Evolutionary Algorithms

- Category created in 90's to unify individual "evolutionary" methods, i.e. Genetic Algorithms, Evolution Strategies and Evolutionary Programming (in these lectures not mentioned method developed also in 70's)
- Still developing area; only notation and methods developed at Department of Mechanics, Faculty of Civil Engineering at CTU Prague (FCE), will be presented

Properties of EAs

- Based on Darwinian idea "survival of the fittest"
- Stochastic optimization methods produce random behavior
- Non-gradient methods no need for function continuity

Operators' notation

• Combination of three operators:

- Recombination
rec
$$_{i}^{j}$$
 $I^{i} \rightarrow I^{j}$ $i \leq \mu$, $j \leq \lambda$
- Mutation
mut $_{1}^{1}$ $I^{1} \rightarrow I^{1}$
- Selection
sel $_{i}^{j}$ $I^{i} \rightarrow I^{j}$ $i \leq \mu \parallel \mu + \lambda$, $j \leq \mu$

Description of several algorithms

- Simulated Annealing
- $opt_{SA}({}^{t+1}I) = \mathbf{sel}_{2}^{1}(\mathbf{mut}_{1}^{1}({}^{t}I),{}^{t}I).$
- Genetic Algorithm

 $opt_{SGA}({}^{t+1}I^{\mu}) = \mathbf{mut}_1^1(\mathbf{rec}_2^2({}^{t+1}\overline{I}^{\lambda}), {}^{t+1}\overline{I}^{\lambda}), {}^{t+1}\overline{I}^{\lambda} = \mathbf{sel}_{\mu}^{\lambda}({}^{t}I^{\mu}),$

Differential Evolution

$$opt_{DE}({}^{t+1}I^{\mu}) = \mathbf{sel}_{2}^{1}(\mathbf{rec}_{4}^{1}({}^{t}I, {}^{t}I_{best}), {}^{t}I),$$

• Evolution Strategies

$$opt_{(\mu+\lambda)-ES}({}^{t+1}I^{\mu}) = \operatorname{sel}_{\mu+\lambda}^{\mu}(\operatorname{mut}(\operatorname{rec}({}^{t}I^{\mu})),{}^{t}I^{\mu}),$$

 $opt_{(\mu,\lambda)-ES}({}^{t+1}I^{\mu}) = \operatorname{sel}_{\lambda}^{\mu}(\operatorname{mut}(\operatorname{rec}({}^{t}I^{\mu}))),$

Algorithms developed at FCE

- SADE Simplified Atavistic Differential Evolution
- RASA : Real-valued augmented simulated annealing
- IASA : Integer augmented simulated annealing

SADE algorithm

- Simplified Atavistic Differential Evolution
- Based on Differential Evolution
- Combines GA and DE principles
- Mainly introduces mutation
- Author's webpage:
 - http://klobouk.fsv.cvut.cz/~anicka/

SADE algorithm

```
void SADE ( void )
{
   FIRST_GENERATION ();
   while ( to continue )
   {
      MUTATE ();
      LOCAL MUTATE ();
      CROSS ();
      EVALUATE GENERATION ();
      SELECT();
   }
}
```

SADE algorithm

• New differential operator

$$ch_{ij} = ch_{pj} + CR (ch_{qj} - ch_{rj})$$

• Mutation and local mutation added

$$ch_{ij} = ch_{kj} + MR (rp_{qj} - ch_{kj})$$

Inverse tournament selection

Parameters

Parameter	Cheby- chev	Type 0	Beam	PUC
pop_size CR	10×dim 0.44	25×dim 0.1	10×dim 0.3	10×dim 0.2
MR	0.5	0.05	0.05	0.3

Example of SADE with 20 dimensions

RASA

- Real-valued augmented simulated annealing
- Based on GA and SA principles

RASA

- GA origins
 - Selection and genetic operators 4 mutations, 4 crossover
- SA ideas
 - Cooling schedule, re-annealing

$$p = \frac{1}{1 + e^{\Delta C/T}}$$

$$\Delta C = C_{NEW} - C_{OLD}$$

G

G

L

G

Mutation

Uniform mutation: Let k = [1, n] $\operatorname{ch}_{ij}(t+1) = \begin{cases} u(L_j, U_j), & \text{if } j = k \\ \operatorname{ch}_{ij}(t), & \text{otherwise,} \end{cases}$ (17)

Boundary mutation: Let k = u[1,n], p = u(0,1) and set:

$$\operatorname{ch}_{ij}(t+1) = \begin{cases} L_j, & \text{if } j = k, p < 0.5\\ U_j, & \text{if } j = k, p \ge 0.5\\ \operatorname{ch}_{ij}(t), & \text{otherwise}, \end{cases}$$
(18)

Non-uniform mutation: Let k = [1, n], p = u(0, 1) and set:

$$ch_{ij}(t+1) = \begin{cases} ch_{ij}(t) + (L_j - ch_{ij}(t))f, & \text{if } j = k, p < 0.5\\ ch_{ij}(t) + (U_j - ch_{ij}(t))f, & \text{if } j = k, p \ge 0.5\\ ch_{ij}(t), & \text{otherwise}, \end{cases}$$
(19)

where $f = u(0, 1)(T_t/T_0)^b$ and b is the shape parameter. *Multi-non-uniform mutation*: Apply non-uniform mutation to all variables of CH_i.

Crossover

Simple cross-over: Let k = [1, n] and set:

$$ch_{il}(t+1) = \begin{cases} ch_{il}(t), & \text{if } l < k \\ ch_{jl}(t), & \text{otherwise,} \end{cases}$$
$$ch_{jl}(t+1) = \begin{cases} ch_{jl}(t), & \text{if } l < k \\ ch_{il}(t), & \text{otherwise.} \end{cases}$$

Simple arithmetic cross-over: Let k = u[1, n], p = u(0, 1) and set:

$$ch_{il}(t+1) = \begin{cases} pch_{il}(t) + (1-p)ch_{jl}(t), & \text{if } l = k\\ ch_{il}(t), & \text{otherwise,} \end{cases}$$
(20)

$$\operatorname{ch}_{jl}(t+1) = \begin{cases} p \operatorname{ch}_{jl}(t) + (1-p) \operatorname{ch}_{il}(t), & \text{if } l = k \\ \operatorname{ch}_{jl}(t), & \text{otherwise.} \end{cases}$$
(21)

Whole arithmetic cross-over: Simple arithmetic crossover applied to all variables of CH_i and CH_j.

Heuristic cross-over: Let p = u(0, 1), j = [1, n] and k = [1, n] such that $j \neq k$ and set:

$$CH_i(t+1) = CH_i(t) + p(CH_j(t) - CH_k(t)). \qquad (22)$$

Modern optimization methods

Parameters _

Parameter	Beam	Others
pop_size	64	32
q	0.04	0.04
p_uni_mut	0.525	0.05
p_bnd_mut	0.125	0.05
p_nun_mut	0.125	0.05
p_mnu_mut	0.125	0.05
p_smp_ers	0.025	0.15
p_sar_crs	0.025	0.15
p_war_crs	0.025	0.15
p_heu_crs	0.025	0.35
ď	0.25	2.0
T_frac	10-2	10-10
T_frac_min	10-4	10-14
T_mult	0.9	0.9
num_success_max	$10 \times \texttt{pop_size}$	$10 \times \texttt{pop_size}$
num_counter_max	$50 \times pop_size$	$50 \times pop_size$
num_heu_max	20	20
precision (step 4a)	See Section 4.3	10-4

IASA

- Integer augmented simulated annealing
- Combines GA, SA, ES and DE principles

Integer coding

• Function given by $f(x) = f(x_1, x_2, ..., x_n)$

 $x_i \in D \subseteq \{N, R\} \quad \min_i \le x_i \le \max_i$

• Then, positive, integer representation for precision p_i reads

$$y_i = \left\lfloor \frac{x_i - \min_i}{p_i} \right\rfloor$$

• With inverse relationship

$$x_i = y_i p_i + \min_i$$

Integer coding

- E.g.: $x = 314.151, min_x = 0.0, p_x = 0.001$ y = 314151
- The same expression can be used also e.g. for rounding:
 - To integers: $p_i = 1$
 - To even numbers: $p_i = 2$ and min_i should be even
- Note.: Precision of real numbers is not infinite in computers (they are stored in binary code as well!)

IASA

• Differential crossover

$$ch_{ij} = ch_{pj} + u(0.0, CR)(ch_{qj} - ch_{rj})$$

• Mutation

$$ch_{ij} = ch_{kj} + N(0.0, 0.5 |ch_{kj} - ch_{pj}| + 1)$$

• Integer coding

```
T = T_{max}, t = 0
create P_0, evaluate P_0
while (not stopping_criterion) {
   count = succ = 0
   while( count < countmax & succ < succmax)</pre>
       count = count + 1, t = t + 1
       select individuals I_t from P_{t-1}
       select operator O
       alter I_+ with O, I_+' is result
       evaluate It'
       p = 1/(1+exp((F(I_t') - F(I_t))/T))
       if (random number u[0, 1] \le p) {
               succ = succ + 1
               insert I_{+}' into P_{+}
       }
   decrease T
}
```

Parameters

Parameter	Cheby- chev	Type 0	Beam	PUC
OldSize	80	900	180	200
NewSize	5	600	250	100
T_max	10^{-5}	10^{-5}	10^{-4}	10^{-1}
T_min	10^{-7}	10^{-10}	10^{-5}	10^{-5}
SuccessMax	1000	1000	1000	1000
CounterMax	5000	5000	5000	5000
TminAtCallsRate	19%	100%	25%	20%
CrossoverProb	97%	92%	60%	90%
CR	0.5	0.6	1.3	1.0

Comparison of four methods

- Each algorithm was designed for one particular problem
 - DE ⇐ Chebychev polynomial problem
 - IASA \Leftarrow Design of RC beam
 - RASA \Leftarrow Optimal periodic cell
 - SADE \Leftarrow Type "0" function
- Combination of "artificial" as well as "practical" problems
- Validation of individual methods

Chebychev polynomial problem

- Fitting a polynomial into given bounds
- Polynomial given by

$$f(x) = \sum_{i=0}^{n} a_i x^i$$

• Minimization of hashed areas

Type 0 function

- One global optimum
- Function given by

$$f(x) = y_0 \left(\frac{\pi}{2} - \arctan\frac{\left\|x - x_0\right\|}{r_0}\right)$$

• N-dimensional problem

Periodic Unit Cell construction

• Search for PUC with same statistical descriptions as real material

Periodic Unit Cell construction

• Problem's difficulty

BFGS/CG

Simplex

Design of RC beam

• Sear for optimal design

- Function as a price of the structure
- V_C Volume of concrete

$$f(x) = V_C P_C + W_S P_S + \sum p f_i$$

- P_C Price of concrete
- W_{S} Weight of steel
- P_{S} Price of steel

Design of RC beam: variables

- Overall 18 variables
- All of them discrete or from the discrete list

Results of comparison

Type 0 function

Results of comparison

	DE	SADE	RASA	IASA
Chebychev polynomial problem	3	2	4	1
<i>Type</i> 0 test function	4*	2	1	3
Reinforced concrete beam layout	4	3	2	1
Periodic unit cell construction	4	2	1	3
Σ	15	9	8	8

Results of comparison

• Number of tuning parameters

DE	4
SADE	5
RASA	17
IASA	9

References

- [1] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
- [2] Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. AI Series. Springer-Verlag, New York.
- [3] Hrstka, O., Kučerová, A., Lepš, M., and Zeman, J. (2003). A competitive comparison of different types of evolutionary algorithms. Computers & Structures, 81(18–19):1979–1990.
- [4] Lepš, M. (2005). Single and Multi-Objective Optimization in Civil Engineering with Applications, PhD thesis, CTU in Prague.

A humble plea. Please feel free to e-mail any suggestions, errors and typos to matej.leps@fsv.cvut.cz.

Date of the last version: 2.4.2008 Version: 001