create the population, in this case the parse trees that represent individuals.

Functions GPLAB can use any MATLAB function that verifies closure, plus some protected and logical functions and the if-then-else statement, also available as part of the toolbox. The user indicates which functions the algorithm should use by setting the functions parameter. Table 3.3 contains information on the available toolbox functions.

All the functions described in Table 3.3 are used in the plug and play fashion described in Sect. 2.4. The advanced users who want to build and use their own functions only have to implement them as MATLAB functions (and make sure the input arguments can be either scalars or vectors – see MATLAB user’s manual) and declare them using one of the toolbox functions (use “help setfunctions” and “help addfunctions” in the MATLAB prompt for usage):

```matlab
params=setfunctions(params,'func1',2,'func2',1);
params=addfunctions(params,'func1',2,'func2',1);
```

setfunctions defines the set of available functions as containing functions ‘func1’ and ‘func2’, replacing any other functions previously declared. ‘func1’ has arity 2 - it needs two input arguments; ‘func2’ has arity 1. Any number of functions can be declared at one time, by adding more arguments to setfunctions. **addfunctions** accepts the same arguments but adds the declared functions to the already defined set, keeping the previously declared functions untouched. **setfunctions** and **addfunctions** are friendly substitutes to directly setting the functions parameter. The declaration of genetic operators is done similarly (see Sect. 3.4).

Some examples of MATLAB functions that verify closure, fit for use with GPLAB:

- plus, minus, times
- sin, cos
- and, or, not, xor
Table 3.3: Protected and logical functions for use with GPLAB

<table>
<thead>
<tr>
<th>Protected function</th>
<th>MATLAB function</th>
<th>Input arguments</th>
<th>Output argument¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>mydivide</td>
<td>a, b</td>
<td>a (if b = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a/b (otherwise)</td>
</tr>
<tr>
<td>Square root</td>
<td>mysqrt</td>
<td>a</td>
<td>0 (if a <= 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sqrt(a) (otherwise)</td>
</tr>
<tr>
<td>Power</td>
<td>mypower</td>
<td>a, b</td>
<td>a^b (if a^b is a valid non-complex number)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 (otherwise)</td>
</tr>
<tr>
<td>Natural logarithm</td>
<td>mylog</td>
<td>a</td>
<td>0 (if a = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>log(abs(a)) (otherwise)</td>
</tr>
<tr>
<td>Base 2 logarithm</td>
<td>mylog2</td>
<td>a</td>
<td>0 (if a = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>log2(abs(a)) (otherwise)</td>
</tr>
<tr>
<td>Base 10 logarithm</td>
<td>mylog10</td>
<td>a</td>
<td>0 (if a = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>log10(abs(a)) (otherwise)</td>
</tr>
<tr>
<td>H-then-else statement</td>
<td>myif</td>
<td>a, b, c</td>
<td>eval(c) (if eval(a) = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eval(b) (otherwise)</td>
</tr>
<tr>
<td>Negation of AND</td>
<td>nand</td>
<td>a, b</td>
<td>not(and(a, b))</td>
</tr>
<tr>
<td>Negation of OR</td>
<td>nor</td>
<td>a, b</td>
<td>not(or(a, b))</td>
</tr>
</tbody>
</table>

¹sqrt, log, log2, log10, abs, eval, not, and, or are MATLAB functions.

- ceil, floor
- min, max
- eq (equal), gt (greater than), le (less than or equal)

GPLAB also includes some functions for artificial ant problems, namely antif, antprogn2, antprogn3, arities 2, 2, 3 respectively.

Terminals GPLAB can use any constant as a terminal, plus a random number between 0 and 1, generated in runtime, as the function 'rand' with null arity. The declaration of terminals is done similarly to the declaration of functions, by using friendly substitutes to directly setting the terminals parameter. For example, to declare the constant '1' and the random number generator as members of the set of terminals (use “help setterminals” in the MATLAB prompt for usage):

```
params=setterminals(params,'rand','1');
```

Unlike in setfunctions, there is no need to indicate the arity, which is always null. To add a new terminal to an already declared set of terminals (use “help addterminals” in the MATLAB prompt for usage):
params=addterminals(params,'new_terminal');

Any number of terminals can be declared or added at one time, by adding more input arguments. The terminals available for artificial ant problems are \texttt{antright}, \texttt{antleft}, \texttt{antmove}.

Variables needed to evaluate the fitness cases are also part of the set of available terminals for the algorithm to work with, and these can only be generated (automatically) in the beginning of the run, according to the settings of the parameters \texttt{numvars} and \texttt{autovars}:

- \texttt{numvars}=[] and \texttt{autovars}=0 - the parameter \texttt{numvars} is automatically filled with 0 and no variables are generated. This setting is appropriate for artificial ant problems.

- \texttt{numvars}=[] and \texttt{autovars}=1 - the parameter \texttt{numvars} is automatically filled with the number of columns of the input data set and these many variables are generated. This setting is appropriate for symbolic regression and parity problems.

- \texttt{numvars}=x - customized setting, where x is the number of variables generated, corresponding to the x first columns of the input data set.

3.4 Genetic operators

GPLAB may use any number of genetic operators to create new individuals. A proportion of individuals, specified in the parameter \texttt{reproduction}, may also be copied into the next generation without suffering the action of the operators.

Standard tree crossover and tree mutation, shrink mutation and swap mutation are the genetic operators provided by GPLAB, implemented as follows:

Crossover In tree crossover, random nodes are chosen from both parent trees, and the respective branches are swapped creating two offspring. There is no bias towards choosing internal or terminal nodes as the crossing sites.

Mutation In tree mutation, a random node is chosen from the parent tree and substituted by a new random tree created with the terminals and functions available. This new random tree is created with the Grow initialization method and obeys the size/depth restrictions imposed on the trees created for the initial generation (see Sect. 3.1).

Shrink mutation In shrink mutation, a random subtree (S) is chosen from the parent tree and substituted by a random subtree of S. In special circumstances (\textit{e.g.} single-node tree) the offspring will be equal to the parent tree.
Swap mutation In swap mutation, two random subtrees are chosen from the parent tree, and swapped. Whenever possible the two subtrees do not intersect each other, but in special circumstances (e.g. single-node tree, single-line tree) the offspring will be equal to the parent tree.

The addition of other genetic operators is straightforward, thanks to the modular structure shown in Fig. 2.1. A new genetic operator is simply a MATLAB function used as a plug and play device to module OPERATOR, and the declaration of its existence to the algorithm is made similarly to the setting of functions and terminals (see Sect. 3.3), with one of the toolbox functions (use “help setoperators” and “help addoperators” in the MATLAB prompt for usage):

```
params=setoperators(params,'operator1',2,2,'operator2',2,1);
params=addoperators(params,'operator1',2,2,'operator2',2,1);
```

The first function defines the set of genetic operators as containing operators ‘operator1’ and ‘operator2’, replacing any operator previously declared. ‘operator1’ needs two parents and produces two children; ‘operator2’ also needs two parents but produces only one child. Any number of genetic operators can be declared at one time, by adding more arguments to the function. The second function accepts the same arguments but adds the declared operators to the already defined set, keeping the previously declared operators untouched. These functions have the same effect as directly setting the parameters operatornames, operatornparents, operatornchildren. ‘operator1’ and ‘operator2’ are the names of the new MATLAB functions that implement the new operators. The only rules these functions must follow concern their input and output arguments. Please see functions crossover.m and mutation.m for examples on how to correctly build new genetic operators. A set of tree manipulation functions is available (use “help <function_name>” in the MATLAB prompt for usage):

- `maketree(level,functions,arities,exactlevel,depthnodes)` – this function returns a new random tree no deeper/bigger than `level`, using the `functions` with respective `arities`. If `exactlevel` is true, the new tree will be initialized using the Full method; otherwise, it will be initialized using the Grow method (see Sect. 3.1). `depthnodes` indicates whether restrictions are to be applied in tree depth or tree size (number of nodes)

- `findnode(tree,x)` – returns the subtree of `tree` with root on node number `x`. The nodes are numbered depth-first

- `swapnodes(tree1,tree2,x1,x2)` – returns two new trees resulting from swapping node number `x1` in `tree1` with node number `x2` in `tree2`. The nodes are numbered depth-first

- `tree2str(tree)` – returns the translation of `tree` into a string

- `treelevel(tree)` – returns the depth of `tree`
• **nodes(tree)** – returns the number of nodes of tree

• **intronnodes(tree, params, data, state)** – returns the number of introns of tree. Needs the variables params, data and state.

The genetic operators do not need to return offspring that conform to the tree depth/size restrictions being applied (see Sect. 3.2), because that is done afterwards by applying validation (also called filter) functions (see Sect. 3.5).

Of all the fields an individual contains, only origin, parents, tree, str and nodes must be filled. If you use the function swapnodes.m to build the offspring (highly recommended), it will calculate the nodes of the new tree(s) for you. id should be left empty ([]) to be filled by the validation functions mentioned above. All the other fields (xsites, fitness, adjustedfitness, result, testfitness, testadjustedfitness, introns, level) can be left empty if not needed by the genetic operator, because they will be calculated and stored as needed by other procedures. xsites is the exception - as a merely informative field, that may contain information concerning the nodes where the parent trees were split to create the child tree, if left empty it will remain so, as no other other function in the current version of GPLAB uses it.

3.5 Validating new individuals

After a new individual is produced by any of the genetic operators, it must be validated in terms of depth/size before being considered as a candidate for the new population. Several validation functions, or filters, are provided in GPLAB, and others may be built and integrated as plug and play functions (see Sect. 2.4). The filters parameter is simply a list of those functions, by the order in which they should be applied. It should not, however, be set by the user, as it is automatically set in the beginning of the run, depending on the parameters fixedlevel, dynamiclevel and depthnodes. Below is a list of available filter functions along with the description of their purpose (see Sect. 3.2 for more details):

- **'strictdepth’** - this filter rejects an individual that is deeper than the strict maximum allowed depth; does nothing otherwise.
- **'strictnodes’** - this filter rejects an individual that is bigger (contains more nodes) than the strict maximum allowed size; does nothing otherwise.
- **'dyndepth’** - this filter measures the fitness of an individual that is deeper than the dynamic maximum allowed depth: if the individual is better than the best so far, the dynamic depth is increased and the new individual is accepted; otherwise it is rejected. The filter does nothing if the individual is no deeper than the limit.
Table 3.4: List of filters for each combination of parameters

<table>
<thead>
<tr>
<th>Filters list</th>
<th>fixedlevel</th>
<th>dynamiclevel</th>
<th>depthnodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>{'dyndepth'}</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{'dynnodes'}</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>{'heavydyndepth'}</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>{'heavydynnodes'}</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>{'strictdepth'}</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{'strictnodes'}</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>{'strictdepth','dyndepth'}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{'strictnodes','dynnodes'}</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>{'strictdepth','heavydyndepth'}</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>{'strictnodes','heavydynnodes'}</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- 'dynamnodes' - the same as the previous one, but considering size (number of nodes) instead of depth.

- 'heavydyndepth' - this filter measures the fitness of an individual and checks its depth. If it is deeper than the dynamic maximum allowed depth: if the individual is better than the best so far, or if it is no deeper than the deepest of its parents, the filter increases the dynamic depth if needed and accepts the individual, otherwise rejects it. If the individual is less deep than the dynamic maximum allowed depth: if it is the better than the best so far, the filter accepts it and lowers the dynamic depth, and does nothing otherwise.

- 'heavydynnodes' - the same as the previous one, but considering size (number of nodes) instead of depth.

The above filters may reject an individual, accept an individual, or do neither. After passing through all the filters, the individuals that still haven’t been rejected or accepted will finally be accepted as candidates for the new population.

Table 3.4 lists the appropriate list of filters for each combination of the 3 depth/size related parameters (fixedlevel, dynamiclevel, depthnodes). Once again, the list of filters is chosen automatically by GPLAB in the beginning of the run.
3.6 Selection for reproduction

As shown in Fig. 2.1, genetic operators need parent individuals to produce their children. In GPLAB these parents are selected according to one of four sampling methods, as indicated in the sampling parameter:

- 'roulette' - this method acts as if a roulette with random pointers is spun, and each individual owns a portion of the roulette that corresponds to its expected number of children (see Sect. 3.7).

- 'sus' - this method also relies on the roulette, but the pointers are equally spaced [3].

- 'tournament' - this method chooses each parent by randomly drawing a number of individuals from the population and selecting only the best of them.

- 'lexictour' - this method implements lexicographic parsimony pressure [10]. Like in 'tournament', a random number of individuals are chosen from the population and the best of them is chosen. The main difference is, if two individuals are equally fit, the shortest one (the tree with less nodes) is chosen as the best. This technique has shown to effectively control bloat in different types of problems (see [10] for details).

- 'doubletour' - this method implements a double tournament that applies two layers of tournaments in series, first for fitness and then for parsimony (or the other way around) [11]. If the first tournament selects based on fitness, the second one selects based on size (number of nodes), and vice-versa. This tournament uses two internal parameters that can only be changed in the function doubletour.m itself: a switch called do_fitness_first that indicates whether the first tournament is based on fitness (do_fitness_first=1, the default value), and a value D between 1 and 2 that indicates the size of the parsimony tournament. When two individuals participate in the parsimony tournament, the smaller one wins with probability $D/2$, else the larger wins. $D = 1$ is random selection, while $D = 2$ is a plain parsimony tournament of size 2. The default is $D = 1.4$. The size of the fitness tournament is the same as indicated in the tournamentsize parameter. This technique has shown to effectively control bloat in different types of problems (see [11] for details).

When either of the tournament methods is chosen, the number of individuals participating in each tournament is determined by the tournamentsize parameter (except in the parsimony tournament of 'doubletour'). Like gengap (see Sect. 3.11), the value of this parameter can represent either the absolute number of individuals (tournamentsize>=1), or a proportion of the population size.
(otherwise). If it represents an absolute number, it will remain fixed throughout the run, even when variable size populations are used (see Sects. 3.13 and 3.14), but if it represents a proportion then it will be updated during the run in a state variable with the same name (see Sect. 4.10), so that the selective pressure is maintained when variable size populations are used. When the tournament method is chosen and \texttt{tournamentsize} is left blank (\texttt{tournamentsize=[]}), GPLAB sets it with the default proportion, \texttt{1\%} of the population size in the beginning of the run. If \texttt{tournamentsize} equals 1, the selection of parents is random; if \texttt{tournamentsize} equals the population size, only the best individual in the population is chosen to produce all the offspring. The tournament-based sampling methods do not need to know the expected number of children of each individual, unlike \texttt{roulette} and \texttt{sus}.

Alternative sampling methods may be built and easily used in GPLAB as plug and play devices to module SAMPLING (see Fig. 2.1). All the user has to do is build a new function that implements the sampling method, respecting the input and output arguments, and set the \texttt{sampling} parameter with the name of the new function:

\begin{verbatim}
params.sampling='new_sampling_method';
\end{verbatim}

The new function must accept as input arguments the current population, parameters and state (\texttt{vars.pop}, \texttt{vars.params}, \texttt{vars.state}), the number of individuals to draw, and a list of identifiers of individuals that must not be drawn. This last input argument is not being used in the current version of GPLAB, but the available sampling procedures contemplate this possibility. The function must output the identifiers of the parents chosen, their indices in the current population, the expected number of children of all individuals in the population, and the normalized fitness of all individuals in the population. The last two output arguments may be left blank (\texttt{[]}) if the sampling procedure does not calculate them. Please use the available sampling functions as examples.

Because sampling is an expensive operation, it is usually done few times, where each spin of the wheel samples many individuals at once (with replacement), enough to participate in several tournaments, for example. This saves CPU time, but uses a lot of memory. The sampling of individuals can be done in several steps to avoid running out of memory. Just set the parameter \texttt{drawperspin} with a value different from empty, and this will be the number of individuals drawn on each wheel spin. It is recommended that you use the highest possible value.

3.7 Expected number of children

As described in Sect. 3.6, some sampling procedures choose the parents based on their expected number of children, while others only need to know which are better than which. Likewise, the calculation of the expected number of
children may use the actual fitness values, or simply their rank in the population. The \textit{expected} parameter determines which method is used for calculating the expected number of children for each individual. This calculation is performed only if the selection for reproduction so requires. Three different methods are available in GPLAB:

- \textit{absolute} - the expected number of children for each individual is proportional to its absolute fitness value (it is equal to its normalized, or relative, fitness) [8].
- \textit{rank85} - the expected number of children for each individual is based on its rank in the population [2].
- \textit{rank89} - the expected number of children for each individual is based on its rank in the population and on the state of the algorithm (how far it is from the maximum allowed generation). The differentiation between individuals increases in later generations [12].

Alternative methods for calculating the expected number of children may be built and used as plug and play devices to module EXPECTED (see Fig. 2.1), by simply implementing the new method in a MATLAB function and declaring it in the \textit{expected} parameter:

```matlab
params.expected='new_expected_number_of_children_method';
```

The new function must accept as input arguments the current population and state \((\texttt{vars.pop, vars.state})\), and output the expected number of children of all individuals in the population, and the normalized fitness of all individuals in the population. The last output argument may be left blank (\([\text{[]}\)) if its calculation is not needed. Please see functions \textit{absolute}, \textit{rank85} and \textit{rank89} for a prototype.

3.8 Measuring fitness - data files

When starting a GPLAB run the user is required to indicate the names of the files where the fitness cases are stored. The files should be in a format readily importable to MATLAB, like tab-delimited text. For symbolic regression and parity problems, the first file should contain the input values, and the second the expected - or desired - output value, one row for each fitness case. For artificial ant problems, the first file should contain the food trail, in the form of a binary matrix, and the second file should contain the number of food pellets in it. After importing the data stored in these files to the algorithm’s variables, according to the procedure specified in the parameter \textit{files2data}, GPLAB saves its names with complete path in the parameters \textit{datafilex} and \textit{datafiley}.

The parameter \textit{usetestdata} may be used to indicate whether the best individual found so far should have its fitness measured in a different data set.
(usetestdata=1) or not (usetestdata=0). If yes, this extra measurement will be done in every generation, and the user must provide the names of the two (input and expected output) extra data files, to be stored in testdatafilex and testdatafiley. When restarting a run, the user does not have to provide any file names again.

Two different methods for importing the text files into the algorithm's variables are available in GPLAB (not shown in Fig. 2.1):

- 'xy2inout' - for symbolic regression and parity problems.
- 'anttrail' - for artificial ant problems.

For other types of problems, new functions for importing data may be developed and plugged into the operational structure of GPLAB by setting the parameter files2data with the name of the new function:

params.files2data='new_importing_method';

3.9 Measuring fitness - raw and adjusted

There are three methods for calculating raw fitness in GPLAB, one for problems like symbolic regression and parity, and one for artificial ant problems, plus an alternative method for the artificial ant, all implemented as plug and play functions (see Fig. 2.1):

- 'regfitness' - calculates, for each individual, the sum of the absolute difference between the expected output value and the value returned by the individual on all fitness cases. The best individuals are the ones that return values less different than the expected values - the ones with a lower fitness. This function should be used with the parameter lowerisbetter set to '1'.

- 'antfitness' - calculates, for each individual, the number of food pellets eaten in the artificial ant food trail during 400 time steps - the best individuals are the ones who eat more pellets, meaning they have higher fitness. This function should be used with the parameter lowerisbetter set to '0'.

- 'antfitness.lib' - alternative way of measuring the artificial ant fitness. It calculates, for each individual, the number of food pellets remaining in the artificial ant food trail after 400 time steps - the best individuals are the ones who leave less pellets, meaning they have higher fitness. This function should be used with the parameter lowerisbetter set to '1'.

When regfitness is used, all the fitness values stored in the algorithm's variables are rounded to a certain number of decimal places, given by the parameter
precision. This is meant to avoid rounding errors that affect the comparison of two different individuals who have the same fitness. For example, in symbolic regression problems, it is common to see individuals with fitness values like 5.9674e-016 and 1.0131e-015. Without using the `precision` parameter, the first individual would be chosen as the best, even when the second one is smaller, because these two values are not the same - just because of the rounding error, since they are in fact both null. By default, `precision` is set to 12, but the user can give it any integer number higher than 0.

To use an alternative method for calculating fitness, all the user has to do is build a new function, respecting the input and output arguments, and set the parameter `calcfitness` with the name of the new function:

```matlab
params.calcfitness='new_calcfitness_method';
```

The new function must accept as input arguments the individual whose fitness is to measure (`vars.pop(i)`), the parameters (`vars.params`), the data variable (`vars.data`), the terminals (`vars.state.terminals`) and the `varsvals` or (`testvarsvals`) string (see Sect. 4.5) containing all the fitness cases in a format ready for assignment; it must output the individual (containing the measured fitness and the vector of values obtained on each fitness case), and if necessary the updated state variable. Please see the available fitness functions for examples on how to build new ones. The parameter `lowerisbetter` should be set accordingly.

After calling the appropriate function for calculating fitness, the function `calcfitness.m` also calls the appropriate function for adjusting fitness, whose name is stored in the parameter `adjustfitness`. If this parameter is left empty ([[]]), then the adjusted fitness will be equal to the raw fitness. In this version of GPLAB, the only available function for fitness adjustment is `linearppp.m`, a function implementing linear parametric parsimony pressure, where the adjusted fitness of an individual (g) is computed as a function of its raw fitness (f) and its size (s), that is, \(g = xf + ys \) (when lower fitness is better) or \(g = xf - ys \) (otherwise). As in [11], this function always considers \(y = 1 \), so there remains the parameter \(x \) to be set, only available in the function itself. Its default value is 32. When a fitness adjustment function is used, the selection of individuals (for reproduction and for survival) is based on the adjusted fitness, but all the textual and graphical output that may be shown during the run is still based on raw fitness.

Calculating fitness may be a time consuming task, and during the evolutionary process the same tree is certainly evaluated more than once. To avoid this, the parameter `keepevalssize` specifies how many evaluations are kept in memory for future use, in case their results are needed again. Evaluations used less often are the first to be discarded when making room for new ones. If left empty ([[]]), `keepevalssize` will be automatically set to the population size. The ideal balance between CPU time and memory is not easy to find, and one must not forget that searching the memory for the results of previous evaluations may also be a time consuming task. Nevertheless, it is almost essential to use this option in runs where the user chooses to measure the amount of
introns of the generated trees (see Sect. 3.10), particularly in problems like the artificial ant, where every tree branch is repeated many times throughout the population, and takes the same amount of time steps to evaluate.

3.10 Measuring complexity and diversity

During the run it may be useful to gather more information about the evolutionary process, namely the structure, complexity and diversity of the population. When the parameter `calccomplexity` is turned on (`calccomplexity='1'`), GPLAB stores information regarding the number of nodes and intron nodes of the trees, depth level and balancing between branches (tree fill rate, see [16]). Obtaining some of this information is extremely time consuming, particularly the number of introns, so it must not be used unless absolutely necessary.

GPLAB may also store information regarding the population diversity. Two different diversity measures are provided (‘uniquegen’ and ‘hamming’, use “help uniquegen” and “help hamming” in the MATLAB prompt for details), and the user can add more as plug and play functions (see Sect. 2.4). Several diversity measures may be calculated at the same time, and `calcdiversity` contains the list of measures to be used (it is a list like the one for `graphics`, Sect. 6.22). Measuring diversity may be more or less time consuming, depending on the measure(s) chosen.

3.11 Generation gap

The number of new individuals necessary to create a new GPLAB generation is determined by the `gengap` parameter. Like `tournamentsize` (see Sect. 3.6), the value of this parameter can represent either the absolute number of individuals (`gengap>=1`), or a proportion of the population size (otherwise). When `gengap` is left blank (`gengap=[]`) GPLAB sets it with the default value in the beginning of the run.

The default value is the population size, which corresponds to using the algorithm in the generational mode of operation. If `gengap` is set to a very low value, like 2, it clearly corresponds to a steady-state mode of operation, but there is no frontier between both modes in GPLAB. In fact, `gengap` may even be set to a value higher than the population size, which corresponds to what may be called a batch mode of operation: many more individuals are produced than the ones needed for the new population, but the SURVIVAL module (see Fig. 2.1) discards the worst of them (independently from the elitism level chosen - see Sect. 3.12).
3.12 Survival

After producing gengap new individuals for the new population (see Sect. 3.11), GPLAB enters the SURVIVAL module (see Fig. 2.1) where, from the current population plus all the new children, a number of individuals is chosen to form the new population. The survival of the individuals is a two-phase process. First, all the individuals (parents and offspring) are ordered by priority of survival. This ordering depends on the elitism level chosen, indicated in the elitism parameter. Then, each individual in the ordered list is granted survival, or not, depending on the allowed population size, the amount of resources available for the individuals, and/or the evolution of fitness.

The elitism parameter may indicate one of four levels of elitism:

- ‘replace’ - the children should replace the parent population, so they receive higher priority of survival, even if they are worse than their parents. All the children are ordered by fitness, followed by all the parents also ordered by fitness. This option is not elitist.

- ‘keepbest’ - the best individual from both parents and children is to be kept in the new population, so it receives the highest priority of survival, independently of whether it is a parent or a child. The remaining individuals are ordered in the same manner as the ‘replace’ option, children first and then the parents.

- ‘halfelitism’ - the best half of individuals from both parents and children is to be kept in the new population, so these individuals receive the higher priorities of survival (ordered by fitness) and the remaining individuals are ordered as in the ‘replace’ option.

- ‘totalelitism’ - all the individuals from both parent and children populations are ordered by fitness alone, regardless of being parents or children.

What happens after having a list of candidates to the new generation, ordered by priority of survival, depends on the survival parameter:

- ‘fixedpopsize’ - in this option, the number of individuals in the population \(n \) should remain the same along the evolution. So the first \(n \) elements of the ordered list of individuals survive to form the new generation, and the remaining individuals are simply discarded.

- ‘resources’ - in this option, the number of individuals in the population may vary according to several options, described in Sect. 3.13). The main factor influencing how many individuals form the new generation is the total amount of nodes used by the entire population or, put in another way, the amount of resources the population needs. This is an experimental technique that aims at replacing bloat control restrictions imposed at the individual level. It has shown promising results in different problems [17, 18, 19].
• ‘pivotfixe’ - in this option, the number of individuals in the population may also vary, as described in Sect. 3.14). This is also an experimental technique, aimed at saving resources and computational effort [20, 5, 13, 14].

3.13 Limited resources

Resource-limited GP is a set of techniques that aim at replacing bloat control restrictions at the individual level [17, 18, 19]. It is based on a single limit imposed on the amount of resources available to the whole GP population, where resources are the tree nodes (or other elements in non-tree-based GP, like code lines). We can think of it as limiting the amount of natural resources available to a given biological population, where each individual competes with the others for its share, and the weakest individuals perish when resources are scarce. In GP, resources become scarce when the total number of nodes in the population exceeds the predefined limit. Beyond this point, not all offspring are guaranteed to be accepted into the new generation. The allocation of resources to individuals (ensuring their survival) is mainly based on fitness, with size playing a secondary role. The candidates to the new generation are queued (see Sect. 3.12) and then given the resources they need (their number of nodes) in a first come, first served basis. The individuals requiring more resources than the amount still available are skipped (do not survive) and the allocation continues until the end of the queue. Some resources may remain unused. Some parents may survive while their offspring perish. A rule emerges from this procedure, promoting the survival of the best individuals and the rejection of ‘not good enough for their size’ individuals, where the relationship between size and fitness is not explicitly programmed, but a product of the evolutionary process.

The maximum amount of resources available to the population is indicated by the `maxresources` parameter. The user can choose to leave this parameter empty, in which case the amount will be the exact number of nodes used by the initial population. If the user indicates a limit lower than this initial amount, the first generation will break the limit, because it is not subject to the SURVIVAL module (see Fig. 2.1). As with the dynamic limit on size or depth used at the individual level (see Sect. 3.2), the limit on the amount of resources available can remain static throughout all the run or it may vary, depending on the setting of the parameter `dynamicresources`:

• ‘0’ - this setting indicates that the resource limit is not dynamic, so it remains the same throughout the run.

• ‘1’ - this setting indicates that the resource limit may increase during the run if that results in a better mean population fitness (similar to the dynamic limit at the individual level, see Sect. 3.2).
• ‘2’ - this setting indicates that the resource limit can increase like in the previous option, but can also decrease in case some resources remain unused in a given generation - they will not be readily available to the next generation. As with the dynamic limit at the individual level (see Sect. 3.2), we call this the heavy limit, and once again there is a very heavy variant (setting the parameter veryheavy=1) that allows the resource limit to drop below its initial value. This variant usually results in a large drop right after the initial generation.

When the available resources have reached the exhaustion point and the number of individuals in the population has been decreased from its initial value, a new generation of individuals may use the resources more sparingly and leave enough unused to allow the population size to increase again. This may happen when using any resource variant, static or dynamic, and has introduced different implementation options, according to the setting of the parameter resourcespopsize. After guaranteeing the survival of as many individuals as the previous population size,

• ‘steady’ - use the remaining resources to allow the survival of additional individuals of the previous generation - the parents who have not yet been accepted - by continuing the resource allocation procedure until the resources are exhausted or the initial population size is reached. This enforces a steady usage of resources.

• ‘low’ - do not use the remaining resources, thus never allowing the population size to increase. This allows a possible low usage of resources.

• ‘free’ - same as the steady option, but the population size is free, meaning that, not only it can decrease like in the other options, but it can also increase beyond the initial population size.

When the dynamic resource limit is used, the survival of the queued individuals is a two-phase process. First, the steady option is used to exhaust all the available resources. Then, the rejected individuals are given a second chance. In turn, each of them is reconsidered as a candidate for the new generation, and as many as possible are accepted, as long as their inclusion causes an improvement of the mean population fitness. This creates two implementation options, according to the setting of the parameter resourcesfitness, as the improvement may be relative to the best-of-run mean population fitness (resourcesfitness='normal'), or to the mean population fitness of the previous generation (resourcesfitness='light'). The (‘light’) option is expected to implement a limit that is raised much easier, hence the name. As soon as one of the previously rejected individuals is rejected again, the process of reselection stops and the resource limit is increased to provide the additional needed resources.
3.14 Dynamic populations

Like resource-limited GP (see Sect. 3.13), the dynamic population techniques allow the population size to vary along the generations. They add or suppress individuals from the population depending on how well fitness is evolving, in the attempt to save computational effort and improve the efficiency of the search process. Basically, individuals are suppressed as long as the best individual keeps improving, and new individuals are added when the fitness stagnates [20, 5, 13, 14]. From the several published variations of dynamic populations, GPLAB only implements a few of them. In the following description, it is considered that lower fitness is better, but GPLAB also implements the adaptations needed to operate when that is not the case.

In the beginning of the run, a state variable pivot (see Sect. 4.10) is calculated by dividing the best fitness at the initial generation \(f_0 \) by the maximum allowed number of generations for that particular run \(g_{\text{max}} \). During the run, every \(\text{periode} \) generations the difference between the current best fitness \(f_g \) and the best fitness \(\text{periode} \) generations back \(f_{g-\text{periode}} \) is computed, and divided by \(\text{periode} \). The result is stored in the state variable delta. Every generation, if delta is larger than pivot, individuals are deleted, otherwise individuals are added.

The number of individuals to delete from the population is calculated as \(P_g - t \cdot (f_{g-\text{periode}} - f_g)/f_{g-\text{periode}} \), where \(P_g \) is the population size at the current generation. The worst individuals are deleted. The number of individuals to add is calculated in order to achieve a certain population size in case the fitness stagnation continues. Depending on the ajout parameter, this intended population size can be:

- 'M1' - equal to the initial population size. The number of individuals to add is calculated as \((P_0 - P_g)/(g_{\text{max}} - g) \), where \(P_0 \) is the initial population size and \(g \) is the current generation.
- 'M2' - a proportion of the initial population size. The number of individuals to add is calculated as \((c \cdot P_0 - P_g)/(g_{\text{max}} - g) \), where \(c = \sqrt{f_g/f_0} \).

Individuals are added by mutating the best individuals in the population, using shrink and swap mutation (see Sect. 3.4) with equal probability.

3.15 Operator probabilities in runtime

GPLAB implements an automatic adaptation procedure for the genetic operator probabilities of occurrence, based on [6]. This procedure can be turned on by setting the parameter operatorprobstype to 'variable', and turned off
by setting the same variable with 'fixed'. What follows is a brief description of this procedure, along with the parameters that affect its behavior.

The algorithm keeps track of some information regarding each child produced, like which operator was used and which individuals were the parents. The first children to enter this information repository are also the first to leave it, so only the younger children are tracked. This repository of information is like a moving window on the individuals created, and its capacity, or length, is initially set by the parameter adaptwindowsize, and updated during the run in a state variable with the same name (see Sect. 4.4). This is needed in the case of variable size populations (see Sects. 3.13 and 3.14) because the window size should remain proportional to the changing population size. Another information stored in this repository for each child is how good its fitness is when compared to the best and worst fitness values of the population preceding it. Each child receives a credit value based on this information, and a percentage of this credit is attributed to its ancestors. The number of back generations receiving credit is indicated in the parameter numbackgen, and the percentage of credit that is passed from each generation back to its ancestors is indicated by percentback.

Every adaptinterval generations, the performance for each genetic operator is calculated by summing the credits of all individuals (currently inside the moving window) created by that operator, and dividing the sum by the number of individuals (currently inside the moving window) created by that operator. adaptinterval can be lower than 1, meaning that the probabilities can be adapted several times during the same generation. For example, for a population size of 1000 individuals and adaptinterval=0.5, the probabilities are updated every 500 individuals.

Each operator probability value is adapted to reflect its performance. A percentage of the probability value, percentchange, is replaced by a value proportional to the operator’s performance. Operators that have been performing well see their probability values increased; operators that have been producing individuals worse than the population from which they were born see their probability values decreased. Operators that haven’t been able to produce any children since the last adaptation will receive a substantial increase of probability, as if their performance was twice as good as the performance of the best operator. This will provide them with a chance to produce children again. The minprob parameter can be used to impose a lower limit on each operator’s probability of occurrence. The default minprob value is 0.01 divided by the number of genetic operators used.

All the parameters described here can be set by the user, but when left blank ([]) automatic parameterization will occur. The adaptation interval, adaptinterval, is set to every generation as defined by the generation gap (see Sect. 3.11); the length of the moving window, adaptwindowsize, is set with numbackgen times the population size, or numbackgen times the generation gap, which one is larger. The remaining default values are the ones indicated in the availableparams file, and can also be consulted in Table 3.2.
3.16 Initial operator probabilities

Regardless of the operator probabilities in runtime being variable or fixed, their initial values in the beginning of a run can be set either by the user or subject to an initial adaptation procedure closely related to the one previously described.

To specify the desired initial operator probabilities, one should set the parameter initialprobstype to 'fixed' and initialfixedprobs to a list of probability values (following the same order as operatornames - see Sect. 3.4). If initialfixedprobs is left blank ([]) all the probabilities will be set to equal values. To allow the initial adaptation procedure to run one should set initialprobstype to 'variable'. Additionally, and because the initial adaptation procedure also needs initial probability values to start the adaptation, one can set initialvarprobs with a list of probability values. If left blank all the probabilities will be set to equal values.

The initial adaptation procedure creates an initial random population of individuals and runs the algorithm until adaptinterval new individuals have been created. It then adapts the operator probabilities as described in Sect. 3.15, repeats the process (including the creation of a random population) and averages both sets of adapted operator probabilities. With the new operator probabilities set to the average values, the whole process is repeated until the difference between old and new probabilities is no larger than smalldifference. This parameter is initially set with the the maximum change of the operator with minimum probability (percentchange times minprob, divided by the number of genetic operators). It is increased 10% in each iteration of the process, to avoid an excessive wait time for the stabilization of the initial operator probabilities.

3.17 Stop conditions

GPLAB will run until the maximum generation indicated by the user is reached (see Sect. 2.3), or until a stop condition is reached. Stop conditions are defined by setting the hits parameter.

One hit is a tuple [f d] where f is the percentage of fitness cases that must obey the stop condition and d is the definition of the stop condition itself, meaning that the result obtained by the best individual in the population must be no lower than the expected result minus d% (of the expected result) and no higher that the expected result plus d%. The default value of hits is [100 0], which means “stop if the best individual produces exact results in all fitness cases”. [50 10] would mean “stop if the best individual produces results within minus or plus 10% of the expected results, in at least 50% of the fitness cases”.

Several stop conditions can be used, by adding rows to the hits variable. If the two previous stop conditions were to be used concurrently, hits should be set
to [100 0; 50 10]. GPLAB tests each stop condition, starting with the first row, until one is satisfied or all have been tested. It is possible not to use any stop condition (hits=[]), in which case GPLAB will only stop when reaching the maximum number of generations allowed.

3.18 Saving results to file

During a run, GPLAB can save all of the algorithm’s variables (vars, see Sect. 2.2) to file periodically, according to the parameter savetofile:

- 'never' - this setting never saves the results to file.
- 'firstlast' - this setting causes the variables of the algorithm to be saved after the initial generation has been created, and after a stop condition, or the maximum generation indicated by the user, is reached.
- 'every10' - this setting causes the variables to be saved to file in the first and last generations, as in 'firstlast', plus every 10 generations.
- 'every100' - this setting behaves like 'every10', but saves the results every 100 generations, instead of every 10.
- 'always' - this setting causes the variables to be saved to file after every new generation created. Disk space may become a problem if this option is often used.

Except for the 'never' option, all the settings will cause GPLAB to request from the user the name of the directory where to save the variables, before the algorithm begins, unless it was already stored in the parameter savedir. The new directory is created inside GPLAB’s working directory and its complete path stored in savedir. If a directory with the same name already exists, GPLAB will issue a warning. Each file will be named as indicated in savename, followed by the number of the current generation, or simply the number of the generation if savename=[].

3.19 Runtime textual output

During the run, GPLAB may output more or less textual information concerning the state of the algorithm. The amount is determined by setting the parameter output:

- 'silent' - this setting produces the minimum amount of textual output during the run. Only what are considered important messages will be displayed, like the beginning and ending of the algorithm, automatic setting of some parameters, and overriding of settings made by the user.
• 'normal' - this setting produces textual additional output during the run of the algorithm, like the identification, fitness, depth and size of the best individual found so far. If the usetestdata parameter is true (see Sect. 3.8), it also shows the test fitness (cross validation in a different data set) of the best individual found so far.

• 'verbose' - this setting will produce the same output as 'normal' plus the parameter and state variables lists in the beginning of the run.

3.20 Runtime graphical output

GPLAB can represent some of the algorithm’s state variables graphically, as plots that are updated in runtime, every generation. Additionally, some specialized functions are available for offline use (Sect. 5).

The graphics parameter indicates which of the four different possible plots will be shown in runtime. It is a list of plot names - it can be empty (graphics=), in which case there will be no runtime graphical output, or it can contain either or all of the plots described below. The order of the plot names inside the graphics list is respected when positioning the figures on the screen, beginning on the top right corner of the screen, followed by the bottom right corner, the top left corner, and finally the bottom left corner (the idea is to also keep the textual output visible for as long as possible). Each plot may contain more or less information, depending on other parameter settings:

• {plotfitness} - Figure 3.1. This plot shows the evolution of the maximum (best of current generation), median, average, and average±std.dev. values of fitness. In bold, it also shows the fitness of the best individual found so far; if the usetestdata parameter is true (see Sect. 3.8), it will also show the evolution of the test fitness (cross validation in a different data set) of the best individual found so far. When the elitism parameter is set to other than 'replace' (see Sect. 3.12) the maximum and best so far fitness values are always the same.

• {plotdiversity} - Figure 3.2. This plot shows the evolution of the population diversity measures indicated in the parameter calcdiversity (see Sect. 3.10). Showing more than one diversity measure at the same time may not be very practical due to differences in the range of possible values.

• {plotcomplexity} - Figure 3.3. This plot shows the evolution of tree depth and size, and the percentage of introns, during the run. If the calccomplexity parameter is on (see Sect. 3.10), the plot will show the values concerning the best individual found so far and the population average; otherwise, only the values concerning the best so far will be shown. The bold line shows the (dynamic) limit on depth or size, depending on
the parameter `depthnodes` (see Sect. 3.2). If `calccomplexity` is on, the mean tree fill rate (see [16]) will also be shown.

- `{plotoperators}` - Figure 3.4. This plots shows the evolution of the operators probabilities (in bold) and (cumulative) frequencies of occurrence. Both the plots and the legends showing the current values are updated every generation, even if the operators probabilities of occurrence are updated more or less often. Also shown are the number of reproductions (see Sect. 3.4) and clonings resulting from failed genetic operators (see Sect. 3.2), of the current generation.

Other examples of possible graphics settings:

- `{plotfitness,plotcomplexity}` - this setting draws both fitness and complexity plots, on the top right corner and bottom right corner of the screen, respectively.

- `{plotfitness,plotdiversity,plotoperators}` - this draws the fitness, diversity and operators plots, leaving only the bottom left corner of the screen empty.

Every generation the plots are updated with the values of the current generation. The legends of the plots show the last values plotted - they may indicate absolute instead of relative values, whatever seemed to be more useful. When a previously stopped algorithm is run for some additional generations, all the previous history values are drawn, and the plots continued, as if the algorithm was never interrupted.
Figure 3.1: Graphical output produced by the `plotfitness` option in the `graphics` parameter

Figure 3.2: Graphical output produced by the `plotdiversity` option in the `graphics` parameter
Figure 3.3: Graphical output produced by the 'plotcomplexity' option in the graphics parameter

Figure 3.4: Graphical output produced by the 'plotoperators' option in the graphics parameter
Chapter 4

State

The following sections describe aspects related to the state variables used by GPLAB. These variables store information that reflect the current running conditions of the algorithm, as well as the last batch of results produced. Some variables also store historic information concerning the results produced, useful for a posterior analysis (including visualization - see Sect. 5) of the complete run. Although not part of the state structure, the current population of individuals (\textit{pop}) will also be described as a state variable (see Sect. 2.2). Each subsection concerns one or more state variables. Table 4.1 indicates the location of each state variable in this manual.

Table 4.1: Location of state variables in this manual

<table>
<thead>
<tr>
<th>State variable</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>adaptwindow</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>adaptwindowsize</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>arity</td>
<td>4.3</td>
<td>48</td>
</tr>
<tr>
<td>avgfitness</td>
<td>4.6</td>
<td>50</td>
</tr>
<tr>
<td>avgintronshistory</td>
<td>4.9</td>
<td>51</td>
</tr>
<tr>
<td>avglevelhistory</td>
<td>4.9</td>
<td>51</td>
</tr>
<tr>
<td>avgnodeshistory</td>
<td>4.9</td>
<td>51</td>
</tr>
<tr>
<td>avgtreefillhistory</td>
<td>4.9</td>
<td>51</td>
</tr>
<tr>
<td>bestavgfitnesssofar</td>
<td>4.6</td>
<td>50</td>
</tr>
<tr>
<td>bestfithistory</td>
<td>4.7</td>
<td>50</td>
</tr>
<tr>
<td>bestintronshistory</td>
<td>4.7</td>
<td>50</td>
</tr>
<tr>
<td>bestlevelhistory</td>
<td>4.7</td>
<td>50</td>
</tr>
<tr>
<td>bestnodeshistory</td>
<td>4.7</td>
<td>50</td>
</tr>
<tr>
<td>bestsofar</td>
<td>4.7</td>
<td>50</td>
</tr>
<tr>
<td>bestsofarhistory</td>
<td>4.7</td>
<td>50</td>
</tr>
<tr>
<td>cloninghistory</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>clonings</td>
<td>4.4</td>
<td>48</td>
</tr>
</tbody>
</table>

\textit{continued on next page}
Table 4.1: continued

<table>
<thead>
<tr>
<th>State variable</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>diversityhistory</td>
<td>4.9</td>
<td>51</td>
</tr>
<tr>
<td>fithistory</td>
<td>4.6</td>
<td>50</td>
</tr>
<tr>
<td>functions</td>
<td>4.3</td>
<td>48</td>
</tr>
<tr>
<td>generation</td>
<td>4.8</td>
<td>50</td>
</tr>
<tr>
<td>gengap</td>
<td>4.8</td>
<td>50</td>
</tr>
<tr>
<td>gengaphistory</td>
<td>4.8</td>
<td>50</td>
</tr>
<tr>
<td>iniclevel</td>
<td>4.2</td>
<td>48</td>
</tr>
<tr>
<td>initpopsize</td>
<td>4.1</td>
<td>47</td>
</tr>
<tr>
<td>keepevals</td>
<td>4.5</td>
<td>49</td>
</tr>
<tr>
<td>lastadaptation</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>lastid</td>
<td>4.1</td>
<td>47</td>
</tr>
<tr>
<td>levelhistory</td>
<td>4.2</td>
<td>48</td>
</tr>
<tr>
<td>maxfitness</td>
<td>4.6</td>
<td>50</td>
</tr>
<tr>
<td>maxgen</td>
<td>4.8</td>
<td>50</td>
</tr>
<tr>
<td>maxlevel</td>
<td>4.2</td>
<td>48</td>
</tr>
<tr>
<td>maxresources</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>maxresourceshistory</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>medianfitness</td>
<td>4.6</td>
<td>50</td>
</tr>
<tr>
<td>minfitness</td>
<td>4.6</td>
<td>50</td>
</tr>
<tr>
<td>operatorfreqs</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>operatorprobs</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>opfreqhistory</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>ophistory</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>pivot</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>pop</td>
<td>4.1</td>
<td>47</td>
</tr>
<tr>
<td>popadjustedfitness</td>
<td>4.5</td>
<td>49</td>
</tr>
<tr>
<td>popexpected</td>
<td>4.5</td>
<td>49</td>
</tr>
<tr>
<td>popfitness</td>
<td>4.5</td>
<td>49</td>
</tr>
<tr>
<td>popnormfitness</td>
<td>4.5</td>
<td>49</td>
</tr>
<tr>
<td>poppranking</td>
<td>4.5</td>
<td>49</td>
</tr>
<tr>
<td>popsize</td>
<td>4.1</td>
<td>47</td>
</tr>
<tr>
<td>popsizehistory</td>
<td>4.1</td>
<td>47</td>
</tr>
<tr>
<td>reproductionhistory</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>reproductions</td>
<td>4.4</td>
<td>48</td>
</tr>
<tr>
<td>stdfitness</td>
<td>4.6</td>
<td>50</td>
</tr>
<tr>
<td>testvarsvs</td>
<td>4.5</td>
<td>49</td>
</tr>
<tr>
<td>terminals</td>
<td>4.3</td>
<td>48</td>
</tr>
<tr>
<td>tournamentsize</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>usedresources</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>usedresourceshistory</td>
<td>4.10</td>
<td>51</td>
</tr>
<tr>
<td>varsvals</td>
<td>4.5</td>
<td>49</td>
</tr>
</tbody>
</table>
4.1 Population

The variable that holds the information concerning the current population the algorithm is using in each moment is `pop`, a one-dimensional array of individuals. Each individual is a structure with fields:

- **id** - a unique identifier. If an individual survives from one generation to the next, its identifier will not be changed. If two individuals are identical but were generated independently, their identifiers will be different.

- **origin** - the name of the operator that generated this individual, or 'random' if it was randomly generated for the initial population.

- **tree** - the parse tree.

- **str** - the translation of the parse tree into a valid MATLAB expression.

- **parents** - the list of identifiers of the parents that produced this individual, or the empty list (`[]`) if the individual has a random origin.

- **xsites** - the numbers of the nodes where the genetic operator split the parent trees. This field is merely informative.

- **nodes** - the number of nodes that constitute the parse tree. This field remains empty until needed.

- **introns** - the number of nodes on the parse tree that are considered introns. This field remains empty until needed.

- **level** - the depth of the parse tree. This field remains empty until needed.

- **fitness** - the raw fitness of the individual in the current data set, `data` (see Sect. 2.2).

- **adjustedfitness** - the adjusted fitness of the individual in the current data set, calculated from `fitness` (see Sects. 3.8 and 3.9).

- **result** - the results obtained by the individual in each fitness case of the current data set.

- **testfitness** - the raw fitness of the individual in a test data set, for cross validation (see Sect. 2.2).

- **testadjustedfitness** - the adjusted fitness of the individual in a different data set, calculated from `testfitness` (see Sects. 3.8 and 3.9).
The state variable \texttt{initpopsize} stores the population size of the initial generation, \texttt{popsize} indicates the current population size, \textit{i.e.}, how many individuals are currently in \texttt{pop}, and \texttt{popsizehistory} keeps a record of the population size of each past generation, since it may vary along the run (see Sects. 3.13 and 3.14). The \texttt{lastid} variable contains the last unique identifier generated (and used in the last individual created).

4.2 Tree depth/size

The parameter \texttt{iniclevel} specifies the initial maximum depth/size allowed for the randomly created trees on the initial generation (see Sect. 3.1), and \texttt{maxlevel} indicates the current (updated every generation) maximum depth/size allowed for any parse tree (this is the dynamic depth/size - see Sect. 3.2). \texttt{levelhistory} stores all the past settings of \texttt{maxlevel}, one row per generation.

4.3 Functions and terminals

The state variables \texttt{functions} and \texttt{terminals} are similar to the parameters with the same names (see Sect. 3.3), but they present some important differences. \texttt{terminals} includes not only the constants or null arity functions specified in the parameters, but also all the variables needed to evaluate the individuals in the current data set, generated automatically before the run starts (see Sect. 3.3). \texttt{functions} includes not only the functions specified in the parameters, but also all the terminals included in the state variable \texttt{terminals}. \texttt{arity} contains the second column of the state variable \texttt{functions}, \textit{i.e.}, the number of input arguments of all the functions and terminals used. This seemingly redundant organization of variables increases the efficiency of the algorithm when creating new parse trees.

4.4 Operator probabilities and frequencies

The state variable \texttt{operatorprobs} contains the current operator probabilities, one value for each operator, and \texttt{ophistory} contains the past settings of \texttt{operatorprobs}, one row per generation and one column per operator. The cumulative absolute frequency of occurrence of each operator is stored in
operatorfreqs, and opfreqhistory stores the past settings of operatorfreqs, one row per generation and one column per operator.

Also stored are the current number of reproductions (see reproduction parameter in Sect. 3.4) and its past settings, reproductionhistory. The current number of clonings resulting from failed genetic operators (see Sect. 3.2) is also stored, one column per operator, as well as its past settings, in cloninghistory, one row per generation and one column per operator.

When the operator probabilities are automatically adapted, adaptwindow is the moving window that stores the information about past produced children (see Sect. 3.15), adaptwindowsize indicates the current length that adaptwindow must have, since it may vary along the run when using variable size populations (see Sect. 3.15), and lastadaptation stores the last identifier generated when the last adaptation occurred.

4.5 Population fitness

popfitness,popadjustedfitness,popnormfitness,popexpected,popranking keepevals,varsvals,testvarsvals

Although each individual in pop stores its own fitness values (raw and adjusted), the state variables popfitness and popadjustedfitness also keep lists of the raw and adjusted fitness values of all individuals. Depending on the sampling procedure used (see Sect. 3.6), the normalized fitness, expected number of children, and ranking may also need to be calculated. These are based on the adjusted fitness and stored in the state variables popnormfitness, popexpected, and popranking.

Evaluating an individual for its fitness may be a time consuming task, so previous evaluations may be stored in memory in case they are needed again (see Sect. 3.9), in the state variable keepevals, with the following fields:

- **inds** - the string of the individual.
- **fits** - the fitness of the individual.
- **adjustedfits** - the adjusted fitness of the individual.
- **ress** - the result of the evaluation in each fitness case.
- **introns** - the number of introns of the individual, or empty (\[]\).
- **used** - how many times this evaluation has been used.

The memory used by this variable is cleared when the run ends.

Because a great part of the time consumed in the evaluation of individuals consists on the assignment of the fitness cases to the variables (particularly when in presence of several inputs), a string containing all the inputs, ready for assignment, is also kept as the varsvals state variable. When a test data set is used for cross validation, a similar string testvarsvals contains the inputs.
of the test fitness cases. These strings are constructed every time the fitness cases change (i.e., only once in the beginning of the evolutionary process, in this version of the toolbox).

4.6 Fitness statistics

-maxfitness, minfitness, avgfitness, stdfitness, medianfitness
-fithistory, bestavgfitnesssofar

Every time a new generation is completed, the maximum, minimum, average, std.dev. and median fitness found in the population are stored in the state variables maxfitness, minfitness, avgfitness, medianfitness, and stdfitness. Additionally, every time these variables are updated, a new row is added to the variable fithistory, which contains five columns, one for each fitness measure, and as many rows as generations completed so far. Finally, the variable bestavgfitnesssofar stores the best average fitness achieved so far during the run, a value needed for the implementation of some of the variants of resource-limited GP (see Sect. 3.13). All these values refer to raw fitness, not adjusted fitness.

4.7 Best individual

-bestsofar, bestsofarhistory, bestfithistory
-bestnodeshistory, bestintronshistory, bestlevelhistory

Ultimately, the result of a genetic programming algorithm is one individual - the best individual found during the whole run. bestsofar is a structure like each individual in pop, and stores the individual with better fitness found since the beginning of the run. bestsofarhistory stores a list of all the individuals that have once been considered the best so far. Each time a new individual updates the variable bestsofar, the same individual is added to bestsofarhistory. bestfithistory, bestnodeshistory, bestintronshistory and bestlevelhistory contain, respectively, the fitness, number of nodes, number of introns, and depth of the parse trees of all the individuals in bestsofarhistory. bestfithistory may also contain the test fitness (cross validation in a different data set) of the best individual, in a separate column, in case the usetestdata parameter was on (see Sect. 3.8).

4.8 Control

-generation, maxgen, gengap, gengaphistory

GPLAB runs until either a stop condition (Sect. 3.17) or the maximum generation indicated by the user (see Sect. 2.3) is reached. The state variable
generation indicates which generation is currently running, and maxgen indicates the maximum number of generations allowed. The gengap variable indicates the current generation gap (see Sect. 3.11), since it can vary when variable size populations are used (see Sects. 3.13 and 3.14), and gengaphistory stores all the past gengap values.

4.9 Complexity and diversity statistics/history

avgnodeshistory, avgintronshistory, avglevelhistory, avgtreefillhistory, diversityhistory

When complexity and diversity is measured during the run (see Sect. 3.10), the results are stored in state variables. The average number of tree nodes and intron nodes per generation are kept in the variables avgnodeshistory and avgintronshistory. The average tree depth and fill rate (unbalanced trees have lower fill rates than balanced trees) per generation are kept in the variables avglevelhistory and avgtreefillhistory. Diversity measures per generation are kept in the variable diversityhistory, one column per measure used (see Sect. 3.10).

4.10 Resources and variable size populations

maxresources, maxresourceshistory, usedresources, usedresourceshistory
delta, pivot, tournamentsize

When using resource-limited GP (see Sect. 3.13) there is maximum number of available resources (maximum allowed number of nodes in the entire population) that may be updated on each generation, and so it is kept as the state variable maxresources, while maxresourceshistory stores all its past values. Even when fixed size populations are used, the total number of nodes in the population varies along the generations, and the current value is kept in usedresources while its past values are stored in usedresourceshistory. The value of usedresources is shown as textual output on each generation.

maxresources is also shown when resource-limited GP is used (see Sect. 3.13).

When using dynamic populations, the two state variables pivot and delta are calculated and used to decide whether individuals should be added or removed from the population. pivot is calculated in the beginning of the run and then remains fixed until the end, while delta is updated every period every generations. See Sect. 3.14 for details.

Finally, the state variable tournamentsize indicates the current number of individuals (the minimum is 2) that participate in a tournament (see Sect. 3.6). This number is updated on each generation so that the selective pressure is maintained along the run when variable size populations are used.
Chapter 5

Offline graphical output

After completing a run, the user has some specialized functions available for visualization of different aspects of the evolution and results obtained by the algorithm. Some of them provide arguments to define the size of the plot and whether it should be drawn in color or black and white.

5.1 Accuracy versus Complexity

This plot is drawn by the function `accuracy_complexity` (use “help accuracy_complexity” in the MATLAB prompt for usage). It draws lines representing the evolution of the fitness, the depth, and the number of nodes of all the best individuals found during the run (Fig. 5.1).

5.2 Pareto front

This plot is drawn by the function `plotpareto` (use “help plotpareto” in the MATLAB prompt for usage). It shows the best fitness found for each tree size, the pareto front (i.e., the set of solutions for which no other solution was found which both has a smaller tree and better fitness), and the sizes and fitnesses of the current population (`vars.pop`). This plot can easily be coupled as a runtime plot updated in every generation, as it does not request a new figure to be drawn upon. Use the command “figure” before calling this function to see the plot in a different window, if necessary.

5.3 Desired versus Obtained

This plot is drawn by the function `desired_obtained` (use “help desired_obtained” in the MATLAB prompt for usage). It draws lines representing the
function the algorithm was trying to approximate and several approximations obtained in different generations (Fig. 5.3). Appropriate for symbolic regression problems only.

5.4 Operator Evolution

This plot is drawn by the function `operator_evolution` (use “help operator_evolution” in the MATLAB prompt for usage). It draws lines representing the evolution of the operator’s probabilities during the run (Fig. 5.4). It is not as detailed as the `plotoperators` drawn in runtime (see Sect. 6.22).

5.5 Tree visualization

This plot is drawn by the function `drawtree` (use “help drawtree” in the MATLAB prompt for usage). It draws a GPLAB tree with the respective node labels. Enlarge the figure if labels are overlapped.

![Graphical output produced by the function `accuracy_complexity`](image)

Figure 5.1: Graphical output produced by the function `accuracy_complexity`
Figure 5.2: Graphical output produced by the function `plotpareto`
Figure 5.4: Graphical output produced by the function `operator_evolution`

Figure 5.5: Graphical output produced by the function `drawtree`
Chapter 6

Summary of toolbox functions

The more than one hundred functions provided in the toolbox GPLAB can be divided into several different functional groups. What follows is a list of the functions included in each group. The same function may be listed in more than one group. For help on a particular function, use “help <function_name>” in the MATLAB prompt.

6.1 Demonstration functions

- demo
- demoparity
- demoant (see also 6.10)
- demoplexer

6.2 Running the algorithm and testing result

- gplab
- testind

6.3 Parameter and state setting

- setparams
- resetparams
- resetstate
• setoperators
• addoperators
• setfunctions
• addfunctions
• setterminals
• addterminals

6.4 Automatic variable checking
These are called by gplab and should not be called by the user:
• checkvarsparams
• checkvarsstate
• checkvarsdata

6.5 Description of parameter and state variables
• availableparams
• availablestate

6.6 Creation of new generations
• genpop
• generation
• pickoperator
• applyoperator
• pickparents
• applysurvival (see also 3.12)
• updatestate
• stopcondition
6.7 Creation of new individuals

- initpop
- fullinit
- growinit
- rampedinit
- newind
- maketree (see also 6.11)

6.8 Filtering of new individuals

- validateinds
- strictdepth
- strictnodes
- dyndepth
- dynnodes
- heavydyndepth
- heavydynnodes

6.9 Protected and logical functions

- mydivide
- mylog
- mylog2
- mylog10
- mysqrt
- mypower
- myif
- kozadivide
- kozasqrt
- nand
- nor
6.10 Artificial ant functions

- demoant (see also 6.1)
- antmove
- antleft
- antright
- antprogn2
- antprogn3
- antif
- antfoodahead
- antnewpos
- anteval
- antfitness (see also 6.16)
- antfitness_lib (see also 6.16)
- anttrail (see also 6.12)
- antsim
- antpath

6.11 Tree manipulation

- maketree (see also 6.7)
- treelevel
- nodes
- intronnodes
- tree2str
- findnode
- swapnodes
- updatenodeids
6.12 Data manipulation

- xy2inout
- anttrail (see also 6.10)
- saveall

6.13 Expected number of children

- calcpopexpected
- absolute
- rank85
- rank89

6.14 Sampling

- sampling
- roulette
- sus
- wheel
- tournament
- lexicotour
- doubletour
- tourbest

6.15 Genetic operators

- crossover
- mutation
- shrinkmutation (see also 6.19)
- swapmutation (see also 6.19)
6.16 Fitness

- calcpopfitness
- calcfitness
- regfitness
- evaluate_tree
- antfitness (see also 6.10)
- antfitness_lib (see also 6.10)
- anteval (see also 6.10)
- linearppp

6.17 Survival

- applysurvival (see also 6.6)
- fixedpopsise
- resources (see also 6.18)
- pivotfixe (see also 6.19)

6.18 Limited resources

- resources (see also 6.17)
- low
- steady
- free
- normal
- light

6.19 Dynamic populations

- pivotfixe (see also 6.17)
- ajout
- suppression
- shrinkmutation (see also 3.4)
- swapmutation (see also 3.4)
6.20 Diversity measures

- uniquegen
- hamming

6.21 Automatic operator probability adaptation

- isoperator
- setinitialprobs
- automaticoperatorprobs
- moveadaptwindow
- addcredit
- updateoperatorprobs

6.22 Runtime graphical output

These are called by gplab and should not be called by the user:

- graphicsinit
- graphicsstart
- graphicscontinue
- graphicsgenerations

6.23 Offline graphical output

- desired_obtained
- accuracy_complexity
- plotpareto
- operator_evolution
- drawtree
- antsim (see also 6.10)
6.24 Utilitarian functions

- explode
- implode
- scale
- normalize
- shuffle
- orderby
- intrand
- countfind
- findfirstindex
- isvalid
- ranking
- fixdec
- uniquenosort
- nansum
- nullexceeding

6.25 Text input files

These are used in pairs. exp_*.txt (exponential) and quartic_*.txt (quartic polynomial $x^4 + x^3 + x^2 + x$) contain 21 equidistant points in the interval -1 to $+1$. parity*_bit_.txt and 11-multiplexer_.txt contain all the evaluation cases. santafetrail.txt and santafepellets.txt contain, respectively, the Santa Fe artificial ant trail and the number of food pellets in it.

- exp_x.txt and exp_y.txt
- quartic_x.txt and quartic_y.txt
- parity3bit_x.txt and parity3bit_y.txt
- parity5bit_x.txt and parity5bit_y.txt
- santafetrail.txt and santafepellets.txt (see also 6.10)
- 11-multiplexer_x.txt and 11-multiplexer_y.txt
6.26 Octave functions

These functions are to be used in Octave only. They implement some operators that are available in their functional form in MATLAB but not Octave, and the four demonstration functions without calling any graphical output, since it is currently incompatible with Octave.

• and
• or
• plus
• minus
• times
• demo
• demoparity
• demoant
• demoplexer

6.27 License file

• license.txt
Bibliography

Appendix A

Modified functions in GPLAB 3

availableparams.m: previous parameter survival is now called elitism; new parameters adjustfitness, ajout, drawperspin, dynamicresources, maxresources, periode, resourcesfitness, resourcespopsize, save-name, survival and veryheavy; parameters autovars, calccomplexity and fixedlevel changed type; parameters adaptinterval, adaptwindowsize and gengap changed validation domain; new possible setting ‘antfitness.lib’ for parameter calcfitness; new possible setting ‘doublertour’ for parameter sampling

availablestates.m: new state variables adaptwindowsize, bestavgfitnesssofar, delta, gengap, gengaphistory, initpopsize, maxresources, maxresourceshistory, pivot, popadjustedfitness, popsizehistory, testvarsvals, tournamentsize, usedresources and usedresourceshistory; removed state variable depthnodes; initial setting for lastadaptation is now ‘0’

checkvarsparams.m: new check for parameter drawperspin; modified checks for parameters gengap, adaptinterval and tournamentsize; slight modification in usage of parameter fixedlevel due to type change; slight change of logical operators for compatibility with Octave; removed ‘directory already exists’ error message; some fprintf calls are not executed any longer when output='silent'

checkvarsstate.m: new checks for new state variables; deleted check for removed state variable depthnodes; extended the initialization of keepevals with additional fields; slight modification in usage of parameters fixedlevel and autovars due to type change; slight change of logical operators for compatibility with Octave
demo.m, demoparity.m, demoant.m: slight modifications due to new parameters or parameter type change

updatestate.m: new updates for new state variables; state.popranking now uses adjusted fitness instead of raw fitness; slight modification in usage of parameter calccomplexity due to type change; slight change of logical operators for compatibility with Octave; modified call to calcfitness.m; slight efficiency modifications

calcfitness.m: change in input arguments (the entire individual is now passed instead of just the tree, and a new argument indicates whether to use test data); change in output arguments (the entire individual is returned instead of just two of its fields); change in call to specific fitness function; added call to fitness adjustment function; added fields adjustedfitness and introns to variable state.keepevals

calcpopfitness.m, stopcondition.m: modified call to calcfitness.m

antfitness.m, regfitness.m: change in input and output arguments as in calcfitness.m; conditional call to new function evaluate_tree.m when eval issues the “nesting 32” MATLAB error (regfitness.m only)

lexictour.m, tournament.m: variable tournamentsize now used from state instead of params; added procedure to draw individuals in several chunks if needed for memory reasons; now uses adjusted fitness instead of raw fitness; some efficiency modifications; replaced most computations by a call to function tourbest.m (tournament.m only)

roulette.m, sus.m: now these do not actually spin the wheel, but call the new function wheel.m to do it

absolute.m: now uses adjusted fitness instead of raw fitness

crossover.m, mutation.m: added input argument params; deleted some comments; added fields adjustedfitness and testadjustedfitness to the newly created individuals; now uses variable depthnodes from params instead of state (mutation only)

newind.m: added fields adjustedfitness and testadjustedfitness to the newly created individuals

applyoperator.m: added input argument in call to genetic operator

applysurvival.m: added input and output argument state; parameter elitism is now used instead of survival; now uses adjusted fitness instead of raw fitness; now orders the population using an additional column in the allpopfit variable; does not trim the ordered population any longer, instead calls a survival function to do it
automaticoperatorprobs.m : change in input parameters for efficiency reasons (some values that were passed as arguments are now calculated only if needed; modified call to calcfitness.m; removed many comments; easier way to calculate when to adapt the probabilities)

moveadaptwindow.m : now uses variable adaptwindowsize from state instead of params

gplab.m : slight change of logical operators for compatibility with Octave; added textual output regarding number of individuals and maximum and used resources (total number of nodes in population), per generation; removed optional input argument in call to generation.m

genpop.m : variable depthnodes now used from params instead of state; modified call to automaticoperatorprobs.m; added computation of new variables state.testvarsvals and state.pivot; slight efficiency modifications

generation.m : slight change of logical operators for compatibility with Octave; modified calls to automaticoperatorprobs.m (the computation of some of the arguments was eliminated) and applysurvival.m; slight efficiency modifications

saveall.m : now uses the setting of the new parameter savename (when not empty) to name the result files

testind.m : change in input arguments (the entire individual is now passed instead of its string and tree); slight modification in usage of parameter autovars due to type change; modified call to calcfitness.m

swapnodes.m : slight efficiency modifications (used additional input argument in calls to function exist)

isvalid.m : added a new type for validation; slight change of logical operators for compatibility with Octave

hamming.m : added test for exceptional case of single individual population

normalize.m : added a few tests for exceptional conditions

intrand.m : now it can generate matrices instead of just scalars

intronnodes.m : modified calls to calcfitness.m

graphicsstart.m, graphicscontinue.m, graphicsgenerations.m, setinitialprobs.m : slight modification in usage of calccomplexity due to type change

maketree.m, mypower.m, setparams.m, scale.m, shuffle.m, orderby.m : slight change of logical operators for compatibility with Octave
operator_evolution.m, desired_obtained.m, plotpareto.m: slight change of logical operators for compatibility with Octave

updateoperatorprobs.m, addcredit.m, dyndepth.m, dynnodes.m: slight change of logical operators for compatibility with Octave

desired_obtained.m, plotpareto.m, dyndepth.m, dynnodes.m: slight change of logical operators for compatibility with Octave; modified call to calcfitness.m

heavydyndepth.m, heavydynnodes.m: slight change of logical operators for compatibility with Octave; modified call to calcfitness.m; added test to new parameter veryheavy

drawtree.m: modified call to axis for compatibility with Octave

sampling.m: extended a comment

antfoodahead.m: deleted some comments

antif.m, antleft.m, antmove.m, antprogn2.m, antprogn3.m, antright.m: removed unnecessary output argument and some comments

antsim.m: solved small bug in displaying the “Best occurred in generation:” info; modified call to antfitness.m
Appendix B

New functions in GPLAB 3

11-multiplexer_x.txt, 11-multiplexer_y.txt, demoplexer.m: data files and demo function for the 11-multiplexer problem

antfitness_lib.m: alternative way of calculating the fitness of the artificial ant, as the number of remaining pellets, so that lower fitness is better

evaluate_tree.m: alternative to using eval in regfitness.m that is called whenever eval issues the “nesting 32” MATLAB error

pivotfixe.m, ajout.m, suppression.m: survival and auxiliary functions that implement the dynamic populations technique

shrinkmutation.m and swapmutation.m: new genetic operators, used by the function ajout.m

resources.m, steady.m, low.m, free.m, light.m, normal.m: survival and auxiliary functions that implement the resource-limited techniques with their several variants

nullexceeding.m: utilitarian function used by resources.m

fixedpopsize.m: survival function that maintains a fixed number of individuals in the population, typical of standard GP

linearpp.m: fitness adjustment function

wheel.m: function that actually spins the wheel, called by both roulette.m and sus.m

doubletour.m: new type of tournament, calls new function tourbest.m to do most of the computations
tourbest.m: does most of the tournament computations for tournament.m and doubletour.m, based on size or fitness

findnode.m: the same function used in version 2.0 before being abandoned for an efficiency patch, now used by the new genetic operators shrinkmutation.m and swapmutation.m, with a slight change of logical operators for compatibility with Octave

nansum.m: utilitarian function used by hamming.m

and.m, or.m, plus.m, minus.m, times.m: for Octave only, since they exist in MATLAB

demo.m, demoant.m, demoparity.m, demoplexer.m: for Octave only, the demo functions without graphical output