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Genetic Algorithms
• Proposed by J. Holland in 60’s during his work 

on cellular automata
• First „big“ publication for GA function 

optimization is a book by D. Goldberg from 80’s
• 2015: sear Google for keywords „Genetic 

algorithms“ leads to 2 920 000 links (in 
comparison to „Simulated annealing“1 430 000
results)

• As a standard genetic algorithm a binary 
version of GA from those times is used
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Cellular Automata (CA)

Rules:
• 3 Black  =  White
• 2 Black = Black
• 1 Black = Black
• 3 White = White
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1D Cellular Automata
1-dimensional CA is based on a row of 
cells. Cells are changing their status/state 
based on the given rules.
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2D Cellular Automata
2-dimensional CA is based on finite 
(infinite) net of cells, where each of them is 
in one given state. Time is discrete and the 
state in time t is given by statuses of its 
neighbors in time t-1.
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The universe of the Game of Life is an infinite, two-dimensional orthogonal
grid of square cells, each of which is in one of two possible states, alive or dead.
Every cell interacts with its eight neighbours, which are the cells that are horizontally,
vertically, or diagonally adjacent. At each step in time, the following transitions 
occur:

1.Any live cell with fewer than two live neighbors dies, as if by underpopulation.
2.Any live cell with two or three live neighbors lives on to the next generation.
3.Any live cell with more than three live neighbors dies, as if by overpopulation.
4.Any dead cell with exactly three live neighbors becomes a live cell, as if by 
reproduction.

Example: Conway’s Game of Life

[Wikimedia]
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Example: Conway’s Game of Life
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.: Conway’s Game of Life
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Practical usage: 
Modeling of concrete microstructural 
development

W/c = 0.4, RVE 30 x 30 x 30 m

[Vít Šmilauer, Zden k Bittnar]
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Example cont.:
Development of hydration heat

• SCC, CEM I 42.5 R, 350 kg/m3
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Middle Top

Example cont.:
Development of hydration heat
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Properties of GA
• Based on Darwinian idea „survival of the fittest“
• Stochastic optimization methods – produce 

random behavior
• Non-gradient methods – even, no need for 

function continuity
• Proof of convergence based on so-called Schema 

theorem
• Usually the methods of the last resort



Modern optimization methods 12

Survival of the roundest

Gen 1

Selected parents

Gen 2

Gen 3

Selected parents

Winner!
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Genetic Algorithms
• Notations from biology

x1 = (x1
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2,…x1
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1,x2

2,…x2
n)             f2
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Genetic Algorithms

|0000000000011|

x

9

81

F = 1

F = 2

(genotype) (phenotype) (fitness/force)

E.g.:

DNA Muscle-man Winner of competition

Note: Nowadays the objective function (phenotype) and fitness are 
usually equal, i.e. f F.

Fast runner

(individual)

3

|0000000001001| 9

f(x) = x2B F = rank
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Motivation
• Theoretical example:

max f(x) = x2,  x[ 0 ; 33 ]

ešení
Po áte ní 
populace Hodnota x Fitness Pravd pod.

ekávaný 
po et

Aktuální 
po et

1 0 1 1 0 1 13 169 0,14 0,58 1
2 1 1 0 0 0 24 576 0,49 1,97 2
3 0 1 0 0 0 8 64 0,05 0,22 0
4 1 0 0 1 1 19 361 0,31 1,23 1

Suma 1170 1 4 4
Avg. 292,5 0,25 1 1
Max 576 0,49 1,97 2

Solution
Initial 
Pop. x value Prob.

Exp. 
count

Actual 
count
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ešení
Mating 
pool

místo 
ížení Potomci Hodnota x Fitness

1 0 1 1 0 | 1 4 0 1 1 0 0 12 144
2 1 1 0 0 | 0 4 1 1 0 0 1 25 625
2 1 1 | 0 0 0 2 1 1 0 1 1 27 729
4 1 0 | 0 1 1 2 1 0 0 0 0 16 256

Suma 1754
Avg. 438,5
Max 729

Solution x valueChildrenCross pos.

ešení Potomci Po mutaci Hodnota x Fitness
1 0 1 1 0 0 1 1 1 0 0 26 676
2 1 1 0 0 1 1 1 0 0 1 25 625
2 0 1 0 1 1 0 1 0 1 1 27 729
4 1 0 0 0 0 1 0 0 1 0 18 324

Suma 2354
Avg. 588,5
Max 729

Solution Children x valueAfter mut.
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Standard genetic algorithm
1 t = 0
2 Create P0, evaluate P0

3 while (not stopping_criterion) { 
4 t = t+1
5 Choose Mt from Pt-1 (Selection)

6 Alter Mt (Genetic operators)

7 Create Pt from Mt and evaluate Pt (New population)

8 }

Where P is population, or set of possible solutions, M is so-called 
mating pool, t is number of iterations, here called generation.
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Binary coding
• Integer numbers are stored in computers in easy 

accessible binary format, e.g. using binary 
operators in C programming language.

• If programming language does not provide tools 
for binary access, transformation is given by:

1. Length of binary string q
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Binary coding

2. Binary string , corresponding to the 
positive integer value zi, stands

3. With an inversion
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Hamming’s barrier

two numbers: 

000000010000000 and
000000001111111

are as integers neighbors, but in binary code they are very distant
(they have big so-called Hamming’s distance) 

[Kvasni ka et al., 2000]
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Hamming’s barrier: solution

1) Inversion operators 

2) Gray coding
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Chromosomes’ coding dependent:
• For binary coding, Gray’s included:

– One-point crossover

– k-point crossover

111|1111111111

Crossover operators

000|0000000000
111|0000000000
000|1111111111

parents: children:

111|11111|11111
000|00000|00000

111|00000|11111
000|11111|00000

parents: children:
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Chromosomes’ coding dependent:
• For binary coding, Gray’s included:

– Uniform crossover

1111111111111

Crossover operators

0000000000000
1011000110101
0100111001010

parents: children:



Modern optimization methods 24

Chromosomes’ coding dependent:
• For real coding of chromosomes, e.g.:

– Arithmetic
• Child 1: C1 = * P1 + (1- ) P2

• Child 2: C2 = * P2 + (1- ) P1

is a random number between 0 and 1

– blend crossover BLX-
• Two parents P1 and P2 with given bounds L and U
• R1 = max (L, P1 (P2 –P1))
• R2 = min (U, P2 + (P2 –P1))
• Children randomly selected between R1 and R2

usually selected at 0,5 

Crossover operators
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Special operators:
– Partially matched crossover (PMX) – for permutation 

tasks

Crossover operators

123|4567|89
452|1876|93

xxx|1876|xx
xxx|4567|xx

Map:
4, 8 5, 7 6, 6 7 

x23|1876|x9
xx2|4567|93

423|1876|59
182|4567|93
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Special operators:
– Uniform order-based crossover – for permutation 

tasks

Crossover operators

123456|789
452187|693

123456|xxx
452187|xxx

123456|879
453287|369..3..6..9

….87.9.
Map:
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Special operators:
– Count preserving crossover (CPC) – ensures the 

same amount of 1 and 0

Crossover operators

01010101
11001100

x10xx10x
x10xx10x

Map:
List1 = [4,8]
List0 = [1,5]

1100x10x
0101x10x

11000101
01011100

Rand() = 0.43 < 0.5 
exchange

Rand() = 0.78 > 0.5 
remain



Modern optimization methods 28

Mutation operators

123456789 123756489
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Selection
• Selection is needed to create mating pool, i.e. so-called 

parent selection, or to create new generation, i.e. so-called 
survivor selection

• Dozen of selection methods and tools exist:
– Roulette wheel 
– SUS – Stochastic Universal Sampling
– Tournament selection 
– Inverse tournament selection
– Elitism
– Ranking a linear scaling
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Example

No. Chromosome Value x f(x) Probability of 
selection

1 01101 13 169 169/1170=0,144
2 11000 24 576 576/1170=0,492
3 01000 8 64 64/1170=0,055
4 10011 19 361 361/1170=0,309
Sum 1170 1
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Roulette wheel

p1 = 0,14 p2 = 0,49 p4 = 0,31
p3 = 0,05

Probability

Cumulative
probability

0 0,14 0,63 0,68 1

RAND()

RAND()

RAND()

RAND()
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Roulette wheel

• Classical tool

• Does not ensure selection of the best solution 
especially in the case of large populations

• Computationally expensive method, n x RND()
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SUS – Stochastic Universal Sampling

c4 = 1,23
c3 = 0,22

Expected count

Cumulative
expected count0 2,55 2,77 4

RAND()

p1 = 0,58 p2 = 1,97

0,58

1,0 1,0 1,0
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SUS – Stochastic Universal Sampling

• Does not ensure selection of the best solution 
especially in the case of large populations, but

• Ensures integer expected counts, e.g.
solution with c = 2,0001 will be always selected 2x

• Computationally lest demanding method,
only 1 x RND()!
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Tournament selection
• Randomly selects from population k „contestants“ 

(most often k = 2) and select the best of them 
(tournament) and this procedure is done n-times

• Does not ensure selection of the best solution 
because there is a probability that the best solution 
would not be selected to the tournament

• Computationally expensive method:
k x n x RND()
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Inverse tournament selection
• Selection of p solutions, where p  < n
• Randomly selects from population k

„contestants“ (most often k = 2) and the worst 
one is discarded (inverse tournament) and this 
procedure is done n-times

• This method ensures selection of the best 
solution! 

• The most „democratic“ method – there exists a 
probability of survival of the worst solution 
because of not being selected to the tournament

• Computationally expensive method :
k x n x RND() [Hrstka and Ku erová, 2004]
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Elitism
• Has two senses:
1) Selection or copy of the best solution to the next 

generation (or mating pool). Used to correct 
deficiency of selection methods or to control 
speed of convergence. 

2) Property or procedure which preserves actual 
“better” solutions. For instance, tournament 
with k = 3 is more elitist than tournament with
k = 2.
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Ranking and linear scaling

• Methods  for control of fitness, supporting or 
blocking elitism

• Ranking computes fitness not based on 
objective function value, but on the ranks of 
solutions within population. E.g. the best 
solution will have 3 copies, second best 2 copies 
and reminders to selection one copy. The worst 
solutions will have 0.
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Ranking and linear scaling

• Linear scaling computes fitness to be linearly 
distributed, e.g. to preserving the average value 
of objective functions and also ensure the 
maximal fitness within 1,2-2,0 multiple of 
average (selected by user)
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Proof of convergence: „Schema theorem“
two solutions: 

01010010100101010101110101010101 and
01011010100101110001110111010111

are covered by this schema: 

0101#010100101#10#011101#10101#1

Expected count of appearance of this scheme in time t+1
is given by

see e.g. [Goldberg, 1989]
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• If the whole population is covered by one 
genotype, the population has converged

• Convergence is premature, if the global optimum 
has not been found

• Solution:
– Higher mutation probabilities
– Preserving diversity within population
– Multi-modal solutions

Premature Convergence
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Deceptive functions
y
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Look also for “Robust design optimization”
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A humble plea. Please feel free to e-mail any suggestions, errors and
typos to matej.leps@fsv.cvut.cz.
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