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Metamodeling
• Most modern area of optimization research
• For computationally demanding objective 

functions as well as constraint functions
• Main idea is that real functions are not convex 

but are in some sense “continuous”
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Metamodeling
• Goal: find an approximation (meta-model) M of 

a problem (model) P such that:
– M is less demanding than P
– Minimum of M is equal to minimum of P (for

objective functions) or the hyperplane
dividing the space into feasible and unfeasible
space is the most accurate (for constraint
functions)
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• Objective function

• Constraint function

Metamodeling for optimization

interesting region
f

x

interesting hyperplane
(contour for 2D problem)
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Metamodeling
• Original model still necessary to evaluate few 

times
• Choosing points where to enumerate original 

model - Design of Experiments (DoE)
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General division of meta-models
• Interpolating models intersecting all support 

points based on an idea of linear combination of 
some basis functions

• Non-interpolating models minimizing sum of 
squares errors for some predetermined 
functional form

• Combination of above models
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General division of meta-models
Example of

interpolating model 
(Radial basis functions)

Example of non-
interpolating model 

(Legendre polynomials: 
3rd degree)

Original model
Meta-model
Support points

Original model:
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Under-learning and 
Overtraining issues
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Under-learning and 
Overtraining issues

• Solution: Three distant sets of points:
– Traing set
– Testing set
– Validation set
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Structure of generic metamodel
DoE Model choice Model fitting Example

Factorial polynomial Least squares 
regression

Response Surface 
Methodology

Central 
composite

Splines Weighted least 
squares

D-optimal Random field 
realization

Best linear 
predictor

Kriging

Fully random Set of functions 
and terminals

Genetic 
Algorithm

Genetic 
programming

Latin 
Hypercube

Neural net Back propagation BP Neural 
Networks

Selected by 
hand

Decision tree

Orthogonal 
array

Radial basis 
function

Minimization of 
entropy

Inductive 
Learning
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Random LHS 
design

Optimal Optimal 
LHS

Factorial Sparse 
grid

KPU

Sparse 
grid

GQU

Many choices:

Design of Experiments (DoE)
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DoE
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DoE
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DoE
• D-optimal designs
• Random designs

– Uniform Monte Carlo sampling
– Latin Hypercube sampling

• Quasi-ranom designs 
– Halton, Sobolov, Faure
– Van der Corput for 1D

• Distance-based designs
– Maximin and Minimax designs 

• Entropy-based designs
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DoE
• Monte Carlo method

– sampling method, uses random (pseudo) 
numbers generation

– generates vectors with prescribed probability 
distributions

• Quasi-Monte Carlo
– uses quasi random numbers generation
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LHS method
• Latin Hypercube Sampling

– Uses less number of samples than MC
– Divides each variable into Nsim equal (in 

probability sense) stripes
– A sample is selected as a mean of each stripe
– Then change of an order of samples, not their 

values
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LHS method
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Optimal Latin Hypercube Sampling

• To optimize “space cover” by all samples
• Possible methods:

– maximization of entropy/minimization of 
discrepancy

– maximization of minimum distance among 
points

– Potential energy based norm
– Prescribed correlation matrix

• Optimization e.g. using Simulated Annealing
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• Audze – Eglais (AE) [P. Audze, V. Eglais,1977]

- Potential energy based norm

• Eucledian maximin distance (EMM) [M. Johnson,1990]

• Modified L2 discrepancy (ML2) [T. M. Cioppa, 2007]

• D-optimality (Dopt) [Kirsten Smith, 1918; M. Hofwing, 2010]

Objectives for uniformity
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Optimized LHS – heuristic procedure 
plus Simulated annealing
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Orthogonality measures
• Conditional number (CN) [T. M. Cioppa, 2007]

• Pearson’s correlation coefficient (PMCC)

• Spearman’s rank-based correlation coefficient (SRCC)

• Kendall’s rank-based correlation coefficient (KRCC)
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Prescribed correlation matrix



Modern optimization methods 23

• Based on existence and/or shape of constrains
– bounded domain

–> hypercube

Design domain
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• mixture experiment
–
–> simplex

x1 + x2 + … + xn = 1; 0  xi  1; i = 1, …, n

Design domain
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• Classical templates/patches

Simplex DoEs
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• Additional linear conditions–> polytope

Mixture condition:
x1 + x2 + x3 = 1

Relative amount 
constrains:

x2  0.6
x3  0.1
x3  0.7

Design domain
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Distmesh tool
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• Limited distance to given point (origin)
–>

hypersphere
Rx

2

Design domain
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Note: volume of unit hypercube vs. unit 
hypersphere

DIM Cube Sphere
2 1 0.785
3 1 0.524
10 1 0.00249
20 1 2.46*10-8
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Sampling from hypercube

Known methodology
Fast and simple
Enables adaptive
sampling

Omits solutions outside bounds!
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Sampling from prescribed 
distributions
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Transformation from uniform distribution



Modern optimization methods 33

Transformation from uniform distribution
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Transformation from uniform distribution
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Sampling from prescribed 
distributions

Known methodology

Sampling around mean
May miss failure region
Problems with adaptive
sampling
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Hypercube vs. prescribed 
distribution?
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Response Surface Methodology
• (unknown) function:

• approximation: 

• in known points:

xx )()( fy
error with normal 
distribution

...)(
11

0

N

i

N

ij
jiij

N

i
ii xxxy x

y

fXXX TT 1)(

2)(     ,0)( ii VE



Modern optimization methods 38

Example: Linear regression
x y
121 140
153 169
132 114
84 90
102 91
111 105
163 152
81 60
151 133
129 125

x = [121, 153, 132, 84, 102, 111, 163, 81, 151, 129];
y = [140, 169, 114, 90, 91, 105, 152, 60, 133, 125];
X = [ones(1,10) x];  % information matrix
Beta_app = (X‘* X)\(X‘*y‘)

Beta_app = -8.99340124551449
1.0341760492707
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Example: quadratic regression
x = [-5, -3, 0, 2, 4];

y = [26.274046,9.0840786,1.5915102,4.2260288,17.378550];

X = [ones(1,5) x‘ x‘.^2];  % information matrix

Beta_app = (X‘*X)\(X‘*y‘)

Beta_app = 0.679526827730912

0.047343996311551

1.02317162054266

x y
-5 26.274046
-3 9.0840786
0 1.5915102
2 4.2260288
4 17.378550



Modern optimization methods 40

Polynomial regression
• For complete polynomials in 2D

• Needed points for n dimensions and mth order

1 Constant Min. 1 point
x y Linear Min. 3 points

x2 xy y2 Quadratic Min. 6 points

x3 x2y xy2 y3 Qubic Min. 10 points

x4 x3y x2y2 xy3 y4 4th order Min. 15 points

mth order Min. (m+1)!
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Kriging
• (unknown) function :

• approximation: 
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Kriging
• Mean Squared Error:

• Standard error of Kriging prediction
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Kriging
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Kriging

• Predicted values are precise in given points 
(interpolation)

• Error predictions are big on rough landscapes and 
oppositely small on flat ones

• Error predictions grow with increasing distance
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Kriging
Probability of improvement I
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RBFN (Radial-Basis Function Network)

Basis function :
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Radial Basis Function Model
model parameters basis function centres

response
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Task of fitting metamodel
• Approximation usually much simpler than the 

optimization problem
• Approximation based only on DoE is imprecise

=> need for iterative approach
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Algorithm
1. DoE creates new solutions, evaluates them on P
2. New solutions are added to M
3. Fitting of M  
4. Optimization of M – get new guesses
5. New solutions are evaluated on P
6. While not convergence, go to 2
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Algorithm
1. Start of Optimization Algorithm OA – usually 

DoE, evaluated on P, fitting of M
2. New solutions are created within OA
3. M creates „guesses“ of these new solutions
4. Based on “guesses” OA selects which solutions 

will be evaluated on P
5. New solutions evaluated on P, fitting of M
6. While not convergence, go to 2
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Comparison of and 
• Difference is in our trust in metamodel:

– Algorithm  is based on full trust (meta-
model controls optimization)

– Algorithm is based on distrust
(optimization uses metamodel on demand)
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RBFN (Radial-Basis Function Network)

Basis function :
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– Approximation: 
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– optimum of approximation found by GA
– Addition of new training points

• Optimum found by GA
• Random point
• New point in the direction of two last optima (simple gradient)

Weights i computed from equality of 
approximation and original function in 
training points ... leads to a system 
of linear equations!!!
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RBFN
– Simple example

xeyxex yx sin10,1
22 1501.01001.0
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RBFN
– Example ex1 with GRADE algorithm
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RBFN
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Adaptive sampling around LSF

[Roos, 2006]
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Surrogate Model
• Appropriate number of sampling points is 

needed
• Adaptive updating procedure 

– Multi-objective optimization problem
•Maximization of the nearest distance of the 

added point from already sampled points 
(like miniMax metric)

•To be as close as possible to the 
approximate limit state surface
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Multi-objective adaptive sampling
2D, 27 points
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Multi-objective adaptive sampling
12D, 65 points
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Implemented Meta-Models

• RBFN from Matlab
– Neural Network based

• CTU implementation of RBFN
– with different polynomial regression parts

• Kriging
– DACE toolbox in Matlab
– with different polynomial regression parts
– with regression part found by Genetic 

Programming



Modern optimization methods 61

Adaptive update of meta-model

Contours of the example (left) and starting DoE (right). Note 
that the red contour is for F(x) = 0.
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Pareto front (top), contours of the problem with DoEs (middle) and DoEs’ points (bottom). 
Key: Red – added and computed solutions, Blue – points that were too close to other Pareto front points, 
Green – the remaining points of population and Blue empty points – the original DoE.
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Quality of a metamodel
KrigingRBFN (Matlab)
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Quality of updating procedure
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Some of the parts of this lecture has been kindly provided by Adéla 
Hlobilová (Pospíšilová) at CTU in Prague, Faculty of Civil Engineering.

A humble plea. Please feel free to e-mail any suggestions, errors and
typos to matej.leps@fsv.cvut.cz.
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