
Multimodal optimization

- Optimization of function with several local minima
- Identification: several independent runs of optimization algorithm lead to different results
- Closely coupled with premature convergence

Multimodal problems ①

• Example: "Type 0" function

Multimodal problems ②

• Example: Optimization of RC beam

$\check{\mathbf{R}}\mathbf{e}\mathbf{z}$		Rozměry		Parametry smykové výztuže							Cena
A - A	B - B	b [mm]	h [mm]	pr_w	l_{w1}	s_{w1}	l_{w2}	s_{w2}	l_{w3}	s_{w3}	[Kč]
4 ø 6.0	$9 \ \emptyset \ 5.5$	150	550	4.0	9	400	3	75	-	-	593.00
$4 \ \emptyset \ 6.5$	$9 \ \emptyset \ 5.5$	175	550	4.0	10	425	2	100	-	-	660.44
5 ø 5.5	$9 \ \emptyset \ 5.5$	150	550	4.0	9	400	3	75	-	-	618.92
$6 \ \emptyset \ 5.5$	$8 \not o 6.5$	150	450	6.0	9	400	3	125	-	-	616.77
5 ø 5.5	$9 \ \emptyset \ 5.5$	150	525	4.0	9	425	3	75	-	-	583.83
4 ø 6.0	$8 \neq 6.0$	150	550	4.0	9	425	3	75	-	-	590.34
4 ø 6.0	$10 \not o \ 5.0$	150	550	4.0	9	425	3	75	-	-	618.13
6 ø 6.0	8 ø 7.0	150	400	6.0	9	425	3	100	-	-	618.66
4 ø 6.0	$8 \not o \ 6.0$	150	525	4.0	9	425	3	75	-	-	582.58
4 ø 6.0	$9 \ \emptyset \ 5.5$	150	525	4.0	9	425	3	75	_	_	578.81

[Lepš, Master thesis, 2000]

Multimodal problems ②

Example: Optimization of RC beam cont.

9 007 199 254 740 992 Possible solutions

100 000 000 MC points, where:

24 698 222 Valid solutions

722 With price under 1000 Kč

55 With price under 900 Kč

0 With price under 800 Kč

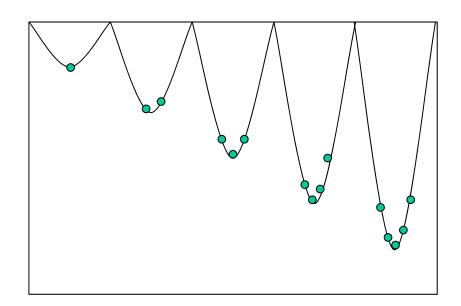
Minimum 573,50 Kč

• Re-start

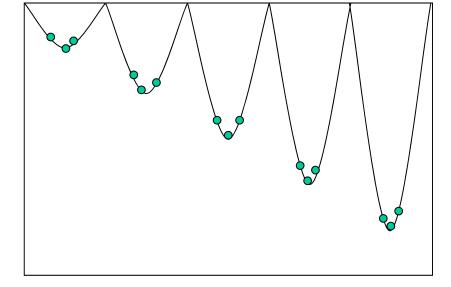
- Repeated runs from different starting points
- Mostly often used with mathematical programming methods
- Remembering of already visited points
 - See e.g. TABU Search method, in other words, usage of "memory"

- Re-annealing
 - Rapid change of temperature in Simulated Annealing
- Methods of preserving diversity within population-based algorithms
 - For instance by division of population into disjoint parts, see parallel EAs
 - or by reducing elitism in selection

- Fitness Sharing
 - Change of objective function based on the number of solutions sharing same local minimum


$$F'(i) = \frac{F(i)}{\sum_{j} sh(d(i, j))},$$

$$sh(d) = \begin{cases} 1 - (d/\sigma_{share})^{\alpha} & \text{if } d \leq \sigma_{share}, \\ 0 & \text{otherwise} \end{cases}$$

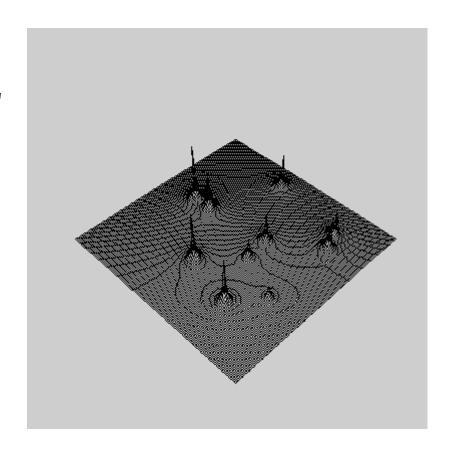

• Two parameters: α - shape

 σ_{share} – neighborhood of minimum

- Crowding
 - Steady-state selection
 - Children replace only their parents

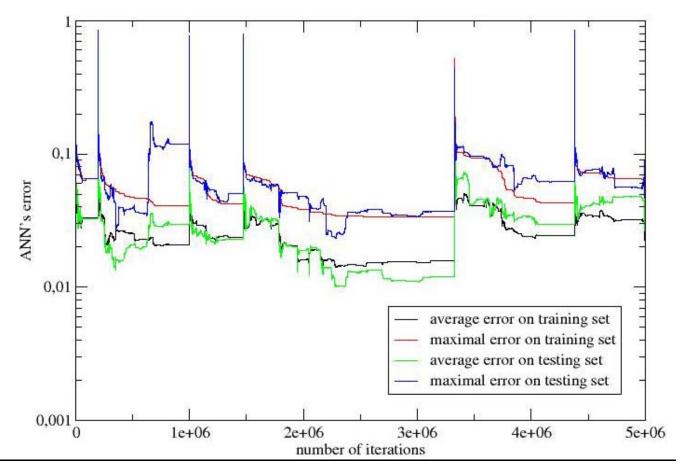
Crowding

CERAF Method


- **CERAF** (La méthode de CentrE Radio-ActiF)
- Developed by O. Hrstka and A. Kučerová, 2003
- Independent enhancement for the population based algorithm
- Re-starting algorithm with "memory"
- Stores already visited minima
- Forbids optimization algorithm to fall again into visited minima
- Rapidly increases robustness of algorithm
- User can selected solution from list of found minima

CERAF Method

- If the best-so-far value dos not change within given range for given number of iterations, the best point is selected as a minimum.
- Algorithm is restarted with random population.
- Around local minima, elliptical "radioactive" zone is created.
- Every solution created in zone is "killed" during selection and replaced by new one outside zone.
- If such solution was created by crossover, the zone is decreased to allow search for local minima hidden in zone.


Usage of CERAF Method ①

 Type 0 function optimized with SADE algorithm and CERAF method

Usage of CERAF Method ③

Optimization of neural network weigts

References

- [1] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
- [2] Mahfoud, S. W. (1995). Niching methods for genetic algorithms. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- [3] Hrstka, O. and Kučerová, A. (2004). Improvements of real coded genetic algorithms based on differential operators preventing the premature convergence. Advances in Engineering Software, 35(3–4):237–246.
- [4] A. E. Eiben, J. E. Smith, Agoston E. Eiben, J. D. Smith (2003). Introduction to Evolutionary Computing. Springer.

A humble plea. Please feel free to e-mail any suggestions, errors and typos to matej.leps@fsv.cvut.cz.

Date of the last version: 23.11.2011

Version: 002