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Introduction to 
Stochastic Optimization Methods 

(meta-heuristics) 
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Classification of optimization methods
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History of metaheuristics

[wikipedia]
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Direct search methods

• Without knowledge of gradients (zero-order methods)

• Heuristics:
– „... a heuristic is an algorithm that ignores whether the solution to the 

problem can be proven to be correct, but which usually produces a 
good solution or solves a simpler problem that contains or intersects 
with the solution of the more complex problem. Heuristics are typically 
used when there is no known way to find an optimal solution, or when 
it is desirable to give up finding the optimal solution for an 
improvement in run time.“ [Wikipedia]

– For instance: Nelder-Mead algorithm

• Metaheuristics:
– „designates a computational method that optimizes a problem by 
iteratively trying to improve a candidate solution.“ [Wikipedia]



Modern optimization methods 6

Nelder-Mead method

• Heuristic method
• Known also as a simplex method
• Suitable for Dim<10
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Nelder-Mead method

[Gioda & Maier, 1980]
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Nelder-Mead method

0) original triangle, 1) expansion, 2) reflexion, 3) outer contraction, 4) inner 

contraction, 5) reduction [Čermák & Hlavička, VUT, 2006]
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Nelder-Mead method



Modern optimization methods 10

Meta-heuristic

• Also called stochastic optimization methods–
usage of random numbers => random behavior

• Altering of existing solutions by local change
• Examples:

– Monte Carlo method
– Dynamic Hill-climbing algorithm
– Simulated Annealing, Threshold Acceptance
– Tabu Search
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Monte Carlo method

• Or „blind algorithm“
• Serve as a benchmark

1 t = 0
2 Create P, evaluate P
3 while (not stopping_criterion) { 

4 t = t+1
5 Randomly create N, evaluate N
6 If N is better than P, then P=N

7 }

also (brute-force search)
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Global view on optimization
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Local view on optimization
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Hill-climbing algorithm

• Search in the vicinity of the current solution
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Hill-climbing algorithm

• Search in the vicinity of the current solution

1 t = 0
2 Create P, evaluate P
3 while (not stopping_criterion) { 

4 t = t+1
5 Randomly or systematically create Ni in the 

vicinity of P, evaluate Ni

6 The best Ni exchanges P

7 }
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Simulated annealing (SA)

• Discovered in 80’s independently by two authors
[Kirkpatrick et al., 1983] and [Černý, 1985].

• Based on physical meaning, on an idea of annealing of 
metals, where the slow cooling leads material to the state 
of minimum energy. This is equivalent to the global 
minimization.

• There is a mathematical proof of convergence.
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Physical background

• Theory based on monitoring of metallic crystals 
at different  temperatures

High temperature Low temperature
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Principles of method

• stochastic optimization method

• Probability to escape from
local minima

• consecutive decreasing
of temperature,
so-called cooling schedule
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Průběh tradičního vzorce pro různé teploty
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Temperature influence

• Probability 
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Algorithm
1 T = Tmax, Create P, evaluate P
2 while (not stopping_criterion) { 
3 count = succ = 0
4 while ( count < countmax & succ < succmax ) {
5 count = count + 1
6 alter P by operator O, result is N
7 p = exp ((F(N) − F(P))/T) (application of probability)

8 if ( random number u[0, 1] < p) {
9 succ = succ + 1
10 P=N
11 }if}while

12 Decrease T (cooling schedule)

13 }while
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Algorithm

• Initial temperature Tmax is recommended at the level of  
e.g. 50% probability of acceptance of random solution. 
This leads to experimental investigation employing 
usually the “trial and error method”

• Parameter countmax is for maximal number of all iteration 
and succmax is the number of successful iterations at the 
fixed temperature level (so-called Markov chain). 
Recommended ration is countmax = 10 succmax
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Algorithm

• Stopping criterion is usually the maximum number of 
function calls

• As an „mutation“ operator, the addition of Gaussian 
random number with zero mean is usually used, i.e.

N = P + G(0,σ) ,

where the standard deviation σ is usually obtained by 
the trial and error method
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Cooling algorithms

• Classical: Ti+1 = TmultTi

• Where Tmult =0,99 or 0,999

• Other possibilities exist. e.g.:

see e.g. [Ingber]

• These settings usually do not provide flexibility to 
control the algorithm
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Cooling algorithms

• Proposed methodology [Lepš, MSc. Thesis] [Lepš,
Šejnoha]

• This relationship enables at maximum iterations itermax
reach the minimal temperature Tmin given by

Tmin = 0,01Tmax

• For instance: for succmax/itermax = 0,001 is Tmult=0,995
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Note on probability

• For population based algorithms:
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SA convergence
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Threshold acceptance

• Simpler than SA

• Instead of probability, there is a threshold, or range, 
within which the worst solution can replace the old one

• Threshold is decreasing similarly as temperature in SA

• There is a proof that this method does not ensure finding 
the global minima.
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Travelling Salesman problem (TSP)

• One of the most famous discrete optimization 
problems

• The goal is to find closed shortest path in edge-
oriented weighted graph

• For n cities, there are (n–1) ! /2 possible 
solutions

• NP-complete task
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Travelling Salesman problem (TSP)
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• Example
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Travelling Salesman problem (TSP)

No. Order of the city distance

1 2 3 4

I. A B C D 97

II. A B D C 108

III. A C B D 141
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Travelling Salesman problem (TSP)

No. cities Possible paths Computational 
demands

4 3 3,0 · 10-09 seconds

5 12 1,2 · 10-08 seconds

6 60 6,0 · 10-08 seconds

7 360 3,6 · 10-07 seconds

8 2520 2,5 · 10-06 seconds

9 20160 2,0 · 10-05 seconds

10 181440 1,8 · 10-04 seconds

20 6,1 · 1016 19,3 years

50 3,0 · 1062 9,6 · 1046 years

100 4,7 · 10157 1,5 · 10140 years

Based on 109 operations per 1 second computer speed



Modern optimization methods 34

Travelling Salesman problem (TSP)

The OPTNET Procedure 1 Mathematica software2

1 http://support.sas.com/documentation/cdl/en/ornoaug/65289/HTML/default/viewer.htm#ornoaug_optnet_examples07.htm
2 http://mathematica.stackexchange.com/questions/15985/solving-the-travelling-salesman-problem

http://gebweb.net/optimap/
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Example

• tsp.m
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Local operator
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A humble plea. Please feel free to e-mail any suggestions, errors and
typos to matej.leps@fsv.cvut.cz.

Date of the last version: 10.11.2015

Version: 003

News 21.10.2013: Added Nelder-Mead method and the introduction redone.

News 5.11.2014: Added TSP after the end.

News 10.11.2015: Enhancement of TSP.

Some parts of this presentation have been kindly prepared by Ing. Adéla

Pospíšilová with Faculty of Civil Engineering, CTU in Prague.


