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NOTE:

These lecture notes were developed during the Spring Semester of 1996 as handouts for an
experimental course proposed by the author.

Whereas numerous excellent books have been written on related subjects, it was the author’s
objective to synthetise the most important aspects of Engineering Computing into a set of
lecture notes.

It is assumed that student would have had a first course in programming, linear algebra,
and differential equations.

Because most related books draw their examples from non-Civil Engineering disciplines,
(and because of the author’s background) most of the examples in these notes are taken from
Structural Engineering/Mechanics. Hence, extensive derivation/explanation is provided prior
to each problem for those students coming from unrelated disciplines.

Any questions/comments should be forwarded to saouma@civil.colorado.edu

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students
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Chapter 1

WEEK I; MATLAB: Basic
Introduction

1.1 Background

1.1.1 What is MATLAB?

1 MATLAB is an interactive, matrix-based system for scientific and engineering calculations.
Contrarily to programming languages, such as Fortran, C, or Basic you can solve complex
numerical problems without actually writing a program.

2 MATLAB is an abbreviation for MATrix LABoratory.

3 MATLAB is the most widely used software package for interactive numeric computation,
graphics, data analysis1.

1.1.2 Availability

4 MATLAB is available in the CAD lab (PC/Windows version), as well as in the Bechtel
Laboratory.

5 A relatively inexpensive Student Edition is available from Prentice Hall and can be purchased
from the Buffalo Chip.

1.1.3 Accessing MATLAB

6 Once you clicked on the MATLAB icon, the menu shown in Fig. 1.1 will be displayed which
may be accomplished through browsing, Fig. 1.1.3.

7 Fig. 1.1.3 illustrates the content of the default directory containing your source code.
1Other similar products include IDL, and MATHEMATICA for symbolic computations.
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Figure 1.1: Matlab’s Main Window

7 Whereas for simple operations, you may directly enter MATLAB commands in the main
window and execute them, for long codes it is far simpler to create files containing the MATLAB
commands. Those files can then be easily created, edited, and modified.

8 If you are using files (with extension .m) to store your code, you must tell MATLAB in which
directory those files are stored, this is accomplished by setting the path, Fig. 1.1.3.
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Figure 1.2: Set Path in Matlab

8 Finally, Fig. ?? illustrates a typical working envirnoment, where a file has been selected for
editing in one window, and program is executed in the other. Note that upon completion of
the program, you can always querry values in the MATLAB main window.

9

1.1.4 Help

10 for help you can either type help sqrt (i.e. help command followed by the name of the
function, or you may type lookfor square (similar to the man -k in Unix).

1.1.5 Basic Features

11 When you run MATLAB, there will be one or more windows on your monitor. The command
window is the primary one where you interact with MATLAB, and the MATLAB prompt will
look like
>>
with a blinking cursor to the right.

12 Basic commands are shown in Table 1.1.

13 MATLAB has also a few special characters, Table 1.2
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Figure 1.3: Selecting path Directory in Matlab

General
help help facility
demo run demonstrations
who list variables in memory
what list M-files on disk
clear clear workspace
computer type of computer̂ C local abort
exit exit MATLAB
quit same as exit

Table 1.1: Basic Commands
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Figure 1.4: Directory Containing Source Code in Matlab

Figure 1.5: Matlab’s Operating Environment
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Special Characters
= assignment statement
[ used to form vectors and matrices
] see [
( arithmetic expression precedence
) see (
. decimal point
... continue statement to next line
, separate subscripts and function arguments
; end rows, suppress printing
% comments
: subscripting, vector generation
! execute operating system command

Table 1.2: Special Characters

1.1.6 Simple Math

14 To begin with, let us go through a simple example

>> 29+6
ans=

35
>> 21*2+5^2
ans=

67
>> force=10
force =

10
>> distance=5
distance=

5
>> moment=force*distance
moment=
50

>>

Try now the following commands who, whos, clear, who.

15 The basic arithmetic operations are
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+ addition 7.2+9.6
− subtraction 11-92
∗ multiplication 2.9*4.5̂ power 2.6̂ 0.45
\ or / left or right division 27/5=5\27

1.1.7 Common Mathematical Functions

16 Common mathematical functions are shown in Table 1.3

1.1.8 Statements, Expressions and Variables

17 MATLAB is an interprative language; the expressions you type are interpreted and evaluated.
MATLAB statements are usually of the form
variable = expression, or simply
expression

18 Expressions are usually composed from operators, functions, and variable names. Evaluation
of the expression produces (most often) a matrix, which is then displayed on the screen and
assigned to the variable for future use. If the variable name and = sign are omitted, a variable
ans (for answer) is automatically created to which the result is assigned.

19 A statement is normally terminated with the carriage return. However, a statement can
be continued to the next line with three or more periods followed by a carriage return. On
the other hand, several statements can be placed on a single line if separated by commas or
semicolons.

a=2;b=4;c=-240;deltasq=b^2-4*a*c;delta=sqrt(deltasq)
delta =

44
x1=(-b+delta)/(2*a)
x1 =

10
x2=(-b-delta)...
/(2*a)
x2 =

-12

20 If the last character of a statement is a semicolon, the printing is suppressed, but the as-
signment is carried out. This is essential in suppressing unwanted printing of intermediate
results.

21 MATLAB is case-sensitive in the names of commands, functions, and variables. For example,
Apples is different from APPLES.
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Elementary Math Functions
abs absolute value or complex magnitude
angle phase angle
sqrt square root
real real part
imag imaginary part
conj complex conjugate
round round to nearest integer
fix round toward zero
floor round toward −∞
ceil round toward ∞
sign signum function
rem remainder
exp exponential base e
log natural logarithm
log10 log base 10

Trigonometric Functions
sin sine
cos cosine
tan tangent
asin arcsine
acos arccosine
atan arctangent
atan2 four quadrant arctangent
sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangent
asinh hyperbolic arcsine
acosh hyperbolic arccosine
atanh hyperbolic arctangent

Special Functions
bessel bessel function
gamma gamma function
rat rational approximation
erf error function
inverf inverse error function
ellipk complete elliptic integral of first kind
ellipj Jacobian elliptic integral

Table 1.3: Common Mathematical Functions
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1.1.9 Display Formats

22 All computations in MATLAB are performed in double precision.

23 The format of the displayed output is shown in Table 1.4 Once invoked, the chosen format

format short default display
format long 16 digits
format short e 5 digits plus exponent
format long e 16 digits plus exponent
format bank 2 decimal digits
format + positive, negative or zero
format rat rational approximation
format hex hexadecimal

Table 1.4: Display Options

remains in effect until changed.

24 The command format compact will suppress most blank lines allowing more information to
be placed on the screen or page. It is independent of the other format commands.

sqrt(pi)
ans =

1.7725
format long
ans
ans =

1.77245385090552
format long e
ans
ans =

1.772453850905516e+000

1.1.10 Printing Text and Matrices

25 The disp command can be used to display both data and text

disp(pi);disp(’University of Colorado’)
3.1416

University of Colorado

26 Formatted output can be done through the fprintf command which provides you with
better control on the format. It has two arguments:

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students



Draft1–10 WEEK I; MATLAB: Basic Introduction

1. Text and format specifications which must be enclosed in a single quote. Within the text,
the following specifier can be used:

%e Exponential notation
%f Fixed point or decimal notation
%g Whichever is shorter
\n New line

2. Matrix to be printed

v=153.98;

fprintf(’Velocity is %f miles an hour’,v)

Velocity is 153.980000 miles an hourfprintf(’Velocity is %f miles an hour\n’,v)

Velocity is 153.980000 miles an hour
fprintf(’Velocity is %e miles an hour\n’,v)

Velocity is 1.539800e+002 miles an hour
fprintf(’Velocity is %g miles an hour\n’,v)

Velocity is 153.98 miles an hour
fprintf(’Velocity is %8.3f miles an hour\n’,v)

Velocity is 153.980 miles an hour

27 Text and string operations, Table 1.5

Text and Strings
abs convert string to ASCII values
eval evaluate text macro
num2str convert number to string
int2str convert integer to string
setstr set flag indicating matrix is a string
sprintf convert number to string
isstr detect string variables
strcomp compare string variables
hex2num convert hex string to number

Table 1.5: Text and String Operations
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1.1.11 Variables

28 Variables are case sensitive, can contain up to 19 characters, and must start with a letter.

29 MATLAB has several special variables, Table 1.6.

Special Variables
ans answer when expression not assigned
eps floating point precision
pi π
i, j

√−1
inf ∞
NaN Not-a-Number
clock wall clock
date date
flops floating point operation count
nargin number of function input arguments
nargout number of function output arguments

Table 1.6: Special Variables

1.1.12 MATLAB Workspace

30 When one logs out or exits MATLAB all variables are lost. However, invoking the command
save before exiting causes all variables to be written to a non-human-readable diskfile named
matlab.mat. When one later reenters MATLAB, the command load will restore the workspace
to its former state.

31 To recall previous commands, you can use the cursors keys.

32 MATLAB can execute a sequence of statements stored on diskfiles. Such files are called
“M-files” because they must have the file type of .m as the last part of their filename.

33 There are two types of M-files:

Script files are ASCII files which consist of a sequence of normal MATLAB statements. If
the file has the filename, say, hw1.m, then the MATLAB command hw1 will cause the
statements in the file to be executed. Script files can be edited by a standard editor.
Script files can also be used to enter data into a large matrix; in such a file, entry errors
can be easily edited out. An M-file can reference other M-files, including referencing itself
recursively.

Function files Function files provide extensibility to MATLAB. You can create new functions
specific to your problem which will then have the same status as other MATLAB functions.
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1.1.13 Saving and Retrieving Data

34 If you want to save the variables in the workspace before you quit, you must use the save
fn command where fn is the file name.

35 To retrieve your data next time, load fn.

36 Disk files commands are shown in Table 1.7

Disk Files
chdir change current directory
delete delete file
diary diary of the session
dir directory of files on disk
load load variables from file
save save variables to file
type list function or file
what show M-files on disk
fprintf write to a file
pack compact memory via save

Table 1.7: Disk Files Commands

1.1.14 Arrays

37 Arrays can be entered in several different ways:

• Entered by an explicit list of elements,

• Generated by built-in statements and functions,

• Created in M-files,

• Loaded from external data files

38 The following session is self explanatory, study it in detail.

x=[2. 6. 12.]
x =

2 6 12

y=[3. 5. 1.]
y =
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3 5 1
x.*y
ans =

6 30 12

y’
ans =

3
5
1

x*y’
ans =

48

x’*y
ans =

6 10 2
18 30 6
36 60 12

2*x
ans =

4 12 24
x(2)
ans =

6

x(1:2)
ans =

2 6

x(3:-1:1)
ans =

12 6 2

x=(0:0.1:1)
x =

Columns 1 through 7
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Columns 8 through 11
0.7000 0.8000 0.9000 1.0000
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linspace(0,pi,11)
ans =

Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

Columns 8 through 11
2.1991 2.5133 2.8274 3.1416

x=[2. 6. 12.]
x =

2 6 12

x.^2
ans =

4 36 144

x=[1,2,3]
x =

1 2 3

39 Array operations are shown in Table 1.8

Element by Element Array Operations
Operation Algebraic Form MATLAB
Addition ai + bi a + b
Substraction ai − bi a − b
Multiplication ai × bi a. ∗ b
Right division ai/bi a./b
Left division bi/ai a.\b
Power abi

i a.̂ b

Table 1.8: Array Operations

x=[6 2 4 8 -2 12];y=[2 6,3, 1 2,10]
y =

2 6 3 1 2 10
size(y)
ans =

1 6
x+y
ans =
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8 8 7 9 0 22
x.*y
ans =

12 12 12 8 -4 120
x./y
ans =

3.0000 0.3333 1.3333 8.0000 -1.0000 1.2000
y.\x
ans =

3.0000 0.3333 1.3333 8.0000 -1.0000 1.2000

1.1.15 Graphics

40 One of the major strength of MATLAB are its graphics capabilities. They are numerous,
and only few will be explored at this early stage.

41 MATLAB can produce both planar plots and 3-D mesh surface plots. To preview some of
these capabilities enter the command plotdemo.

42 The plot command creates linear x-y plots; if x and y are vectors of the same length, the
command plot(x,y) opens a graphics window and draws an x-y plot of the elements of x
versus the elements of y.

x=(0:0.1:10);
y=sin(x).*exp(-x);
plot(x,y)
grid
xlabel(’time [s]’)
ylabel(’Temperature [Deg. F]’)
print -deps2 plot1.eps

will generate the plot of Fig. 1.6 Note that as new commands are entered, the plot is immediately
updated.

43 When in the graphics screen, pressing any key will return you to the command screen while
the command shg (show graph) will then return you to the current graphics screen. If you are
in the Bechtel Lab, then you can have multiple graphics windows.

44 The command grid will place grid lines on the current graph.

45 Graphs can be given titles, axes labeled, and text placed within the graph commands which
take a string as an argument, Table 1.9.

46 To make multiple plots on a single graph

x=0:0.1:2*pi;y1=sin(x);y2=cos(x);plot(x,y1,’-’,x,y2,’-.’);grid
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title graph title
xlabel x-axis label
ylabel y-axis label
gtext interactively-positioned text
text position text at specified coordinates

Graphs
plot linear X-Y plot
loglog loglog X-Y plot
semilogx semi-log X-Y plot
semilogy semi-log X-Y plot
polar polar plot
bar bar charts
stairs stairstep graph
errorbar add error bars

Graph Annotation
title plot title
xlabel x-axis label
ylabel y-axis label
grid draw grid lines
text arbitrarily position text
gtext mouse-positioned text
ginput graphics input

Graph Window Control
axis manual axis scaling
hold hold plot on screen
shg show graph window
clg clear graph window
subplot split graph window

Table 1.9: 2D Graphics Commands
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Figure 1.6: Simple Plot

renders a dashed line and dashed dotted line for the first and second graph respectively, resulting
in Fig. 1.7
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Figure 1.7: Multiple Plots in a Single Graph

47 Line colors can also be separately specified

48 The command subplot can be used to partition the screen so that up to four plots can be
viewed simultaneously.

1.1.16 Graphics hardcopy

49 A hardcopy of the graphics screen can be most easily obtained with the MATLAB command
print which will print or save the graph (see example above). The syntax is

PRINT [ -ddevice] [ -options ] <filename>
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where the most common devices are shown in Table 1.10

dps PostScript for black and white printers
dpsc PostScript for color printers
dps2 Level 2 PostScript for black and white printers
dpsc2 Level 2 PostScript for color printers
deps Encapsulated PostScript (EPSF)
depsc Encapsulated Color PostScript (EPSF)
deps2 Encapsulated Level 2 PostScript (EPSF)
depsc2 Encapsulated Level 2 Color PostScript (EPSF)
dhpgl HPGL compatible with Hewlett-Packard 7475A plotter
dljetplus HP LaserJet+
dljet3 HP LaserJet III
dcdeskjet HP DeskJet 500C with 1 bit/pixel color
dbj10e Canon BubbleJet BJ10e
dgif8 8-bit color GIF file format

Table 1.10: Printer Devices

1.2 Assignment

1.2.1 Practice

Start by repeating all the examples in this handout.

1.2.2 Work

The force F which moves a body along a straight line path S is the scalar product of F.S = W .
In general we may either break down the path into a series of linear segments, or if the path is
curvilinear we must perform a line integral W =

∫
S F.dS.

Given a force F with components (2,4,6), i.e. F = 2i + 4j + 6k, and the following points

Point Coordinates
X Y Z

O 0 0 0
A 5 0 0
B 0 7 0
C 0 0 11
D -200 -500 +1000
E 6 8 12

Determine the work for each of the following paths
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Case Path
1 O-A-B-C-E
2 O-C-E
3 O-D-E
4 O-E

Discuss your results.

1.2.3 Stresses

If an infinitesimal element is subjected to the cartesian stresses shown below,

it can be shown that the stresses along any other orientation are given by:

σx1 =
σx + σy

2
+

σx − σy

2
cos 2θ + τxy sin 2θ (1.1-a)

τx1y1 = −σx − σy

2
sin 2θ + τxy cos 2θ (1.1-b)

and the principal stresses are given by:

σ1,2 =
σx + σy

2
±

√(
σx − σy

2

)2

+ τ2
xy (1.2)

For σx = 12, 300 psi, σy = −4, 200 psi and τxy = −4, 700 psi,

1. Determine the stresses when the element is rotated by +30 degrees (counter-clockwise),

2. Determine the principal stresses

3. Plot the variation of all three stresses in terms of θ
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1.2.4 Measurement Errors, [1]

Let us consider an instrument with a scale graduated from 0-1000 (such as 0 to 1000 volts).
If the instrument is guaranteed as belonging to the 3% class, the maximum error is ±3% of
the full-scale deflection, in this case ±30. Hence, if the meter reads 500, the true value can be
anywhere in the range 470-530. The corresponding relative error equals 30

500100 = 6% Hence,
it is clear that the full scale deflection of the measuring instrument should not be much higher
than the range of expected values. One frequently used rule of thumb is to havethe expected
value between 1/2 and 2/3 of the full scale deflection.

For this instrument

1. Calculate and display the per cent error for measured values in increments of 100.

2. Plot the percent error, against the measured values, in the interval 0-1000. Use intervals
of 10.

1.2.5 Statistical Analysis; Part I

1.2.5.1 Elements of Statistics

50 Elementary statistics formulaes will be reviewed, as they are needed to properly understand
structural reliability.

51 When a set of N values xi is clustered around a particular one, then it may be useful to
characterize the set by a few numbers that are related to its moments (the sums of integer
powers of the values):

Mean: estimates the value around which the data clusters.

µ =
1
N

N∑
i=1

xi (1.3)

it is the arithmetic average of all the data points.

Expected Value: If data are not available, an expected value is assigned based on experience
and judgment, and E(x) = µx.

Both the mean and the expected values are termed first moment, and they correspond to
the centroid of a probability density distribution.

E(x) = µx

{
=

∫ ∞
−∞ xf(x)dx Continuous systems

=
∑N

i=1 xf(x) Discrete systems
(1.4)

Median: of a sorted series (xi−1 < xi < xi+1) is defined as:

xmed =

{
xN+1

2
N odd

1
2(xN

2
+ xN

2
+1) N even

(1.5)
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Variance: is an indication of the “width” of the cluster:

σ2 =
1

N − 1
ΣN

i=1(xi − µ)2 (1.6)
or

σ2 =
1
N

ΣN
i=1(xi − µ)2 (1.7)

Note that if N is less than 10, it is more appropriate to use the second equation, otherwise
use the first one.

Standard Deviation: is defined as the square root of the Variance

σ =
√

σ2 (1.8)

Coefficient of Variation: is the standard deviation normalized with respect to the mean:

V =
σ

µ
(1.9)

When insufficient data are available to accurately compute the moments, the coefficient
of variation is often estimated on the basis of experience.

Covariance: Pairs of random variables may be correlated or independent. If correlated, then
the likelihood of y depends on the likelihood of x. Thus, covariance σxy measures the
combined effect of how two variables vary together.

σxy =
1
N

N∑
i=1

(xi − µx)(yi − µy) (1.10)

Correlation Coefficient: ρxy is a nondimentional measure of the degree of correlation

ρxy =
σxy

σxσy

(1.11)

A correlation coefficient of 1.0 or −1.0 indicates a perfect linear correlation. A positive
value indicates that the variables either increase or decrease together, a negative one
indicates that one value increases while the other decreases. A zero value indicates that
there is no linear correlation between the variables.
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Skewness: characterizes the degree of asymmetry of a distribution around its mean. It is
defined in a non-dimensional value. A positive one signifies a distribution with an asym-
metric tail extending out toward more positive x

Skew =
1
N

ΣN
i=1

[
xi − µ

σ

]3

(1.12)

Kurtosis: is a nondimensional quantity which measures the “flatness” or “peakedness” of a
distribution. It is normalized with respect to the curvature of a normal distribution.
Hence a negative value would result from a distribution resembling a loaf of bread, while
a positive one would be induced by a sharp peak:

Kurt =
1
N

ΣN
i=1

[
xi − µ

σ

]4

− 3 (1.13)

the −3 term makes the value zero for a normal distribution.

52 The expected value (or mean), standard deviation and coefficient of variation are interde-
pendent: knowing any two, we can determine the third.

53 Distribution of variables can be mathematically represented.

54 A Uniform distribution implies that any value between xmin and xmax is equaly likely to
occur.

55 The general normal (or Gauss) distribution is given by, Fig. 1.8:

φ(x) =
1√
2πσ

e−
1
2 [

x−µ
σ ]2 (1.14)

56 A normal distribution N(µ, σ2) can be normalized by defining

y =
x − µ

σ
(1.15)

and y would have a distribution N(0, 1):

φ(y) =
1√
2π

e−
y2

2 (1.16)

57 The normal distribution has been found to be an excellent approximation to a large class of
distributions, and has some very desirable mathematical properties:

1. f(x) is symmetric with respect to the mean µ.
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Figure 1.8: Normalized Gauss Distribution, and Cumulative Distribution Function

2. f(x) is a “bell curve” with inflection points at x = µ ± σ.

3. f(x) is a valid probability distribution function as:∫ ∞

−∞
f(x) = 1 (1.17)

4. The probability that xmin < x < xmax is given by:

P (xmin < x < xmax) =
∫ xmax

xmin

f(x)dx (1.18)

5. Cumulative distribution functions (cdf) of the normal distribution defined as:

Φ(s) =
1√
2πσ

∫ s

−∞
e−

1
2 [

x−µ
σ ]2dx (1.19)

and is expressed in terms of the error function (erf).

6. The cdf of normalized normal distribution function is given by:

Φ(s) =
1√
2π

∫ s

−∞
e−

x2

2 dx (1.20)

and is usually tabulated in books.
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1.2.5.2 Assignment

1. Generate the data for a normal distribution with a mean of 100 and a standard deviation
of 20 and plot the probability distribution function from the mean minus the standard
deviation, to the mean plus the standard deviation.

2. Retrieve (through anonymous ftp to bechtel) the following two sets ftp/pub/Structures/cven4837/set1.da
and ftp/pub/Structures/cven4837/set2.dat. Those sets contains results of concrete
compressive strength f ′

c for two different ready mix companies.

(a) For each set determine the Mean, Standard Deviation, Coefficient of variation, Skew-
ness, and Kurtosis.

(b) Plot the probability distribution function f(x) (based on a Normal Distribution),
plotted from µ − 4.σ to µ + 4.σ

(c) Plot a histogram of the normalized strength (from the input file) with 20 bins.

(d) Superimpose the two plots.

Note This problem will be revisited later to: a) use MATLAB statistical functions, and
b) Apply numerical integration for the evaluation of the probability of the stregth being
below a certain value.
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2.1 Syntax

2.1.1 Matrix Operations

2.1.1.1 Matrix Definition

1 Matrices can be entered in several different ways:

• Entered by an explicit list of elements, or built from blocks. For example,

A=[1 4 6; 2 1 8; -2 7 -9];
B = [A, ones(3,2); zeros(2,3), eye(2)]}
will build a 5-by-5 matrix.

• Generated by built-in statements and functions, Table 2.1. For example, ones(m,n)
produces an m-by-n matrix of ones; if A is a matrix, then ones(A) produces a matrix of
ones of the same size as A.

If x is a vector, diag(x) is the diagonal matrix with x down the diagonal; if A is a square
matrix, then diag(A) is a vector consisting of the diagonal of A.

• Created in M-files,

• Loaded from external data files

2 The following session is self explanatory,

x=[1,2;6,7]

x =

1 2
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eye identity matrix
zeros matrix of zeros
ones matrix of ones
diag see below
triu upper triangular part of a matrix
tril lower triangular part of a matrix
rand randomly generated matrix
hilb Hilbert matrix
magic magic square
toeplitz see help toeplitz

Table 2.1: Built In Matrix Definition Functions

6 7

x=[1 2 3

4 5 6

9 10 11]

x =

1 2 3

4 5 6

9 10 11

3 “colon operation” is a much more effective way to deal with consecutive numbers than through
loops (very slow). For instance

x=[3 -1 5]

x =

3 -1 5

y=[x;x+1;2*x-1]

y =

3 -1 5

4 0 6

5 -3 9

rot90(y)

ans =

5 6 9

-1 0 -3

3 4 5

fliplr(y)

ans =

5 -1 3

6 0 4

9 -3 5
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flipud(y)

ans =

5 -3 9

4 0 6

3 -1 5

y(:,3)

ans =

5

6

9

y(2,:)

ans =

4 0 6

x(1,:)

ans =

3 -1 5

z=[y(1,:);y(3,:)]

z =

3 -1 5

5 -3 9

v=[0.2 1.4 2.6]

v =

0.2000 1.4000 2.6000

diag(v)

ans =

0.2000 0 0

0 1.4000 0

0 0 2.6000

2.1.1.2 Matrix Operations

4 Matrix operations are listed in Table 2.2.

5 The “matrix division” operations deserve special comment. If A is an invertible square matrix
and b is a compatible column, vector, then x = A\b is the solution of A ∗ x = b

>> A=[2 3;1 4];b=[8;9];AInv=inv(A);
>> x=AInv*b
x =

1
2

>> x=A\b
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+ addition
− subtraction
∗ multiplication̂ power
′ transpose
\ left division
/ right division

Table 2.2: Matrix Operations

x =

1
2

2.1.1.3 Matrix functions

6 Matrix built in functions are listed in Table 2.3.

eig eigenvalues and eigenvectors
chol cholesky factorization
svd singular value decomposition
inv inverse
lu LU factorization
qr QR factorization
logm matrix logarithm
expm matrix exponential
sqrtm matrix square root
poly characteristic polynomial
det determinant
size size
norm 1-norm, 2-norm, F-norm, ∞-norm
cond condition number in the 2-norm
rank rank

Table 2.3: Matrix Functions

EDU>> x=[4 2 3; 1 6 5;-2 5 10]

x =

4 2 3

1 6 5
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-2 5 10

EDU>> y=inv(x)

y =

0.2318 -0.0331 -0.0530

-0.1325 0.3046 -0.1126

0.1126 -0.1589 0.1457

EDU>> x*y

ans =

1.0000 0 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

EDU>> lu(x)

ans =

4.0000 2.0000 3.0000

-0.2500 6.0000 11.5000

0.5000 -0.9167 -6.2917

EDU>> det(x)

ans =

151

EDU>> lux=lu(x)

lux =

4.0000 2.0000 3.0000

-0.2500 6.0000 11.5000

0.5000 -0.9167 -6.2917

EDU>> triu(lux)

ans =

4.0000 2.0000 3.0000

0 6.0000 11.5000

0 0 -6.2917

EDU>> tril(lux)

ans =

4.0000 0 0

-0.2500 6.0000 0

0.5000 -0.9167 -6.2917

EDU>> tril(lux,-1)

ans =

0 0 0

-0.2500 0 0

0.5000 -0.9167 0

EDU>> diag(lux)

ans =

4.0000

6.0000
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-6.2917

EDU>> eig(x)

ans =

4.4123

12.9438

2.6440

EDU>> x=[0.5 0.25;0.25 0.5]

x =

0.5000 0.2500

0.2500 0.5000

EDU>> [V,D]=eig(x)

V =

0.7071 0.7071

-0.7071 0.7071

D =

0.2500 0

0 0.7500

EDU>> x*V-V*D

ans =

0 0

0 0

2.1.2 Graphics Revisited

2.1.2.1 Polar Plots

theta=0:pi/60:2*pi;r=2*(1-cos(theta));polar(theta,r);axis square
print -deps2 polar.eps

resulting in Fig 2.1

2.1.2.2 3-D mesh plots.

7 Three dimensional mesh surface plots are drawn with the function mesh. The command
mesh(z) creates a three-dimensional perspective plot of the elements of the matrix z. The
mesh surface is defined by the z-coordinates of points above a rectangular grid in the x-y plane.

% Shape Functions for Quadrilateral Quadratic Elements
X=-1:1/20:1;
Y=X;
YT=Y’;
XT=X’;
N8=0.5*(1-YT.*YT)*(1-X);
meshc(X,Y,N8)
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  1

  2

  3

  4

30
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300
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180 0

Figure 2.1: Polar Plot of a Cardioid

print -deps2 shap8-8.eps
c=contour(X,Y,N8);
clabel(c)
print -deps2 shap8-8-c.eps

and the plots are shown in Fig. 2.2
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Figure 2.2: Sample of Surface and Contour Plots

2.1.2.3 Animation

8 Animation can be achieved in MATLAB (student’s edition may not support it) through the
moviein and getframe commands.

X=-1:1/5:1;
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Y=X;
YT=Y’;
XT=X’;
N8=0.5*(1-YT.*YT)*(1-X);
k=0;
M=moviein(11); % set up for 11 frames
for fac=-5:1:5 % loop
k=k+1;
z=fac*N8;
surf(X,Y,z);
%axis off;
axis([-1 1 -1 1 -5 5]) % freeze the axis to user specified values
M(:,k)=getframe; % grab the frame into M
end
movie(M,10) % play back 10 times

will generate the animation of Fig. 2.3
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−0.5
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0.5

1
−5

0

5

Figure 2.3: Picture Used for Animation

9 Note that alternatively you may generate the image within a loop, and insert a pause after
each one.

2.1.3 Data Analysis

2.1.3.1 Statistical analysis

10 Statistical analysis predefined functions are shown in Table 2.4.

EDU>> x=rand(1,10) % generate a uniform distribution

x =

Columns 1 through 7
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max maximum value
min minimum value
mean mean value
median median value
std standard deviation
sort sorting
sum sum of elements
prod product of elements
cumsum cumulative sum of elements
cumprod cumulative product of elements
diff approximate derivatives
hist histograms
corrcoef correlation coefficients
cov covariance matrix
cplxpair reorder into complex pairs

Table 2.4: Statistical Analysis Functions

0.2190 0.0470 0.6789 0.6793 0.9347 0.3835 0.5194

Columns 8 through 10

0.8310 0.0346 0.0535

EDU>> rand(’seed’,0) %set seed

EDU>> rand(’uniform’) % specify a uniform random distribution

EDU>> rand(1,10)

ans =

Columns 1 through 7

0.2190 0.0470 0.6789 0.6793 0.9347 0.3835 0.5194

Columns 8 through 10

0.8310 0.0346 0.0535

EDU>> rand(’seed’,0) % reset the seed

EDU>> x=randn(1,100); %Generates random numbers with a normal distribution

EDU>> hist(x,20) % Histogram with 20 bins

EDU>> print -deps2 hist1.eps

EDU>> mean(x)

ans =

0.0507

EDU>> max(x)

ans =

2.9432

EDU>> min(x)

ans =
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-2.0186

EDU>> median(x)

ans =

0.0239

EDU>> sum(x)

ans =

5.0730

EDU>> std(x)

ans =

0.9979

EDU>> sort(x)

ans =

Columns 1 through 7

-2.0186 -1.8769 -1.7651 -1.6984 -1.6853 -1.6237 -1.4921

.............

Columns 99 through 100

2.3722 2.9432

where the file hist1.eps is shown in Fig. 2.4
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14

Figure 2.4: Histogram

2.1.3.2 Regression Analysis

The following example will generate data which approximately fit y = 2x+10, and then through
a linear regression determine the parameters.

EDU>> x=[0:1:10];

EDU>> mnoise=0.5*rand(1,11)

mnoise =

Columns 1 through 7
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0.0173 0.0267 0.2649 0.3356 0.0038 0.1917 0.0334

Columns 8 through 11

0.2087 0.3434 0.2945 0.4652

EDU>> bnoise=2*rand(1,11);

EDU>> y=(2+mnoise).*x+10+bnoise % noisy y=2x+10

y =

Columns 1 through 7

11.6923 13.0806 14.7136 18.3146 18.8474 22.3609 24.0212

Columns 8 through 11

26.9856 29.2720 30.7453 36.1243

EDU>> coef=polyfit(x,y,1)% get the coefficients

coef =

2.3546 10.6048

EDU>> m=coef(1); b=coef(2);

yfit=m*x+b;plot(x,yfit,x,y,’o’),title(’Linear Regression’),grid

EDU>> print -deps2 regres.eps

EDU>>

where the file regres.eps is shown in Fig. 2.5.
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Linear Regression

Figure 2.5: Regression Analysis

2.1.3.3 Signal Processing

11 MATLAB has a library of very powerful signal processing functions, Table 2.5.

2.1.4 Control Flow

12 MATLAB programming is very simple and supports the DO, WHILE, and IF constructs.
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abs complex magnitude
angle phase angle
conv convolution
corrcoef correlation coefficients
cov covariance
deconv deconvolution
fft radix-2 fast Fourier transform
fft2 two-dimensional FFT
ifft inverse fast Fourier transform
ifft2 inverse 2-D FFT
fftshift FFT rearrangement

Table 2.5: Signal Processing Functions

13 MATLAB provides flow control statements (such as DO, WHILE and IF) which operate like
those in most computer languages.

14 Relations and logical operators in MATLAB are given in Table 2.6.

< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
∼= not equal.
& and
| or
∼ not.

Table 2.6: Relations and Logical Operators

15 Note that “=” is used in an assignment statement while “==” is used in a relation.

EDU>> x=4*rand(1,10);

EDU>> for k=1:10

if x(k)>=3

disp(’A’)

elseif x(k)<3 & x(k)>=2

disp(’B’)

else

disp(’ You failed’)

end

end

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students



Draft2.1 Syntax 2–13

You failed

B

A

You failed

You failed

A

B

A

B

another example

EDU>> max=10;x(1)=1;x(2)=1;k=3;
EDU>> while k<max

x(k)=x(k-1)+x(k-2);
k=k+1;
end

EDU>> x
x =

1 1 2 3 5 8 13 21 34

16 MATLAB has some predefined relational and logical functions, Table 2.7.

any logical conditions
all logical conditions
find find array indices of logical values
isnan detect NaNs
finite detect infinities
isempty detect empty matrices
isstr detect string variables
strcmp compare string variables

Table 2.7: Relational and Logical Functions

17 Control flow is described through Table 2.8

2.1.5 Function Files

18 Function files take one or more external arguments (enclosed in parenthesis) and return one
or more output.

function hyp=pyt(a,b)
% All commented lines following the function definition
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if conditionally execute statements
elseif used with if
else used with if
end terminate if, for, while
for repeat statements a number of times
while do while
break break out of for and while loops
return return from functions
pause pause until key pressed

Table 2.8: Control Flow

% will be displayed if the user types help pyt
if nargin < 2 disp(’invalid number of arguments’; end
hyp=sqrt(a.^2+b.^2);

19 This file should be placed in a diskfile with filename pyt.m (corresponding to the function
name). The first line declares the function name, input arguments, and output arguments;
without this line the file would be a script file. Then a MATLAB statement c=hyp(4,5), for
example, will cause the numbers 4 and 5 to be passed to the variables a and b in the function
file with the output result being passed out to the variable c. Since variables in a function file
are local, their names are independent of those in the current MATLAB environment.

20 Note that use of nargin (“number of input arguments”) permits one to set a default value
of an omitted input variable.

21 A function may also have multiple output arguments. For example:

function [mean, stdev] = stat(x)
% STAT Mean and standard deviation
[m n] = size(x);
if m == 1

m = n;
end
mean = sum(x)/m;
stdev = sqrt(sum(x.^2)/m - mean.^2);

Once this is placed in a diskfile stat.m, a MATLAB command [xm, xd] = stat(x), for ex-
ample, will assign the mean and standard deviation of the entries in the vector x to xm and
xd, respectively. Single assignments can also be made with a function having multiple output
arguments. For example, xm = stat(x) (no brackets needed around xm) will assign the mean
of x to xm.
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2.2 Assignment

2.2.1 Practice

Start by repeating all the examples in this handout.

2.2.2 Polar Plot

Plot the following curve (Folium of Descartes)

r =
3a sin θ cos θ

sin3 θ + cos3 θ
(2.1)

for −π/6 ≤ θ ≤ π/2, use a = 1.

2.2.3 Animation

The transverse vibration of an undamped simply supported beam straight beam is given by

v = C2 sin
nπx

L
(2.2)

at thee frequency ωn = n2π2
√

EI
mL4 Write a function which will accept as argument the mode

shape (n which is an integer), the number of frames N and will generate an animation of the
beam vibration. Let C2 vary from −L/5 to L/5, and take L = 10.

2.2.4 Strain Rosette

2.2.4.1 Theory

Experimentally, strains are measured by a strain gage. The most common type of strain gage
is the bonded resistance strain gage shown in Fig. 2.6. These gages use a grid of fine wire or a

Figure 2.6: Bonded Strain Gage

metal foil grid encapsulated in a thin resin backing. The gage is glued to the carefully prepared
test specimen by a thin layer of epoxy. The epoxy acts as the carrier matrix to transfer the
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strain in the specimen to the strain gage. As the gage changes in length, the tiny wires either
contract or elongate depending upon a tensile or compressive state of stress in the specimen.
The cross sectional area will increase for compression and decrease in tension. Because the wire
has an electrical resistance that is proportional to the inverse of the cross sectional area, Rα 1

A ,
a measure of the change in resistance can be converted to arrive at the strain in the material.

Bonded resistance strain gages are produced in a variety of sizes, patterns, and resistance.
One type of gage that allows for the complete state of strain at a point in a plane to be
determined is a strain gage rosette. It contains three gages aligned radially from a common
point at different angles from each other, Fig. 2.7. The strain transformation equations to

Figure 2.7: Strain Rosette

convert from the three strains at any angle to the strain at a point in a plane are

εa = εxx cos2 θa + εyy sin2 θa + γxy sin θa cos θa (2.3-a)
εb = εxx cos2 θb + εyy sin2 θb + γxy sin θb cos θb (2.3-b)
εc = εxx cos2 θc + εyy sin2 θc + γxy sin θc cos θc (2.3-c)

The angles are usually given by

b θa θb θc c = b 0o 60o 120o c (2.4)

When the measured strains εa, εb, and εc, are measured at their corresponding angles from the
reference axis and substituted into the above equations the state of strain at a point may be
solved, namely, εxx, εyy, and γxy.

The stresses are in turn related to the strains through the elastic constants E and ν, Young’s
modulus and Poisson’s ratio (lt0.5)respectively.

σxx = E
(1−2ν)(1+ν) [(1 − ν)εxx + ν(εyy + εzz)]

σyy = E
(1−2ν)(1+ν) [(1 − ν)εyy + ν(εzz + εxx)]

τxy = E
2(1+ν)γxy

(2.5)
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Those would define the stress tensor σxx τxy τxz

τxy σyy τyz

τxz τyz σzz

 (2.6)

It can be shown that the solution for principal stresses, i.e. stresses acting on principal planes
where there is no shear stress, yields

l(σxx − σ) + mτxy + nτxz = 0 (2.7-a)
lτxy + m(σyy − σ) + nτyz = 0 (2.7-b)
lτxz + mτyz + n(σzz − σ) = 0 (2.7-c)

where l, m and n are direction cosines. Since those are linear and homogeneous equations in
l, m and n a solution will exist only if∣∣∣∣∣∣∣

σxx − σ τxy τxz

τxy σyy − σ τyz

τxz τyz σzz − σ

∣∣∣∣∣∣∣ = 0 (2.8)

or
σ3 − I1σ

2 − I2σ − I3 = 0 (2.9)

where I1, I2 and I3 are three invariants equal to

I1 = σxx + σyy + σzz (2.10-a)
I2 = τ2

xy + τ2
xz + τ2

yz − σxxσyy − σxxσzz − σyyσzz (2.10-b)

I3 =

∣∣∣∣∣∣∣
σxx τxy τxz

τxy σyy τyz

τxz τyz σzz

∣∣∣∣∣∣∣ (2.10-c)

The three roots (σ1, σ2, σ3) are the three principal stresses.
The direction cosines of the three principal axes are obtained from Eq. 2.7-a-?? by setting

σ in turn equal to σ1, σ2, σ3 and recalling that l2 + m2 + n2 = 1.

2.2.4.2 Assignment

Write a function which accepts as input arguments:

1. εa εb and εc from a 60 degrees strain rosette.

2. Young’s modulus and Poisson’s ratio E, and ν.

Determines

1. Cartesian strains (Eq. 2.3-a-2.3-c)
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2. Stresses (Eq. 2.5)

3. Stress invariants (Eq. 2.10-a-2.10-c)

4. Principal stresses (through the eigenvalues in Eq. 2.8)

5. Direction cosines (Eq. ??; Tricky!).

Test your program for the values shown in Table 2.9. Note that µ equal one microstrain

Mild Steel Aluminum High Strength Concrete
E 30,000 ksi 70 GPa 31 GPa
ν 0.30 0.33 0.20
εa 600 µ 2,000 µ -400 µ
θa 0 deg 0 deg 15 deg
εb 500 µ 1,500 µ -800 µ
θb 45 deg 120 deg 75 deg
εc -200 µ -1,300 µ -1,200µ
θc 90 deg 60 deg 135 deg

Table 2.9: Strain Rosette Problems

(10−6in/in)

2.2.5 Structural Design

2.2.5.1 Theory

The design of a steel truss entail the following steps:

1. Structural analysis in which the equations of equilibrium are applied at each node and
written in terems of the unknown internal element forces and known externally applied
load. This will result in a system of linear equations of the form

[B] {x} = {P} (2.11)

where {P} is the vector of externally applied load, and {x} the vector of unknown element
forces (tension if positive, compression if negative). Note that the unknown vector contains
both element forces ass well as reactions.

2. Analysis is performed for different loads, and then multiple load cases are coonsidered.
Each load case is typically a linear combination of the basic load investigated.

3. Results (internal forces) are tabulated for all load cases, maximum forces determined, and
each element is separately designed.
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Figure 2.8: Steel Truss
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2.2.5.2 Assignment

The truss shown in Fig. 2.8 is to be designed. The statics [B] matrix can be assembled1 The
resulting statics matrix which can be copied from
ftp/pub/Structures/cven4837/truss.m is given by

b=[...

1., 0. , 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 1. , 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 1. , 0., 0.; ...

0., 0. , .82, 1. , 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., -1.,-.57, .08, 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

-1., 0.,-.82, 0., 0. , 1. , 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., .57, 0., 1. , 0. , 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., -1., 0. , 0.,-.77, 1. , 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0.,-.08, -1., 0., .64, .08, 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., -1., .77, 0., 0. , 1. , 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0.,-.64, 0., 1. , 0. , 0., 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0.,-1. , 0. , 0.,.73 , 1., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0.,-.08, -1., 0.,-.68, .08, ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., -1.,-.73, 0., ...

0., 1. , 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0. ,.68 , 0., ...

1., 0. , 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., ...

0., 0., .71, 1., 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,-.08, ...

-1., 0.,-.71,.08 , 0., 0., 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., -1.,-.71, 0., 0. , 1. , 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0. , .71, 0., 1. , 0. , 0., 0., 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., -1., 0. , 0.,.68 , 1.0, 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0.,-.08, -1., 0.,-.74, .08, 0., 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., -1.,-.68, 0., 0. , 0., 1. , 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0. , .74, 0., 1. , 0., 0., 0.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0.,-1. , 0. , 0., 0., 1.; ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...

0., 0., 0., 0., 0., 0., 0.,-.08, -1., 0., 0., 0.];

r=-[0., 0., 0., -0.9, 0., 0., 0., -1.74, 0., 0., 0., -1.68,...

0., 0., 0., -1.68, 0., 0., 0., -1.68, 0., 0., 0., -0.84];

1Note that in assembling the matrix, each column corresponds to an unknown internal element force, or an
external reaction. Each row corresponds to an equation of equilibrium.
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s=-[0., 0., 0., -2.57, 0., 0., 0., -4.97, 0., 0., 0., -4.8, ...

0., 0., 0., -4.8 , 0., 0., 0., -4.8 , 0., 0., 0., -2.4];

l=-[0., 0., 0., 0., 0., 0., 0., 0., 0., -6.4, 0., ...

0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,-6.15, 0., 0.];

The three load vectors (corresponding to roof, snow, and live loads) are:

r=-[0., 0., 0., -0.9, 0., 0., 0., -1.74, 0., 0., 0., -1.68,

0., 0., 0., -1.68, 0., 0., 0., -1.68, 0., 0., 0., -0.84]

s=-[0., 0., 0., -2.57, 0., 0., 0., -4.97, 0., 0., 0., -4.8,

0., 0., 0., -4.8 , 0., 0., 0., -4.8 , 0., 0., 0., -2.4]

l=-[0., 0., 0., 0., 0., 0., 0., 0., 0., -6.4, 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,-6.15, 0., 0.]

Write a MATLAB program which will

1. Read the statics matrix and the load vectors

2. Invert the statics matrix [B]

3. Solve for the roof, snow, and live load forces

4. Obtain the forces for each of the 3 following three load combinations

Load Case Roof Live Snow
1 1.4 0 0
2 1.2 1.6 0.5
3 1.2 0.5 1.6

5. Determine the maximum load for each member

6. Select the cross sectional area of each member using σallowable = 20 kips/in2 in com-
pression and nal area of each member using σallowable = 24 kips/in2 in tension.

7. Tabulate the results as shown in Table 2.10 plus an additional column showing the cross-
sectional area in in2.

Note that Note that the actual results are given by Table 2.10.

2.2.6 Dynamic Response of a Linear Oscillator

2.2.6.1 Theory

Newton’s Second Law states that
dmv
dt

= f (2.12)

where m is the mass, v the velocity, t time, and f the force. for a constant mass (unlike a
rocket) we have

f = ma (2.13)
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Member Load Load Cases Design Load
Roof Snow Live 1 2 3 Compr. Tens.

1 L0 − L1 0. 0. 0. 0. 0. 0. 0 0
2 U0 − L0 -8.5 -24. -13. -12. -35. -55. -55. 0
3 U0 − L1 12. 34. 20. 17. 52. 79. 0 79.
4 U0 − U1 -9.8 -28. -16. -14. -43. -65. -65. 0
5 U1 − L1 -6.8 -20. -11. -9.6 -30. -45. -45. 0
6 L1 − L2 9.8 28. 16. 14. 43. 65. 0. 65.
7 U1 − L2 7.3 21. 16. 10. 38. 50. 0. 50.
8 U1 − U2 -15. -44. -29. -22. -72. -100. -100. 0
9 U2 − L2 -4.6 -13. -3.9 -6.5 -14. -29. -29. 0
10 L2 − L3 15. 44. 29. 22. 72. 100. 0 100.
11 U2 − L3 4. 11. 5.2 5.6 15. 26. 0 26.
12 U2 − U3 -18. -52. -32. -26. -83. -120. -120. 0
13 U3 − L3 -2.7 -7.8 -3.6 -3.8 -10. -18. -18. 0
14 L3 − L4 18. 52. 32. 26. 83. 120. 0 120.
15 U3 − L4 1.4 3.9 4.6 1.9 9.8 10. 0 10.
16 U3 − U4 -19. -55. -36. -27. -90. -130. -130. 0
17 U4 − L4 -0.97 -2.8 -3.3 -1.4 -6.9 -7.3 -7.3 0
18 L4 − L5 19. 55. 36. 27. 90. 130. 0 130.
19 U4 − L5 -0.89 -2.5 4.2 -1.2 5.1 -3.1 -3.1 5.1
20 U4 − U5 -19. -53. -38. -26. -93. -130. -130. 0
21 U5 − L5 0.66 1.9 3.1 0.92 6. 5.3 0 6.

Table 2.10: Result of Truss Design

Figure 2.9: Single Degree of Freedom Oscillator
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If we consider the linear oscillator shown in Fig. 2.9 setting up the sum of the horizontal forces
we have

mü + cu̇ + ku = P sinωt (2.14)

where ü and u̇ are the acceleration and velocity respectively, k the stiffness of the spring, P sinωt
the driving force.

The solution to this problem is of the form

u = eλt (2.15)

and substituting into Eq. 2.14 we obtain

(mλ2 + cλ + k)eλt = P sin ωt (2.16)

Since the exponential is never equal to zero we have

λ =
−c ±√

c2 − 4mk

2m
(2.17)

or

λ = − c

2(km)1/2

(
k

m

)1/2

±
(

k

m

)1/2
(

c2

4km
− 1

)1/2

(2.18)

If we define

ωn =

√
k

m
Undamped natural frequency (2.19-a)

ξ =
c

2
√

km
=

c

2mωn
Fraction of critical damping (2.19-b)

then Eq. 2.14 becomes

ü + 2ξωnu̇ + ω2u =
P

m
sinωt (2.20)

A solution of this equation is
u = C1 sinωt − C2 cos ωt (2.21)

where

C1 =
P

k

1 − (ω/ωn)2

[1 − (ω/ωn)2]2 + [2ξω/ωn]2
(2.22-a)

C2 =
P

k

2ξω/ωn

[1 − (ω/ωn)2]2 + [2ξω/ωn]2
(2.22-b)

φ = tan−1 C2

C1
(2.22-c)

φ is the phase lag between the applied force, and the system response.
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We can also express the displacement, velocities and accelerations as

u =
P

k
Rd sin(ωt − φ) (2.23-a)

u̇ =
P√
km

Rv cos(ωt − φ) (2.23-b)

ü = −P

m
Ra sin(ωt − φ) (2.23-c)

where

Rd =
1√

[1 − (ω/ωn)2]2 + [2ξω/ωn]2
(2.24-a)

Rv =
ω/ωn√

[1 − (ω/ωn)2]2 + [2ξω/ωn]2
(2.24-b)

Ra =
(ω/ωn)2√

[1 − (ω/ωn)2]2 + [2ξω/ωn]2
(2.24-c)

(2.24-d)

and correspond to the displacement, velocity and acceleration factors respectively.

2.2.6.2 Assignment

1. Generate surface plots showing

(a) Rd in terms of 0 ≤ ω/ωn ≤ 3 and 0 ≤ ξ ≤ 1.2
(b) Rv in terms of 0 ≤ ω/ωn ≤ 3 and 0 ≤ ξ ≤ 5
(c) Ra in terms of 0 ≤ ω/ωn ≤ 3 and 0 ≤ ξ ≤ 5
(d) φ in terms of 0 ≤ ω/ωn ≤ 3 and 0 ≤ ξ ≤ 5

2. A 2,000 lbm (or 2,000
(32.2)(12) = 5.176 lb/in/sec2), is supported by a 60” cantilever with a

stiffness k = 1, 065lb/in; The natural frequency is ωn =
√

k
m =

√
1, 0655.176 = 14.34

rad/sec. An external force with an amplitude of 250 lb which oscillates at 3 cycles
per second is applied. The excitation frequency is ω = 2πf = 2(3.1416)(3) = 18.85
rad/sec. The system is damped to 2 percent of critical damping. Generate 4 plots (on
the same display) showing the excitation force, displacement, velocity and accelerations
for 0 ≤ t ≤ 5 sec.

2.2.7 Nonlinear Equation

2.2.7.1 Theory

Considering a beam-column subjected to axial and shear forces as well as a moment, Fig. 2.10,
taking the moment about i for the beam segment and assuming the angle dv

dx between the axis
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dx
y,u

w(x)

x
PP

i

i

j

δv

δV

δM

δx

δx

δx

w

w

P

P

dx

dx

V+     dx

M+     dx

V

M

P

P

Pθi

θj

Figure 2.10: Simply Supported Beam Column; Differential Segment; Effect of Axial Force P

of the beam and the horizontal axis is small, leads to

M −
(

M +
dM

dx
dx

)
+ w

(dx)2

2
+

(
V +

dV

dx

)
dx − P

(
dv

dx

)
dx = 0 (2.25)

neglecting the terms in dx2 which are small, and then differentiating each term with respect to
x, we obtain

d2M

dx2
− dV

dx
− P

d2v

dx2
= 0 (2.26)

However, considering equilibrium in the y direction gives

dV

dx
= −w (2.27)

From beam theory, neglecting axial and shear deformations, we have

M = −EI
d2v

dx2
(2.28)

Substituting Eq. 2.27 and 2.28 into 2.26, and assuming a beam of uniform cross section, we
obtain

EI
d4v

dx4
− P

d2v

dx2
= w (2.29)
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Introdcing k2 = P
EI , the general solution of this fourth order differential equation to any set of

boundary conditions is
v = C1 sin kx + C2 cos kx + C3x + C4 (2.30)

If we consider a column with one end fixed (at x = 0), and one end hinged (at x = L). The
boundary conditions are

v = 0, v,xx = 0 atx = 0
v = 0, v,x = 0 atx = L

(2.31)

These boundary conditions will yield C2 = C4 = 0, and

sin kL − kL cos kL = 0 (2.32)

But since cos kL can not possibly be equal to zero, the preceding equation can be reduced to

tan kL = kL (2.33)

which is a transcendental algebraic equation and can only be solved numerically.

2.2.7.2 Assignment

Write a MATLAB function to solve for the first 5 roots of Eq. 2.33 by zooming into the
intersection of the left hand side with the right hand side.

2.2.8 Newton Raphson Method

2.2.8.1 Theory

Given an equation f(x) = 0 with f(x) expandable in a Taylor’s series about an initial guess
value x0, we can write

f(x) = f(x0) + f ′(x)(x − x0) + · · · = 0 (2.34)

neglecting high order terms. From this equation we can obtain

x = x0 − f(x0)
f ′(x0)

(2.35)

or

xi+1 = xi − f(xi)
f ′(xi)

(2.36)
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2.2.8.2 Assignment

Write a MATLAB program which will

1. Ask the user (through the input function)

(a) Equation f(x) to be solved

(b) First derivative of the equation f ′(x)

(c) Range of x for plotting (xmin and xmax).

(d) Initial guess for the solution

(e) Tolerance

2. Plot the equation for the specified range

3. Solve the equation within the specified tolerance

4. Display the root of the equation and the number of iterations.

Test your program by solving Eq. 2.33 and compare the number of flops (floating point opera-
tions) with the preceding solution.
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3.1 Background

3.1.1 Numerical Integration and Differentiation

1 The integration of
∫ b
a F (x)dx is essentially based on passing a polynomial P (x) through given

values of F (x) and then use
∫ b
a P (x)dx as an approximation.

∫ b

a
F (x)dx ≈

∫ b

a
P (x)dx (3.1)

2 Using P (x) = F (x) at n points, and recalling the properties of Lagrangian interpolation
functions, we obtain

P (x) = l1(x)F (x1) + l2(x)F (x2) + · · · + ln(x)F (xn) (3.2-a)

=
n∑

i=1

li(x)F (xi) (3.2-b)

3.1.1.1 Newton-Cotes Method

3 In Newton-Cotes integration, it is assumed that the sampling points are equally spaced, Fig.
3.6, thus we define ∫ b

a
P (x)dx =

∫ b

a

n∑
i

li(x)dxF (xi) =
n∑
i

∫ b

a
li(x)dxF (xi) (3.3)
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ξ

ξ

F(ξ)

P(ξ)

-1 0 1

a

b

Figure 3.1: Newton-Cotes Numerical integration

or
Approximation

∫ b
a P (x)dx =

∑n
i=1 W

(n)
i F (xi)

Weights W
(n)
i =

∫ b
a li(x)dx = (b − a)C(n)

i

(3.4)

where C
(n)
i are the “weights” of the Newton-Cotes quadrature for numerical integration with n

equally spaced sampling points.

4 newton-Cotes constants, and corresponding reminder are shown in Table 3.1, (Bathe 1982).

n C
(n)
0 C

(n)
1 C

(n)
2 C

(n)
3 C

(n)
4 Error

2 1
2

1
2 10−1(b − a)3F II(x)

3 1
6

4
6

1
6 10−3(b − a)5F IV (x)

4 1
8

3
8

3
8

1
8 10−3(b − a)5F IV (x)

5 7
90

32
90

12
90

32
90

7
90 10−6(b − a)7F V I(x)

Table 3.1: Weights for Newton-Cotes Quadrature Formulas

5 It can be shown that this method permits exact integration of polynomial of order n− 1, and
that if n is odd, then we can exactly integrate polynomials of order n. Hence we use in general
odd values of n,

6 For n = 2 over [−1, 1], we select equally spaced points at x1 = −1 and x2 = 1 to evaluate
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∫ 1
−1 P (x)dx

P (x) =
∑2

i=1 li(x)F (xi)
l1(x) = x−x2

x1−x2
= 1

2(1 − x)
l2(x) = x−x1

x2−x1
= 1

2(1 + x)
W

(2)
1 =

∫ 1
−1 l1(x)dx = 1

2

∫ 1
−1(1 − x)dx = 1

W
(2)
2 =

∫ 1
−1 l2(x)dx = 1

2

∫ 1
−1(1 + x)dx = 1∫ 1

−1 F (x)dx ≈ ∫ 1
−1 P (x)dx =

∑2
i=1 W

(2)
i F (xi) = F (−1) + F (1)

which is the trapezoidal rule

7 For n = 3 over [−1, 1], we select equally spaced points at x1 = −1 x2 = 0, and x3 = 1, to
evaluate

∫ 1
−1 P (x)dx

P (x) =
∑3

i=1 li(x)F (xi)
l1(x) = (x−x2)(x−x3)

(x1−x2)(x1−x3) = 1
2x(x − 1)

l2(x) = (x−x1)(x−x3)
(x2−x1)(x2−x3) = −(1 + x)(x − 1)

l3(x) = (x−x1)(x−x2)
(x3−x1)(x3−x2) = 1

2x(1 + x)

W
(3)
1 =

∫ 1
−1 l1(x)dx = 1

2

∫ 1
−1 x(x − 1)dx = 1

3

W
(3)
2 =

∫ 1
−1 l2(x)dx =

∫ 1
−1 −(1 + x)(x − 1)dx = 4

3

W
(3)
3 =

∫ 1
−1 l3(x)dx = 1

2

∫ 1
−1 x(1 + x)dx = 1

3∫ 1
−1 F (x)dx ≈ ∫ 1

−1 P (x)dx =
∑3

i=1 W
(3)
i F (xi) = 1

3 [F (−1) + 4F (0) + F (1)]

which is Simpson’s rule

3.1.1.2 MATLAB Examples

8 MATLAB’s functions for numerical (definite) integration and differentiation are shown in
Table 3.2.

Numerical Integration
trapz trapezoidal numerical integration
quad numerical function integration; Simpson’s rule
quad8 Newton-Cotes 8 panel rule
diff approximate derivatives

Table 3.2: Numerical Integration and Differentiation

9 For example, let us recall the expression for the center of gravity

y =

∫
ydA

A
(3.5)
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and moment of inertia

Ixx =
∫

A
y2dA Iyy =

∫
A
x2dA (3.6-a)

Ixx = Icg
xx + Ad2

y Iyy = Icg
yy + Ad2

x (3.6-b)

and moment of inertia for a given cross section
for a rectangular cross (width b, height h) section we would have

y =

∫
ydA

A
(3.7-a)

=
b

∫ h

0
ydy

bh
(3.7-b)

=
h

2
(3.7-c)

Determining the moment of inertia Ixx with respect to the neutral axis (which passes through
the centroid)

Ixx =
∫

A
y2dA (3.8-a)

= 2b

∫ h/2

0
y2dy (3.8-b)

=
bh3

12
(3.8-c)

We now seek to determine the centroid of the triangular cross section shown in Fig. 3.2 where
A(−2, 0), B(4, 0) and C(0, 6) First we need to define the following functions (note that each
one of them must be in a separate file).

function y=line1(x)
xx=[-2 0];yy=[0,6];coef=polyfit(xx,yy,1);
y=coef(1).*x+coef(2);

function y=line1x(x)
xx=[-2 0];yy=[0 6];coef=polyfit(xx,yy,1);
y=coef(1).*x.*x+coef(2).*x;

function x=line1y(y)
xx=[-2 0];yy=[0,6];coef=polyfit(yy,xx,1);
x=-(coef(1).*y.*y+coef(2).*y);

function y=line2(x)
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-

6

A B

C

y

x

u
C.G.

Figure 3.2: Center of Gravity and Moments of Inertia of A Triangular Cross-Section

xx=[0 4];yy=[6 0];coef=polyfit(xx,yy,1);
y=coef(1).*x+coef(2);

function y=line2x(x)
xx=[0 4];yy=[6 0];coef=polyfit(xx,yy,1);
y=coef(1).*x.*x+coef(2).*x;

function x=line2y(y)
xx=[0 4];yy=[6 0];coef=polyfit(yy,xx,1);
x=-(coef(1).*y.*y+coef(2).*y);

and now the following function will determine the areas and coordinates of the centroid

a1=quad(’line1’,-2,0)
cgx1=quad(’line1x’,-2,0)/a1
cgy1=quad(’line1y’,0,6)/a1

a2=quad(’line2’,0,4)
cgx2=quad(’line2x’,0,4)/a2
cgy2=-(quad(’line2y’,0,6)/a2)

a=a1+a2
cgx=(quad(’line1x’,-2,0)+quad(’line2x’,0,4))/a
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cgy=(quad(’line1y’,0,6)-quad(’line2y’,0,6))/a

3.1.2 Nonlinear Equations and Optimization

Nonlinear Equations and Optimization
fmin minimum of a function of one variable
fmins minimum of a multivariable function
fsolve solution of a system of nonlinear equations

(zeros of a multivariable function)
fzero zero of a function of one variable

Table 3.3: Nonlinear Equations and Optimization

3.1.3 Ordinary Differential Equations

The solution of ordinary differential equations (ODE) can always be reduced to the study of
sets of first order differential equations. For example

d2y

dx2
+ q(x)

dy

dx
= r(x) (3.9)

can be rewritten as two sets of first order equations

dy

dx
= z(x) (3.10)

dz

dx
= r(x) − q(x)z(x) (3.11)

where z is a new variable. Hence, all problems in ordinary differential equations are reduced to
the study of a set of n coupled first order differential equations for the function yi, i = 1, 2, · · · , n
with the general form

dyi(x)
dx

= f(x, y1, · · · , yn) i = 1, · · · , n (3.12)

where the functions fi are known derivatives of the y′s and the x′s are the independent variables.
This is known as the Cauchy form and can be rewritten as

y′1(x) = f1(x, y) (3.13)
y′n(x) = fn(x, y) (3.14)

where n corresponds to the order of the ODE. In order to solve the differential equation, we
also need to have its initial (or boundary) values.

The simplest method to solve for yn+1 is the Euler method through

yn+1 = yn + hf(xn, yn) + O(h2) (3.15)
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where xn+1 ≡ xn +h, and in which a linear approximation is made by using the first two terms
of the Taylor’s series expansion. We observe that the formula is unsymmetrical (it advances
the solution by h but uses the derivative only at the beginning of that interval).

One can improve on Euler’s method by

Midpoint method where the derivative is taken at midpoint rather than at the beginning of
the step, Fig. 3.3.

g1 = f(xn, yn) (3.16)

yn+ 1
2

= yn +
h

2
g1 (3.17)

g2 = f

(
xn +

h

2
, yn+ 1

2

)
(3.18)

yn+1 = yn + hg2 (3.19)

¡
¡

¡¡µ

»»»»:

tn tn+1

yn slope = g2

slope = g1

g2

-¾ -¾

h/2 h/2

yn+1

Figure 3.3: Runge’s Midpoint Method

Trapezoid method where we consider the average values of the derivatives, Fig.3.4

g1 = f(xn, yn) (3.20)
g2 = f (xn + h, yn + hg1) (3.21)

yn+1 = yn +
h

2
(g1 + g2) + O(h3) (3.22)

hence, through the symmetrization the method is now second order1. Actually, we have
just derived the equations for the second-order Runge-Kutta method. For example if

1A method is conventionally called nth order if its error is O(hn+1).
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tn tn+1

yn

slope = g1

-¾

XXXXz g2

slope = g1+g2

2

yn+1

h

»»»»»»:g1

Figure 3.4: Runge’s Trapezoid Method

xn = 2, yn = 1, h = 0.1 and the differential equation is dy
dx = x2 + y(x)2, then

g1 = x2
n + y2

n = 5 (3.23)
g2 = (tn + h)2 + (yn + hg1)2 = 2.12 + 1.52 = 6.66 (3.24)

yn+1 = yn + h

(
g1 + g2

2

)
= 1 + 0.1(5.83) = 1.583 (3.25)

Fourth-Order Runge-Kutta method is given by, Fig. 3.5.

g1 = f(xn, yn) (3.26)

g2 = f(xn +
h

2
, yn +

h

2
g1) (3.27)

g3 = f(xn +
h

2
, yn +

h

2
g2) (3.28)

g4 = f(xn + h, yn + g3) (3.29)

yn+1 = yn + h

(
g1

6
+

g2

3
+

g3

3
+

g4

6

)
+ O(h5) (3.30)

and it will require four evaluations of the right hand side per step h

Fourth-Order Runge-Kutta method is given by

g1 = f(xn, yn) (3.31)

g2 = f(xn +
h

2
, yn +

h

2
g1) (3.32)

g3 = f(xn +
h

2
, yn +

h

2
g2) (3.33)

g4 = f(xn + h, yn + hg3) (3.34)

yn+1 = yn + h

(
g1

6
+

g2

3
+

g3

3
+

g4

6

)
+ O(h5) (3.35)
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Figure 3.5: 4th Order Runge-Kutta Method

and it will require four evaluations of the right hand side per step h.

Note, in many applications x corresponds to the time t, and thus Equation 3.12 can be
rewritten as:

dxi(t)
dt

= f(t, x1, · · · , xn) i = 1, · · · , n (3.36)

10 As an illustrative example, let us consider the following ODE dy
dx = 1 + y(x)2 with y(0) = 0,

we seek y(π/4), and stepsize h = π/4 ' 0.78540

y0 = 0 g1 = 1
y0 + h

2g1 = 0.39270 g2 = 1.1542
y0 + h

2g2 = 0.45326 g3 = 1.2054
y0 + h

2g3 = 0.94676 g2 = 1.8963
y1 = 0.99687

(3.37)

11 In this other example, let us consider the following second order ordinary differential equation

d2y

dt2
=

y

et + 1
y(0) = 1

dy

dt
(0) = 0 (3.38)

we use ∆t = 0.1and solve for the first step only. But first we transform it into two coupled
equations

z =
dy

dt
(3.39-a)

dz

dt
=

y

et + 1
z(0) = 1 (3.39-b)

dy

dt
= z y(0) = 1 (3.39-c)
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For the first step y0 = 1 and z0 = 0 and we seek y1 and z1. We treat the dependent variables
and their derivatives as vectors and each component of each vector must be calculated before
proceding. Hence,

g1(y, z, t) = y
et+1 ; g2(y, z, t) = z; (3.40)

are components of (g1 and g2) the derivative vector ~g. Now we can start by evaluating ~g at
(y0, z0, t0).

g1
1(y0, z0, t0) = y

e0+1
= 0.5

g2
1(y0, z0, t0) = 0

(3.41)

Solve for the locations of the intermediary point

z1/2 = z0 + ∆t
2 g1

1(y0, z0, t0) = 0 + 0.1
2 (0.5) = 0.025

y1/2 = y0 + ∆t
2 g2

1(y0, z0, t0) = 1 + 0.1
2 (0) = 1

(3.42)

Derivatives
g1
2(y1/2, z1/2, t1/2) = 1

e0.05+1
= 0.487503

g2
2(y1/2, z1/2, t1/2) = z1/2 = 0.025

(3.43)

compute again the dependent variables

z1/2 = z0 + ∆t
2 g1

2(y1/2, z1/2, t1/2) = 0 + 0.1
2 (0.487503) = 0.024375

y1/2 = y0 + ∆t
2 g2

2(y1/2, z1/2, t1/2) = 1 + 0.1
2 ((0.025) = 1.001250

(3.44)

Derivatives
g1
3(y1/2, z1/2, t1/2) = 1.001250

e0.05+1
= 0.488112

g2
3(y1/2, z1/2, t1/2) = z1/2 = 0.024375

(3.45)

Dependent variables

z1 = z0 + ∆tg1
3(y1/2, z1/2, t1/2) = 0 + (0.1)(0.488112) = 0.048811

y1 = y0 + ∆tg2
3(y1/2, z1/2, t1/2) = 1 + (0.1)(0.024375) = 1.002438

(3.46)

Derivatives
g1
4(y1, z1, t1) = 1.002438

e0.1+1
= 0.476179

g2
4(y1, z1, t1) = z1 = 0.048811

(3.47)

First step is now completed, solve for z1 and y1

z1 = z0 + ∆t

[
1
6
g1
1(y0, z0, t0) +

1
3
g1
2(y1/2, z1/2, t1/2) +

1
3
g1
3(y1/2, z1/2, t1/2) +

1
6
g1
4(y1, z1, t1)

]
(3.48-a)

= 0 + 0.1
[
1
6
(0.5) +

1
3
(0.487503) +

1
3
(0.488112) +

1
6
(0.476179)

]
(3.48-b)

= 0.048790 (3.48-c)

y1 = y0 + ∆t

[
1
6
g2
1(y0, z0, t0) +

1
3
g2
2(y1/2, z1/2, t1/2) +

1
3
g2
3(y1/2, z1/2, t1/2) +

1
6
g2
4(y1, z1, t1)

]
(3.48-d)

= 0 + 0.1
[
1
6
(0) +

1
3
(0.0.025) +

1
3
(0.0.024375) +

1
6
(0.048811)

]
(3.48-e)

= 1.002459 (3.48-f)
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12 There are two MATLAB functions for the solution of a system of ordinary differential equa-
tions, Table 3.4.

Differential Equations
ode23 2nd/3rd order Runge-Kutta method
ode45 4th/5th order Runge-Kutta-Fehlberg method

Table 3.4: Differential Equations

13 As An illustrative example, let us reconsider the mass-spring-damper system previously
analyzed in Sect. 2.2.6.1, the governing differential equation was given by Eq. 2.14

mẍ + cẋ + kx = P sinωt (3.49)

we now seek to rearrange this equation in Cauchy form suitable for the Runge-Kutta MATLAB
solution.

ẍ = − c
m ẋ − k

mx + P sin ωt
y1 = ẋ
y2 = x

 y′1 = − c
my1 − k

my2 + P sinωt
y′2 = y1

(3.50)

the initial boundary conditions are x = 0 and ẋ = 0 or

y1(0) = 0 (3.51)
y2(0) = 0 (3.52)

To analyze this problem with MATLAB we first need to define an M-file which we call msd.m

function yp=msd(t,y)
% This function defines the differential equations, written in Cauchy
% form, governing the response of a damped mass-spring system subjected
% to a harmonic excitation.
% Assign constants
p= 2250.; % lbf
m= 2000.; % lbm
c=250; %
k= 1065; % lb/in
omega= 120.; % radiands
% Initialize the yd matrix
[rows, cols]=size(y); yp=zeros(rows,cols);
% define the derivatives
yp(1)=-c/m*y(1)-k/m*y(2)+p/m*sin(omega*t);
yp(2)=y(1);
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Now, to see how the system oscillates, we define the initial boundary values

t0=0.;y0=[0.;0.];
tf=100;

and then the simulation is run through

t0=0.;y0=[0.;0.];
tf=30;
[t,y]=ode23(’msd’,t0,tf,y0);
plot(t,y(:,2)),grid % Note that x corresponds to y(2)
xlabel(’Time, t [sec]’)
ylabel(’Displacement, x [mm]’)
pause
plot(y(:,1),y(:,2))
xlabel(’Velocity’)
ylabel(’Displacement’)

Which will generate Figs. ??
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Figure 3.6: Runge-Kutta Solution for the Mass-Spring-Damper System

3.2 Assignment

3.2.1 Practice

Start by repeating all the examples in this handout.
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3.2.2 Probability

For the data set 1 of the first homework (ftp/pub/Matlab/set1.dat), determine the probability
that the concrete strength is between 3,950 psi and 4,050 psi using the following two approaches:

1. From the computed mean and standard deviation, use Eq. 1.18

P (xmin < x < xmax) =
∫ xmax

xmin

f(x)dx (3.53)

where
φ(x) =

1√
2πσ

e−
1
2 [

x−µ
σ ]2 (3.54)

2. From the raw data.

3. Compare the two probabilities.

3.2.3 Moment of Inertias

Determine the Moment of inertias Ixx and Iyy for the triangular section of Fig. 3.2.

3.2.4 Reinforced Concrete Ultimate Stress Distribution

In reinforced concrete (r/c) beams, the strain distribution along the depth is assumed to be
linearly varying, positive and negative at the lower and upper extreme fibers respectively. At
failure, the maximum compressive strain is 0.003. The stress-strain curve of (normal strength)
concrete is nonlinear, hence the exact stress distribution is also nonlinear.

In order to determine the ultimate load carrying capacity of a r/c beam, all we need is the
resultant and location of the resultant force. Through extensive experimental studies, it was
determined that a rectangular stress block, Fig. 3.7, would have the same resultant force F

F = 0.85f ′
c︸ ︷︷ ︸

σ

ab︸︷︷︸
A

(3.55)

acting at a distance a/2 from the top where

a = β1c (3.56-a)
β1 = 0.85 (3.56-b)

In order to assess the accuracy of this equation, the following stress-strain curve was exper-
imentally obtained

σ =
2 f ′

c
εmax

1 +
(

ε
εmax

)2 ε (3.57)

Using this equation,
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Figure 3.7: Equivalent and Exact Stress Distribution in Reinforced Concrete Beams

1. Determine the resultant force and its location

2. Compare with the actual simplified approximation (where the resultant force is at a/2 fro
the top and is equal to 0.85f ′

cab).

Use: f ′
c = 3, 000 lbs/in2, εmax = 0.003, c = 4.in.

3.2.5 Mixture Problem, [2]

A 120 gallon tank contains 90 pounds of salt dissolved in 90 gallons of water. Brine containing
2 pounds of salt per gallon is flowing into the tank at a rate of 4 gallons per minute. The
mixture flows out of the tank at the rate of 3 gallons per minute. The differential equation that
specifies the amount of slat x(t) in pounds in the tank at time t is

x′ = 8 − 3
90 − t

.x (3.58)

The tank is full after 30 minutes.

1. Determine and plot the amount of salt in the tank from time=0 until the tank is full.

2. Determine the amount of time required for the tank to contain 150 pounds of salt.

3. The analytical solution to the differential equation is

x(t) = 2(90 + t) − 904

(90 + t)3
(3.59)
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compare your numerical results with the exact ones.

3.2.6 Dog-Tracking, [1]

A number of interesting curves are trajectories of a point D moving at constant speed while
always pointing toward another point M that moves along a known path. Such a method
of tracking is known as dog-tracking because it resembles the path followed by a dog chasing
his master. Similar curves are those followed by a vessel chasing another one, and by some
ground-to-air or air-to-air missiles.

Determine and plot the trajectories of a dog chasing his master for each of the following
two cases:

1. The master moves on a straight line and

(a) Initial dog position (x0, y0)=(0,0)

(b) Dog speed vd=10m/s

(c) Master position at time t, xm = vmt, and ym=100m

(d) Master speed vm=5m/s

(e) Initial and final times t0 = 0 and tf=10 s.

2. The dog is at the center of a circular pond of radius r while his master walks on the bank
at constant velocity vm. The dog swims at a constant speed vd always toward his master
and

(a) Initial dog position (x0, y0)=(0,0)

(b) Dog speed vd=2.5m/s

(c) Master speed vm=2m/s

(d) Radius r = 15m

Hint: ~vd = vd
~DM

| ~DM | , this will result into two separate equations (one for the x component and

one for the y component).

3.2.7 Ballistic Model, [1]

A simple ballistic model assumes that only two forces act on a projectile, namely gravity and
drag. According to this model, the equation of motion are

mv′x = −W
vx

v
(3.60-a)

mv′y = −W
vy

v
− mg (3.60-b)

where vx and vy are components of the velocity and v its magnitude. The drag W is given by

W = cw
ρ

2
v2 π

4
d2 (3.61)
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where cw is the drag coefficient and is nearly constant as long as the flight is at subsonic speed,
ρ is the air density, and d the diameter of the projectile.

Plot the trajectory, using the following parameters: g=9.81 ms−2, m=10 kg, cw=0.2,
ρ=1.225kgm−3, d=0.005m. The initial conditions are x0=0m, y0=0m, v0=250 m/s and the
gun elevation is π/6, Use ode23 with a tolerance of 5.10−4.
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Chapter 4

Week IV: MATHEMATICA

4.1 Background

4.1.1 Introduction

4.1.1.1 What is Mathematica ?

1 Mathematica is a program for symbolic mathematics.

2 With Mathematica, you can perform algebraic operations of various complexities. Hence,
rather than numerically solving an Engineering problem, you can solve it algebraically.

3 Because of its power, Mathematica will enable you to easily address problem of such complex-
ities that it would have been impractical to solve otherwise.

4 Finally, Mathematica has a very powerful set of graphics capabilities.

4.1.1.2 Availability

5 Mathematica is available in the Bechtel Laboratory.

6 A relatively inexpensive Student Edition can be purchased from the Buffalo Chip, and the
University used to have a site license for it.

4.1.1.3 Front End and Kernel

7 Mathematica consists of two parts: the Kernel which is the computation engine, and the Front
End which is the user interface. The Kernel is identical on all computers, however the Kernel
may vary.

8 There are two Front Ends supported in the Bechtel Lab:
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Command-Line Interface: where the current input line is displayed on the last line of the
screen (it can be edited by using the arrow, insert and delete keys). This Front End
does not support graphics, and is invoked by the math command. It is a convenient (and
only available one) to use if you connect to the server via a remote terminal which does
not support graphics (such as a home pc). Files storing Mathematica commands can be
created by any ASCII editor and are usually given the file extension .m

Notebook Front End: which can contain a mixture of text, graphics, and Mathematica def-
initions, Fig. 4.1.

In this environment there is no need to use an external editor since the Notebook Front
End plays also that role. Notebook files usually have a .ma or .mb for ASCII (to facilitate
transfer to other computers) or binary files.

9 In both cases Mathematica is used interactively

4.1.1.4 Accessing Mathematica

10 In the Bechtel Lab, Mathematica is accessible through by clicking the left mouse button
and then selecting Mathematica. Note that the program is licensed to run only on the server
(bechtel).

11 If you want to run the program differently, you need to
xhost + on your console
rlogin bechtel To connect you to the server
setenv DISPLAY yourmachine:0.0 To have the graphics displayed on your workstation
Type math for the Command Line Front End. To exit you simply type Exit.

12 Alternatively, you may simply type mathematica for the Notebook Front End.

4.1.1.5 Help

13 For help, simply type ?. For a specific function, you can type ?Sqrt or ?P*.

14 Note that after each command, you should hit the following two keys simultaneously <Shift>
<return>

15 The Notebook Front End also provides extensive help, Fig. 4.2.

4.1.1.6 Notebook Front End

4.1.1.6.1 Pointers 16 As the mouse moves around the Notebook, the shape of the pointer
changes:
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Figure 4.1: Notebook Front End for Mathematica
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Figure 4.2: Notebook Front End Help for Mathematica
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Vertical I-bar appears when pointing to text (or input) that can be edited. If you click on
the mouse, the pointer will then blink.

Horizontal I-bar appears when pointing to the space between two cells, or before the first
and after the last one. If you click the mouse, a horizontal line is drawn. Anything typed
after will be part of a new cell.

Cell-bracket Pointer appears when pointing to a cell bracket. If you click the mouse to select
a group a cell (or group of cells), then you can copy the cell, paste something else into it,
or re-execute the cell. If you double click, it will open or close the cell.

Formatted-Cell Pointer appears when pointing to cells that are formatted (such as Mathe-
matica output or graphics which can not be changed).

Graphics Pointer appears when pointing inside the bounding box of a selected graphics. You
can drag the graphic by depressing the mouse button and then moving the mouse.

Sizing Pointers appears when pointing to handles of graphic’s bounding box. Click and drag
the mouse to rescale the graphic in the direction shown by the pointer.

Watch Pointer Mathematica is busy can not be interrupted!.

4.1.1.6.2 Cell Brackets 17 A cell is the basic unit of organization in a Notebook. It can
contain text, Mathematica input or output, or other cells. The style of the bracket in the right
margin gives an indication of the cell attributes, and its size indicates its extent.

Unformatted Cell contains ordinary text that can be edited such as Mathematica input or
text.

Inactive Cell can not be executed (such as Mathematica output, and they are usually format-
ted.

Initialization Cell can be automatically evaluated when the Notebook is opened

Locked Cell means that its content can not be altered unless it is first unlocked.

Closed Group implies that only the first cell in the group is visible, and all others are not.

4.1.1.7 Brackets, Parentheses, and Braces

Brackets are used to specify arguments of functions.

Parenthesis are used for grouping. Without them, multiplication and division have a higher
precedence than addition and subtraction.

Braces are used to specify lists, vectors, and matrices.
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Double Brackets are used for indexing.

Comments are enclosed by (* Comment *).

4.1.2 Examples

4.1.2.1 Basic Arithmetic Operation

18 You can perform arithmetic operations with Mathematica as you would perform them with
a pocket calculator:

1. Simple

In[1]:= 6 + 5
Out[1]= 11

2. or slightly more complex operations:

In[2]:=6 ((3+4)^2-(5/6*7)+8 (9+10))
Out[2]=1171

The arguments of all Mathematica functions are enclosed in square brackets, and the
names of built-in functions begin with capital letters.

3. and now try to do this on your calculator:

In[1]:= 3^99
Out[1]= 171792506910670443678820376588540424234035840667

which is the exact value of 399.

4.1.2.2 Approximate Numerical Values

19 You can use the Mathematica function N to get approximate numerical results.

= N[3^99]
47

Out[3]= 1.71793 10
In[4]:= 3^99//N

47
Out[4]= 1.71793 10
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4.1.2.3 Complex Numbers

20 Mathematica can also handle complex numbers:

In[2]:= (2+5 I) (2-3 I)
Out[2]= 19 + 4 I

4.1.2.4 Derivatives

21 Here is an example of a derivative.

In[1]:= D[x^2 Sin[a x],x]

2
Out[1]= a x Cos[a x] + 2 x Sin[a x]

4.1.2.5 Integration

In[1]:= Integrate[(x+y)^5,x]

6 4 2 3 3 2 4
x 5 5 x y 10 x y 5 x y 5

Out[1]= -- + x y + ------- + -------- + ------- + x y
6 2 3 2

In[2]:= Integrate[Sin[x],{x,a,b}]

Out[2]= Cos[a] - Cos[b]

In[3]:= Integrate[Sin[x]+Sin[y],{x,0,Pi/2},{y,0,x}]

Pi
Out[3]= --

2
In[4]:= NIntegrate[Sin[x]^2-Sin[2 x],{x, 0,Pi}]

Out[4]= 1.5708

4.1.2.6 Algebraic Formulae

22 Mathematica can expand or reduce mathematical expressions
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In[5]:= Expand[(x+y)^5]

5 4 3 2 2 3 4 5
Out[5]= x + 5 x y + 10 x y, + 10 x y + 5 x y + y

4.1.2.7 Solving equations

23 Mathematica can determine the root of equations:

In[15]:= Solve[x^2+3x-a==0,x]

-3 + Sqrt[9 + 4 a] -3 - Sqrt[9 + 4 a]
Out[15]= {{x -> ------------------}, {x -> ------------------}}

2 2

4.1.2.8 Matrices

In[28]:= m=Table[(i),{i,9},{j,1}]
Out[28]= {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}

In[26]:= m=Table[(i+j),{i,0,8},{j,1}]
Out[26]= {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}

In[29]:= m=Table[(i),{i,9},{j,2}]
Out[29]= {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}, {7, 7}, {8, 8},
> {9, 9}}

24 Matrices are presented in Mathematica as a list of lists. Mathematica can add, multiply,
determine the inverse, determinant, eigenvalues and eigenvectors of matrices:

In[37]:= m=Table[(j+i),{i,0,1},{j,2}]
Out[37]= {{1, 2}, {2, 3}}

In[41]:=Inverse[m] or In[40]:= Inverse[%37]
Out[40]= {{-3, 2}, {2, -1}}

In[41]:= Det[%]
Out[41]= -1

In[43]:= %37.%40
Out[43]= {{1, 0}, {0, 1}}
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In[44]:= a={{12,7,9},{4,3,1},{11,6,3}}

Out[44]= {{12, 7, 9}, {4, 3, 1}, {11, 6, 3}}

In[45]:= Inverse[a]

3 33 5 1 63 6 9 5 2
Out[45]= {{-(--), -(--), --}, {--, --, -(--)}, {--, -(--), -(--)}}

52 52 13 52 52 13 52 52 13

In[46]:= %2.%1

Out[46]= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

In[47]:= Eigenvalues[a]//N

Out[47]= {20.4216, -3.21391, 0.79228}

In[48]:= Det[a]

Out[48]= -52

4.1.2.9 Graphics and Three-Dimensional Plots

In[13]:= Plot[Sin[x],{x,0,2 Pi}]
Out[13]= -Graphics-

In[10]:= Plot3D[Exp[x 2 y],{x,-2,2},{y,-2,2}]
Out[10]= -SurfaceGraphics-

4.1.2.10 Interfacing with Mathematica

4.1.2.10.1 Input 25 Rather than typing all the input commands, you can store them in an
ASCII file, the extension .m is recommended. To execute the file, simply type:

In[1]:= << <filename>>

where <filename> is the file name. If you had an .m extension, you do not need to specify it.
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Figure 4.3: Two-dimensional Plot generated from Mathematica
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Figure 4.4: Three-dimensional Plot generated from Mathematica
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4.1.2.10.2 Output 26 Mathematica can be interfaced

In[10]:= Integrate[x/(1+xsinx),x]

2
x

Out[10]= -------------
2 (1 + xsinx)

with:

Mathematica Form In[14]:= InputForm[%]

Out[14]//InputForm= x^2/(2*(1 + xsinx))

Fortran In[12]:= FortranForm[%]

Out[12]//FortranForm= x**2/(2*(1 + xsinx))

C In[11]:= CForm[%]

Out[11]//CForm= Power(x,2)/(2*(1 + xsinx))

TEX In[13]:= TeXForm[%]

Out[13]//TeXForm= {{{x^2}}\over {2 \left( 1 + {\it xsinx} \right) }}

4.1.2.11 Packages

27 Most function in Mathematica are written in C. However, some functions are written in
Mathematica itself. Such functions are defined in files called packages which will allow you to:

1. Define a function or set of functions that are often used

2. Hide the implementation from the user

3. Save the functions and reload them when needed.

4.1.2.12 Graphics hardcopy

28 The function PSPrint will generate a postscript file which can be later sent to the laser
printer.

Type: PSPrint[%n]
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29 If you want to save your graphics use the Mathematica command:

Display["file name",%n]

Where n is the number of your graphics output. Then in shelltool window use the psfix command
to create a PostScript file.

4.1.2.13 Input file

30 You can store all your operations into an ASCII file through a text editor, and then “load”
it into Mathematica

See the {\it Mathematica} manuals for further info on input files.

4.1.3 Some Mathematica Commands

4.1.3.1 Basic Operations

31 Following are the basic operations supported by Mathematica Note that multiplication can
be specified by either using an asterisk or by leaving a blank space between arguments.

x^y power
-x minus
x/y devide
x y z or x*y*z multiply
x+y+z add

4.1.3.2 Mathematical Functions

32 Following is a list of the most commonly used functions, a complete list is presented at the
end of the chapter.
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Sqrt[x] square root
Exp[x] exponential
Log[x] natural logarithm
Log[b,x] logarithm to base b
Sin[x], Cos[x] trigonometric functions (with arguments in radians)
Tan[x]
ArcSin[x] inverse trigonometric functions
ArcCos[x],ArcTan[x]
n! factorial (product of integers 1,2,...n)
Abs[x] absolute value
Round[x] closest integer to x
Mod[n, m] n modulo m (remainder on division of n by m)
Random[ ] pseudorandom number between 0 and 1
Max[x,y,..], maximum,minimum of x,y,...
Min[x,y,..]
Grad[f] Gradient in the given system
Div[f] Divergence
Curl[f] Curl

33 Note that all Mathematica built-in functions start with an upper case letter, and the argu-
ments are enclosed in square brackets.

4.1.3.3 Some Mathematica Constants

34 Mathematica also has some physical constants hardwired into the system.

Pi 3,14159
E 2.71828
Degree 3.14159/180:degrees to radians conversion factor
I

√−1
Infinity ∞

4.1.3.4 Complex Numbers

x + Iy The complex number x + i y
Re[z] Real part of z
Im[z] Imaginary part of z
Conjugate[z] Complex conjugate of z
Abs[z] Absolute value of z
Arg[z] The argument phi in the exponential form of a complex number
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4.1.3.5 Recall of Previous Expressions

% Last result
%% Next to last result
% n Result on output line Out[n]

4.1.3.6 Assignment of Variables

x = value Assign value to x
x = y = value Assign value to x and y
x = . or Clear[x] Remove assignment of x

4.1.3.7 Brackets

(term) Parentheses for grouping
f[x] Square brackets for functions
{a, b, c} Braces for lists
v[[i]] Double brackets for indexing

4.1.3.8 Help

?name Display information on name
??name Display more information on name
?Aaaa* Display information on all commands whose names begin with C*

4.1.3.9 Interrupting Mathematica

Continue Continue calculation
Show Show what MATHEMATICA is doing
Inspect Inspect current state
Abort Abort this particular calculation
Exit Exit MATHEMATICA
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4.1.3.10 Transformation of Algebraic Expressions

Expand[expr] Expand an
expression into
sum of terms

Factor[expr] Write expr as a
minimal prod-
uct of factors

Simplify[expr] Simplify ex-
pression

Coefficient[expr, form] Coefficient of
form in expr

Numerator[expr] Numerator
Denominator[expr] Denominator
expr // Short Show one line

outline of out-
put

Short[expr, n] Show n-line
outline of
result

Eliminate[{lhs1 == rhs1,lhs2 == rhs2, ...}, {x, ...}] Eliminate x, ...
from the set of
simultaneous
equations

Reduce[{lhs1 == rhs1, lhs2 == rhs2, ...}, {x, y, ...}] Give a set
of simplified
equations,
including
all possible
solutions

4.1.3.11 Differentiation

D[f, x] Partial derivative of f with respect to x
D[f, x1, x2, ...] Multiple derivative of f with respect to x1, x2, ...
D[f, {x, n}] The nth derivative of f with respect to x
Dt[f] The total derivative of f
Dt[f, x] The total derivative of f with respect to x
Limit[f, x-¿xo] The limit of f as x goes to xo

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students



Draft4–16 Week IV: MATHEMATICA

4.1.3.12 Integration

Integrate[f, x] Indefinite integral of f
with respect to x

Integrate[f, {x, xmin, xmax}] Definite integral of f
wrt to x from xmin to
xmax

Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] Multiple integral of f
with respect to y and
x

4.1.3.13 Summation & Products

Sum[f, {i, imin, imax, di}] Summation with i incremented by di
Sum[f, {i, imin, imax}, {j, jmin, jmax}] Nested summation of f with respect to j then i
Product[f, {i, imin, imax}] The product of f from imin to imax
{imax} Iterate imax times without incrementation of a variable
{i, imax} Increment i from 1 to imax by steps of 1
{i, imin, imax} Increment i form imin to imax by steps of 1
{i, imin, imax, di} Increment i from imin to imax by steps of di

4.1.3.14 Equations

4.1.3.14.1 Preliminaries

x = y Assigns the value of y to x
x == y Tests for x = y
x != y Unequal
x > y Greater than
x ≥ y Greater than or equal to
x < y Less than
x <= y Less than or equal to
x == y == z All equal
x != y != z All unequal
!p not
p && q && ... and
p || q || ... or
If[p, then, else] Execute then if p is true, else otherwise

4.1.3.14.2 Solution
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Solve[lhs == rhs, x] Solve equation in terms of x
x /. expr Use expr to get values of x
expr1 /. expr2 Use expr2 to get values for expr1
Solve[{lhs1 == rhs1, lhs2 == rhs2, ...}, {x, y, ...}] Solve simultaneous set of equations for x,y,...

4.1.3.14.3 Differential Equations

DSolve[eqns, y[x], x] Solve differential equation for y[x], taking x as the independent variable
DSolve[eqns, y, x] Give sol’n for y in pure functional form

4.1.3.14.4 Numerical Values

N[expr] Numerical value of expr
NIntegrate[f. {x, xmin, xmax}] Numerical approximation of integral
NSolve[lhs == rhs, x] Numerical approximation of the solution to the equation
NDSolve[eqns, y, {x, xmin, xmax}] Solve numerically for y with independent variable x

4.1.3.15 Functions

f[x ] Define the function f
?f Show definition of f
Clear[f] Clear definition of f
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4.1.3.16 Vectors & Matrices

{a, b, c} Vector (a,b,c)

{{a,b},{c,d}} Matrix

[
a b
c d

]
Array[a, n] Build a length-n vector of the form {a[1],...
Range[n] Create a list {1, 2, 3, ..., n}
Length[list] Give number of elements in list
IdentityMatrix[n] Generate n x n identity matrix
MatrixForm[list] Display list in matrix form
a . b Matrix product
c m Multiply a matrix by a scalar c
Inverse[m] Matrix inverse
MatrixPower[m, n] nth power of a matrix
Det[m] Determinant
Transpose[m] Transpose
Eigenvalues[m] Eigenvalues
Eigenvectors[m] Eigenvectors
Eigenvalues[N[m]] and Numerical eigenvalues
Eigenvectors[N[m]] Numerical eigenvectors

4.1.3.17 Graphics

4.1.3.17.1 Preliminaries

Plot[f, {x, xmin, xmax}] Plot f in terms of x from xmin to xmax
Plot[Evaluate[f], {x, xmin, xmax} First evaluate f then plot it

4.1.3.17.2 Plot Options
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AspectRatio Height-to-width ratio for plot
Axes Whether to include axes (True or False)
AxesLabel Labels to be put on axes {xlabel, ylabel} or None
AxesOrigin Point at which axes cross
DefaultFont The default font for text in the plot
DisplayFunction How to display graphics
Frame Whether to draw frame around plot
FrameLabel Labels to be put around the frame
FrameTicks What tick marks to draw if frame is included
GridLines What grid lines to include
PlotLabel An expression to be printed as a label for the plot
PlotRange Plot range of coordintes to include in the plot
Ticks What tick marks to draw if there is an axes
Automatic Use internal algorithms
None Do not include this
All Include everything
True Do this
False Do not do this
PlotPoints Minimum number of points at which to sample the function
MaxBend Maximum kink angle between successive segments of a curve
PlotDivision Maximum factor by which to subdivide in sampling the function
Show[plot] Redraw a plot
Show[plot, option-¿value] Redraw plot with changed options
Show[plot1, plot2, ...] Combine several plots

4.1.3.17.3 3 Dimensional Plots

Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}] Make 3D plot of f as a function of x and y

4.1.3.17.4 Parametric Plots 35 First you must load the ParametricPlot3D package:

In[1]:=<<Graphics’ParametricPlot3D’

ParametricPlot[{fx, fy}, {t, tmin, tmax}] Make a parametric plot
ParametricPlot[{fx, fy}, {gx, gy}, {t, tmin, tmax}] Parametric plot of several curves simultaneously

4.1.3.17.5 File Manipulation

¡¡name Load an ASCII file containing Mathematica commands
expr >> name Output expr to an ASCII file
expr >>> name Append expr to an ASCII file
!!name Display contents of an ASCII file
Save[”name”, f, g, ...] Save definitions for variables or functions in a file
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4.1.3.17.6 Generating C, Fortran & TEXFiles

CForm[expr] Write expr as C code
FortranForm[expr] Write expr as Fortran code
TexForm[expr] Write expr in TEXform

4.1.4 Programming in Mathematica

36 Programming in Mathematica is the process of writing functions, or packages, that can
subsequently be executed by simply typing in the name of the package. Writing programs with
Mathematica allows you to develop specialized functions in your field of interest that can then
be run from the Mathematica environment.

4.1.4.1 Building a Package

37 The goal of writing a package is to make the new function behave as much like a Mathematica
function as possible. This includes being able to type ?FunctionName for documentation on
how to use the new package FunctionName. Also the output from the package should not be
dependant on any previous calculations you have done during your Mathematica session.

38 Let’s look at a few examples:

(*This function returns the first n powers of x*)
PowerSum[x_,n_] :=

Block[{i},
Sum[x^i,{i,1,n}]

]

39 This would then be saved in a file with an extension .m, such as Example.m

1. PowerSum[ ] is the name of the function were are creating.

2. All the variables local to PowerSum[ ] are declared in a Block[ ] statement, this isolates
them from any values they might hold globally.

3. For this example, you must make sure that you don’t pass in variables that are used
locally inside the function.

For example:

In[1]:= <<Example.m
In[2]:= PowerSum[x,5]
Out[2]= x + x^2 + x^3 + x^4 + x^5

but if we were to call PowerSum with the following:
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In[3]:= PowerSum[i,5]
Out[3]= 3413

notice that we get a number for our answer and not an expression. This is because the variable
i, which we passed in, was captured by the variable (also called i) in the range of the summation.
The following example shows how to avoid such a problem.

PowerSum::usage = "PowerSum[x,n] returns the sum of first n powers of x."
Begin["Private‘"]
PowerSum[x_,n_] :=

Block[{i},
Sum[x^i,{i,1,n}]

]
End[]

40 Note we have done two things:

1. The usage statement defines a help message to be printed out if the user types ?PowerSum.

2. The local variable i is now created in the context Private‘ which is not searched when
you type in a variable name later on.

41 For example, with the revised Example.m you could type in the following:

In[1]:= <<Example.m
In[2]:= PowerSum[i,5]
Out[2]= i + i^2 + i^3 + i^4 + i^5

we now get the expression and not a numerical value.

4.1.4.2 A Complete Example

42 Here is an example of a package that will plot a random walk of length n. It will start at the
origin and then randomly choose a direction to follow for a line of length 1.

BeginPackage["RandomWalk‘"]
RandomWalk::usage = "RandomWalk[n] plots a random walk of length n."
Begin["‘Private‘"]
RandomWalk[n_Integer] :=

Block[{loc = {0.0,0.0}, dir, points = Table[0,{n+1}], range = N[{0, 2Pi}]},
points[[1]]=loc;
Do[

dir = Random[Real,range];
loc += {Cos[dir],Sin[dir]};
points[[i]] = loc,
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{i,2,n+1}];
Show[ Graphics[{Point[{0,0}], Line[points]}],

Frame->True, AspectRatio->Automatic]
]

End[]
EndPackage[]

The package is started by BeginPackage["RandomWalk‘"] and ended by EndPackage[]. Once
a package is complete these statements need to be inserted, but during development of
the package it is suggested that they be left out. If they are included in the development
stage they may interfere with the debugging process.

Next is the usage statement followed by a short description of the package. This is the message
that will be displayed when the user requests help for this command.

The Begin["‘Private‘"] and End[] statements are to keep values of variables used outside
the package from interfering with the variables used locally by the package.

The RandomWalk[n Integer] := statement assigns the name RandomWalk and the parameter
n (defined as an integer) to the function.

All the variable declarations and operations are done within the Block[........] statement.

The first part of Block[....] declares some variables:

1. loc = {0.0,0.0} defines loc as a collection of two values, these will be used as x
and y coordinates later on.

2. points is declared as a Table, see Mathematica reference for more details if you are
not familiar with this command. Basically, points will be a list going from 0 to
n+1.

3. range is exactly that, the N is to give an approximate value of Pi.

The first point of points is then assigned the origin. The semicolon at the end of the line is
to separate statements.

The next construct is a Do[...], this enable the user to iterate. The format is Do[statement
, interator]. This Do loop has more than one statement, so they are separated by semi-
colons. The iterator is {i,2,n+1}.

The following occur within the Do loop:

1. dir is chosen randomly from the range indicated in range and returned as a real.
2. loc is then assigned the cosine and sine of dir
3. points is assigned the value of loc.

The next statements; Show[...], and Graphics[..], are straight forward Mathematica com-
mands. For more information on these commands see the Mathematica reference text.
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4.1.5 List of All Mathematica Functions

43 Table 4.1 contains all Mathematica functions, with the most commonly used ones in bold-
faced.

4.2 Assignment

4.2.1 Practice

Start by repeating all the examples in this handout.

4.2.2 Problems

Write a Mathematica Notebook to execute the following:

1. Solve x2 + 2x + 1 = 0

2. Integrate
∫ 1
0

∫ √
x

0 yex2
dydx

3. Solve the following differential equation y′(x) = y(x)

4. Plot the function x sinx for x in the range [0, 6π], and

(a) Change the AspectRatio so that the width of the plot is twice its height.

(b) Give the plot the label ‘‘x Sin[x]’’.

(c) Label the x axis “x”, and the y axis “y”.

5. Plotsin(π sin x + y) for −3 < x < 3 and −3 < y < 3 using 33 grid points, no display of
the axes.

6. Generate a contour plot of the previous equation.

7. Write a function which takes a pair x, y and returns
√

x2 + y2.

4.3 References

1. Wolfram, S. “Mathematica: A System for Doing Mathematics by Computer second edition,
Addison-Wesley, 1991.

2. Maeder, R., Programming in Mathematica, Addison Wesley, 1991

3. Blachman, N., Mathematica a Practical Approach, Prentice Hall, 1991.

4. Gray, T., and Glynn J., The Beginner’s Guide to Mathematica, Addison-Wesley, 1992.
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Chapter 5

SAMPLES of MATLAB
PROGRAMS

This chapter contains the description and listing of a number of simple (and not so simple)
MATLAB codes.

The source codes can be freely copied from
/pub/Structures/cven4837

5.1 arches

5.1.1 Description

SUBDIRECTORY: arches

SYNOPSIS: axial, shear, and normal force plots for an arch (Structures)

DESCRIPTION: arches.m plots the Bending Moment, Shear Force, and Axial Force for a
three pin semi circular arch under uniform load.

CONTENTS;
arches.m main program

Written by: Brian Rose

Determine the reactions of the three-hinged arch shown in Fig. 5.1 Solution:

Four unknowns, three equations of equilibrium, one equation of condition ⇒ statically
determinate.

(+ ¡¢¾)ΣMC
z = 0; (RAy)(140) + (80)(3.75) − (30)(80) − (20)(40) + RAx(26.25) = 0

⇒ 140RAy + 26.25RAx = 2.900
(+- ) ΣFx = 0; 80 − RAx − RCx = 0
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Figure 5.1:

(+ 6)ΣFy = 0; RAy + RCy − 30 − 20 = 0
(+ ¡¢¾)ΣMB

z = 0; (Rax)(60) − (80)(30) − (30)(20) + (RAy)(80) = 0
⇒ 80RAy + 60RAx = 3, 000 (5.1-a)

Solving those four equations simultaneously we have:
140 26.25 0 0
0 1 0 1
1 0 1 0
80 60 0 0




RAy

RAx

RCy

RCx

 =


2, 900

80
50

3, 000

 ⇒


RAy

RAx

RCy

RCx

 =


15.1 k
29.8 k
34.9 k
50.2 k

 (5.2)

We can check our results by considering the summation with respect to b from the right:

(+ ¡¢¾) ΣMB
z = 0;−(20)(20) − (50.2)(33.75) + (34.9)(60) = 0

√
(5.3)

Determine the reactions of the three hinged statically determined semi-circular arch under
its own dead weight w (per unit arc length s, where ds = rdθ). 5.2

Figure 5.2:
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The reactions can be determined by integrating the load over the entire structure

(+ ¡¢¾)ΣMA = 0; −(VC)(2R) +
∫ θ=π

θ=0
wRdθ︸ ︷︷ ︸

dP

R(1 + cos θ)︸ ︷︷ ︸
moment arm

= 0

⇒ VC = wR
2

∫ θ=π

θ=0
(1 + cos θ)dθ

= wR
2 [θ − sin θ] |θ=π

θ=0= wR
2 [(π − sin π) − (0 − sin 0)]

= π
2 wR (5.4-a)

Next we determine the horizontal reaction

(+ ¡¢¾)ΣMB = 0; −(HC)(R) + (Vc)(R) −
∫ θ=π

2

θ=0
wRdθ︸ ︷︷ ︸

dP

R cos θ︸ ︷︷ ︸
moment arm

= 0

⇒ HC = π
2 wR − wR

2

∫ θ=π
2

θ=0
cos θdθ

= π
2 wR − wR[sin θ] |θ=

π
2

θ=0 = π
2 wR − wR(π

2 − 0)
=

(
π
2 − 1

)
wR (5.5-a)

By symmetry the reactions at A are equal to those at C
Draw the shear and moment diagram for the three hinged statically determined semi-circular

arch under its own dead weight w, Fig. 5.3. Solution:

Reactions: Those were determined earlier, Example ??. For the sake of clarity, we repeat
their derivation:

1. Starting with CY

(+ ¡¢¾) ΣMA = 0; −(CY )(2R) +
∫ θ=π

θ=0
wRdθ︸ ︷︷ ︸

dP

R(1 + cos θ)︸ ︷︷ ︸
moment arm

= 0

⇒ CY = wR
2

∫ θ=π

θ=0
(1 + cos θ)dθ

= wR
2 [θ − sin θ] |θ=π

θ=0= wR
2 [(π − sinπ) − (0 − sin 0)]

= π
2 wR (5.6-a)

2. Next we determine the horizontal reaction

(+ ¡¢¾) ΣMB = 0; −(Cx)(R) + (Cy)(R) −
∫ θ=π

2

θ=0
wRdθ︸ ︷︷ ︸

dP

R cos θ︸ ︷︷ ︸
moment arm

= 0

⇒ Cx = π
2 wR − wR

2

∫ θ=π
2

θ=0
cos θdθ

= π
2 wR − wR(sin θ] |θ=

π
2

θ=0 = π
2 wR − wR(π

2 − 0)
=

(
π
2 − 1

)
wR (5.7-a)
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Figure 5.3:
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3. By symmetry the reactions at A are equal to those at C

Shear Forces: Considering the free body diagram of the arch, and summing the forces in the
radial direction (ΣFR = 0):

−(
π

2
− 1)wR︸ ︷︷ ︸
Cx

cos θ +
π

2
wR︸ ︷︷ ︸
Cy

sin θ −
∫ θ

α=0
wRdα sin θ + V = 0 (5.8)

⇒ V = wR

[
(
π

2
− 1) cos θ + (θ − π

2
) sin θ

]
(5.9)

Axial Forces: Similarly, if we consider the summation of forces in the axial direction (ΣFN =
0):

(π
2 − 1)wR sin θ + π

2 wR cos θ −
∫ θ

α=0
wRdα cos θ + N = 0 (5.10)

N = wR
[
(θ − π

2 ) cos θ − (π
2 − 1) sin θ

]
(5.11)

Moment: Now we can consider the third equation of equilibrium (ΣMθ = 0):

(π
2 − 1)wR · R sin θ − π

2 wR2(1 − cos θ) +∫ θ

α=0
wRdα · R(cos α − cos θ) + M = 0 (5.12)

M = wR2
[

π
2 (1 − sin θ) + (θ − π

2 ) cos θ
]

(5.13)

We seek to determine the vertical deflection of the crown of the three hinged statically
determined semi-circular arch, Fig. 5.4 under its own dead weight w, Fig. ??.

1. We first seek to determine the analytical expression of the moment diagram. From statics,
it can be shown that the vertical and horizontal reactions are Rv = π

2 wR and Rh =
(π

2 − 1)wR.

2. Next considering the free body diagram of the arch, and summing the forces in the radial
direction (ΣFR = 0):

−(π
2 − 1)wR cos θ + π

2 wR sin θ −
∫ θ

α=0
wRdα sin θ + V = 0 (5.14-a)

V = wR
[
(π

2 − 1) cos θ + (θ − π
2 ) sin θ

]
(5.14-b)

3. Similarly, if we consider the summation of forces in the axial direction (ΣFT = 0):

(π
2 − 1)wR sin θ + π

2 wR cos θ −
∫ θ

α=0
wRdα cos θ + N = 0 (5.15-a)

N = wR
[
(θ − π

2 ) cos θ − (π
2 − 1) sin θ

]
(5.15-b)
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Figure 5.4:
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4. Now we can consider the third equation of equilibrium (ΣMθ = 0):

(π
2 − 1)wR · R sin θ − π

2 wR2(1 − cos θ) +∫ θ

α=0
wRdα · R(cos α − cos θ) + M = 0 (5.16-a)

M = wR2
[

π
2 (1 − sin θ) + (θ − π

2 ) cos θ
]

(5.16-b)

5. The real curvature φ is obtained by dividing the moment by EI

φ =
M

EI

wR2

EI

[
π

2
(1 − sin θ) + (θ − π

2
) cos θ

]
(5.17)

6. The virtual force δP will be a unit vertical point in the direction of the desired deflection,
causing a virtual internal moment

δM =
R

2
[1 − cos θ − sin θ] 0 ≤ θ ≤ π

2
(5.18)

7. Hence, application of the virtual work equation yields:

1︸︷︷︸
δP

·∆ = 2
∫ π

2

θ=0

wR2

EI

[
π

2
(1 − sin θ) + (θ − π

2
) cos θ

]
︸ ︷︷ ︸

φ

· R

2
· [1 − cos θ − sin θ]︸ ︷︷ ︸

δM

Rdθ︸︷︷︸
dx

=
wR4

16EI

[
7π2 − 18π − 12

]
= .0337wR4

EI (5.19-a)

5.1.2 Listing

5.1.2.1 arches.m

Equations used for calculation of shear force, axial force, and bending moment are
as follows:

V = ωR[(
π

2
− 1) cos θ + (θ − π

2
) sin θ]

N = ωR[(θ − π

2
) cos θ − (

π

2
− 1) sin θ]

M = ωR2[
π

2
(1 − sin θ) + (θ − π

2
) cos θ]

arches.m file starts here:
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Figure 5.5: Simply Supported Arch with Uniform Load

%Arches is a script that plots the Bending Moment, Shear Force,

%and Axial Force for a three pin semi circular arch under uniform

%load

%clear the command screen

clc

%prompt the user for some information

R=input(’Enter the radius of the arch: ’);

w=input(’Enter the load on the of the arch: ’);

%create a vector of theta from 0 to 90 degrees

theta=(0:pi/100:pi/2);

%calculate V, N, M for a half the arch

V=w*R*((pi/2-1)*cos(theta)+(theta-pi/2).*sin(theta));

N=w*R*((theta-pi/2).*cos(theta)-(pi/2-1)*sin(theta));

M=w*R^2*(pi/2*(1-sin(theta))+(theta-pi/2).*cos(theta));

%since the structure is symmetric, get V,N,M values

%for theta from 90 to 180 degrees by flipping V,N,M

%notice the negative sign for Shear

%also note that if we just flip V,N,M we’ll

%repeat V(90 degrees),N(90 degrees), M(90 degrees)

%so we’ll pull those values out

V=[V fliplr(-V(1:length(V)-1))];

N=[N fliplr(N(1:length(N)-1))];

M=[M fliplr(M(1:length(M)-1))];

%redefine theta so that it goes from 0 to 180 degrees

theta=(0:pi/100:pi);
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%Plot the shear diagram

%The axislimit=... commands are there so that I can

%tell Matlab to do a polar plot with a radial axis starting from

%-V to +V, instead of 0 to +V.

%The tickmarks=... command makes it so that the tick labels are nice round numbers

%Also note that we are not using the command polar, but instead we’re using

%polarhg. Polarhg is a more flexible version of polar, but it doesn’t come

%standard with Matlab

subplot(221)

axislimits=max(abs(V))*1.2;

axislimits=ceil(axislimits/10.^floor(log10(axislimits)))*10.^floor(log10(axislimits))*[-1 1];

tickmarks=(axislimits(1):2*10^floor(log10(axislimits(2))):axislimits(2));

polarhg([theta;theta],[V;0*V],’rlim’,axislimits,’rtick’,tickmarks);

title(’Shear Force’)

%plot the Axial force diagram

subplot(222)

axislimits=max(abs(N));

axislimits=ceil(axislimits/10.^floor(log10(axislimits)))*10.^floor(log10(axislimits))*[-1,1];

tickmarks=(axislimits(1):2*10^floor(log10(axislimits(2))):axislimits(2));

polarhg([theta;theta],[N;0*N],’rlim’,axislimits,’rtick’,tickmarks);

title(’Axial Force’)

%plot the Moment diagram

subplot(223)

axislimits=max(abs(M));

axislimits=ceil(axislimits/10.^floor(log10(axislimits)))*10.^floor(log10(axislimits))*[-1,1];

tickmarks=(axislimits(1):2*10^floor(log10(axislimits(2))):axislimits(2));

polarhg([theta;theta],[-M;0*M],’rlim’,axislimits,’rtick’,tickmarks);

title(’Bending Moment’)

5.2 beam1

5.2.1 Description

SUBDIRECTORY : beam1

SYNOPSIS: shear and bending moment diagram for a simple beam (Structures)

DESCRIPTION: BMdemo.m gets the bending moment and deflection for a simply supported
beam subjected to either a point load or a distributed load.

CONTENTS:
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Shear Force

30

210

60

240

90

270

120

300

150

330

180 0
−200−200

0

200200
Axial Force

30

210

60

240

90

270

120

300

150

330

180 0
−400−400
−200
0
200
400400

Bending Moment

30

210

60

240

90

270

120

300

150

330

180 0
−3000−3000

−1000

1000

30003000

Figure 5.6: Sample output for arches.m using r = 100 and ω= 2

BMdemo.m the main program
M2deflection.m converts bending moments to deflections by integration
P2M.m converts point loads to moment using a formula
P2V.m converts point loads to shear using a formula
w2M.m converts uniform loads to moment using a formula
w2V.m converts uniform loads to shear using a formula

Written by: Brian Rose

5.2.2 Listing

5.2.2.1 BMdemo.m

Equations used for calculation of shear, bending moment, and deflection diagrams:
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Figure 5.7: Simply Supported Beams with Various Loadings

• Pointload

R1 =
Pb

L

R2 =
Pa

L

M = R1x for (x < a)

= R2(L - x) for (x ≥ a)

V = R1 for (x < a)

= −R2, for (x ≥ a)

v
′′

=
M(i)
EI

=
v(i − 1) − 2v(i) + (i + 1)

dx2
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• Continuous Load

R1 =
ωb

2L
(2a + b)

R2 =
ωb

2L
(2c + b)

M = R1x for (x < a)

= R1x − ω

2
(x − a) for (a ≤ x ≤ a + b)

= R2(L - x) for (x ≥ a + b)

V = R1 for (x < a)

=
(x − a)(−R2 − R1)

b
+ R1 for (a ≤ x ≤ a + b)

= −R2 for (x ≥ a + b)

v
′′

=
M(i)
EI

=
v(i − 1) − 2v(i) + (i + 1)

dx2

BMdemo.m file starts here:

%BMdemo

%this script gets the bending moment and

%deflection for a simply supported beam subjected to either

%a point load or a distributed load

%prompt the user for the load type

choice=input(’Analyze for point load (1) or a uniform load (2) ? ’);

%clear the screen

clc

%do the point load case

if choice==1

%prompt the user for some parameters

P=input(’Enter P: ’);

a=input(’Enter a: ’);

L=input(’Enter L: ’);

E=input(’Enter E: ’);

I=input(’Enter I: ’);

number_points=input(’Enter the number of discretization points: ’);

%calculate the mesh size
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dx=L/(number_points-1);

%get the BM

M=P2M(P,a,L,dx);

%get the shear

V=P2V(P,a,L,dx);

%get the deflection

v=M2deflection(M,E,I,dx);

%do the distributed load case

elseif choice==2

%prompt the user for some parameters

w=input(’Enter w: ’);

a=input(’Enter a: ’);

b=input(’Enter b: ’);

L=input(’Enter L: ’);

E=input(’Enter E: ’);

I=input(’Enter I: ’);

number_points=input(’Enter the number of discretization points: ’);

%calculate the mesh size

dx=L/(number_points-1);

%get the deflection

M=w2M(w,a,b,L,dx);

%get the Shear

V=w2V(w,a,b,L,dx);

%get the deflection

v=M2deflection(M,E,I,dx);

end

%plot the BM and deflection

%make a vector for location along beam

x=(0:dx:L);

%plot the BM

subplot(311)

plot(x,M)

ylabel(’Bending Moment’)

grid

%plot the Shear

subplot (312)

plot(x,V)

ylabel(’Shear’)

grid
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%plot the deflection

subplot(313)

plot(x,v)

ylabel(’Displacement’)

grid
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Figure 5.8: Sample output of BMdemo.m with a pointload using
P = 20 kN, a = 6 m, L = 12 m, E = 200 GPa, I = 6e6 mm4, and 12 discretization points.

5.2.2.2 M2deflection.m

function v=M2deflection(M,E,I,dx)

%M2DEFLECTION(M,E,I,dx) returns the deflection of a simply

%supported beam, given the descritized moment, M;

%E, Young’s modulus; I, moment of inertia; and dx,

%the mesh size.

%

%This algorithm integrates the bending moment twice

%using the central difference method.

%The second derivative is defined as

%
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% v(i-1) - 2v(i) + (i+1)

%v’’= ----------------------

% dx^2

%

%

%Using the central difference method we can w%The central difference method will take on the form Av=b.rite

%

% v(i-1) - 2v(i) + (i+1)

%M(i)/EI = ----------------------

% dx^2

%

%If you write the above equation for every mesh point

%you get the following matrix equation.

%

% ---- -- -- -- --

% | 1 -2 1 | | v(-1) | | M(0) |

% | 1 -2 1 | | v(0) | | M(1) |

% | 1 -2 1 | | v(1) | | M(2) |

% | . | | v(2) | | . |

%1/dx^2 | . | | . | = 1/EI | . |

% | . | | . | | . |

% | 1 -2 1 | | . | | M(n) |

% | 1 | | v(n) | | 0 |

% | 1 | | v(n+1)| | 0 |

% ---- -- -- -- --

%

% |________________________________| |_______| |______|

% A v b

%

%v(-1) and v(n+1) are known as the phantom points,and

%they do not represent any real displacements. The last two

%lines embody the boundary conditions: v(0)=0 and v(n)=0. By

%solving for v in the matrix equation Av=b, you will obtain

%the displacements, including the phantom points.

%get the number of discretization points

m=length(M);

%make a diagonals for the matrix

firstdiagonal=ones(m+2,1)/dx^2;

seconddiagonal=-2*ones(m+1,1)/dx^2;

thirddiagonal=ones(m,1)/dx^2;

%make a tridiagonal matrix of dimensions (m+2,m+2)

A=diag(firstdiagonal,0)+diag(seconddiagonal,1)+diag(thirddiagonal,2);

%replace the last row with a bunch of zeros

A(m+1:m+2,:)=zeros(2,m+2);

%now put ones in the appropriate places

A(m+1,2)=1;

A(m+2,m+1)=1;
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%make the vector b

b=M/(E*I);

b(m+1)=0;

b(m+2)=0;

%make sure that b is a column vector

if size(b,1)==1

b=b’;

end

%solve the system of equations

v=(A\b);

%discard the phantom points

v=v(2:m+1);

5.2.2.3 P2M.m

function M=P2M(P,a,L,dx)

%FUNCTION M=P2M(P,A,L,dx) returns the bending moment diagram for a

%point load on a simply supported beam

%

% |P

% |

% \|/

% __________________________

% /\ /\

% |----A----|

% |------------L------------|

% |-------B-------|

% |---> x

%get b

b=L-a;

%get the reactions

R1=P*b/L;

R2=P*a/L;

%make a vector x

x=(0:dx:L);

%get the moment

M=R1*(x<a).*x + R2*(x>=a).*(L-x);

%the above statement is a shorthand way of saying

%for i=1:length(x)

% if x(i) < a
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% M(i)=R1*x(i);

% elseif x(i) >= a

% M(i)=R2*(L-x(i));

% end

%end

%Matlab is very fast at evaluating matrix operations

%like the shorthand command for M. Matlab is not so fast

%at doing if statements and for loops.

5.2.2.4 P2V.m

function V=P2V(P,a,L,dx)

%FUNCTION V=P2V(P,A,L,dx) returns the Shear diagram for a

%point load on a simply supported beam

%

% |P

% |

% \|/

% __________________________

% /\ /\

% |----A----|

% |------------L------------|

% |-------B-------|

% |---> x

%get b

b=L-a;

%get the reactions

R1=P*b/L;

R2=P*a/L;

%make a vector x

x=(0:dx:L);

%get the shear

V=(x<a)*R1 - (x>=a)*R2;

%the above statement is a shorthand way of saying

%for i=1:length(x)

% if x(i) < a

% V(i)=R1;

% elseif x(i) >= a

% V(i)=-R2;

% end

%end

%Matlab is very fast at evaluating matrix operations
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%like the shorthand command for M. Matlab is not so fast

%at doing if statements and for loops.

5.2.2.5 w2M.m

function M=w2M(w,a,b,L,dx)

%FUNCTION M=w2M(W,a,b,L,dx) returns the bending moment diagram for a

%distributed load on a simply supported beam

%

%

% _______

% ||||||| w

% __________________________

% /\ /\

% |--A--|--B--|

% |------------L------------|

% |---> x

% |--------C----|

%get c

c=L-a-b;

%get the reactions

R1=w*b/2/L*(2*c+b);

R2=w*b/2/L*(2*a+b);

%make a vector x

x=(0:dx:L);

%get the bending moment

M=(x<a).*(x*R1) + ((x>=a)&(x<(a+b))).*(R1*x-w/2*(x-a).^2) + (x>=(a+b)).*(R2*(L-x));

%the above statement is a shorthand way of saying

%for i=1:length(x)

% if x(i) < a

% M(i)=(x(i)*R1);

% elseif (x(i) >= a) &| (x(i) < (a+b))

% M(i)=(R1*x(i)-w/2*(x(i)-a).^2);

% elseif (x(i) >= (a+b))

% M(i)=(R2*(L-x(i)));

% end

%end

%Matlab is very fast at evaluating matrix operations

%like the shorthand command for M. Matlab is not so fast

%at doing if statements and for loops.
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5.2.2.6 w2V.m

function V=w2V(w,a,b,L,dx)

%FUNCTION V=w2V(W,a,b,L,dx) returns the shear diagram for a

%distributed load on a simply supported beam

%

%

% _______

% ||||||| w

% __________________________

% /\ /\

% |--A--|--B--|

% |------------L------------|

% |---> x

% |--------C----|

%get c

c=L-a-b;

%get the reactions

R1=w*b/2/L*(2*c+b);

R2=w*b/2/L*(2*a+b);

%make a vector x

x=(0:dx:L);

%get the shear

V=(x<a)*R1 +((x>=a)&(x<(a+b))).*((x-a)*(-R2-R1)/b+R1) - (x>=(a+b))*R2;

%the above statement is a shorthand way of saying

%for i=1:length(x)

% if x(i) < a

% V(i)=R1

% elseif (x(i) >= a) & (x(i) < (a+b))

% V(i)=(x-a)*(-R2-R1)/b+R1

% elseif (x(i) >= (a+b))

% V(i)=-R2

% end

%end

%Matlab is very fast at evaluating matrix operations

%like the shorthand command for M. Matlab is not so fast

%at doing if statements and for loops.
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5.3 beam2

5.3.1 Description

SUBDIRECTORY: beam2

SYNOPSIS: principle stress plots in a simple beam under midspan point load (Structures)

DESCRIPTION: beam under load.m plots the principle stresses in a prismatic rectangular
beam under uniform loads, with simple supports, assuming plane stress conditions.

CONTENTS:
beam under load.m main program

Written by: Brian Rose

5.3.2 Listing

5.3.2.1 beam under load.m

Figure 5.9: Beam Under Continuous Load

Major formulas used:

M =
ω

2
x(L − x)

V = ω9
L

2
− x)

Q = b(
d

2
− y)(

y

2
+

d

4
)
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σxx = −My

I

τ =
V Q

Ib

σ1,2 =
σxx

2
±

√
σ2

xx

4
+ τ2

beam under load.m file starts here:

%script beam_under_load will plot the principle stresses in a prismatic

%rectangular beam under uniform loads, with simple supports. We will

%assume plane stress conditions.

%beam is depth d, width b, length L and has uniform load of w

%define dimensions

b=4;

d=12;

L=20*12;

%define the uniform load

w=2;

%get some cross sectional properties

A=b*d;

I=b*d^3/12;

%set up x and y coordinate system

numberx=100;

numbery=40;

x=0:L/numberx:L;

y=-d/2:d/numbery:d/2;

%get a mesh of x and y’s

[x,y]=meshgrid(x,y);

%calculate moment and shear

M=w/2*x.*(L-x);

V=w*L/2-w*x;

%calculate the first moment of intertia

Q=b*(d/2-y).*(y/2+d/4);

%calculate bending stress and shear stress for each point in the beam

sb=-M.*y/I;

sv=V.*Q/I/b;

%calculate the principle and maximum shear stresses

tmax=sqrt(sb.^2/4+sv.^2);

p1=sb/2+tmax;

p2=sb/2-tmax;
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%set the colorscale for the plots

%for more details type "help color" and "help colormap"

colormap(jet)

%plot results

%the shading interp takes away ugly gridlines

subplot(311)

pcolor(x,y,p1)

shading interp

title(’Principle Stress 1’)

colorbar

subplot(312)

pcolor(x,y,p2)

shading interp

title(’Principle Stress 2’)

colorbar

subplot(313)

pcolor(x,y,tmax)

shading interp

title(’Maximum Shear Stress’)

colorbar

%for those of you who appreciate psychedelic stuff try this

%spinmap(20)

5.4 boussinesq

5.4.1 Description

SUBDIRECTORY: boussinesq

SYNOPSIS: stress plot for semi-infinite domain under a point load (Geotech)

DESCRIPTION: boussinesq.m plots the stress distribution of a point load on a semi-infinite
half space

CONTENTS:
boussinesq.m main program

Written by: Brian Rose

5.4.2 Listing

5.4.2.1 boussinesq.m

Main formula:
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Figure 5.10: Sample output of principle stresses for beam under load.m
with ω = 2, b = 4, d = 12, and L = 20.

σy =
3P (sin θ)3

2πR2

boussinesq.m file starts here:

%script boussinesq plots the stress distribution

%of a point load on a semi-infinite half space

%

%

% | P

% |

% |

% \|/

%------------------------------

%

% --->x

% |

% |

% |/ y

%set up a radial grid

%define the r’s and theta’s for our grid as vectors

r=0.01:.002:0.1;

theta=0:pi/20:pi;

P=100;
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Figure 5.11: Point Load on Semi-Infinite Domain

%Now define a R and THETA for each grid point

%this means that R and THETA are both matrices

[R,THETA]=meshgrid(r,theta);

%get the stress in the y direction

stressy=3*P/(2*pi)*(sin(THETA)).^3./R.^2;

%take R and THETA and convert them to cartesian coordinates

[x,y] = pol2cart(THETA,R);

%plot the results (note the -y is so that

%it plots upside down

pcolor(x,-y,stressy)

%note that since the solution blows up at R=0 and theta=0,

%we have left out the solution for that point.

5.5 dodgecity

5.5.1 Description

SUBDIRECTORY: dodgecity

SYNOPSIS: statistical analysis of wind power in Dodge City (Energy Management)

DESCRIPTION: wind.m makes a histogram of windspeed and does some simple statistics
on it. Accompanies Jan Kreider’s handout ”Wind Power Assessment”
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Figure 5.12: Stress plot for point Load on Semi-Infinite Domain

CONTENTS:
apr data file
aug data file
dec data file
feb data file
jan data file
jul data file
jun data file
mar data file
may data file
nov data file
oct data file
sep data file
wind.m main program

Written by: Brian Rose

5.5.2 Listing

5.5.2.1 wind.m

Equation used:

P =
1
2
ρv3

wind.m file starts here:

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students



Draft5–26 SAMPLES of MATLAB PROGRAMS

%Script wind.m

%Makes a histogram of windspeed and does some simple statistics‘

%on it. Accompanies Jan Kreider’s handout Wind Power Assessment

%load data for all 12 months

%use the -ascii extension to tell Matlab that we’re reading ascii

%files. Matlab will take the data in the file jan and stuff it into

%a matrix called jan. Same goes for all the other months

load jan -ascii

load feb -ascii

load mar -ascii

load apr -ascii

load may -ascii

load jun -ascii

load jul -ascii

load aug -ascii

load sep -ascii

load oct -ascii

load nov -ascii

load dec -ascii

%Concatentate them into one big matrix called data

data=[jan;feb;mar;apr;may;jun;jul;aug;sep;oct;nov;dec];

%now pull out the wind speed from the 7th column of data

V=data(:,7);

%specify the bins

%the bin goes from 0 to the maximum windspeed rounded up to the

%next whole number. Try typing ’help ceil’ in the matlab window

bin=(0:ceil(max(V)));

%sort the velocity into bins

hours=hist(V,bin);

%make a histogram

%on your own try doing bar(bin,hours) and bar(midpoint,hours).

%the results will be slightly different.

midpoint=bin+0.5;

bar(midpoint,hours)

title(’Dodge City’)

xlabel(’Wind Velocity (m/s)’)

ylabel(’Hours’)

%Compute power.

%Note here that the we use .^3 instead of ^3

%because the former is an array operation (means operate

%element by element), whereas the latter is a matrix operation.

rho=1.124;

Power=rho/2*(V.^3);
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%do some statistics on power

mean_power=mean(Power)

max_power=max(Power)

std_power=std(Power)

median_power=median(Power)
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Figure 5.13: Sample histogram of windspeed

Simple Statistics calculated from wind data:

mean_power = 194.0820

max_power = 8.7812e+03

std_power = 311.3429

median_power = 70.2500

5.6 effectiveL

5.6.1 Description

SUBDIRECTORY: effectiveL
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SYNOPSIS: effective length of a sidesway inhibited column of a building (Structures)

DESCRIPTION: effectiveL.m returns the effective length factor, K given the G values for
the top and bottom of a sidesway inhibited column.

CONTENTS:
effectiveL.m main function. Note, not a scipt.

Recall that the Euler buckling load was derived for a pinned column. In many cases, a
column will have different boundary conditions. It can be shown that in all cases, the buckling
load would be given by

Pcr =
π2EI

(KL)2
(5.20)

where K is called effective length factor, and KL is the effective length. and

σcr =
π2E(
KL
r

)2 (5.21)

The ratio KL
r is termed the slenderness ratio. The effective length, can only be determined by

numerical or approximate methods, and is the distance between two adjacent (real or virtual)
inflection points, Fig. 5.14, 5.15

P

P P
P

P

P
P

P

KL = KL =

KL =

KL <L
1
2

LL L L

L0.7

LL

(a) End rotations
unrestrained

(b) End rotations 
fully restrained

(c) One end
restrained, other
unrestrained

(d) Partially restrained
at each end

Figure 5.14: Column Effective Lengths
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Figure 5.15: Frame Effective Lengths

The most widely used charts for the effective length determination are those produced by
the Structural Stability Research Council. The alignment chart, for an individual column, Fig.
5.16 is shown in Fig. 5.17. It should be noted that this chart assumes that all members are
still in the elastic range.

The use of the alignment chart involces computing G at each end of the column using the
following formula

Ga =
∑ Ic

Lc∑ Ig

Lg

(5.22)

where Ga is the stiffness at end a of the column, Ic, Ig are the moment of inertias of the columns
and girders respectively. The summation must include only those members which are rigidly
connected to that joint and lying in the plane for which buckling is being considered.

Hence, once Ga and Gb are determined, those values are connected by a straight line in the
appropriate chart, and k is the point of intersection of that line with the midle axis.

Alternatively :-)

GAGB

4

(
π

K

)2

+
(

GA + GB

2

) (
1 − π/K

tanπ/K

)
+

2 tanπ/2K

π/K
= 1 (5.23)

(Ref. McGuire P. 467).
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Figure 5.16: Column Effective Length in a Frame

5.6.2 Listing

5.6.2.1 effectiveL.m

function K=effectiveL(Ga,Gb)

%K=effectiveL (Gtop, Gbot) returns the effective length

%factor, K given the G values for the top and bottom of a

%sidesway inhibited column.

%

%K can be found by solving the following equation numerically

%

% _ _ _ _ 2 _ _ _ _

%| Ga Gb | | pi | | Ga+Gb | | pi/K | 2 tan(pi/2K)

%| ----- | | ---- | + |-------- | | 1 - --------- | + ------------- = 1

%| 4 | | K | | 2 | | tan(pi/K) | pi/K

% - - - - - - - -

%

%This function uses a root finding scheme, namely the bisection

%method to find the root of the following equation.

%

% _ _ _ _ 2 _ _ _ _

% | Ga Gb | | pi | | Ga+Gb | | pi/K | 2 tan(pi/2K)

%R = | ----- | | ---- | + |-------- | | 1 - --------- | + ------------- - 1

% | 4 | | K | | 2 | | tan(pi/K) | pi/K

% - - - - - - - -

%
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Figure 5.17: Standard Alignment Chart (AISC)
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% note: R is the residual and we want to find K such that R=0;

%

%For this method, we make two guesses of K, Klower and Kupper, that

%bound the correct K. Then, we estimate K as the average of the

%two initial guesses. Next we figure out if our if the estimated

%K and Kupper or the estimated K and Klower bound the solution.

%Then with the two new bounds, we start over again.

%

%More ambitious people can use the Matlab function fzero

%define upper and lower bounding estimates of K

Kupper=.98;

Klower=.52;

%define the tolerance for rootfinding

tolerance=1e-3;

%get the residual for the upper and lower bounding estimates

Rupper=Ga*Gb/4*(pi/Kupper)^2 + (Ga+Gb)/2*(1-pi/Kupper/tan(pi/Kupper))+2*tan(pi/2/Kupper)/(pi/Kupper)-1;

Rlower=Ga*Gb/4*(pi/Klower)^2 + (Ga+Gb)/2*(1-pi/Klower/tan(pi/Klower))+2*tan(pi/2/Klower)/(pi/Klower)-1;

%set R to something big so that we can enter the loop

R=100*tolerance;

%loop until we find the root

while abs(R)>tolerance

%let our estimate of K be halfway between Kupper and Klower

K=(Kupper+Klower)/2;

%calculate the residual corresponding to K

R=Ga*Gb/4*(pi/K)^2 + (Ga+Gb)/2*(1-pi/K/tan(pi/K))+2*tan(pi/2/K)/(pi/K)-1;

%if K and Kupper bound the root let Klower=K

if R>0

Klower=K;

Rlower=R;

%if K and Klower bound the root let Kupper=K

else

Kupper=K;

Rupper=R;

end

end

5.7 eigenvalues

5.7.1 Description

SUBDIRECTORY: eigenvalues
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SYNOPSIS: Principle stresses and directions of a 3-Dimensional stress element

DESCRIPTION: eigenvalues.m prompts the user for stress components of a 3-dimensional
stress element and then calculates the principal stresses and directions.

CONTENTS:
eigenvalues.m main program

Written by: Brian Rose

5.7.2 Listing

5.7.2.1 eigenvalues.m

Figure 5.18: 3-Dimensional Stress Element

%The script "eigenanalysis" prompts the user for stress components

%in 3-D. Then is calculates the principle stresses and the

%principle directions
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%clear the screen

clc

%prompt user for some numbers

%note that I can define the elements of the matrix

%without even defining the size of the matrix before hand

Stress(1,1)=input(’Enter normal stress on x face: ’);

Stress(2,2)=input(’Enter normal stress on y face: ’);

Stress(3,3)=input(’Enter normal stress on z face: ’);

Stress(1,2)=input(’Enter shear stress xy: ’);

Stress(1,3)=input(’Enter shear stress xz: ’);

Stress(2,3)=input(’Enter shear stress yz: ’);

%Make the stress matrix symmetric

%First pull out the upper triangular part of the matrix (without the diagonal).

%Second transpose the part we pulled out and add it to the Stress matrix

%for more details on the command triu, try typing "help triu"

Stress

temp=triu(Stress,1)

Stress=Stress+temp’

%Now do the eigenanalysis

[eigenvectors,principle_stress]=eig(Stress);

%Display the results as well as the stress matrix

%clc

disp(’The stress tensor is’)

disp(Stress)

disp(’ ’)

disp(’ ’)

for i=1:3

disp(’Principle stress number’)

disp(i)

disp(principle_stress(i,i))

disp(’Its unit normal is:’)

disp(eigenvectors(:,1)’)

disp(’ ’)

disp(’ ’)

end

Sample run:

>> eigenvalues

Enter normal stress on x face: 3

Enter normal stress on y face: 4

Enter normal stress on z face: 1

Enter shear stress xy: 2

Enter shear stress xz: 5
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Enter shear stress yz: 8

Stress =

3 2 5

0 4 8

0 0 1

temp =

0 2 5

0 0 8

0 0 0

Stress =

3 2 5

2 4 8

5 8 1

The stress tensor is

3 2 5

2 4 8

5 8 1

Principle stress number

1

1.4822

Its unit normal is:

-0.8460 0.5314 0.0442

Principle stress number

2

-6.4509

Its unit normal is:

-0.8460 0.5314 0.0442

Principle stress number

3
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12.9688

Its unit normal is:

-0.8460 0.5314 0.0442

5.8 infiltration

5.8.1 Desctiption

SUBDIRECTORY: infiltration

SYNOPSIS: infiltration of water in soil where ponding has occured (Hydrology)

DESCRIPTION: infiltration.m calculates the the depth of infiltration of water in a soil
medium after ponding has occured. The problem is taken from ”Applied Hydrology” by
V.Chow, D. Maidment, and L. Mays page 120, example 4.4.2.

CONTENTS:
infiltration.m main program

Written by: Brian Rose

5.8.2 Listing

5.8.2.1 infiltration.m

Equation used:

F = Fp + ψ∆θ ln[
ψ∆θ + F

ψ∆θ + Fp
] + k(t − tp)

infiltration.m file starts here:

%script infiltration will calculate the the depth of infiltration

%of water in a soil medium after ponding has occured. The problem is

%taken from "Applied Hydrology" by V.Chow, D. Maidment, and L. Mays

%page 120, example 4.4.2.

%

%The equations is

%

% psiDtheta + F

% F - Fp - (psiDtheta)*ln ---------------- = K (t-tp).

% psiDtheta + Fp

%

%

%We will solve this equation for F by rewriting the above as

%
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% psiDtheta + F

% F = Fp + (psiDtheta)*ln ---------------- + K (t-tp).

% psiDtheta + Fp

%

%First we will guess an F. Then we will plug this F into the right hand

%side of the equation. This will give us a new F. We will then

%plug this new F into the right hand side and so on.

%define the contants

Fp=0.85

psiDtheta=5.68

K=0.65

tp=.17

t=1

%make an initial guess of F

F=.2;

%iterate

for i=1:1000

F=Fp+psiDtheta*log((psiDtheta+F)/(psiDtheta+Fp))+K*(t-tp);

end

%display F

F

Sample run:

>> infiltration

Fp = 0.8500

psiDtheta = 5.6800

K = 0.6500

tp = 0.1700

t = 1

F = 3.0176

5.9 montecarlo

5.9.1 Description

SUBDIRECTORY: montecarlo

SYNOPSIS: montecarlo simulation of a simple beam under midspan point load (Structures
and Statistics)
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DESCRIPTION: montecarlo.m does a monte carlo simulation for a simply supported beam
under a point load at the midspan. The load, P and the yield stress, fy are normally
distributed.

CONTENTS:
montecarlo.m main program

Written by: Brian Rose

5.9.2 Listing

5.9.2.1 montecarlo.m

%script montecarlo does a monte carlo simulation for a simply

%supported beam under a point load at the midspan

%the load, P and the yield stress, fy are normally distributed

%define a sample size

samplesize=5000;

%define the properties of the beam

L=480;

S=150;

%define the mean and standard deviation for

%yield stress and load

meanfy=36

meanP=40

stdfy=1

stdP=1

%get a normally distributed set of stress values and

%a normally distributed set of load values

%note that randn gives me a standard normal

%distribution so I have to convert to a normal

%distribution

fy=meanfy+stdfy^2*randn(samplesize,1);

P=meanP+stdP^2*randn(samplesize,1);

%calculate the max stress in a simple span beam loaded in the center

M=P*L/4;

f=M/S;

%define X=capacity/demand

X=fy./f;

%plot f and fy

subplot(211)

bin=(30:.1:42);

plot(bin,hist(f,bin)/samplesize,bin,hist(fy,bin)/samplesize)

legend(’computed stress’,’yield stress’);
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xlabel (’stress (ksi)’)

ylabel(’PDF’)

grid

%plot X

subplot(212)

bin=(-0.5:0.1:2);

plot(bin,hist(log(X),bin)/samplesize);

legend(’computed stress’,’yield stress’);

xlabel (’ln of C/D (ksi)’)

ylabel(’PDF of ln(C/D)’)

legend off

grid

%get the safety index

%note that log denotes the natural log

beta=mean(log(X))/std(log(X))

%get the probability of failure

failureP=sum(f>fy)/length(f)

computed stress
yield stress   
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Figure 5.19: Sample output for a monte carlo simulation for a simply supported beam under a
point load at the midspan.
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5.10 3dplot

5.10.1 Description

SUBDIRECTORY : 3Dplots

SYNOPSIS: takes elevation readings and plots them in 3D (Surveying)

DESCRIPTION: pix.m will plot the elevation data for some mountains. The elevations are
contained in the file mtns.mat. Matrices x and y contains x and y coordinates of each
elevation reading. Matrix z contains the elevations. The first part of the code sets up
buttons that allows the user to change the perspective of the plots: the first slider changes
the azimuth and the second slider changes the elevation. The second part of the code
cylces through each of type of plot.

CONTENTS:
cont.m creates the a fictitius elevations readings for a mountain
mtns.mat contains the elevation reading of mountains
pix.m the main program
smooth.m takes the elevation readings and smooths them out

Written by: Brian Rose

5.10.2 Listing

5.10.2.1 cont.m

[x,y]=meshdom(0:.1:2*pi,0:.1:2*pi);

a=rand(1,5);

b=rand(1,5);

a=3.5.^(a+.1);

b=3.5.^(b+.1);

z=zeros(size(x));

for i=1:size(a,2)

z=z+log(abs(sin(a(i)*x)))+log(abs(cos(b(i)*y)));

end

z=z+rand(size(z));

mesh(x,y,smooth(z,2))

figure(1)

5.10.2.2 pix.m

%script pix.m

%will plot the elevation data for some mountains.

%The elevations are contained in the file mtns.mat.

%Matrices x and y contains x and y coordinates of

%each elevation reading. Matrix z contains the elevations.

%The first part of the code sets up buttons that allows
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%the user to change the perspective of the plots: the first

%slider changes the azimuth and the second slider changes

%the elevation. The second part of the code cylces through

%each of type of plot.

%clear screens, etc

clear

figure(1)

clg

%load the elevation data

load mtns

%set up the buttons for the 3D plots

hAZ=uicontrol(’style’,’slider’,’position’,[.7 .95 .3 .05],...

’units’,’normalized’,’min’,0,’max’,360,...

’callback’,’[az,el]=view; az=get(gco,’’val’’); view(az,el);’);

hEL=uicontrol(’style’,’slider’,’position’,[.7 .89 .3 .05],...

’units’,’normalized’,’min’,0,’max’,180,...

’callback’,’[az,el]=view; el=get(gco,’’val’’); view(az,el);’);

hdef=uicontrol(’style’,’pushbutton’,’position’,[.88 .83 .12 .05],...

’units’,’normalized’,’String’,’Default’,...

’callback’,’view(-37.5, 30)’);

%do the 3D plots

mesh(x,y,z)

title(’mesh(x,y,z)’)

xlabel(’press any key to continue’)

pause

meshz(x,y,z)

title(’meshz(x,y,z)’)

xlabel(’press any key to continue’)

pause

contour3(z)

title(’contour3(z)’)

xlabel(’press any key to continue’)

pause

meshc(x,y,z)

title(’meshc(x,y,z)’)

xlabel(’press any key to continue’)

pause

surf (x,y,z)

title(’surf (x,y,z)’)

pause

surfc(x,y,z)

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students



Draft5–42 SAMPLES of MATLAB PROGRAMS

title(’surfc(x,y,z)’)

xlabel(’press any key to continue’)

pause

surfl(x,y,z)

title(’surfl(x,y,z)’)

xlabel(’press any key to continue’)

pause

waterfall (x,y,z)

title(’waterfall (x,y,z)’)

xlabel(’press any key to continue’)

%clear the figure window

clg

%do the 2D plots

contour(x,y,z)

title(’contour(x,y,z)’)

xlabel(’press any key to continue’)

pause

pcolor (x,y,z)

title(’pcolor (x,y,z)’)

colorbar

xlabel(’press any key to continue’)

pause

5.10.2.3 smooth.m

function newz=smooth(z,weight)

[m,n]=size(z);

if ~exist(’weight’)

weight=5;

end

newz=z;

for i=2:m-1

for j=2:n-1

newz(i,j)=(z(i-1,j-1)+ z(i-1,j+1)+ z(i+1,j-1)+ z(i+1,j+1)+ weight*z(i,j))/(4+weight);

end

end

5.11 zec

5.11.1 Description

SUBDIRECTORY: zec

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students



Draft5.11 zec 5–43

0

5000

10000

15000

0

5000

10000

15000
0.8

0.9

1

1.1

1.2

x 10
4

mesh(x,y,z)

press any key to continue

Figure 5.20: Sample plot from pix.m

SYNOPSIS: statistical analysis for heating energy of a building (Energy Management)

DESCRIPTION: zec.m does a linear regression to find a relationship between

CONTENTS:
linregress.m function that performs linear regression
zec.m main program
zecdata contains heat and temperature data

Written by: Brian Rose

5.11.2 Listing

5.11.2.1 linregress.m

function [p,Rsquared,sigmabeta1]=linregress(x,y)

%[p,Rsquared,sigmabeta1]=linregress(x,y) performs a linear regression on x and y.

%p is a vector where y=p(1)+p(2)*x.

%

%[p,Rsquared,sigmabeta1]=linregress(x,y) will return R^2 as well as the standard

%deviation in p(2)

%make x and y into row vectors
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if size(x,1)<size(x,2)

x=x’;

end

if size(y,1)<size(y,2)

y=y’;

end

%print an error message is x and y are not the same lengths

if size(x)~=size(y)

disp(’x and y need to be the same size’)

return

end

n=length(x)

%linear regress. A contains a column of ones then the x values

A=[ones(length(x),1) ,x];

%find p

p=inv(A’*A)*A’*y;

%get r, which is the residual

r=y-(p(1)+p(2)*x);

%get SSE, SST, and Rsquared

SSE=sum(r.^2);

SST=sum((y-mean(y)).^2);

sigmasquared=SSE/(length(y)-2);

sigmasquaredbeta1=sigmasquared/sum((x-mean(x)).^2);

sigmabeta1=sqrt(sigmasquaredbeta1);

Rsquared=1-SSE/SST;

5.11.2.2 zec.m

Emperical linear relationship between heating energy and outdoor temperature:

HeatEnergy = k1 + k2∗Temperature

k1 and k2 may be found using regression features of Matlab. Regression improves as the
correlation coefficient(R-squared) value is found closer to ’1.0’.

zec.m file starts here:

%script zec does a linear regression to find a relationship between

%the heat energy and the outside temperature of a building. This script

%uses data from the Zachry Engineering Center at Texas A&M

%load the data
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load -ascii zecdata

%extract only the columns we need

energy=zecdata(:,11);

temperature=zecdata(:,5);

%do a linear regression. You can use the built in function polyfit

%but that will not give Rsquared or delta. Note that delta is

%the standard deviation of the slope.

[p,Rsquared,delta]=linregress(temperature,energy);

k1=p(1)

k2=p(2)

Rsquared

delta

%plot the results

%plot the raw data

plot(temperature,energy,’ro’)

hold on

%plot the equation obtained from the linear regression

x=[min(temperature) max(temperature)];

y=k1+k2*x;

plot(x,y,’g-’)

hold off

grid

legend(’raw data’,’linear regression’)

ylabel(’Heat energy (MMBtu/hr)’)

xlabel(’Temperature (F)’)

title(’Heating vs. Temperature Plot’)

Sample run of it zec.m:

>> zec

n = 744

k1 = 7.6999

k2 = -0.0764

Rsquared = 0.6639

delta = 0.0020

5.12 Stress/Strain Programs

5.12.1 Description

SUBDIRECTORY : Stress/Strain Programs
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Figure 5.21: Sample output for zec.m

SYNOPSIS: stress and strain analysis for 2-D and 3-D elements

DESCRIPTION: Two main startup commands are used for different analysis:

1. stressanalysis.m is a program which provides a menu driven interface to execute 2-D
and 3-D stress/strain calculations.

2. stressdecomp.m creates a menu for 3-Dimensional analysis of stresses including op-
tions to Input Stresses, find Normal and Shear stress components, Principal Invari-
ants, plot the Principal Mohr’s Circle with principal stresses and absolute max shear
stresses, find Mean and Deviatoric stresses, find deviatoric principal invariants, and
plot the Deviatoric principal Mohr’s circles.

CONTENTS: Program startup commands.
stressanalysis.m - Start stress/strain analysis program.
stressdecomp.m - Start stress decomposition program.

Print commands.
elemprint.m - Save figure to file and ask to print.
circprint.m - Save Mohr’s Circles and data to files.

2-Dimensional Stress/Strain Analysis.
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stress2dmenu.m - Plane stress/plane strain menu options.
planestress2d.m - Plane stress menu.
planestrain2d.m - Plane strain menu.
definitions.m - Definitions of plane stress and plane strain.
principalangle.m - Principal stresses/strains and directions.
maxshearangle.m - Maximum shear stress/strain and directions.
plotelement.m - Plot of unit stress element.
plotprincipal.m - Plot of stress/strain principal values.
plotmaxshear.m - Plot of stress/strain maximum shear values.
strainplotelement.m - Plot of unit strain element.
subplots2d.m - Plot original, principal, & max shear elements.
transform.m - Transformation equations.
rotelement2d.m - Rotate element by an angle theta.
plotcircle.m - Plot 2-D Mohr’s Circle.
mohrcircle.m - 2-D Mohr’s Circle with rotated angle.

3-Dimensional Stress/Strain Analysis.
stress3dmenu.m - Stress/Strain menu options.
stress3d.m - Stress menu.
strain3d.m - Strain menu.
plotelement3d.m - Plot of unit stress/strain element.
plotcircle3d.m - Plot 3-D Mohr’s Circle.

Generalized 2-D and 3-D & Misc. functions.
hlp.m - General help to use menus in stress programs.
arrow.m - Draw a line with an arrowhead.
parammenu.m - Menu driven way of entering variables.
principal.m - Find Principal stresses/strains.
straintostress.m - Convert from strain to stress.
stresstostrain.m - Convert from stress to strain.

3-D Stress Decomposition.
mkmatrix.m - Build a 3-D stress matrix.
normcomp.m - Normal stress component.
shrcomp.m - Shear stress component.
invariant.m - Principal invariants.
mndevcomp.m - Mean and Deviatoric stresses.
devinvariant.m - Deviatoric principal invariants.

Written by: Melissa Holland
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5.12.2 Sample Output:

How to access program:

At Matlab prompt type:
p=path
path(p,’/bechtel/users1/graduate/hollanmm/matlab/’)
stressanalysis or stressdecomp

Typing stressanalysis will cause the following menu to appear:
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Figure 5.22: First menu encountered after starting stressanalysis

Next, choosing 2-Dimensional Analysis from this menu brings up the next menu.
            

Figure 5.23: Menu encountered after clicking on 2-Dimensional Analysis button

Finally, choosing Plane Stress button brings up the next menu(see next figure).
            

Figure 5.24: Menu encountered after clicking on Plane Stress button.

These menus allow easy movement through the program. Clicking on other but-
tons in the previous menus will bring up other menus or ask for different information
at the matlab prompt.

Following are some examples which used stressanalysis program menus and input
prompts to solve them.
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5.12.2.1 Example 1:

Given: A state of plane strain exists at a point in a member, with the nonzero strain com-
ponents εxx = −0.200, εyy = 0.040, εxy = −0.900.

Objective:

1. Determine the principle strains in the (x,y) plane.

2. Determine the maximum shear strain in the (x,y) plane.

3. Show schematically the deformed shape of a rectangular element with the original
undeformed element.

4. Plot Mohr’s circle of strain.

Results:

2-D ELEMENT DATA

Original Values:

XX = -0.2
YY = 0.04
XY = -0.9

Principal Values:

(a) S1 = 0.827965
S2 = -0.987965

Maximum Shear Values:

Avg = -0.08
(b) Max shear = 1.81593

2-D MOHR’S CIRCLE DATA

Inputs:

P1 = (-0.2,-0.9)
P2 = (0.04,0.9)

C = (-0.08,0)

Tmax = (-0.08,0.907965)
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Tmin = (-0.08,-0.907965)

Principal Values:

S1 = (0.827965,0)
S2 = (-0.987965,0)

Principal Angle = 131.20 degrees

ORIGINAL  Orientation

x

y

Theta = 0 degrees

PRINCIPAL  Orientation

x
y

Theta = 131.2 degrees

MAXIMUM  SHEAR  Orientation

x

y

Theta = 86.2 degrees

Figure 5.25: Example 1(c): Original, Principal, Maximum Shear Stresses, and Deformed shapes.
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Figure 5.26: Example 1(d): Mohr’s circle of 2-D stress.
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5.12.2.2 Example 2:

Given: A rectangular strain rosette is cemented to a free surface of a structural member
made of alluminum alloy(7075 T6/ ν = 0.33 and E = 72.0 GPa). Under load, the strain
readings are εa = 0.00250, εb = 0.00140, and εc = −0.00125 from which it may be found
that εxx = 0.00250, εyy = −0.00125, and εxy = 0.000775. Note: a free surface means
σzz = σzx = σzy = 0, therefore, we will treat as a 2-Dimensional stress case. However,
eventhough the stress acts as if 2-Dimensional, strain is 3-Dimensional in this case.

Objective:

1. Determine principal stresses.

2. Determine the orientation of the volume element on which the principal stresses in
the plane of the rosette act.

3. Determine maximum shear stress.

4. Determine the orientation of the volume element on which τmax acts.

5. Plot Mohr’s circle of stress.

Results:

2-D ELEMENT DATA

Original Values:

XX = 1.68668e+08
YY = -3.43396e+07
XY = 4.19549e+07

Principal Values:

(a) S1 = 1.76997e+08
S2 = -4.26685e+07

Maximum Shear Values:

Avg = 6.71642e+07
(c) Max shear = 1.09833e+08

2-D MOHR’S CIRCLE DATA

Inputs:

P1 = (1.68668e+08,4.19549e+07)
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P2 = (-3.43396e+07,-4.19549e+07)

C = (6.71642e+07,0)

Tmax = (6.71642e+07,1.09833e+08)
Tmin = (6.71642e+07,-1.09833e+08)

Principal Values:

S1 = (1.76997e+08,0)
S2 = (-4.26685e+07,0)

Principal Angle = 11.23 degrees

ORIGINAL  Orientation

x

y

Theta = 0 degrees

Sig x

Sig y

Txy

PRINCIPAL  Orientation

x

y

Theta = 11.23 degrees

 S1

 S2
MAXIMUM  SHEAR  Orientation

x

y

Theta = −33.77 degrees

Savg

Savg

Tmax

Figure 5.27: Example 2(b,d): Original, Principal and Maximum Shear Stresses.

5.12.2.3 Example 3:

Given: Let the state of stress at a point be given by σxx = −120 MPa, σyy = 140 MPa,
σzz = 66 MPa, σxy = 45 MPa, σyz = −65 MPa, and σzx = 25 MPa.

Objective:

1. Determine the principal stresses.

2. Determine the maximum shear stress.

3. Plot Mohr’s circle.

Results:

3-D MOHR’S CIRCLE DATA

Inputs:
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Figure 5.28: Example 2(e): Mohr’s circle of 2-D stress.

X = -120
Y = 140
Z = 66
XY = 45
XZ = 25
YZ = -65

Principal Values:

(a) S1 = (180.207,0)
S2 = (40.0573,0)
S3 = (-134.264,0)

Maximum Shear Values:

Tmax1 = (-47.1035,87.1608)
Tmax2 = (22.9714,157.236)
Tmax3 = (110.132,70.0748)

(b) Tmax = 157.236
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Figure 5.29: Example 3(c): Mohr’s circle of 3-D stress.
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Appendix A

INTRODUCTION TO UNIX

UNIX is a multi-user operating system that was invented by AT&T in 1969 and has grown to
be the operating system of choice for universities and research organizations. This section will
introduce the novice to some basic commands and also provide more advanced commands or
tricks of the trade for those who are interested.

A.1 logging In

You may login to a Unix system in a number of way; rlogin, telnet from one computer
(including pc) into the (Unix) computer.

In the Bechtel Lab., simply press return and the login prompt should appear. At the
prompt, type in the username which was given to you, and then press return. Then the
passwprd prompt will appear and you must carefully enter the password given to you. Note
that as you type the password the characters will not appear on the screen. Note that Unix is
case sensitive.

If this is the first time you are loggin in, then it may bee safe to change your password.

A.2 Changing Your Password

Usage: passwd
After you typed passwd, the system will prompt you for your old password (for security

reason), and then will prompt twice (to make sure that there was no “typo error”) for the new
one.

The system will check after the first entry that the specified password can not be easily
guessed by intruders (no dictionary name or permutations on your name allowed), that it has
at least six characters, and that it contains at least one upper case or numeral or special
character.
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A.3 Logging Out

In general logging out is from a specific device.
If you are remotely connected to a computer, then simply type exit.
To logg out from the Bechtel Lab., then click the right button of the mouse on the screen

and select quit. Once you are out, type contrl D. If you have followed properly the procedure,
then a new login prompt should appear.

Note: If you are using a workstation, never turn it off when you have finished.

A.4 On-Line Help

A.4.1 man

Usage: man command name
Man is the UNIX on-line help system. If you have questions about the appropriate syntax of
a command, by typing in man command, you will get a complete description of the command
and associated parameters. After the screen fills with text, at the bottom of the screen will be:

--More--(nn%)

This indicates how much of the file has been displayed. To continue to the next page hit the
spacebar, to continue through line by line, press return. Unfortunately, because of the way the
man system is set up you can not page back to previously displayed text, you can only page
forward. If you are not to the end of the man file and wish to quit, Ctrl C will exit you from
the help system. The following example first prints the manual page for ls to the screen, and
the second line prints the manual page for ls to the printer.

> man ls
> man ls | enscript -2r -G

If you are not sure about a Unix command for which you are seeking help, then type

man -k copy

this will search the keyword copy in all the man files, and give you a list of the commands which
man files contain the keyword copy.

A.4.2 Apropos

Usage: apropos keyword
apropos when used with a keyword, displays the man page name, section number, and a short
description for each man page whose NAME line contains keyword. Words which are part
of other words are considered; for example, when looking for ‘compile’, apropos will find all
instances of ‘compiler’ as well. and apropos is not case sensitive.
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A.5 UNIX File System

A.5.1 Directory Structure

UNIX uses a hierarchal directory structure to organize files. In this way user files can be kept
separate from system files and other programs. The following figure summarizes the directory
structure of the Bechtel lab.

Your user account is located under /bechtel/users1/undergraduate if you are an under
graduate and /bechtel/users1/graduate if you are a graduate student.

Many local programs can be found in the /usr/local directory. Here is the hierarchy for
local programs.

A.5.2 Your User Account

When you log into your user account you log into your own directory. The name of this directory
will typically be you last name. This directory is called your home directory. Your working
directory is whatever directory you are currently in, this will change many times during the
average loggin session.

A.5.3 Absolute Pathnames

The absolute pathname tells you the path you must travel to get from the root directory to
where you want to go. For example if Smith had a subdirectory called temp, the absolute
pathname would be /bechtel/users1/undergraduate/smith/temp.

A.5.4 Relative Pathnames

A relative pathname points to a particular subdirectory, relative to your current directory. The
shell assumes you are using relative pathnames unless you explicitly use an absolute pathname.
If the user Smith were in his home directory the path to temp would be temp.

A.6 Shell

In Unix a shell is a command-line interpreter. You can choose the shell you want to use. The
most popular ones being /bin/csh and /bin/tcsh or better known as C shell and turbo C
shell.

A.7 File Management

A.7.1 Changing Directories

Usage: cd or cd directory
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This command is used to change your working directory. If the directory you wish to change
to is the next level down you would type cd directoryname. If the directory you wish to change
to is several levels down you would type cd pathname. The pathname includes:

/bechtel/users1/undergraduate/username/...

A useful shortcut is to type:

~username/...

Where username is your user account name. When you type cd without a directory name,
you will be placed in your home directory. Also typing cd (space) .. will move you up one
directory, not to be confused with the MS DOS command cd.., you must remember to put a
space between the cd and the ..

A.7.2 Changing File Protection

Usage: chmod
Since UNIX is intended for multiple users, protection rights for read, write and execute are

assigned to each file. There are three groups to which protection may be separately assigned:
uuser (yourself), group ( a group of users working together and who need to share files), and
other (every one who has access to the same computer as you).

There are three types of protection: read, write, and x execute. Note that directories as
well as executable files have their protection defined by x.

To add a permission, or to take it away, use + or −.
Examples:

• chmod w+r myfile gives the world read access to myfile

• chmod g+x mydirectory gives group read access to mydierectory

Alternatively, you may use chmod through the following command:

Usage : chmod mode filename

Modes : Modes can be absolute or symbolic. An absolute mode is an octal number constructed
from one or more of the following modes. Following is the list of basic mode values:
400 Read by owner.
200 Write by owner.
100 Execute (search in directory) by owner.
040 Read by group.
020 Write by group.
010 Execute (search) by group.
004 Read by others.
002 Write by others.
001 Execute (search) by others.

For example, typing:
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> chmod 666 junk.tex

would set the permission codes on the file “junk.tex”, such that it could be read and
written by owner, group, and world.

The symbolic mode has the form: [who] [operator] [permission], where who is a combi-
nation of :
u User’s permission
g Group permission
o Others

Operator is one of:
+ To add permission
- To remove permission
= To assign the permission explicitly

Permission is any combination of:
r Read.
w Write.
x Execute.
X Give execute permission if the file is a direc-

tory or if there is execute permission for one
of the other user classes.

s Set owner or group ID. This is only useful with
u or g. Also, the set group ID bit of a direc-
tory may only be modified with ‘+’ or ‘-’.

t Set the sticky bit to save program text between
processes.

For example:

> chmod ugo=rw junk.tex

will set the permission such that the user, group, and others can read from and write to
the file “junk.tex”.

A.7.3 Copying Files

Usage: cp file1 file2
This command copies file1 to file2. If file2 already exists, it is replaced with file1. If file1 is in
you current working directory but file2 is not, you must include the pathname for file2. The
following example copies file1 to file2, which is in a different directory.

> cp file1 ~username/directory/file2

If you have many files you wished to copy, and they all have similar names i.e. file1, file2, file3,
file4, ..., file10, you can use what’s called a wildcard to copy all the files at once. This example
puts all the files named file1 through file10 into the subdirectory called directory.
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> cp file[1-10] ~username/directory

If the files are not named in such a way that permitts you to use the wildcard option, you can
list out the names of the files you wish to copy. Here the file sample and exmpl are put into the
subdirectory temp. If a destination for the copy is omitted the files will be put in your current
working directory.

> cp ~username/direc/sample ~username/direc/exmpl ~username/temp

If you wish to copy the contents of one directory to another directory this can be done as
follows:

> cp ~username/directory1 ~username/directory2

A.7.4 Directory Listing

Usage: ls
Lists all files in your current directory. For example if you would like a listing of all files with
the extension .f in your current directory you could type:

> ls *.f

Another type of directory listing that will give you the permissions on the file, the owner, the
file size, the last date modified, and file name is ls used with the -l option, this is the same as
the dir command. For more information on the * see wildcards.

If you type ls -F, then you may get additional information regarding the nature of the files.
Try it and guess what those are.

Trt also ls -l

A.7.5 Make Directory

Usage: mkdir directory
Makes a directory of the name specified. You may only create directories in your user account.
To create subdirectories, change your current directory to the directory in which you wish to
create a subdirectory, then type mkdir directoryname. Directories are useful for organizing
your files. For example you might have a directory for each of the different classes you are using
the computer system for, or you may want to create separate directories for your different term
projects.

A.7.6 Moving Files

Usage: mv oldname newname
Mv is similar to the dos rename command. This command will move the file oldname to the
file newname. It can also be used to move files from one directory to another. The syntax of
mv is the same as that of the copy command. Be careful when using this command to move
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files between directories, since it does not make a copy of the exsisting file but physically moves
it from one directory to another, so if something goes wrong in the process your file is as good
as deleted.

A.7.7 Removing Files

Usage: rm file
rm removes (deletes) a file from the system. It is a good idea to regularly go through all your
files and eliminate all obsolete and unnecessary files to free up disk space. Wildcards can be
used to delete files, for instance if you want to delete all your output files and they end with
the extention .out you would type:

beethoven% rm *.out

Be careful when using the wildcard option, files that are removed are destroyed and can not be
retrieved. It is a good idea to do an ls of the files you are going to delete. Use rm * with great
care, otherwise you could end up deleting everything in your current directory.

A.7.8 Linking Files

Usage: ln filename otherfile
When you use the cp command, you create a copy of a file. Any new modifications made to
either file does not affect the other. But, say you are working on a project with a partner,
and you have a copy of the project in your directory, and your partner has a copy in his/her
directory. You both want to be kept up to date on all changes that have been made to the
project files. Well, instead of mailing new copies back and forth everytime someone makes a
change, in UNIX you can link files. A feature of UNIX is that you can refer to a single file
under different names in different directories. Thus, when you use the ln command you are
not duplicating the file, just referencing the same file with different names. For example either
name filename or otherfile can be used to call up the file, they are both valid names for the
same file.

A.7.9 Removing Directories

Usage: rmdir directory
Rmdir removes (deletes) directories. But first the directory must be empty of all files. If you
are certain you want to delete the directory first delete all files in the directory using rm, then
delete the directory using the rmdir command.

> rm ~username/directory/temp/*
> rmdir ~username/directory/temp
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A.7.10 Wildcards

Another function the shell provides is wildcard expansion. UNIX shells provide two special
characters, * and ? as wildcards. The * will match any number of arbitrary characters,
including none. The ? will match any single character. The shell looks for files that match the
pattern typed and replaces the pattern with a list of those files that matched. It sends this list
to the program. This process is called expanding the wildcards.

As an example, say you want to list all the files beginning with “a”. You could type

ls a*

into the shell. All files of any length starting with “a” would be listed, including the file “a” if
it existed. It would also match the ‘file a.b since “.” is not a special character in Unix as it is
in DOS, for instance. Or, if you wanted to list all files of length two that start with “a” you
would type

ls a?

You should be especially careful with wildcards when using rm until you are familiar with
how they match. Use ls to see what files match before using rm.

A.8 Printing Files

For printing ASCII, or post-script files.

A.8.1 Enscript

Usage: enscript -2r -Gfile
When you are printing large source files on the laser printer, this command will rotate the
output and place it in two columns. Also see Print.

A.8.2 Checking the Print Que

Usage: lpq
When you type the command to print a file and hit return the system prompt almost immedi-
ately returns. This does not mean that your file has been printed, all it means is that it has
been spooled to a print que. If you would like to find out how busy the printer is, or how long
the print que is, type lpq.

A.8.3 Laser Printer

Usage: lpr file
The command lpr will print a file on the laser printer. If you are printing source code or data
files please see Enscript or Print.

If a file size exceeds 1 Mb, you should use lpr -s fn.
If you want to select the printer you should use lpr -Pprinter, where
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lpr -Php1 Hp printer in the Bechtel Lab, single sided.

lpr -Php2 Hp printer in the Bechtel Lab, double sided.

lpr -Pivy1 Hp printer in the Leung Lab, single sided.

lpr -Pivy2 Hp printer in the Leung Lab, double sided.

lpr -Pnacps Hp printer in NAC room, on the second floor.

If you do not use the lpr command without the -Pprinter option, then the file is sent to
the default printer. To determine what is the default printer, type echo $PRINTER.

A.8.4 Killing a Print Job

Usage: lprm job number If you have started a job printing and then for some reason you wish
to kill it, for example you have accidently printed source code using lpr instead of print. You
can kill the print print job as follows: first check the print que to get the job number then use
the lprm command.

> lpq
Rank Owner Job Files Total Size
active gosselin 350 sample.ps 9450 bytes
> lprm 350

A.8.5 More

Usage: more file
More will display a text file to the screen in pages. To advance a page, type the space bar.
Unfortunately, because of the way the man system is set up you can not page back to previously
displayed text, you can only page forward.At the botom of each page will appear:

--More--(nn%)

this indicates how much of the file has been displayed. If you are not to the end of the text file
and wish to quit, Ctrl C will put you back at the system prompt.

A.8.6 Print

Usage: print filename
When printing out source code or data use the print command, like enscript, it rotates the
output and forms two columns on a page, but it is a little easier to use than enscript. Most
importantly, like enscript, the print command saves paper!
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A.9 Compressing and Archiving Files

Often users will be asked to limit their disk usage to ten megabytes, and will be notified when
their usage exceeds this amount. If you find yourself nearing this limit you can compress files
that you are no longer using, or won’t be using for a while. A text file can be compressed by up
to 90%, executables, slightly less, this is a considerable space saving tool. Also, you can archive
files directly to tape, freeing up diskspace, you can also use the archive tool to do backups of
your files. Users will be allowed to use the cartrigde and 8mm tape drives on Bechtel, with
permission from the system administrator, or they can do backups directly to a diskette in the
floppy drive of each machine.

A.9.1 Zipping Files

Usage: gzip filename
The gzip command will generate a file named filename but will tack on the extension .gz. For
example:

> gzip filename

the file filename.gz will be generated.

> gzip file1.f

the file file1.f.gz will be generated. To unzip files use the command gunzip in the same manner
you use gzip. If we were to uncompress the FORTRAN source code we compressed in the
previous example:

> gunzip file1.f.gz

this will restore file1.f to it’s normal size and strip off the .gz extension.

A.9.2 Compressing Files

Usage: compress filename

Note that this utility is not as efficient as gzip but is supported on all Unix machines.
The compress command will generate a file named filename but will tack on the extension

.Z. For example:

> compress filename

the file filename.Z will be generated.

> compress file1.f

the file file1.f.Z will be generated. To uncompress files use the command uncompress in the
same manner you use compress. If we were to uncompress the FORTRAN source code we
compressed in the previous example:

> uncompress file1.f.Z

this will restore file1.f to it’s normal size and strip off the .Z extension.
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A.9.3 Archiving Files

Usage: tar -options newfilename oldfilename
The tar command lets you archive files, or entire directories to tape, or diskette. To archive a
file do the following:

> tar -cvf newfile oldfile

this will archive oldfile and call it newfile.tar. If you want to archive directly to tape you
would replace newfile with the device name of the drive. Archiving a file to the floppy drive
would be done as follows:

> tar -cvf /dev/rfd0 oldfile

this will put oldfile.tar in its current size directly to floppy disk. To archive something to
8mm or cartridge tape you must be rlogged in to Bechtel, since he owns these drives. The
device names of these are:

8mm: /dev/rst0 - must be video quality tape.

Cartridge: /dev/rst1 - must be a 600 type tape to write, 300-type tapes are read-only.

If you wish to archive a directory in a compressed version. You need to archive it to a
scratch directory first, then compress it, then do a disk-dump of that directory to tape.

> tar -cvf scratchdirectory olddirectory
> compress scratchdirectory.tar
> dd if=scratchdirectory.tar.Z of=devicename

To dump something from tape to disk:

> dd if=devicename of=destination

You can also list the contents of a tarfile

>tar -tfv filename.tar

If your archive is on a tape replace the filename with the device name. To extract archived
files, it is done as follows:

> tar -xvf devicename

For more information on tar see the man page on tar.
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A.9.4 Scratch Directories

If your disk requirement has exceeded the quota assigned to you, first zipp as many files as
possible, then if you are still short of disk space yo can access one of the following scratch
directories: /bechtel/scratch1 and /bechtel/scratch2. For example

> cd /bechtel/scratch1
> mkdir clinton
> cd clinton
> mv ~clinton/whitewater/* .
> chmod 600 *
> cd ~

A.10 Spooling Files

A.10.1 Color Laser Printer

Color post-script files can be printed on the color laser printer on the NAC printer on the second
floor of the Engineering building by typing

printcolor fn

where fn is your filename

A.11 Pipe and Filters

You may wish the output from one command, be the input for another. Connecting commands
together in this fashion is known as a pipe. A pipe is designated by a vertical bar (|) on the
command line between two commands. When a pipe is set up between two commands, the
output from the command on the left becomes the input for the command on the right. Pipes
can also be set up between programs.

When a program takes the output from another program as its input and does some sort
of operation on it and writes out a new output file, this is refered to as a filter. A filter can
be thought of as some sort of post-processor. For example, if we wished to take a listing of a
directory and sort it by file size would could do this as follows:

> ls -l | sort +4n

The pipe consists of the use of both commands ls and sort. The filter is sort, since it is
rearranging the output of ls. For more information on ls and sort please see Utilities.

A.12 Multi-Tasking

Suppose you have a large job to run, for example, you might be running a statistical package
of some sort that will probably take a long time. If you were using an MS-DOS machine, like
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a pc, you would start the job running and come back later when it finshed. This is called a
single process system. UNIX, on the other hand, is a multi-process system, you can run jobs in
the “background” while still doing things in the “foreground”. You may even log off, and the
background process will continue to run to completetion.
Note: it is unethical the submitt batch jobs on a different workstation than the one you are
logged in on, this practice will not be tolerated. Under no circumstances are you to submitt a
batch job to Bechtel.

A.12.1 Job Control

To start a job running in the background, or a batch job, use the & after a command. After you
hit return the system will show you the process ID number, PID. The prompt will then return
immediately. The PID is useful for keeping track of how long the job has been running, and
you will also need it if you wish to kill the job. You dont’t need to remember your process ID,
however, since there is a simple UNIX command to check on what processes you have running,
(see Checking on a Process). You can also bring the program back as the foreground job by
using the fg function. Here is a sample session:

> stat_package &
[1] 29890
>
> fg (become interactive with a background process)
stat_package

A.12.2 Checking on a Process

If you wish to check the status of a process simply type in the command ps, this will give you
a list of processes currently running on your machine, the elapsed time, and the command that
started them. Even if you haven’t started any batch jobs, when you type ps you will still get
a list of processes, this is due to the windows environment.

A.12.3 Killing Processes

Sometimes a process gets out of control and refuses to quit on its own. To stop these processes
you must use the kill command. To kill a process you will need its process number. This can
be obained by using the command ps as shown:

> ps -gux
ER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND
tomf 10561 0.0 0.0 96 0 co IW Jan 17 0:00 -csh (csh)
tomf 24280 0.0 0.0 96 0 p0 IW 08:35 0:00 -bin/csh (csh)
tomf 24279 0.0 0.0 104 0 p1 IW 08:35 0:00 -bin/csh (csh)
tomf 24271 0.0 1.7 144 536 co S 08:35 0:01 olwm -3
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tomf 24659 0.0 1.6 184 480 p3 R 09:54 0:00 /bin/ps -gux
tomf 24570 0.0 0.0 1488 0 p2 IW 09:22 0:02 xrn -calvin
tomf 24441 0.0 0.0 120 0 p2 IW 09:03 0:00 -sh (csh)

The process number is the second column. For example, if you wanted to kill the xrn process
you would type:

> kill 24570

If that did not kill the process, then you will have to use:

> kill -9 24570

Note that you can kill a process from another machine, by rlogging on from another machine.
This is useful if you have a program that is writing garbage to the screen, or has hung the screen,
making it useless.

A.12.4 Prioritizing Processes

Usage: nice -number command arguments
If you start a process running in the background and do not prioritize it, you will be competing
with that process for cpu time. By using a command called nice, you can proiritize the process,
that is, as you are working at the console, the machine will devote more cpu time to what you
are running in the foreground, but when the console is idle, the machine will devote more time
to the background process. So, as you sit talking to a friend, or looking something up, the
background process will get more of the cpu than it does when you are working.

You can set the nice value to anything between 0 and 19. The default value, if no number is
given with the nice command, is 10. Process’s set with 0 will run fast, process’s set with a nice
number of 19 will only run when nothing else wants to. If you do not use the nice command,
a process’s nice number will be 0. A user can only prioritize those process he has started, and
can only increase the nice value i.e decrease a process’s priority. In order to change the priorty
of a process you must use the renice command. See the man page on renice for instructions
on how to do this.

> nice -19 ps -l

this will set the nice number of a process to 19, then list all the process running on the machine
(see ps for more information) and the -l option displays the nice numbers for the processes.

Note: if someone has started a process on your machine, notify the system administrator
immediatley.
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A.13 Utilities

A.13.1 du

Usage: du options filename
The du command displays your disk usage . It gives the number of kilobytes contained in all
files and, recursively, subdirectories within the specified directory. If the filename is omitted,
the current directory is used. The -s option will display the grand total for each of the spec-
ified filenames. The -a option will generate an entry for each file in the listed directory, and
recursively go through the subdirectories, of the directory. So doing du in your home directory
will list all the subdirectories and the total space they are using.

A.13.2 Find

Usage: find [pathname-list] [-options] expression
Used to find files by name, or by other characteristics. Find recursively descends the directory
hierarchy for each pathname under the pathname-list, seeking files that match a given file name
or other logical expression defined by any of the aviailable operators. For example, the following
command will search all directories below the current directory for the files having the name
“misc.f”. The file path will be printed each time the file is found.

> find . -name misc.f -print
./Isds/Isds2/misc.f

The find command has several operators that can be used for defining search parameters. For
instance, files can be searched for by, name of file, type of file, date accessed, date modified,
files newer than arguement file, etc. For more information on the find command, type “man
find” from a shell tool prompt.

A.13.3 Script

Usage: script filename
The command script will create a typescript file of a loggin session. Everything that is printed
on your screen will be logged in this file. The file is written to filename, or it can be appended
to an exsisting file by using the -a option as follows:

> script -a oldfile

If a file name is not specified the session will be logged in a file called typescript. The print
command can be used to print the file out. The script file is ended when the forked shell exits.
The way script has been written, an internal buffer of 8K or 16K needs to be filled before the
information is dumped to a file. If you exit before this requirement is met, the information in
the buffer will be lost.
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A.13.4 Sort

Usage: sort file
Sort will alphabetically sort a file, by default, and print it to the screen. There are other
options that will control what the file is sorted on:
-f Sort regardless of upper or lower case
-n Sort by arithmatic value, ignoring blanks and tabs
-r Reverse the order of the sort
+x Skip to the xth field and begin sort

A.13.5 Spell Checker

Usage: spell file
Spell is used to spell check a document. Any words that are not found in the dictionary are
printed to the screen. Please consult the man pages on spell for additional information.

A.13.6 XtoPS

Usage: XtoPS -options filename
This command allows you to do a screen dump. It will take a picture of the entire screen,
or a section defined by you, and store it in a PostScript format. You may use this file using
pageview, or print it out.

> XtoPS -windows filename

will do an entire screen dump. If you want to print out only a specific window, you would type
the following:

> XtoPS -windows windowID filename

To get the windowID, run xwininfo and then click on the window of interest. Another way to
encapsulate a particular window is to use the -screen option.

> XtoPS -frame -screen filename

the -frame includes the frame around the window. After you hit return the mouse pointer will
turn into cross hairs, move the mouse to the window you want, and click the left mouse button.
The computer will beep twice, then it will return the system prompt when done creating the
file.

A.13.7 Whereis

Usage: whereis [-options] filename ...
Whereis locates source, binary and manual page files for a command. This command searches
for programs in a list of standard places. The available options are:
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-b Search only for binaries.
-m Search only for manual sections.
-s Search only for sources.
-u Search for unusual entries. A file is said to be

unusual if it does not have one entry of each requested
type. Thus ‘whereis -m -u *’ asks for those files
in the current directory which have no documentation.

Other options are also available for changing or limiting directories in which to search. For
more information type “man whereis” from a shell tool prompt.

A.13.8 Who

Usage: who
This function will show the login names of all users on the computer you are currently logged
in on.

A.14 Shells and “dotfiles”

A shell is a program that serves as an interface between the user and the operating system. The
shell is a command line interface as opposed to a graphical interface like the windows. That
is, the user types a command line into the shell for execution. Although much work can be
done solely through the graphical interface, some things can be done more efficiently with the
command lines, and some things absolutely require the use of the command line.

A.14.1 .cshrc & .login

When a user first logs in, a shell called csh (C SHell) is started. This shell first reads the
contents of the file .cshrc (C SHell Run Commands) in the users home directory and performs
the commands in that file. This file is very similar to the autoexec.bat file in MS-DOS. After
that is done, the shell reads the contents of the file .login in the home directory and performs
the commands in that file. After the shell is done with the commands in the .login file, it is
ready to read commands from the user. This is when the user generally starts openwindows.

Other shells are started for every cmdtool window that is started under openwindows. Each
of these shells also reads the .cshrc file and performs the commands in it. These other shells do
not read the .login file, only the first (login) shell does that. You can put commands you want
every shell to perform in the .cshrc file. Such commands might include setting the prompt to
something other than the default.

One of the abilities of the shell is to alias a command to another. For instance, say you
normally run the command verylongprogramname and you get tired of typing it. You could
alias it to something else like myprog. Then, you would just have to type myprog to start
verlongprogramname. The format of the alias command is:

alias substitute_name ’original_program_name’
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So for verlongprogramname, the alias would be

alias myprog ’verlongprogramname’

Another ability of the shell tool is to set a path to specific commands. If there is a command
that you use, for example invoking a compiler, then you would want to set the path for that
command using the PATH= command in your .cshrc file. This command is very similar to
the PATH command found in an autoexec.bat file, in that it tells the shell what order to search
through directories when looking for a command. For example:

set path=(/bechtel/tools/etc..)

The original program could include flags. For instance, many people like to get a long
directory listing with ls -al. They alias this to something like dir with the command:

alias dir ’ls -al’

Since probably you want every shell to see this alias, you could put the command in the .cshrc
file. From then on, you will be able to use dir in every shell you start, including cmdtools.

A.14.2 .logout

The last file shells look at is .logout. When you quit the login shell, it reads the contents of
.logout and performs the commands in it. Since the loggin shell was the first shell, quiting it
means logging off the system. Many people will display a message or clear the screen. Perhaps
you’d like to display the contents of a file in which you’ve placed important reminders. In that
case, you see these reminders every time you log out.

A.14.3 .rhosts

Another file you may be interested in is .rhosts. This file lists machines and logins which are
trusted to use your account. For instance, in the lab, you can put each machine name into the
.rhosts file. If you do this, you will not have to give a password when you rlogin to another
machine in the Bechtel Lab. You must have this file set up if you want to use rcp to copy
between machines. See the section on RCP for more information. Since all the suns in the
bechtel lab share files, a .rhosts file on one machine applies to all machines. So, if you put spot
in .rhosts, for example, you could log in from spot to any machine in the lab without giving a
password or use rcp (remote copy) from spot to any machine.

Another use is to allow another person to use your account. Be warned however, that if you
do this, that person effectively becomes you while they are logged in. They can do anything
you can do including deleting files, rlogin to other machines where you have a .rhosts set up
and not give a password, send mail that appears to have come from you, etc. The advantage
of this method to giving out your password is that that person cannot change your password.
In order to change a password, you need the old password. Since they don’t need the password
to use your account, don’t give it to them. They won’t be able to change it then. They also
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won’t be able to give it out to others. Still, since this forgoes security for the sake of convience,
make sure you trust the other person explicitly.

The format of the .rhosts file is as follows: machine.name login. The machine name needs
to include the domain, .colorado.edu for all university machines. For other machines, it would
be something different. The login only needs to be given if it is different from the login that
the file is under. For instance, in the lab, part of the .rhosts might look like this:

grieg.colorado.edu
beethoven.colorado.edu
spot.colorado.edu
spot.colorado.edu buddy

Assuming your login is “mylogin”, this file allows the login “mylogin” to login to any machines
in the lab from grieg, beethoven, and spot without giving a password. Generally, you would list
all the machines in the bechtel lab. There is a program called rhosts.setup which will create a
.rhosts file for you and put each of the lab machines in it. If you want to add other machines
like spot or tramp, you will have to edit .rhosts by hand.

The example above also allows “buddy” to log into any of the machines in the lab using
your account from spot. buddy would log in with the command rlogin -l mylogin bechtel.
The -l means that “buddy” wants to be “mylogin” on bechtel instead of “buddy”. This format
is also useful if you have different login names on different machines.

A.14.4 .signature

This file is used when you post news (see the section on news for information on how to get
started with news). When you post an article on news, this file is appended to your post like
a signature. Generally people will put their real name and e-mail address into the .signature
file so others reading news will know who they really are and how to reach them. Some people
al from spotso include a humorous or thoughful saying that they identify with. People reading
news will often remember a saying better than a name. However, don’t make the .signature
file too long. Generally, four lines or less is always acceptable. As you increase the size of the
file, you increase the risk of people sending you nasty e-mail saying they don’t like waiting for
your .signature to be sent over their slow modem. A page long .signature, no matter how cute
it may be, will definitely bring about such mail.

A.14.5 .mailrc

This file will contain various setups for your mail. One usefull application is the definition of
aliases to shorten the length of e-mail addresses. For example, by having the following inside
your .mailrc file:

alias bicanic bicanic@cvvaxa.swan.ac.uk

you simply have to address your e-mail to bicanic rather than to: bicanic@cvvaxa.swan.ac.uk
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A.15 Further Reference

You can find more information on any of the topics discussed in this section in the following:

The UNIX Programming Environment by Brian W. Kernighan and Rob Pike. Prentice
Hall Software Series.

Learning the UNIX Operating System by Grace Todino and John Strang. O’Reilly and
Associates, Inc.

And any of the numerous reference guides and user’s manuals available in the lab.

A.16 Remote Loggin; Telnet

Telnet is your key to accessing applications on Internet host computers located around the
world. In a TCP/IP environment telnet is used to login to any computer on the network.
Your first connection to a UNIX computer is made using telnet unless you login via a directly
connected serial terminal. So what is telnet? It is terminal emulation program with a limited
set of commands for you to remember. You might be surprised to learn that telnet has no way
to transfer files from machine to machine. This is very different from serial telecommunications
programs that you may be familiar with. Let’s look at these commands.¡p¿

The telnet client must be told the hostname or the IP address of the host to which you want
to connect. The machine on which the telnet client is started is the “local” machine. The host
to which the client connects is known as the “remote” machine.

Once connected, you must provide a valid username and password. These may be specifically
for you if you have an account on the remote machine. Otherwise, the username and password
may be known to several users (or everyone); there may be no password required. In this
case, the account is probably set up for a specific purpose. A program is usually executed
automatically (such as gopher or lynx), or the user is given a menu of choices when he or she
logs in.

Having successfully logged in, your local machine is functioning as a terminal of the remote.
When logging in, make sure you are emulating the same type of terminal that the remote

thinks you are emulating. Some common terminal types are: DEC vt100 family (vt100, vt102,
vt220), ansi, and IBM 3270. The terminal type is set in the terminal emulation software (the
telnet software) on the local machine. The remote may or may not prompt you to enter the
terminal type after you login. Sometimes the remote gets a signal from the telnet client letting
it know what type of terminal is in use. Some sites expect that only certain terminal types will
be connecting to them and only function properly for that type.

A.16.1 Telnet Commands

open establishes a connection to the specified host.

close closes an open connection and leaves you in telnet
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quit closes any open telnet sessions and exits the program

set echo toggles screen echo on and off between full and half duplex

CTRL- ] this key sequence puts you in telnet’s command mode

There are two methods for using telnet at the Unix prompt. First, you can just start the
program, then issue the open command to get you connected to the desired host. Second, you
can specify the desired host on the command line when you start telnet. This has the same
effect as starting telnet then using the open command. It is a form of a short cut in that you
are typing only one command. You are free to use telnet either way. You should also be aware
that telnet uses a standard UNIX port to answer connections.

A.17 File Transfer Protocol (ftp)

Since telnet does not have the ability to transfer files, the program ftp becomes very important.
Ftp will allow you to transfer files between two computers systems. Additionally, one of the
vast resources on the Internet is public domain software. In order for you to get to this software
you will use a special instance of ftp known as anonymous ftp. This allows you to transfer files
between two computers without having an account on the remote computer system.

A.17.1 Definitions

FTP: The Internet standard file transfer protocol. An ftp program is a user interface to this
protocol which allows the transfer to and from a remote network host.

FTP Client: The local program which allows connection to an FTP server for the purpose of
sending or receiving files.

FTP Server: An Internet host which allows clients to connect and transfer files to or from
the hosts.

Anonymous FTP: Use of ftp to transfer files to or from a server which allows anyone to
connect. The FTP server allows a user login ID of “anonymous” or “guest” and accepts
any password input. The accepted courtesy on the Internet is for the use to provide his
or her Internet email address.

ASCII File: Text files are files that you can display on your screen and/or pull into a text
editor. For example, AUTOEXEC.BAT and CONFIG.SYS are text files in DOS. Files you
would usually transfer in ASCII mode include: “readme” files, source code, uuencoded,
binhex, PostScript and HTML files. Files transferred in ASCII mode are “translated”
so that they appear to be the same on the local machine as the remote. Text is stored
differently on different types of computers. PC text is represented differently than Mac
text. Neither PC nor Mac text is represented the same as Unix text. Those files are
usually ASCII files: Text (.txt, tex, .asc); Source code (.c, .f, .for); e-mail messages;
uuencoded files; PostScript (.ps); Hypertext (.htm, .html).
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Binary File: Binary files are not text files. This includes many file types such as: executables,
images, sound, movies, spreadsheets, databases, word processing, and compressed files.
Files transferred in binary mode are copied exactly, bit-for-bit.

Those files are usually binary: Spreadsheets (.xls, ...); Databases (.dbf, .dbt); Word Pro-
cessing (.doc, wp); Compressed files (.Z, .zip); Images (.gif, .tif, .tiff, .jpg, .jpeg, bmp,
pcx); Sounds (.au); Movies (.mpg, .mpeg, .mov).

Download: An FTP client receiving a file from an FTP server using the “get” command is
downloading the file.

Upload: An FTP client sending a file to an FTP server using the “put” command is uploading
the file.

A.17.2 Connecting to an FTP Server

To establish a connection with a remote host (FTP server) from the command line, simply
type “ftp <host name>”. Once the connection is made, the remote host will require the user
enter a valid username and password. To establish an anonymous ftp session, the username is
anonymous and the password is your full internet email address.

A.17.3 Basic Commands

The words with the “less-than” (<) and “greater-than” (>) signs are not literal, but indicate
a real, situtationally-dependent word should be substituted. The information contained within
the brackets (“[” and “]”) are not required.

cd <directory>: Change current directory to the indicated directory. Similar to DOS, there
are several unique inputs for <directory>. They are “/” (go to the top most directory)
and “..” (go to the next higher directory).

dir [<directory> :] List extended information for the contents of the indicated directory. If
no directory is given, the extended information of the current directory is listed.

ls [<directory> :] List the contents of the indicated directory. If no directory is given, the
current directory is listed.

type <transfer type>: Set the transfer type to the indicated type. The transfer type should
be either ASCII or binary as previously defined.

get <remote file> [<local file> :] Requests the FTP server send the file indicated and save
it on the local client with the name provided. If no <local file> is provided, the file is
saved using the <remote file> name.

put <local file> [<remote file> :] Sends the indicated file to be saved on the FTP server
with the name provided. If no <remote file> is provided, the file is saved using the <local
file> name.

Victor E. Saouma Computing Literacy for Undergraduate Engineering Students



DraftA.17 File Transfer Protocol (ftp) A–23

mget <file pattern>: Related to the “get” command, this retrieves multiple files matching
the indicated pattern. Using the “*” as a wildcard character, the command “mget *.txt”
would retrieve all files with the extension “.txt” in the current remote directory.

mput <file pattern>: Related to the “put” command, this sends multiple files matching the
indicated pattern. Using the “*” as a wildcard character, the command “mput *.txt”
would put all files with the extension “.txt” in the current local directory to the FTP
server.

delete <remote file>: Deletes the indicated file from the FTP server. Most FTP clients
allow use of “del” for the entire command “delete”

hash: This is a “toggle” command. When on, it causes a “#” to be printed to the screen for
each block (1024, 2048, or 4096 bytes) of the file transferred. It is used to indicated con-
tinuing activity during transfer of large files. Some client software require the commands
“hash on” and “hash off” to be used, although most simply toggle between the on and
off modes.

bye: Close this ftp session. “quit” also works on most FTP clients.
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