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Abstrakt

Spolehlivostní optimalizace konstrukcí (RBDO, z anglického Reliability-based design op-
timization) hledá kompromisní řešení mezi cenou a spolehlivostí systému. Tato optimalizační
oblast je výpočetně velmi náročná zejména kvůli určení pravděpodobnosti poruchy. Mnoho
výzkumných pracovníků proto hledá nové přístupy ke snížení výpočetních nároků RBDO,
které lze rozdělit do dvou hlavních proudů. První proud využívá původní RBDO formulaci
s dvěma cykly: vnější cyklus obstarává optimalizační část a vnitřní cyklus počítá pravděpodob-
nost poruchy pro každou kombinaci návrhových proměnných navrženou optimalizační ruti-
nou. Výpočetní nároky pro spolehlivostní výpočet jsou sníženy například pokročilými simu-
lačními technikami typu Monte Carlo, které využívají meta-modely. Druhá skupina RBDO
přístupů minimalizuje výpočetní nároky reformulací přístupu se dvěma cykly do cyklu jed-
noho nejčastěji pomocí aproximace prvního řádu rezervy spolehlivosti (FORM, z anglického
First-order reliability method) nebo převedením pravděpodobnostních omezujících podmínek
na přibližné, nicméně deterministické podmínky, nebo obojím. Klasická vícekriteriální RBDO
rozšiřuje jednokriteriální formulaci použitím více účelových funkcí se zachováním omezujících
spolehlivostních podmínek. Tím pádem takovéto vyjádření neodpovídá na otázku, jaká je
cena pro danou hladinu spolehlivosti. Tato práce proto definuje úlohu tak, aby na tuto otázku
odpověděla. Tedy, aby byla výsledná řešení z Paretovy množiny indiferentním kompromisem
mezi cenou a spolehlivostí. Hlavním cílem této práce je kromě zmíněné formulace úlohy i im-
plementace metodologie, její optimalizace a validace pro vícekriteriální spolehlivostní optima-
lizaci konstrukcí s cenou a spolehlivostí definovanými v podobě účelových funkcí. Jelikož je
tato úloha výpočetně náročná, dalšími cíli této práce je snížení výpočetních nároků ve třech
klíčových místech navrhovaného algoritmu, a to ve výběru vhodného vícekriteriálního algo-
ritmu, výběru vhodné spolehlivostní metody a náhrady původního modelu meta-modelem.

Navrhovaná RBDO metoda se dvěma cykly využívá simulační techniky založené na prin-
cipu Monte Carlo s použitím meta-modelů vylepšených o optimalizovaný adaptivní návrh ex-
perimentu (DoE, z anglického Design of Experiments). Aktualizace DoE probíhá během RBDO,
pomocí jíž se vyhledávají nejlepší řešení s ohledem na cenu a spolehlivost. Spolehlivost návrhu
je vyhodnocena pokročilou simulační technikou na principu metody Monte Carlo, která vy-
hodnocuje meta-model místo původního modelu. Vhodné vzorky z této simulační techniky
se následně využijí pro aktualizaci DoE. Pro sestavení vhodného meta-modelu pro RBDO
výpočet totiž musí být návrhový prostor vhodně pokryt, což je zajištěno jednak rovnoměrným
rozprostřením návrhových bodů a jednak umístěním bodů co nejblíže hyperploše mezi spo-
lehlivou a nespolehlivou oblastí, tzv. hranici poruchy. První kritérium je zajištěno pomocí
maximalizace minimální vzájemné vzdálenosti bodů návrhu. Jako druhé kritérium je použita
minimalizace vzdálenosti návrhového bodu od hranice poruchy. Tato dvě kritéria vstupují do
vícekriteriální optimalizace, která vyhodnocuje vzorky ze simulační metody a tím dohledává
další návrhové body k zpřesnění meta-modelu tak, aby se choval jako původní model v ne-
jzajímavějších oblastech. S každou generací evolučního algoritmu je tedy DoE obohaceno
o body ze simulační techniky, které splňují podmínku rovnoměrného pokrytí návrhového pros-
toru a zároveň jsou blízko hranice spolehlivosti, následně ohodnocené pomocí originálního
modelu. Pareto-optimální hranice z každé další generace je tedy s ohledem na spolehlivost
přesnější, nebot’ je po každé aktualizaci DoE sestaven nový meta-model. Jelikož je návrhový
prostor široký, v této práci využíváme kromě klasického meta-modelu s plnou Gramovou mati-
cí sestaveného na celém návrhovém prostoru (GMM, z anglického global meta-model) i řídké
globální meta-modely (SGMM, z anglického sparse global meta-model), sestavené na celém
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návrhovém prostoru pro každou generaci evolučního algoritmu, a lokální meta-modely (LMM),
vytvořené pro každého jedince z každé generace evolučního algoritmu zvlášt’. SGMM je za-
ložen na myšlence, že vzájemný vliv bodů DoE vymizí s jejich narůstající vzdáleností a tím
pádem mají od sebe vzdálené vzorky na sebe navzájem malý vliv. Proto je místo plné Gramovy
matice zahrnující spojení mezi všemi body DoE sestavena matice řídká, ve které je zohledněno
pro každý bod DoE pouze okolí, které tento bod ovlivňuje. Všechny body mimo toto okolí jsou
pro daný bod vynechány. Lokální meta-modely jsou sestaveny pouze v zájmové oblasti, která
je menší než návrhový prostor, a tím pádem musí mít plnou Gramovou matici.

V rámci celé práce jsou porovnávány Pareto-optimální hranice jako výsledná řešení z RBDO
ze třech skupin aproximace na třech matematických příkladech a dvou konstrukcích. Příklady
se od sebe odlišují svojí složitostí, jsou v nich zahrnuty různé stupně nelinearity at’ už v mode-
lu nebo v potřebné transformaci do normálního prostoru, spolehlivosti komponent i sériových
systémů s odlišným počtem ploch odezvy, liší se i v různém počtu stochastických proměn-
ných nebo v omezení návrhových domén. První skupina aproximace využívá pro výpočet
předpodmíněnou metodu Monte Carlo, kde se za pomoci předpodmínění dosáhlo přibližně
konstantního variačního koeficientu odhadu pravděpodobnosti poruchy. Aproximace je v této
skupině zahrnuta pouze v meta-modelu. Druhá skupina aproximuje spolehlivost za pomoci
šesti simulačních technik, jmenovitě Asymptotic sampling (asymptotické vzorkování), Impor-
tance sampling (generování vzorků blíže k oblasti poruchy), Subset simulation (simulování
podmnožinami), klasické simulace Monte Carlo, Enhanced (vylepšené) simulace Monte Carlo
a Scaled sigma sampling (samplování s váhováním sigem), a aproximační techniky prvního
řádu FORM s využitím původního modelu. Aproximace je tedy pouze na úrovni výpočtu
spolehlivosti. Třetí skupina kombinuje tři nejlepší simulační metody, a to Asymptotic sampling,
Importance sampling a Subset simulation, se třemi meta-modely, tedy GMM, SGMM a LMM.
Všechny výsledné Pareto-optimální hranice jsou ohodnoceny pomocí metrik a je pro ně určena
chyba spolehlivosti tak, že se získaný Paretův set v návrhovém prostoru namapuje pomocí
rekurentní simulace Monte Carlo s předepsaným variačním koeficientem odhadu pravděpodob-
nosti poruchy do prostoru účelových funkcí.

Z prezentovaných výsledků vyplývá, že pokud je funkce hranice poruchy relativně hladká,
pak jsou globální meta-modely s plnou, respektive i řídkou Gramovou maticí, vhodnou volbou
náhrady původního modelu. Tento globální meta-model je i méně citlivý na volbu simulační
metody. Pokud je ale návrhový prostor velký, existuje v něm více návrhových bodů nebo módů
porušení a hranice poruchy je vysoce nelineární, pak jako náhrada originálního modelu lépe
poslouží lokální meta-modely i s menším počtem bodů v DoE, tzn. nižším počtem evaluací
původního modelu, v porovnání s modely globálními. Námi navrhovaná metoda využívající
průběžně aktualizované meta-modely je přesnější a výpočetně méně náročná než RBDO se
dvěma cykly využívající formulaci metody spolehlivostního indexu (RIA, z anglického Relia-
bility index approach), tedy využití FORM pro výpočet spolehlivosti, který i pro méně přesné
výsledky v porovnání s naší metodou potřebuje minimálně o dva řády více evaluací původního
modelu. Pokročilé simulační metody kromě vyšší přesnosti při odhadu spolehlivosti s nižším
počtem evaluací modelu také nabízí vhodnější body pro aktualizaci DoE, nebot’ lépe pokrývají
oblast poruchy než klasická metoda Monte Carlo.
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Abstract

Reliability-based design optimization (RBDO) searches for a trade-off between costs and
safety under the assumption of uncertainties. This optimization area is computationally very
expensive, especially due to an evaluation of the probability of failure. Many researchers seek
novel techniques for computational cost reduction. The first stream utilizes the original RBDO
double-loop formulation, which deals with an optimization task in the outer loop and assesses
reliability in the inner loop. Advanced simulation techniques utilizing meta-models decrease
demands for the reliability evaluation. The second stream minimizes the computational de-
mands by reformulating the double-loop problem into a single-loop usually using first-order
approximations (FORM) of a limit state function, by converting the probabilistic constraints to
the approximated deterministic ones, or both. Classical multi-objective RBDO adds objectives
into both mentioned formulations but keeps the reliability in the inequality constraints. There-
fore, it does not answer the question of how much reliability costs. This thesis formulates the
task such that the resulting Pareto front provides a dataset of compromising solutions concern-
ing both costs and reliability to answer that question. The main objective of this thesis is to
implement, optimize and validate a methodology for multi-objective reliability-based design
optimization with costs and reliability in objective functions. Since this task is computation-
ally demanding, partial objectives of this thesis are to reduce computational expenses in three
key positions, namely in the selection of a suitable multi-objective algorithm and reliability
assessment method and replacement of the original model with a meta-model.

The proposed double-loop RBDO method utilizes a meta-model-based Monte Carlo type
approach which is enhanced by an optimized adaptive Design of (Computer) Experiments
(DoE). The DoE update proceeds within a multi-objective evolutionary optimization algorithm,
which searches for the best solutions in terms of costs and reliability. An advanced simulation
technique based on Monte Carlo principles assesses the reliability evaluating the meta-model
instead of the original model, and the DoE update uses suitable sampling points from this sim-
ulation technique. For quality meta-models, it is essential to have covered design space op-
timally with DoE points. For RBDO purposes, the DoE must meet two objectives. The first
one is the space-filling property, in which the minimal interpoint distance is maximized. The
second one is the distance to the limit state that divides the region into the failure and safe
domain and therefore is significant for the reliability assessment; this objective is minimized.
Both objectives are optimized to obtain the most accurate meta-model in the vicinity of the
limit state with a minimal number of sampling points. Thus, within each generation of the evo-
lutionary algorithm, additional points from the simulation technique optimized by space-filling
and limit-state-proximity objectives enrich the DoE, which is subsequently evaluated using the
original model. Therefore, the Pareto front from each subsequent generation is more accurate
concerning reliability, as a new meta-model is assembled after each DoE update. Since the
design space is wide, in addition to a classical global meta-model with a dense Gram matrix
assembled for the entire design space (GMM), we use our novel methodology for sparse global
meta-models (SGMM) assembled for each generation in the entire design space and local meta-
models (LMM) constructed for each individual from each generation individually. The SGMM
utilizes the fact that the mutual influence of the DoE points diminishes with their increasing
distance, and thus the distant samples have a little impact on each other. Therefore, instead of
a dense Gram matrix, including all links between all support points, each support point has its
influence domain in the closest neighbourhood, and other points outside the influence domain
are omitted. Local meta-models are constructed only in the influence domain having a dense
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Gram matrix since this domain is smaller than the design space and therefore, all the links have
to be included in the Gram matrix to maintain accuracy for that domain.

The presented thesis compares Pareto-fronts as final solutions from RBDO from three groups
of approximations on three mathematical examples and the design on two structures. The ex-
amples differ in their complexity; they include different degrees of nonlinearity either in the
model or in the necessary transformation into a normal space, reliability of components and
series systems with a different number of limit state functions, they also differ in a number of
stochastic variables or design constraints. The first group of approximations uses the precondi-
tioned quasi-Monte Carlo method to assess the reliability, where the preconditioning guarantees
an approximately constant coefficient of variation of the failure probability estimate. The ap-
proximation is included only in the meta-model. The second group approximates reliability
using six simulation techniques, namely an Asymptotic sampling, Importance sampling, Sub-
set simulation, classical Monte Carlo simulation, Enhanced Monte Carlo simulation and Scaled
sigma sampling, and one approximation technique, namely First-order reliability method. The
third group combines the three best simulation methods, namely an Asymptotic sampling, Im-
portance sampling and Subset simulation, with three meta-models, i.e. GMM, SGMM, and
LMM. Several performance measures and error indicators evaluate all resulting Pareto-optimal
fronts; a recurrent Monte Carlo simulation with a prescribed coefficient of variation of the fail-
ure probability estimate maps the Pareto-optimal sets into the objective space to evaluate the
reliability index error.

The presented results show that the global meta-models with a dense and sparse Gram matrix
are a suitable choice to replace the original model, that is relatively smooth. The global meta-
model is also less sensitive to the choice of the simulation method. However, if the design
space is large, where more design points or failure modes exist, and the limit state is highly
nonlinear, then local meta-models even with a smaller number of points in DoE serve better
as a replacement for the original model. Our proposed method using adaptively updated meta-
models is more accurate and computationally less demanding than double-loop RBDO using
Reliability index approach, i.e. the use of FORM to evaluate the reliability. FORM needs at
least two orders of magnitude more evaluations of the original model for less accurate results in
comparison with our method. Advanced simulation techniques, in addition to better accuracy
and precision in estimating structural reliability with a lower number of model evaluations, also
offer more suitable points for DoE update, as they better cover the space around the limit state
than the classical Monte Carlo method.
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Chapter 1
Introduction

Parts of this chapter are reproduced from the author’s contributions [87, 149, 152].

1.1 Background
Optimization [19, 81, 132, 140, 160] and search methodologies [170] have become very popular
for making products more desirable. A shape of the structure [119, 144, 153], topology [100,
209], reinforcement of concrete structures [56, 112, 114, 124], cross-sections [33, 52, 146], de-
sign of the concrete mix [20, 113], and many other properties can be optimized. Structural op-
timization [4, 14, 29, 35, 83, 179] is a process that seeks the best design under some predefined
constraints. A deterministic model, i.e. model, which has identical outputs for a given input, is
usually unrealistic due to uncertain inputs such as material properties, a structural topology, and
loadings. Moreover, the deterministic optimization techniques can often lead to unacceptable
results [94] since an optimal design with deterministic variables often terminates at a boundary
between the failure domain and the safe domain. Even a small perturbation in inputs can lead to
a fatal failure. For that reason, the model uncertainties are introduced; parameter uncertainties
are associated with input data, whereas structural uncertainties express that a model need not
clearly describe the physics of the problem [205]. YAO et al. [200] define uncertainty as an
“incompleteness in knowledge and the inherent variability of the system and its environment”.
FORRESTER [74] mentioned that computational errors are mainly human-made (e.g. incorrectly
entered boundary conditions) and systematic errors (e.g. a wrong model). Since computational
experiments are deterministic, a random error is more common in experimental data. Another
possible categorization of the sources of uncertainty is to consider aleatoric uncertainty (from
the Latin alea with meaning rolling of dice) that is not influenceable by the experiment repe-
tition and epistemic uncertainty (from Greek episteme that means knowledge) that disappears
with better information of the problem [102, 200]. Uncertainties can be represented through
interval bounds that is the vaguest definition; by membership functions which are used in fuzzy
logic approaches; or by probability density functions that provide the best description of uncer-
tainty [205].

An optimal design provides a small probability of failure assuming structural economy and
reduction of the system variability to unexpected variations. These requirements categorize the
optimization under uncertainty into two groups [94] as depicted in Figure 1.1. Economical
design with high reliability is provided by reliability-based design optimization (sometimes re-
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Figure 1.1: Uncertainty-based design domains, according to [94].

ferred just as reliability-based optimization) concentrating on worse-case scenarios that occur
only in extreme events. Robust design optimization covers daily fluctuations minimizing the
price as well as sensitivity to small changes in model inputs such as loading, structural param-
eters, and geometry. SCHUËLLER and JENSEN [173] include the third group of optimization
under uncertainty - model updating and system identification; the goal is to reduce discrepancies
which arise when the model prediction is compared with the test data [173].

Reliability-based design optimization (RBDO) minimizes an objective function (e.g. a struc-
tural weight, maximal displacement, benefits, construction costs or expected lifetime costs) with
respect to deterministic constraints as well as probabilistic constraints evaluating a probability
of failure. Optimization, as well as reliability assessment, requires repetitive computation of
a structural response with different settings of uncertain parameters and design variables; this
is the most computationally expensive part of the problem. It is possible to evaluate a prob-
ability of failure analytically only for a particular type of problems (for instance, by Gauss
quadrature approaches, Laplace Approximation approaches) which is limiting for RBDO appli-
cations. Exact computation is impractical [3]. Approximation techniques such as a First-order
reliability method (FORM) or Second-order reliability method (SORM) and simulation tech-
niques such as a crude Monte Carlo (MC) and variance reduction techniques are commonly
used. FORM [25, 139, 156] is frequently preferred for its speed and only a few necessary eval-
uations of the performance measure, see e.g. [34, 55, 64]. The drawback is that the obtained
reliability assessment is accurate only if the limit state function of the problem is a hyperplane
and the variables are independent and normally distributed – the more nonlinear the problem,
the more significant the error. A nonlinearity can also be hidden in the transformation from
the non-normal space into the Gaussian space. If the problem is nonlinear, SORM [139] uti-
lizing second-order derivatives is more precise since SORM respects the curvature around the
most probable point. However, SORM is also computationally more expensive; fortunately,
BREITUNG [22] developed a second-order correction formula that decreases computational ex-
penses.

Simulation techniques have better accuracy in predicting a probability of failure. However,
they are much more time demanding due to repetitive evaluations of the virtual simulation, such
as a finite element model. Monte Carlo simulation [131] itself is the most universal and robust
method for the assessment of reliability [142]. However, it requires millions of samples for low
probabilities of failure. Advanced simulation techniques, such as an Importance sampling [13,
98, 189] or Subset simulation [8, 189, 198], demand less computational effort while evaluating
the performance function, which can still last quite a long time. Since the accuracy of the
probability of failure is needed, reducing demands of simulation techniques is essential.
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1.2. AIMS AND OBJECTIVES OF THE THESIS

Some model of the original model with a very similar behaviour can replace the exact model
to speed up the design process; those models of models are called meta-models or surrogate
models. The original function is evaluated only in some so-called support points; any support
point is a combination of input variables of the model. These support points form a Design
of the experiments (DoE) [133]. Scientific experiments, as well as industrial, very often use
a uniform Design of experiments [99] since it is robust and only a small number of support
points are necessary to get a large amount of information about the relationship between the
function inputs and outputs [117]. For some specific tasks, it is advantageous to use information
concentrated in an important subdomain of the task. An initial small Design of experiments can
detect this significant region. Subsequently, an updating procedure adds more support points
there to improve the meta-model behaviour mimicking the original model. Initial meta-models
do not have the same accuracy as the original models particularly in locations that are the most
interesting for engineering design, e.g. a vicinity of the border between the safe and the failure
domain called a limit state. Adaptive updating of meta-models can make a meta-model more
accurate in those significant locations. Many types of meta-models are used in RBDO, namely
Response surfaces [75, 116, 202, 208], Support vector machines [11, 12, 198], Kriging [59, 60],
and Polynomial chaos expansion [36].

1.2 Aims and objectives of the thesis

This thesis aims to develop a methodology that provides fast and computationally feasible so-
lution of multi-objective reliability-based design optimization with cost and reliability defined
as the objectives. In general, the double-loop approach of RBDO provides the most precise
outputs; nevertheless, it is the most computationally expensive from all methodologies. If more
than one objective function is considered, the result is a set of solutions defining the best trade-
off between competing objectives, a Pareto-optimal front. The multi-objective formulation of
the double-loop approach increases already high computational expenses. In 2012, the De-
partment of Mechanics, CTU in Prague, where the author is doing her research, started to
cooperate on joint projects with AIRBUS Defence & Space, Germany, that was funded under
contract by ESA. The very first project was the Advanced Nozzle Extension Design Method-
ology (ANED-M) [42] in which the third work package was dedicated to the optimization of
a nozzle extension geometry to minimize its weight and maximize its reliability concerning pre-
scribed uncertain loading. The mentioned project was a part of a Future Launchers Preparatory
Programme (FLPP) [67]. This thesis includes and extends the methodology that we developed
in the framework of the project. Moreover, parts of this thesis were successfully employed in
another joint project named Reliability Analysis and Life Prediction with Probabilistic meth-
ods (RALP) with AIRBUS D&S. One of the main issues of the formerly mentioned project
was the price of reliability. However, the classical formulation of multi-objective RBDO has
reliability defined only as a constraint inequality. Therefore, it is necessary to reformulate the
classical formulation of MO-RBDO so that reliability becomes an objective function and the
resulting Pareto-optimal front will provide compromise solutions concerning price and the just
mentioned reliability.

The main objective of this thesis is to formulate, implement, optimize, and validate a method-
ology for multi-objective reliability-based design optimization. The most computationally ex-
pensive part is evaluating the reliability of the system whilst utilizing crude Monte Carlo sim-
ulation and the original complicated model (e.g. a finite element model). Therefore, the partial
objectives are in a reduction of computational costs in these three critical areas:
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CHAPTER 1. INTRODUCTION

1. a multi-objective optimization algorithm should converge with the fewest solutions as
possible;

2. a fast evaluation of the probability of failure by advanced simulation techniques while
maintaining acceptable result accuracy;

3. and effective and suitable meta-models mimicking the behaviour of the original (full)
model in the critical regions.

The overall structure (see also Figure 1.2) of this thesis takes the form of eight chapters,
including this introductory chapter. Chapter Two begins by laying out the Reliability-based de-
sign optimization concepts, and it describes the essential methodologies from the author’s point
of view. The third chapter concentrates on multi-objective optimization and its assessment
metrics. The fourth chapter is concerned with an introduction to structural reliability and statis-
tics and subsequently, to reliability assessment techniques for a sufficient probability of failure
evaluation; this chapter covers a description of one approximation technique and six simulation
methods including the well-known Monte Carlo simulation. The fifth chapter presents meta-
models and their updates. We introduce there two novel approaches; one approach assembles
meta-models on a specific segment of DoE, and the second approach modifies the design matrix
of the meta-model. Updates of meta-models are classified according to the mode of the meta-
model application. Note that the update of the meta-model differs in reliability assessment and
RBDO areas. Chapter Six is the central part of this thesis, proposing a new multi-objective pro-
cedure utilizing advanced simulation methods, updating of the meta-models and possible ways
of parallelization. The seventh chapter shows numerical studies for the proposed methodology.
The last chapter concludes this work.

Reliability-Based Design Optimization

Optimization

Reliability Assessment

True model

Meta-modelUpdate

Update

Update

Chapter 2

Chapter 4
Chapter 5

Chapter 3

Chapter 6

Validation on academic examples

Chapter 7

Figure 1.2: Double-loop RBDO formulation. Three different updates are available in RBDO.
The first update is in the main optimization routine in the outer loop that improves the design.
The second update is in the Reliability assessment with the meaning of the improvement of
the probability of failure evaluation (e.g. adding new sample points). The third update is in
the meta-model part where and update adds new DoE points into existing DoE.
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Chapter 2
Reliability-based design optimization

Parts of this chapter are reproduced from the author’s contributions [87, 89, 151].

A standard mathematical definition of RBDO is as follows

min
d∈D

C(d) (2.1)

s. t. Hi(d) ≤ 0, i = 1, . . . , nI (2.2)
pF,j(x,d) = Prob[gj(x,d) ≤ 0] ≤ ptolF,j, j = 1, . . . , nJ . (2.3)

Optimal values of design variables arranged in a vector d minimize the cost function C(d). The
vector d contains deterministic variables or probability distribution parameters (e.g. the mean
of random variables) and the elements of d are part of the design space D. The cost function
can be influenced only by deterministic values of d or by a combination of d and uncertain
parameters arranged in a vector x. In the latter case, the output of the cost function is called the
expected cost. All outputs values of constraints Hi(d) has to be less than or equal to zero where
i is from 1 to nI and parameter nI is equal to the total number of constraints. A probability of
occurrence of j th event pF,j(x,d) has to be less than or equal to a prescribed tolerable threshold
ptolF,j . A limit state function gi(x,d) used for the evaluation of pF,j(x,d) determines whether the
event belongs to the failure region (i.e. gj(x,d) ≤ 0) or the safe domain (i.e. gj(x,d) > 0).
A number of events nJ is equal to one in the simplest cases.

2.1 Methods for solving Reliability-based design optimiza-
tion

The methods for solving RBDO problems can be classified into three groups, namely double-
loop approaches (also referred to as two-level approaches), single-loop approaches (also re-
ferred to as mono-level approaches), and decoupling approaches [3, 190].

2.1.1 Double-loop approach
A double-loop approach is the most direct approach and the most accurate method to solve
RBDO problems [115]. It consists of two merged loops, where the outer loop solves the de-
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CHAPTER 2. RELIABILITY-BASED DESIGN OPTIMIZATION

signing process, and the inner loop appraises the reliability evaluations. The optimization algo-
rithm, be it a single- or a multi-objective technique, a mathematical programming or a stochastic
optimization, proposes a combination of design variables values d(k). Vector d(k) is used for
evaluation of deterministic functions H(d(k)) and, at the same time, it is passed to a reliability
assessment routine to solve probability constraints and subsequently the cost function in one
iteration k of the outer loop. The reliability assessment needs several virtual simulations runs
of the limit state function to evaluate the probability of failure with different values of uncertain
parameters x(s), s = 1, . . . , Ns. The reliability assessment, therefore, occurs in the inner loop
with fixed design variables values d(k). The algorithm runs the inner loop Ns times and the
number of runs Ns differs for various methods. Parameter Ns can even differ for different k
steps in the same algorithm. After running the entire inner loop for the fixed value d(k), the
algorithm evaluates whether the reliability condition pF

(
d(k)

)
is satisfied. The last step in one

iteration of the outer loop is the expected cost evaluation C
(
d(k)

)
and subsequent overall eval-

uation of the kth iteration of the outer loop. The algorithm then suggest different values of for
the design variables d(k+1). The outer loop is runNk times. The schematic representation of the
double-loop approach is depicted in Figure 2.1. The double-loop approach may be divided into
four main classes: (i) double-loop utilizing sampling techniques; (ii) Reliability index approach
(RIA) that is similar to class (i) – the main difference is that RIA uses FORM; (iii) Performance
measure approach which may be understood as an inverse task to RIA; and (iv) our proposed
approach converting single-objective optimization into the multi-objective formulation.

Outer loop (k=1,. . ., Nk)

Optimization algorithm

Evaluation of deterministic functionsd(k)

C
(
d(k)

)
, pF

(
d(k)

)

H
(
d(k)

)

Inner loop (s=1,. . ., Ns)

Reliability assessment
Evaluation of expected cost

Virtual simulation
(e.g. FE model)

(
x(s),d(k)

)

g
(
x(s),d(k)

)

Figure 2.1: Schematic representation of a double-loop RBDO problem inspired by [190].

Sampling-based approach

The described methodology utilizes a direct reliability assessment in the inner loop. Since the
probabilistic constraint evaluation is the most expensive part, the essential process is to use
a proper tool which has good accuracy and is computationally attainable. Crude Monte Carlo
simulation is the most robust tool for all reliability assessment tasks, but it is also the most
expensive one. Nevertheless, replacing the true function with a meta-model can reduce the
computational time, e.g. as Monte Carlo utilizing Neural Networks [142]. Advanced simulation
techniques in RBDO such as Importance sampling [13, 189], Subset simulation [189, 198]
or Asymptotic sampling [147] require less computational effort than the crude Monte Carlo
simulation.
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2.1. METHODS FOR SOLVING RELIABILITY-BASED DESIGN OPTIMIZATION

Reliability index approach (RIA)

FORM is a very common method for solving this reliability task; AOUES and CHATEAUNEUF [3]
and other authors as well (e.g. [187]) call the application of FORM the Reliability index ap-
proach (RIA). A j th stochastic constraint (Equation (2.3)) is transformed to

βj(x,d) ≥ βtolj , (2.4)

where βj(x,d) is a reliability index for prescribed design variables d and stochastic inputs x
evaluated as

βj(x,d) = −Φ−1



∫
· · ·
∫

g(x,d)≤0

fX(x)dx


 (2.5)

and βtolj is a minimum tolerable value. The symbol Φ stands for the cumulative distribution
function of the standard normal distribution, the inverse of this function is used for a conversion
of the failure probability into the reliability index. The index β represents the shortest distance
between the origin of the standard normal space and the most probable point (MPP) as shown
in Figure 2.2. Searching for the shortest distance is a nested optimization problem defined as

min
u

||u||2 (2.6)

s. t. ḡ(u) ≤ 0, (2.7)

where random variables x as well as the deterministic variables d are mapped into the inde-
pendent standard normal space U as a vector u, e.g. by a Nataf’s model [25, Chapter 2]; see
Section 4.3.1 for more details about the transformation. The symbol ḡ(·) stands for the trans-
formed limit state function into the independent standard normal space. A lot of general-purpose
optimization software makes use of the implementation of this approach [3].

ḡ(u) = −10

ḡ(u) = −5

ḡ(u) = 0

MPP

||u
|| =

β

u1

u2
minuT·u
s. t. ḡ(u) = 0

Figure 2.2: Forward reliability analysis [18].
The most probable point (MPP) in a stan-
dard normal space is the shortest distance
between the origin and the limit state contour
ḡ(u) = 0.

ḡ(u) = −10

ḡ(u) = −5

ḡ(u) = 0

MPP

||u|| = β

u1

u2
min |ḡ(u)|
s. t. ||u|| = β

Figure 2.3: Performance measure ap-
proach [18]. MPP in a standard normal space
lies on a circle with a perimeter β, and it
has the smallest absolute value of the perfor-
mance function.

Performance measure approach (PMA)

TU et al. [187] formulated an inverse reliability assessment called a Performance measure ap-
proach (PMA) (also referred to as inverse FORM or inverse reliability approach) which seeks
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the threshold value g? for the given probability of failure p̄F . PMA is the inverse method to the
reliability index approach, where the probabilistic constraint is formulated as

g?(d,x) ≥ 0 (2.8)

g?(d,x) = F−1
g



∫
· · ·
∫

g(x,d)≤0

fX(x)dx


 = F−1

g (Φ(−β)) = g?. (2.9)

Function F is a cumulative distribution function of a given distribution, and g? is a probabilistic
performance measure. The most probable failure point lies on a circle with the centre at the
origin and the prescribed perimeter β in the standard normal space. The goal is to search for
the minimum of the absolute value of the performance function on this constraint as depicted in
Figure 2.3 as

min
u

|ḡ(u)| (2.10)

s. t. ||u|| = βtolj . (2.11)

This method is announced to be more robust and efficient than RIA [187] because the search
direction is simply determined by exploring the spherical equality constraint [3].

Multi-objective approach

A single-objective problem can be reformulated into a multi-objective form1 [147]. This ap-
proach is advantageous for several reasons. The most important reason is that we get an insight
into the relationship between reliability and design cost. The trade-off between structural safety
and the total costs is linear only in very special cases, and the whole Pareto front could help
to identify a preferable solution. A single-objective optimization is usually not able to find all
optima in a multimodal problem; thus, the multi-objective algorithm is employed to show the
vicinity of the trade-off near the limit value of the prescribed reliability index. We prefer to
maximize the reliability index obtained by the inverse cumulative distribution function of the
standard normal distribution β = Φ−1(1− pF ) instead of minimizing the probability of failure
due to the scaling issues. The deterministic constraint in Equation (2.14) remains the same as
well as the threshold βtolj for the minimum acceptable structural reliability. However, the re-
liability constraints are optional in Equation (2.15); thus, the cutting off can be applied in the
postprocessing stage. The mathematical formulation reads

min
d∈D

C(d) (2.12)

max
d∈D

βj(x,d), j = 1, . . . , nJ (2.13)

subject to Hi(d) ≤ 0, i = 1, . . . , nI , (2.14)

βj(x,d) ≤ βtolj , j = 1, . . . , nJ . (2.15)
1RBDO considers structural reliability to be an inequality constraint because the limits on which it is proposed

are known. The basic recommended minimum value of the reliability index is 3.8 for reliability class RC2 and
4.3 for RC3 at 50 years reference period for the ultimate limit states [66, 155]. Outside the structural engineering
area, such as industrial electronics [203, 204], or wind energy engineering [43], these limits do not have to be
defined. Such type of optimization is called Reliability and Cost Optimization. The task is multi-objective in the
basic definition but can be converted to single-objective, e.g. by using the weighted sum approach [70] or the
epsilon-constraint method [170].
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2.1. METHODS FOR SOLVING RELIABILITY-BASED DESIGN OPTIMIZATION

2.1.2 Single-loop approach and Decoupled approach
In a single-loop approach, some or all probabilistic constraints are replaced with the approx-
imate deterministic constraints. For example, LI et al. [115] transform the limit state function
into the standard normal space, and then they add to it a constant β?, which is equal to the min-
imum allowable reliability index. The constant β? is just a distance which abridges the feasible
region. This constraint is then wholly deterministic. Unfortunately, there is no free lunch. Since
this method is an approximation in the sense of Performance measure approach, the first error
is in an approximation involved in the FORM. The second error comes from the approximation
of the shifted limit-state function. For the linear limit state functions, both approximation errors
are equal to zero. For a spherical limit state function, only the first type of approximation error
(in FORM) is involved. The error grows with the increasing nonlinearity of the problem as well
as for higher ranges of failure probabilities.

A decoupled approach separates a reliability assessment and an optimization task. DU and
CHEN [58] formulated a Sequential optimization and reliability assessment method (SORA);
they shift boundaries of violated deterministic constraints to the feasible direction based on
the reliability information obtained in the previous cycle [199]. In each cycle, the limit state
function is used as a deterministic constraint, and the deterministic optimum is found on the
boundary. After a location of the most probable point, the deterministic constraint is updated
such that the most probable point lies on the deterministic boundary. The routine is repeated
until the objective converges and the reliability requirement is achieved when all the shifting
distances become zero [58].

Although these methods seem to be promising, it is necessary to note that they are based
mainly on the FORM approximation. The methods can completely fail for highly nonlinear
problems with a relatively low probability of failure and for multimodal as well as for multiple-
failure-mode problems. These methods are frequently based on mathematical programming
methods which can lead to premature convergence or completely fail in seeking the optimum.
The selection of a particular starting point for those algorithms may affect the efficiency con-
siderably as well [190].
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Chapter 3
Multi-objective optimization

Parts of this chapter are reproduced from the author’s contributions [147, 154].

Optimization is a process that seeks one or more feasible solutions within the bounds of
possibility, e.g. familiarity with the problem and consecutively knowledge of the possible so-
lutions, accessibility of the software or availability of the hardware and its computational time.
The necessity is to know how to formulate the problem. As BUCHER has always asked the au-
dience on his lectures: "Which is the cheapest bridge over the river?". Subsequently, he replies:
"The cheapest bridge is no bridge.". The optimization itself has several different classifications:

1. according to a type of variables including discrete variables with a predefined set of
concrete numbers or binary variables, and continuous variables from a whole domain of
definition;

2. according to the extent of variables concerning unconstrained tasks with every possible
value and constrained tasks that have to fulfil specific conditions;

3. according to the solvability of the problem, including uni-modal problems, in which the
solution space contains only one global optimum, and multi-modal problems with several
different local optima.

An optimization problem with only one objective function is called single-objective optimiza-
tion. The goal is to find a combination of design variables for which the values of the objec-
tive function is at its minimum/maximum satisfying constraint equalities, inequalities, or both,
within the predefined range of design variables. Maximization and minimization tasks are con-
vertible to each other by multiplying the objective function by -1; this principle is called the
duality. There exists a broad range of optimization algorithms dealing with single-objective
optimization, which can be divided into deterministic methods and stochastic methods. De-
terministic optimization algorithms always provide the same answer with the same number of
objective function evaluations if the program is run multiple times within the same search-
space, the same termination conditions, and the same starting point and the round-off errors are
neglected. These algorithms are based on strict sequences of mathematical principles concern-
ing gradient-based techniques or combinatorial methods. Deterministic algorithms as types of
solvers can be mistaken for optimization with deterministic variables. While the deterministic
algorithms do not include the uncertainty in the optimization process, and therefore the results
are reproducible, the optimization with deterministic variables is related to decision variables
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without concerning any probability. Stochastic optimization algorithms concerning heuristic
and meta-heuristic algorithms are based on random search and making stochastic decisions.
Therefore, the answer to this type of algorithm is different for different runs within the same
conditions. Since the computers usually employ pseudo-random number generators, the an-
swers for different runs may be identical with the same initial seed of the generator. This setting
causes determinism of the stochastic algorithms [170].

In multi-objective optimization, the objectives can be conflicting or non-conflicting, and
this phenomenon influences the final result. For two or more non-conflicting objectives, the set
converges into one optimal solution. In this case, the objective functions are synergic, and the
multi-objective optimization can help for faster convergence [194]. Within the formulation of
multiple antagonistic objective functions, there exists not only one single optimal solution but
a whole set of optimal non-dominating solutions. Solutions in this set are all indifferently good;
each solution predominates in one objective and is worse in other objectives. The best opti-
mal non-dominated solutions are projected into the decision variable space (or simple decision
space) as a Pareto-optimal set (Pareto set for short), and into the objective space as a Pareto-
optimal front (Pareto front in short). The objective space is created by mapping the decision
space by objective functions. For each solution point x, one point z in the objective space exists
created by z = f(x) = (f1(x), f2(x), . . . , fn(x)), where fi is ith objective function. It is also
necessary to note that not every algorithm can provide true Pareto-optimal solutions. Therefore
we assume that all solutions gained by the meta-heuristic algorithms are only the approxima-
tion of the Pareto-optimal solutions. Moreover, in some cases, there is an infinite number of
Pareto-optimal solutions.

The multi-objective problems are frequently transformed into a single-objective optimiza-
tion via several possible methods. Weighted sum approach is a popular choice. In this pro-
cedure, as the name of the procedure suggests, the objectives are weighted by user-defined
weights, and these weighted objectives are summed into a final single-objective function. A dif-
ferent set of weights provides a different optimal solution. The utilization of several sets of
weights could provide the whole set of solutions for some types of tasks, e.g. for convex
fronts. However, in case that a front of the objective values of the solution set is non-convex,
the weighted sum approach cannot achieve all points on this front by changing the weights.
Another popular method for transforming a multi-objective task into a single-objective one is
ε-constraint method. Only one objective is selected here, and the rest of them is converted to
constraints. It may be problematic that the solution depends on the chosen constraint limits.

The pure multi-objective optimization solvers can deal with all problems, including non-
convex sets or discontinuous sets. Several interesting points in the Pareto-optimal front exist,
and they are plotted in Figure 3.1. Ideal objective vector z∗ is composed of optima z∗(i) of
each ith objective function in case, that they are individually optimized by a single-objective
optimizer. Essentially, this vector is composed of the lower bounds of each objective func-
tion. Only in case, that objective functions are synergic or identical; this point is attainable by
multi-objective optimizer; otherwise, this vector corresponds to a non-existent solution. The
knowledge of this vector is good for normalization of the objective values for some type of
solvers. Utopian objective vector z∗∗ is a non-existent solution for any types of multi-objective
problem formulation. It is composed of components that are marginally smaller than that of the
ideal objective vector1 [45]. Therefore,

z∗∗(i) = z∗(i) − εi (3.1)

with εi > 0 for all i = 1, . . . ,M , where M is a number of objective functions. Nadir objective
1We assume minimization hereafter.
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f1

f2

z∗ (ideal objective vector)
z∗(1)

z∗(2) znad (nadir objective vector)

W (worst feasible function values vector)

z∗∗ ( utopian objective vector)

Figure 3.1: The ideal, utopian, and nadir vector as referred to [45].

vector znad is assembled by upper bounds of each objective in the whole Pareto-optimal set.
This vector can be confused with a solution composed of the worst feasible function values
in the entire search space W . Although the ideal point is usually easy to obtain, the nadir
objective vector is hard to find since the knowledge of entire Pareto-optimal front is required.
For 2D objective space, nadir point can be estimated as znad = (f1(x∗(2)), f2(x∗(1))) if z∗(1) =
(f1(x∗(1)), f2(x∗(1))) and z∗(2) = (f1(x∗(2)), f2(x∗(2))). For some optimization algorithms, it is
efficient to use the normalization of objective functions, that can be carried out by

fnormi =
fi − z∗i

znadi − z∗i
. (3.2)

Plenty of multi-objective optimizers utilize principles of domination. Every two solutions
from the objective space obtained by mapping from the decision space have to be compared
with each other. For a single-objective optimization, the comparison of two solutions is facile;
in the case of minimization, x(1) is better than x(2) if f(x(1)) < f(x(2)). For more objective
functions, seven cases can arise. We will now assume minimization of all objectives as being
said above. In case 1, the solution x(1) is strictly better than the solution x(2), in other words,
the solution x(1) strictly dominates the solution x(2) if x(1) is better than x(2) in all objectives,
mathematically written x(1) ≺≺ x(2). In case 2, x(1) is not worse than x(2) in all objectives and
x(1) is strictly better than x(2) in at least one objective. This result means that x(1) dominates
x(2), i.e. x(1) ≺ x(2). In case 3, x(1) is not worse than x(2) in all objectives, this event is
called that x(1) weakly dominates x(2), mathematically written x(1) � x(2). In case 4, the
solution x(1) is incomparable or indifferent with x(2) if neither x(1) weakly dominates x(2) or
vice versa. These solutions are non-dominated to each other. In case 5, the solution x(1) is
weakly dominated by x(2). Moreover, this event is opposite to case 4. Similarly, case 6 is
opposite to case 2, i.e. x(1) is dominated to x(2). The last case 7 responds to the contrary
of case 1, i.e. x(1) is strictly dominated by x(2). Figure 3.2 shows an illustrative example of
used principles of domination. A bold polygonal, rectangular chain depicts the Pareto-optimal
front. In some literature, the authors have connected the points on the Pareto-optimal front with
a curve. However, there is no guarantee that any solution on the curve is Pareto-optimal or
feasible. According to [71], it is safer to draw a boundary in objective space that is defined by
an envelope of solutions that are verifiably dominated by those Pareto-optimal solutions. This
envelope is called an attainment surface.

It is not always convenient to use minimization for all objectives. In case that objectives
need to be maximized, the shape of the Pareto-optimal front changes. Figure 3.3 shows all
possible combinations of minimization and maximization of two objective functions.
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z(4) z(6)

z(3)

z(5)

z(2)

z(1)

z(7) z(8)

z(9)

Figure 3.2: Examples of dominance relations of objective vectors for minimization of both
objective functions. A bold polygonal chain depicts the Pareto-optimal front. Solutions
z(1),z(2),z(3), and z(4) are non-dominated to each other; therefore, they create the Pareto-
optimal front (case 4). Solution z(5) is dominated by solution z(3) as well as solution z(6) is
dominated by solution z(4) (case 3). These points do not belong to the Pareto-optimal front.
Solution z(7) is dominated by solution z(2) and strongly dominated by solutions z(3) and z(5).
Solution z(8) is dominated by solutions z(2),z(4), and z(7); it is also strongly dominated by
solutions z(3) and z(5). Solution z(9) is strongly dominated by all other solutions.

If the optimization problem is complex, and the exact methods are not applicable, the meta-
heuristic strategies [80] are convenient to use [206]. Simulated annealing [31, 101] , TABU
search [78, 79], Evolutionary algorithms [63], and Swarm intelligence algorithms [57, 61] are
just a few groups of algorithms belonging to these strategies. Evolutionary algorithms are preva-
lent algorithms that are inspired by evolutionary theory. They are well-liked for their simplic-
ity, robustness, no need of the good initial estimation of a solution nor the derivatives or for
a capability of finding the global optimum in the presence of several local optima. There ex-
ist several multi-objective versions of evolutionary algorithms, to name a few Pareto-archived
evolution strategy (PAES) [103], Strength-Pareto evolutionary algorithm (SPEA) [213], im-
proved SPEA (SPEA2) [212], Pareto envelope-based selection algorithm (PESA) [40], im-
proved PESA (PESA-II) [39], Multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [207], Dynamic multi-objective evolutionary algorithm (DMOEA) [201], or Non-

f1 → min!

f2 → min!

f1 → min!

f2 → max!

z∗

z∗

f1 → max!

f2 → min!

f1 → max!

f2 → max!

z∗

z∗

Figure 3.3: Examples of Pareto-optimal fronts for different cases of minimization, maximiza-
tion, or both, of two objective functions. The bold continuous curve represents Pareto-optimal
fronts; filled circles depict points belonging into these fronts. In contrast, the empty circle rep-
resents a point excluded from the Pareto-optimal front. Crosses represent ideal points z∗ for
all four cases.
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dominated sorting genetic algorithm II (NSGA-II) [47]. For our purposes, we need a solver that
does not use an archive. Since we will use an updated Design of Experiments and therefore,
have an updated meta-model for each generation of the algorithm, the values of the objective
functions will differ for identical individuals in different generations. The values of the ob-
jective functions obtained from meta-models will be more accurate with each next generation.
When using the archive, we would have to recalculate the entire archive with every new genera-
tion, and that would be very computationally demanding. Unfortunately, PAES, SPEA, SPEA2,
PESA, and PESA-II use an external population [106] that would have to be re-evaluated each
time when DoE and subsequently the meta-model is updated. NSGA-II uses a different ap-
proach for keeping the elitist solution in the population instead of storing an external list of
solutions. It is also well tested, efficient, popular, widely used, and it uses only a few parame-
ters to be easily tuned [1, 37, 106]. According to Google Scholar, a freely available web search
engine, indexing full text and metadata of academic publishing including results from databases
Scopus and Web of Science, a group of NSGA algorithms is the most commonly used algorithm
of the algorithms mentioned above. As of April 2020, NSGA, NSGA-II, and NSGA-III have
28,700 occurrences, SPEA, and SPEA 2 have 11,800 occurrences, PAES has 4,090 occurrences,
MOEA/D has 3,480 occurrences, PESA, and PESA-II have 1,430 occurrences, and DMOEA
has 274 occurrences.

Multi-objective optimization is usually efficient from two up to three objectives. If more
than three objectives exist, it is advantageous to use many-objective optimization solvers. In
comparison with the many-objective problems, the multi-objective problems are possible to vi-
sualize easily since 3D space need not any special visualization methods of multidimensional
data such as a Scatter plot matrix, Bubble chart, Radial coordinate visualization, Parallel coordi-
nates, and Heatmaps [188]. The proportion of non-dominated solutions in a randomly selected
set of solutions is low if the maximum of the three objectives is defined. In many-objective
problems, the number of non-dominated solutions in a randomly selected set of solutions ex-
ponentially grows with an increasing number of objectives [48]. Plenty of multi-objective op-
timization solvers emphasize non-dominated solutions in a population, and if plenty of solu-
tions are non-dominated, it is hard to accommodate new solutions in a population if an elite-
preserving algorithm is used [95]. The multi-objective optimization solvers use various types
of diversity-preservation operators such as a crowding distance or a clustering operator; these
operators become computationally intensive in a large dimensional space of objectives [48].
Several many-objective optimization solvers manage all the mentioned problems. If we con-
sider evolutionary algorithms, we can name for example a Non-dominated sorting genetic algo-
rithm III (NSGA-III) [48], Hypervolume estimation algorithm for multi-objective optimization
(HypE) [10], Reference Vector Guided Evolutionary Algorithm (H-RVEA) [141], and Multi-
objective evolutionary algorithm based on decomposition (MOEA/D) [207]. In some cases,
the many-objective optimization problem often degenerates to a result with a low-dimensional
Pareto-optimal front [48], and classical multi-objective algorithms are suitable to use.

3.1 Non-dominated sorting genetic algorithm II (NSGA-II)

Genetic algorithms (GAs) are a population-based method that creates an offspring population
from a parental population by selection, crossover and mutation operators. While there is no
guarantee of success, the offspring population is often better than the educated guess [1]. The
first conception of a GA [93] was single-objective, which means that only one objective function
can be optimized at one time resulting in the unique optimal set of solutions.
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The Non-dominated sorting genetic algorithm (NSGA) [180] is a multi-objective genetic al-
gorithm that utilizes a sorting according to ranks for emphasizing good points and niche method
for maintaining stable sub-populations of good points. The second generation of this algorithm,
the Non-dominated sorting genetic algorithm II (NSGA-II), was firstly published in [47]. It is
an improved approach of NSGA where the main disadvantages were a high computational com-
plexity of non-dominated sorting, lack of elitism, and need for specifying a sharing parameter
for obtaining a wide variety of solutions. This newer version of the algorithm deals with all of
these disadvantages to obtain a better solution much faster [49].

NSGA-II creates a random parental population at the beginning withN members. The orig-
inal paper [47] does not define exactly any closer specification about this random population.
We prefer to keep the uniformity of the design; therefore, we chose Halton sequences with
a linear transformation to the original design space bounds since we have good experience with
these sequences. However, any other quasi-uniform Design of Experiments or LHS would work
well. If there exist constraints in the design space, it is necessary to use them even for the first
parental population. The prescribed objective functions subsequently evaluate each member of
the parental population; the objective functions transform a quasi-uniform distributed members
in the design space into a non-uniform one in the objective space [38]. NSGA-II minimizes
the fitness; therefore, if any of the objectives are maximized, it is necessary to transform it to
minimization by multiplying its objective function values by minus one. The next offspring
population with N members is created by using classical operators as a selection, a crossover
and a mutation (see, e.g. [170] for more details). To select two parental members for two
offspring individuals creation, NSGA-II uses a binary tournament selection with two criteria
– a non-dominated sorting and a crowding distance. The tournament selection compares two
members; if one member has a lower rank than the other, the member with lower rank is as-
signed into the mating pool. If two members have equal ranks and one has a higher crowding
distance, the member in the lesser crowded region is placed into the mating pool. If two mem-
bers have the same rank and the same crowding distance, one is chosen randomly to the mating
pool. After the finished tournament selection, the mating pool contains N members. DEB et
al. recommend using a Simulated binary crossover (SBX) [46] as a crossover operator in [49].
As a mutation operator, we use a standard Gaussian mutation with zero mean and σM standard

rejected

Non-dominated
sorting

Crowding distance
sorting

F1

F2

F3

Pt

Qt

Figure 3.4: Schematic of the NSGA-II procedure.
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deviation; σM is equal to 20% of the total difference between the upper and lower bound of each
design variable. Each offspring is transformed from the design space into the objective space by
the objective functions. NSGA-II is an elitist evolutionary algorithm preserving the elite mem-
bers of the parental population. All parents (µ) and offspring (λ) individuals create a combined
(µ+λ) population. The best members from (µ+λ) population are subsequently chosen to cre-
ate the new parental population with N members. A non-dominated sorting assigns ranks to all
members in (µ+ λ) population, and all the slots for the next parental population are filled with
the individuals sorted according to ranks from non-dominated sorting. The last included level
is usually larger than the number of free slots and therefore can be accepted only partially. This
situation is evident from Figure 3.4, where the third non-dominated front F3 depicted with the
pink colour does not fit into free slots. A crowding distance evaluates all potential candidates in
this last but larger front. NSGA-II prefers diversity, and therefore the solutions that have larger
crowding distance values are chosen to fill the free positions. An optimization run terminates
after a predetermined number of generations.

SBX randomly choose two solutions from the mating pool to create two offspring individu-
als [16]

y1, k =
1

2
[(1− βk)x1,k + (1 + βk)x2,k], (3.3)

y2, k =
1

2
[(1 + βk)x1,k + (1− βk)x2,k], (3.4)

where individualsx1,k and x2,k are two randomly selected members from the mating pool and
βk is a sample from a random number generator having the density

p(β) =

{
1
2
(η + 1)βη, if 0 ≤ β ≤ 1,

1
2
(η + 1) 1

βη+2 , if β > 1,
(3.5)

where η is a distribution index – the higher, the closer created offspring are to parents. If
a uniformly distributed random number u(0, 1) is used, this distribution can be obtained as

β(u) =

{
(2u)(1/(η+1)), if u(0, 1) ≤ 1

2

(2(1− u))−1/(η+1), if u(0, 1) > 1
2
.

(3.6)

Non-dominated sorting approach [47] assigns a rank to each individual; this rank is equal
to its non-domination level – the smaller, the better. The first non-dominated level has rank
equal to 1, the next-best level rank 2, and the last level l has rank l. Figure 3.5a) shows sorting
into consecutive fronts, where each front has a different marker. The non-dominated sorting

rank = 1
rank = 2

rank = 3

f1

f2

f1

f2

i− 1

i
i + 1

a) b)

i− 1

i
i + 1

Figure 3.5: Calculations for NSGA-II (both objective functions have to be minimized) of a)
Non-dominated rank and b) Crowding distance.
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computes two characteristics for each member, first, the domination count nx that represents
the number of solutions dominating the solution x, and second, the set of solutions sx that
the solution x dominates. The first non-dominated front F1 has the domination count of all
members equal to 0. This non-dominated front is removed from all fronts and the next front
F2 is located. Non-dominated sorting decreases the value in the domination count nx by one
for each dominated solution on the sx list; this procedure is performed for each solution from
the front F1. Members in the front F2 has the domination count nx equal to zero and they
are non-dominated to each other. The procedure terminates when all members are sorted into
non-dominated fronts, or the needed number of members has its rank.

The non-dominated sorting approach solves constraint handling implicitly without having
any penalty parameters and penalty constraints. If we compare two solutions, there exist three
possible situations: one solution is feasible, and one is not; both solutions are feasible; both
solutions are infeasible. The non-domination rank is always better for feasible solutions than
for infeasible ones. If both solutions are feasible, the non-domination rank is better for the
solution that dominates the other solution. If both solutions are infeasible, the non-domination
rank is better for the solution with a smaller constraint violation. DEB et al. in [49] recom-
mend to sum up all constraint violations of all constraints together. RAY et al. in [161] propose
a non-domination check of constraint. The non-dominated sorting approach computes individ-
ually three ranks for each solution in the population – Robjfor the objective functions, Rcon for
constraints, and Rcom for their combination. All feasible solutions having the best Rcom rank
are chosen to create the next population. If there are more free slots in the population, new
individuals are selected from the remaining solutions by giving importance to the Robj ranking
in the selection operator and Rcon in the crossover operator. According to [49], NSGA-II has
worked better with their constraint handling approach; therefore, we use a summation of the
constraints in our work.

A crowding distance is a metric that evaluates the density of solutions surrounding a particu-
lar solution in the population [47]. The solutions for which the crowding distance is calculated
are sorted according to each objective function value in their ascending order of magnitude. For
each boundary solution, i.e. the solution with the smallest and the largest function values, an
infinite distance value is assigned to the crowding distance. For other solutions, a distance to
the neighbouring solutions is evaluated for each objective function value. All the distances are
summed for each solution

CDi =
J∑

j=1

cdi,j, (3.7)

where CDi is a crowding distance for the ith solution, cdi,j is a partial crowding distance con-
sidering only the j th objective and J is the number of objectives. We prefer to have normalized
objective functions, and, therefore, we evaluate a distance between neighbouring solutions for
one objective as

cdi,j =
|fj(xi+1)− fj(xi−1)|

fmax
j − fmin

j

. (3.8)

Since we compare the solutions within only one front in one population, we do not need a nadir
point, as stated in the general normalization in Equation (3.2), but the current maximum value
fmax
j is sufficient. Figure 3.5b) shows the schema for the above equations, where a horizontal

or a vertical distance indicated by a dashed line is a partial crowding distance cdi,j for the first
and the second objective, respectively, and their sum represents the crowding distance CDi for
the ith solution.

Several modifications of NSGA-II exist. An Omni-optimizer [51] differs from NSGA-II
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mainly in a modified domination principle, the so-called ε-domination. A decision space-based
niching NSGA-II (DN-NSGA-II) [120] differs in two improvements, a niching method is used
to create the mating pool, and a selection operator is altered. A Double-Niched Evolutionary
Algorithm (DNEA) [123] uses a special environmental selection operator and a double-sharing
function with two fine-tuning niche radius parameters each one for design space and objective
space, respectively. An Improved NSGA-II Algorithm [68] combining NSGA-II and a tabu
search improves the ability of local search.

3.2 Performance measures
There are two aims in multi-objective optimization; the first one is progressing towards the
Pareto-optimal front; the second one is to maintain a diverse set of solutions in the non-domi-
nated front. Since the commonly used algorithms are meta-heuristics, and therefore they utilize
random numbers and operations, the resulting Pareto-optimal fronts and sets are not identical
for several different runs. Therefore, it is necessary not only to compare results obtained from
different multi-objective optimization algorithms but as well as for different stochastic runs.
The final statement of the metric evaluation is not only a single value but an expected value of
the given metric for the particular example and solver. Several categorizations of performance
measures exist. One of them is a classification into unary and binary metrics. The unary met-
rics operate only with the one particular solution set, sometimes requiring some other external
information. The unary metric is defined as the mapping from the solution set into the set of
real numbers [104], that reflects a particular quality aspect. The binary metrics compare front
A to front B and determine, which one is better. Further categorization is according to the goal,
which is pursued by multi-objective optimization. There can be metrics evaluating the accuracy,
diversity among the solutions, and their combination.

3.2.1 Metrics evaluating closeness to the Pareto front
This metric class follows a convergence of the set A to the Pareto-optimal set P ∗ as well as
the distance between these two sets A and P ∗. If the Pareto-optimal set is unknown, any other
reference set can be used. The richer the Pareto-optimal set or the reference set, the more
accurate the metric is.

Generational distance

This metric is binary. Therefore, it needs the Pareto-optimal front P ∗ or some reference front
and the resulting approximation of the Pareto-optimal front A provided by the multi-objective
optimizer. This metric represents a value of the distance between the front A from the front P ∗,
mathematically written as [45, 192]

GD =
(
∑n

i=1 d
p
i )

1/p

n
. (3.9)

For parameter p equal to 2, variable di represents Euclidean distance in the objective space
between each vector of the front A and the nearest member of the front P ∗; distances are
evaluated for n numbers of vectors in the front A. The smaller the generational distance, the
better the approximation of the Pareto-optimal front is. The best available solution is equal to
zero; if this case occurs, the approximation of the Pareto-optimal front is identical to the true
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Pareto-optimal front. According to [165], this metric was the second most used metric in EMO2

conferences from 2005 to 2013 with 26 citations.

Two set coverage metric

The Two set coverage metric is binary; therefore, two solutions sets in the objective space are
necessary, front A and front B. It calculates the proportion of solutions included in the front B,
which are weakly dominated by solutions in the front A, mathematically written as

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B| , (3.10)

where operator | · | denotes the number of points in the set, and � is an operator for weak dom-
inancy. If solutions in A weakly dominate all members of B, then the measure C(A,B) equals
to one. On the other side, if any member of the front the B is not weakly dominated by mem-
bers in the front A, then the measure C(A,B) equals to zero. This operator is not symmetric
and therefore C(A,B) 6= 1− C(B,A). ZITZLER proposed this metric in his PhD thesis [211].
According to [165], this metric was the fourth most-used metric in EMO conferences from 2005
to 2013 (17 citations).

3.2.2 Metrics evaluating diversity among non-dominated solutions
This class of metrics observe the distribution of solutions and their spread. The optimal distri-
bution is uniform in which all distances among solutions are similar; the optimal spread is as
extensive as possible covering the whole attainable feasible front.

Spacing

The Spacing metric determines the distribution of vectors throughout the approximation of the
Pareto-optimal front A. Since this metric operates only on one resulting front, the metric is
unary. SCHOTT proposed this metric in his master’s thesis [171] as

S =

√√√√ 1

n

n∑

i=1

(
d̄− di

)2
. (3.11)

This metric represents a standard deviation of a distance variable di. Parameter n denotes the
number of vectors in the front A. Variable di is defined as a distance measure

di = min
j

(
|f1(x(i))− f1(x(j))|+ |f2(x(i))− f2(x(j))|

)
. (3.12)

Variable d̄ represents a mean of all di. The smaller the spacing value S, the better the spacing
between all vectors is. The ideal case is if S equals zero, which means that all members of the
front A are equidistantly spaced. The original formulation is only for two objective functions.
Reference [45] presents an extension into M objective functions:

di = min
j∧i 6=j

M∑

m=1

|fm(x(i))− fm(x(j))|. (3.13)

2EMO is a bi-annual international conference series, dedicated to advances in the theory and practice of evolu-
tionary multi-criterion optimization.
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This distance measure is different from the Euclidean distance and represents the minimum
value of the sum of absolute differences between objective functions evaluated in x(i) and any
other solution from the front A. This metric also does not consider all distances between all
solutions stepwise, therefore if solutions are distributed in pairs, where points are close to each
other but these pairs are distant from other pairs, the metric provides a skewed result. According
to [165], this metric was the seventh most-used metric in EMO conferences from 2005 to 2013
with six citations.

Spread

The Spread metric is similar to the Spacing metric; however, it utilizes Euclidean distance
instead of the Manhattan metric, and it employs some additional information about extreme
possible solutions. This metric was proposed in [45, 50] as

∆ =

∑M
m=1 d

e
m +

∑n−1
i=1 |di − d̄|∑M

m=1 d
e
m + (n− 1)d̄

, (3.14)

where M equals to a number of objective functions, de is the Euclidean distance between ex-
treme solutions and the boundary solutions of the approximation of the Pareto-optimal front A,
di is a distance measure between neighbouring solutions, and n represents a number of solutions
in the front A. The algorithm of this metric follows. First, all solutions are sorted according to
one objective function values. Second, Euclidean distances between consecutive solutions are
evaluated. Third, the average distance d̄ from all distances di is computed. Fourth, extreme so-
lutions fitting a curve parallel to that of the true Pareto-optimal front are obtained. Furthermore,
fifth, the Euclidean distances between these extreme solutions and the boundary solutions of
the front A are evaluated. The best available solution is that ∆ is equal to zero, which occurs
for uniformly distributed vectors. For worse distributed solutions, ∆-metric rises even above
one. According to [165], this metric was the fourth most-used metric in EMO conferences from
2005 to 2013 (17 citations).

3.2.3 Metrics evaluating closeness and diversity

The combination of the classes mentioned above is possible. This class of metrics then provide
information on convergence and spread.

Hypervolume

This metric evaluates the volume in the objective space of the solid that is bounded by attainable
surface, and straight lines from a reference pointR parallel to coordinate axes. Since it uses only
information about the approximation of the Pareto-optimal set A, the metric is unary. However,
additional information about the reference point is needed, that has to be defined by the user.
The nadir objective vector znad or the worst feasible function values vector W can be used as
the reference point. This metric value is therefore dependent on the choice of the reference
point. According to [50], hypervolume is calculated by a union of all hypercubes that arise in
the space

HV = volume

(
n⋃

i=1

vi

)
, (3.15)

20



3.2. PERFORMANCE MEASURES

f2

f1

z(4)

z(3)

z(2)

z(1)

R

Figure 3.6: The hatched area has the meaning of hypervolume in the objective space with
two objective functions for this illustrative example. Solutions z(1), z(2), z(3), and z(4) create
the Pareto-optimal front and R represents the reference point. If every little square has an
area equal to one, the hypervolume is equal to 21.

where vi is the hypervolume of the ith hypercube. Figure 3.6 shows the hypervolume in objective
space with two objective functions. According to [165], this metric was the first most used
metric in EMO conferences from 2005 to 2013 with 91 citations.

Coverage difference of two sets

This metric combines the Hypervolume metric and the coverage of two sets metric. ZITZLER

proposed it in his PhD thesis [211]. This metric is binary; therefore, it needs information about
two sets of decision vectors in the objective space - front A and front B, and a reference point
R. The measure gives the information about the size of the space that is weakly dominated by
the front A but not weakly dominated by the front B, mathematically written

D(A,B) = S(A+B)− S(B), (3.16)

where S(·) is a Hypervolume metric described above, and + operator serves for the union of two
sets. This measure is not a symmetric operator, therefore D(A,B) 6= D(B,A). The extreme
case occurs for D(A,B) = 0, which means that the front A dominates the front B. The rising
value of D(A,B) indicates that the front A is dominated by the front B.
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Chapter 4
Structural reliability

Parts of this chapter are reproduced from the author’s contributions [87, 147, 150, 151, 152, 154].

4.1 Introduction into stochastic variables
Stochastic variables are variables with randomness. Random variables are denoted with upper-
case letters (e.g. X); lowercase letters (e.g. x) are used for their realizations, i.e. possible values
of the variable. Hereafter, we assume that the probability distribution describes a random vari-
able (e.g. fX(x)). Variables can be discrete and continuous. For the discrete case, a variable
can take only discrete values from a given list; a probability distribution is called a probability
function or a probability mass function. Stochastic continuous variables take various values
x from unbounded, one-sided bounded or bounded domain of definition. Stochastic variables
with an unbounded range −∞ < x < ∞ include, for example, variables from the Cauchy dis-
tribution, Normal distribution, Gumbel distribution, or Logistic distribution. The Exponential
distribution, Log-normal distribution, or Gamma distribution have a one-sided bounded interval
0 ≤ x < ∞, the Chi-squared distribution and Rayleigh distribution have a similar range of x

x

fX(x)

x

FX(x)

1

0
x1 x1

FX(x1)

FX(x1)

Figure 4.1: A probability density function (left) and a corresponding cumulative distribution
function (right) of a random variable.
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4.1. INTRODUCTION INTO STOCHASTIC VARIABLES

Figure 4.2: A joint probability density function for two random variables X1 and X2 and their
corresponding marginal probability density functions fX1

(x1) and fX2
(x2)

differing in the representation of zero, i.e. 0 < x < ∞. However, the interval may be limited
by a value other than zero, as is the case with Pareto distribution a ≤ x <∞, a > 0. The Beta
distribution with x-range [0, 1], the Von Mises distribution with x-range (0, 2π], or the Uni-
form and Triangular distribution with range [a, b] have a double-sided bounded domain of the
x value. For the continuous case, the probability distribution function fX(x) is called a proba-
bility density function (PDF). To determine the probability that the random variable X is lesser
than some value x1, a cumulative distribution function (CDF) is introduced as an antiderivative
of a function fX(x) denoted by e.g. FX(x)

FX(x) =

∫ x

−∞
fX(t)dt. (4.1)

Figure 4.1 shows a probability density function of some random variable X on the left and the
corresponding cumulative distribution function of the same variable on the right. The shaded
area on the left figure corresponds to a value FX(x1) of the cumulative distribution function.

Not only one random event can occur at the same time. If there exist two or more random
events that happen concurrently, a joint probability density function describes the probability of
its occurrence. For 2-dimensional random vector X = [X1, X2], the probability density func-
tion is denoted as fX1,X2(x1, x2), vectorially fX(x). It is possible to express only the probability
density of a random variable X1 for all possible values of a random variable X2 as a marginal
probability density function fX1(x1) and vice versa. Figure 4.2 shows the joint probability den-
sity function for two random variables as well as their marginal probability density functions.

A variable is statistically independent if it is not affected by the probability of occurrence
of the other variables. The joint probability density function of mutually independent random
variables is their product

fX(x) =
D∏

i=1

fXi(xi). (4.2)

Random variables can belong to various distributions. Sometimes, it is more convenient to
work with uniform or normal distributions. Therefore, a transformation from one distribution
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FV (v)

u x

FX(x)Φ(u)
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v1 u1 x1

Φ(u1)FV (v1) FX(x1)

1

1

x0 0 0

Figure 4.3: Cumulative distribution functions for the standard uniform distribution (left), stan-
dard normal distribution (middle), and exponential distribution (right). The horizontal grey line
shows the same values of different CDFs. The downwards arrows show the transformation
into the different distributions.

to another one exists via equal values of cumulative distribution functions if variables are statis-
tically independent. See Appendix 9 for more details about different distributions used in this
thesis. Figure 4.3 shows transformations from the standard uniform space (Fig. 4.3 left) to the
standard normal space (Fig. 4.3 middle) and from the standard normal space to an exponential
space (Fig. 4.3 right). If a sample from the standard uniform distribution is given as v1, its
cumulative distribution function FV (v1) is equal to the value v1. This statement is, however,
valid only in the standard uniform space, where v is from the interval [0, 1]. If any other state-
ment about the used uniform space is not given in this thesis, the uniform space is considered
as the standard uniform from the interval [0, 1]. The transformation from the uniform space into
the standard normal space is given via the equality of values of their cumulative distribution
functions. The cumulative distribution function for the FV (v1) = Φ(u1) gives the value u1

u1 = Φ−1(v1), (4.3)

where Φ−1(·) denotes the inverse function of the standard normal CDF. Naturally, the transfor-
mation from the standard normal space into the uniform space is also possible via v1 = Φ(u1).
The transformation to any other distribution is solved similarly. The sample has a given distri-
bution, e.g. it is standard normally distributed, and it needs to be transformed into any other
space. Therefore, the cumulative distribution function of the standard normal distribution is cal-
culated and based on CDF equations, the inverse function of the new distribution is evaluated.
This transformation is noted as T−1(·) since

x1 = F−1
X (v1). (4.4)

The opposite transformation is possible, as well. If more random variables are considered in
the space, and these variables are statistically independent, then each variable is transformed
independently of other variables.

The statistical properties such as mean values or standard deviations can be estimated from
probability density functions as well as from available samples. The mean (sometimes called the
expected value or the average) measures the central tendency of the random variable described
by the probability distribution. It is evaluated as a weighted average of every possible value that
the random variable can take. In case that a variable is continuous, the mean value is calculated
as

EX = µX =

∫
xfX(x)dx. (4.5)
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For a discrete variable, the mean is defined as

EX =
N∑

i=1

x(i)fX(x(i)) (4.6)

where N is the number of realizations of the random variable, and i is the index of a realization
of the random variable. If a random variable is sampled and each sample has the same proba-
bility, then the arithmetic mean is a consistent and unbiased estimator for the mean value EX
[25]

EX =
1

N

N∑

i=1

x(i). (4.7)

The mean value is also called the first statistical moment since it represents a distance from
the origin to the centroid of the probability density function identical to the first moment of
area. Another attractive statistical property is the median, which separates the lower half of the
sorted samples in ascending order from the higher half. It is calculated as a value of the random
variable, where the cumulative distribution function has a value of 0.5, mathematically written
as

median(X) = m(X) = F−1
X (0.5). (4.8)

For a discrete variable, the median is evaluated as x(N+1)/2 for sorted samples in an ascending
order or for attainable realizations of the random variable sorted identically if the number of
realizations N is odd. For even N , the median is evaluated as

median(X) =
xN/2 + x(N/2)+1

2
, (4.9)

for the attainable realizations sorted in ascending order. The median is also 50th percentile; the
percentile divides the sorted data to hundredth, and it indicates which value of the random value
realization is under the given percentage of all realizations. Other interesting percentiles are
25th and 75th percentile, which are called the first and the third quartile; the second quartile is
the median value.

A quantile function Q(·) is an inverse cumulative distribution function associated with
a probability distribution of a random variable. It provides the value p of a random variable
such that the probability of the variable is less than or equal to that value that equals to the given
probability, i.e.

xp = F−1
X (p) = Q(p) | Prob[X ≤ xp] = FX(xp) = Q−1(xp) = p. (4.10)

The median mentioned above, as well as quartiles and percentiles, are function values of a quan-
tile function.

Whereas the mean value measures the central tendency, the variance measures the spread
in the data around the mean. It is also called the second central moment of random variable X
equal to E[(X − E(X))2]. For the continuous random variable, the variance is calculated as

VarX = σ2
X =

∫
(x− µX)2fX(x)dx. (4.11)

In case that the random variable is discrete, the variance is evaluated as

VarX =
N∑

i=1

(x(i) − µX)2fX(x(i)). (4.12)
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If a random variable is sampled and each sample has the same probability, then the sample
variance is

VarX =
1

N

N∑

i=1

(x(i) − µX)2. (4.13)

It is sometimes necessary to use the same units for the measure of dispersion and the mean
value. For that reason, a standard deviation is introduced as the squared root of the variance

stdX = σX =
√

VarX. (4.14)

Another remarkable measure for a dispersion of the probability distribution is a coefficient of
variation, which is a standard deviation normalized by a mean value of variable X

CoVX =
σX
µX

. (4.15)

The coefficient of variation can be expressed as a percent coefficient of variation

%CoVX =
σX
µX
· 100%. (4.16)

The higher the coefficient of variation, the more stochastic the event is. The lowest possible
value of CoV is zero and indicates that the variable is deterministic.

Higher central statistical moments are also possible to evaluate, for the kth order the central
statistical moment is

E[(X − EX)k] =

∫
(x− µX)kfX(x)dx. (4.17)

From these centralized statistical moments, another interesting characterizations of the probabil-
ity distributions proceed; well-known are skewness and kurtosis. The skewness is proportional
to the third central moment

sX = E

[(
X − µX
σX

)3
]
. (4.18)

If the left tail of the probability density function is longer than the right tail, the skewness is
negative and vice versa, if the right tail of the probability density function is longer than the
left tail, then the skewness is positive. If the probability density function is symmetric as for
the normal distribution, the skewness is zero. The kurtosis is proportional to the fourth central
statistical moment

KurtX = E

[(
X − µX
σX

)4
]
. (4.19)

4.2 Probability of failure
A probability of failure in an n-dimensional space of random variables X1 . . . Xn can be com-
puted as

pF = Prob[g(X) ≤ 0] =

∫
· · ·
∫

g(X)≤0

fX(x)dx, (4.20)

where fX(x) is a joint probability distribution function, g(X) stands for a limit state function
and g(X) ≤ 0 denotes the failure domain. A set of several realizations of the limit state function
yi = g(xi) is a random variable Y .
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The main failure modes include static failure, fatigue failure, creep failure, corrosion failure,
wear failure, and instability [159]. Those modes emerge separately or together in constraints.
The performance measure used to define failure conditions is represented by, for example,
stress, dynamic stability, temperature, fracture, buckling, displacements, stress intensity fac-
tors or eigenfrequencies [64, 205]. The difference between the response and the limit value of
the admissible occurrence is called limit state function (LSF). The border that distinguishes the
safe region and the failure region is called a limit state or limit state surface. These quantities
are evaluated either analytically or numerically, e.g., by finite element models.

The failure probability expressed in Equation (4.20) is valid if only one limit state function
is considered. This case usually signifies only one component in the system or only one failure
mode. If more components are connected, or more modes of failure may occur, the system
problems have to be taken into consideration. Fundamental connections of components are
series system problems and parallel system problems. However, their combination in general
system problems is possible. These general systems are subsequently dismantled into the series
and parallel systems to evaluate their probability of failure.

If individual limit state functions forN components are defined as g1(X), g2(X), . . . , gN(X)
and the components are connected into the parallel system, the failure region is specified by
g1(X)∩g2(X)∩· · ·∩gN(X). In other words, the system fails if all components fail. Figure 4.4
on the left shows the general model for the parallel system, where each box Pi represents one
component of the system. A typical example of the parallel problem is a structure of two panels
interconnected with several independent rods having sufficient bearing capacity; the vertical
arrow depicts the loading direction. For statistically independent components, the failure prob-
ability of the whole system is

pF =
N∏

i=1

(pFi), (4.21)

where pFi is the ith component failure probability and N is a number of components. If a sam-
pling methodology is used and unless otherwise is stated (e.g. for an Enhanced Monte Carlo
simulation), it is possible to evaluate the series system probability as

pF = Prob [max[g1(X), g2(X), . . . , gN(X)] ≤ 0] =

∫
· · ·
∫

max[g1(X),g2(X),...,gN (X)]≤0

fX(x)dx; (4.22)

for a particular sample, all limit state functions are evaluated, the limit state function with the
maximum value is selected, and this value is possible to take as the representative value for the
assessment whether the system fails or not for the specific combination of parameters given by
the sample.

The series system problem has the failure region defined as g1(X) ∪ g2(X) ∪ · · · ∪ gN(X)
if the components are connected into the series system holding individual limit state functions
defined as g1(X), g2(X), . . . , gN(X). In other words, the system fails if even only a single
component fails. The influence of the weakest element is put into effect. Figure 4.5 on the top
shows the general model for the series system; each box Pi again represents one component of
the system. Two typical examples of the series system are shown in the same figure underneath.
The left example is a vertical chain in tension loaded with a concrete block. The right example
represents a statically determinate truss structure. If components Pi are mutually independent,
then failure probabilities of those components pFi are also mutually independent, and the series
system reliability is

pF = 1−
N∏

i=1

(1− pFi). (4.23)
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P1

P2
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Figure 4.4: Parallel system problem

P1 P2 PN

Figure 4.5: Series system problem

As for the parallel system, if a sampling methodology is used and unless otherwise is stated (e.g.
for an Enhanced Monte Carlo simulation), it is possible to evaluate the series system probability
as

pF = Prob [min[g1(X), g2(X), . . . , gN(X)] ≤ 0] =

∫
· · ·
∫

min[g1(X),g2(X),...,gN (X)]≤0

fX(x)dx; (4.24)

again, for a particular sample, all limit state functions are evaluated, the limit state function with
the minimum value is selected, and this value is possible to take as the representative value for
the assessment whether the system fails or not for the specific combination of parameters given
by the sample.

To show an evaluation of a failure probability with selected simulation techniques, let us
first introduce a simple problem with a readily available solution and subsequently, apply the
complicated methods on it. A probability of failure is easy to solve analytically only for some
specific problems like a combination of a linear limit state function and normally distributed
variables. The classical reliability task is evaluation of the probability of failure of a rod under
tension with a capacity ofR and a demand S depicted in Figure 4.6. The capacity is a normally

+

S = F
A

F
x

z

y

z

Figure 4.6: A rod under tension (Stress-strength model)

distributed random variable with a mean µR equal to 550 MPa and a standard deviation σR equal
to 50 MPa. The demand is also a normally distributed random variable with a mean µS equal to
300 MPa and a standard deviation σS equal to 100 MPa. The limit state function is defined as
the difference between the capacity R and the demand S

g(R, S) = R− S. (4.25)

This difference is also called a safety margin denoted by Z. Since both variables are normally
distributed, and the limit state function is linear, a mean µZ and a standard deviation σZ of the
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safety margin are given by

µZ = µR − µS, (4.26)

σZ =
√
σ2
R + σ2

Z . (4.27)

The reliability index β is then equal to a ratio of µZ to σZ , and the probability of failure is then
a complement to a cumulative distribution function of the standard normal distribution

pF = 1− Φ(β), (4.28)

β =
µZ
σZ
. (4.29)

A reliability index of the stress-strength model defined above is equal to 2.2361, and an adequate
probability of failure is equal to 0.0127.

The whole problem is depicted in Figure 4.7. Probability density functions for the capacity
and demand as well as for a safety margin are shown in Figure 4.8.

4.3 Approximation techniques
The approximation techniques in reliability assessment are methods for obtaining an estimation
of the failure probability by approximating the limit state function by a proper replacement. The
main advantage of the approximation techniques is low computational demands in comparison
with the simulation techniques discussed in the following section. However, not all reliability
tasks can be solved by approximation techniques, since the limit state function is not properly
substitutable. The most famous approximation technique is the First-Order Reliability Method
[25, 86, 91, 139], which approximates the limit state function by a hyperplane in a design
point in the standard normal space. Often, the first-order replacement is insufficient; therefore,
the Second-Order Reliability Method [30, 54, 162] is applicable. This method approximates
the limit state function by a quadratic function again in a design point in the standard normal
space. Another possibility is to correct the First-Order Reliability Method approximation by

Figure 4.7: A rod under tension: Probability density function fR,S(r, s) and the limit state
g(R,S) = 0. The left figure shows the contours of the PDF as well as the limit state dividing
the space into the failure and safe region. 3D view of the problem is depicted on the right.
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Figure 4.8: A rod under tension: Marginal probability density functions.

the knowledge of the curvature of the limit state in the design point by Breitung’s formula [22].
Another popular method is a Response surface method [26], which approximates the limit state
function by a proper polynomial function.

4.3.1 First-Order Reliability Method (FORM)
The First-Order Reliability Method (FORM) is based on simplifying the probability density
function by its transformation into the standard normal space and approximating the limit state
function by the first-order Taylor expansion in the design point. The design point (also called
the most probable point or the beta point) in the standard normal space is the point lying on the
limit state with the shortest distance from the origin to the limit state. This minimum distance
is equal to a reliability index β. HASOFER and LIND published the essentials of this method in
the pioneering work [86] in the seventies. Later on, RACKWITZ and FIESSLER generalized the
FORM in [157] for variables that belong to non-normal spaces [23].

The probability of failure is expressed as

pF =

∫

g(X)≤0

fX(x)dx, (4.30)

pF =

∫

ḡ(U)≤0

φU(u)du, (4.31)

where Equation (4.30) represents the regular evaluation of the failure probability in the original
X-space and Equation (4.31) denotes the evaluation of the failure probability in the U-space,
which represents the standard normal space. The probability density function in the X-space
fX(x) is therefore transformed into the standard normal φU(u) and for that reason the limit
state function g(X) in the X-space needs to be transformed into the standard normal space as
well as

ḡ(U) ≡ g(T−1(U)). (4.32)

The symbol T−1(·) has the meaning of a transformation from the standard normal space into the
original space; this transformation is described in Section 4.1 in more detail. The transformation
of the limit state function can be made analytically by transforming random variables inside
the function. However, if, e.g. some black-box evaluator is used, such as the finite element
method, and the gradient is necessary to evaluate numerically, the transformation is possible
to be made outside the evaluator. The numerical derivative is possible to evaluate by, e.g.
forward, backward, or central difference formula. The central difference formula is the most
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accurate from the named ones; however, it uses a higher number of evaluations of the limit
state function, specifically (2D + 1) evaluations, where D is a number of dimensions of the
problem. The backward and the forward difference formula uses only D + 1 evaluations of
the limit state functions. Whenever the notation ḡ(U) is used, function g(·) is understood as
the transformed version of the limit state function and vice versa; the notation g(X) means
the original untransformed version of the limit state function. After transforming the random
variables and the limit state function into the standard normal space, the first-order estimate of
the probability failure is then obtained as

pF =

∫

L(U)≤0

φU(u)du, (4.33)

where L(·) is the linearized version of the limit state function ḡ(·).
The Taylor series expansion of an arbitrary one-dimensional function f(x) in a point a is

f(x) ∼= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . . , (4.34)

f(x) ∼=
inf∑

n=0

f (n)(a)

n!
(x− a)n, (4.35)

where f (n)(a) is the nth derivative of the function f(x) evaluated at point a and n! is the factorial
of n. The multi-dimensional version of the Taylor series expansion is according to [163]

f(x) ∼= f(a) +
D∑

i=1

∂f(a)

∂xi
(xi − ai) +

1

2!

D∑

i=1

D∑

j=1

∂2f(a)

∂xi∂xj
(xi − ai)(xj − aj) + . . . (4.36)

where D is a number of input x dimensions into the function f(x). Vectorially written for the
first three addends, the Taylor series in several variables are

f(x) ∼= f(a) +∇f(a)T (x− a) +
1

2
(x− a)T∇2f(a)(x− a), (4.37)

where ∇f(a) is the gradient vector of first derivatives of f(·) calculated in the point a and
∇2f(·) is the Hessian matrix composed of the second derivatives of f(a) in the point a. All
vectors are considered as column vectors; The Hessian matrix is symmetric on the neighbour-
hood D if the function f(·) is continuous on the neighbourhood D. However, the first-order
reliability method makes use of only the first two terms of Equation (4.37).

The linearization of the limit state function ḡ(u) in the form of the first-order Taylor expan-
sion in the design point u∗ is therefore

ḡ(u) ∼= L(u) = ḡ(u∗) +∇ḡ(u∗)T (u− u∗). (4.38)

The first addend of the right-hand side in Equation (4.38) vanishes, since the design point u∗

lies on the limit state and therefore ḡ(u∗) is equal to zero. The gradient of ḡ(u) at the design
point u∗ is arranged as

∇ḡ(u∗) =

(
∂ḡ(u)

∂u1

,
∂ḡ(u)

∂u2

, . . . ,
∂ḡ(u)

∂uD

)T ∣∣∣∣∣
u∗

. (4.39)

It is a common custom in the first-order reliability method to express the gradient as its normal-
ized negative version as

α = − ∇g(u∗)

||∇g(u∗)|| . (4.40)
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By substitution Equation (4.40) into Equation (4.38), we get

L(u) = −||∇ḡ(u∗)||α(u− u∗) = ||∇ḡ(u∗)||(αu∗ − αu). (4.41)

In the right-hand side of Equation (4.41), the αu∗ is the shortest distance to the origin from the
limit state and therefore, this distance is equal to the reliability index β

L(u) = ||∇ḡ(u∗)||(β − αu). (4.42)

The first-order approximation of the failure probability is then

p̂F = Φ(−β), (4.43)

where Φ(·) is a cumulative distribution function of the standard normal distribution.
The constrained optimization founds the design point

u∗ = min ||u||, s.t. ḡ(u) = 0. (4.44)

For the searching for the design point, we can use the classical Hasofer-Lind-Rackwitz-Fiessler
(HLRF) algorithm. We can consider a zero vector as a starting point u1. Next point is computed
as

ui+1 = ui + di, (4.45)

where the vector di is

di =

[
g(ui)

||∇g(ui)||
+ αTi ui

]
αi − ui. (4.46)

The column vector αi is the normalized negative gradient column vector at point i

αi = − ∇g(ui)

||∇g(ui)||
. (4.47)

The algorithm is possible to stop when the length vector di is close to zero.
Figure 4.9 shows the evaluation of the β-index for the example from Figure 4.6 with two

variables: the capacity R ∼ N(550, 50) and the demand S ∼ N(300, 100). The variables are
transformed into the standard normal space

R = 550 + 50uR, (4.48)
S = 300− 100uS, (4.49)

uRO

ḡ(u) = 250 + 50uR − 100uS = 0

β
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3

-7 -6

Figure 4.9: A rod under tension: the first-order reliability method. The two-dimensional space
is composed of the capacity R ∼ N(550, 50) and the demand S ∼ N(300, 100), and it is
transformed into the standard normal space. The design point u∗ is [-1 2] and β is 2.23607.
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The limit state function is transformed as well from g(X) = R−S, where vector X is composed
of [R, S], into

ḡ(U) = 250 + 50UR − 100US, (4.50)

where vector U is composed of [UR, US]. Since the original limit state function is linear, and the
problem is formulated in the normal space, the transformed problem into the standard normal
space has the linear limit state function as well. Therefore, the evaluation of the reliability is
exact, and the design point is found in one step. The second step serves for validation of the
zero vector di. All necessary variables are summarized in Table 4.1.

step i 1 2
ui [0, 0]T [−1, 2]T

ḡ(ui) 250 0
∇ḡ(ui) [50,−100]T [50,−100]T

||∇ḡ(ui)||
√

12500
√

12500

αi [−0.447, 0.894]T [−0.447, 0.894]T

di [−1, 2]T [0, 0]T

β 2.23607

Table 4.1: A rod under tension: the first-order reliability method and the necessary evaluation of all
variables in two steps.

In the example mentioned above, the linearization of the limit state function in the standard
normal space is not apparent because the problem is linear in itself even after transformation.
Therefore, we change the variables from the normal space to the Gumbel space; however, means
and standard deviations remain the same. Figure 4.10 shows the contours of the limit state func-
tion of the transformed problem into the standard normal space, which are plotted by coloured
contours with thicker contour for the limit state. All steps in the FORM iterations are depicted
by grey dots and dashed lines. The red square represents the final design point, and the lin-
earized limit state function L(u) in this design point is depicted by the black line for values
equal to zero. The circle represents the shortest distance to the limit state, which perimeter is
identical to the reliability index.

The system reliability is assessed by linearizing each limit state function gj(x) at a design
point uj , j = 1, 2, . . . , N , such that the tangent hyperplane approximates the surface βj − αju
= 0, in which

αj = − ∇gj(u
∗
j)

||∇gj(u∗j)||
. (4.51)

βj represents a distance from the origin to the j th hyperplane in the standard normal space and αj
is the j th unit normal to the hyperplane [139]. The search for the design point differs in the series
and parallel systems. The series system reliability requires the location of as many design points
as the number of limit state functions with the same algorithm as for the component reliability
in Equation (4.44), i.e.

u∗j = min ||u||, s.t. ḡj(u) = 0. (4.52)

The parallel system reliability can utilize the same method of the design points search, or one
joint design point can be searched by

u∗ = min ||u||, s.t. ḡj(u) ≤ 0, j = 1, . . . , N, (4.53)

33



CHAPTER 4. STRUCTURAL RELIABILITY

u
R

-2 -1 0 1 2

u
S

0

1

2

-300

-200

-100

0

100

200

300

400

500

600

Figure 4.10: A rod under tension in Gumbel space: the first-order reliability method. The
two-dimensional space is composed of the capacity R ∼ Gumbel(550, 50) and the demand
S ∼ Gumbel(300, 100), and it is transformed into the standard normal space. The design
point u∗ is equal to [−0.408, 1.867]T and β corresponds with 1.91089.

where multiple inequality constraints are evolved at the same time. The latter method pro-
vides a better approximation, but it is more complicated to use [139]. If we suppose that
vj = αju, j = 1, 2, . . . , N are normal random variables with zero means, unit variances, and
correlation coefficients ρkl = αkα

T
l , k, l = 1, 2, . . . , N , it is valid for a series system that [139]

pF,series = Prob

[
N⋃

j=1

(βj ≤ vj)

]
= 1− Prob

[
N⋂

j=1

(vj < βj)

]
= 1− ΦN(B,R), (4.54)

where ΦN is N -variate standard normal cumulative distribution function with argument B =
[β1, β2, . . . , βN ]T and a correlation matrix R = [ρkl]; a correlation coefficient is evaluated as
ρkl = αTk αl. An estimate of the failure probability is calculated similarly [139]

pF,parallel = Prob

[
N⋂

j=1

(βj ≤ vj)

]
= Prob

[
N⋂

j=1

(vj < −βj)
]

= ΦN(−B,R) (4.55)

in case that the limit state functions are linearized one by one as in Equation (4.52). In the case
of a joint design point found, the failure probability is evaluated as for the component system.

The First-Order Reliability Method needs low computational costs in comparison with sam-
pling methods; however, it works only with some classes of reliability tasks. The FORM pro-
vides a wrong approximation of the failure probability for limit state functions in which limit
state is strongly curved, especially around the design point. Unfortunately, it is not possible
to predict if the approximation of the failure probability is underestimated or overestimated
because the limit state is unknown in general. The error also dramatically increases with the
growing number of dimensions of the problem. Other problematic tasks seem to be optimiza-
tion problems with multiple local or global solutions. Frequently used Quadratic programming
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optimization methods would need several restarts to find the exact design point or can fail if the
optimization task is not suitable for this type of mathematical programming solver. A different
kind of optimization solvers such as heuristic methods suggests itself; however, these types of
controlled sampling methods require plenty of evaluations, which increase computational costs
with preserving disadvantages of the approximation methods based on the first-order approxi-
mation technique.

4.4 Simulation techniques

Simulation techniques are numerical methods that solve mathematical problems through ran-
dom sampling. The mapping between the input design space and the output space represented
by a limit state function is usually not known by an analytical model but only by an implicit
model such as a finite element model, or a boundary element model. The only obtained value
from an implicit model is the value of the model for a particular combination of input pa-
rameters. The other information such as derivatives needed for approximation techniques is
reachable by a numerical differentiation, e.g. by forward, backward, or central difference for-
mula. These additional computations increase the number of evaluations of the original model
especially for a higher number of variables which makes approximation techniques less effec-
tive with respect to low computational demands and the error of the failure probability pre-
diction for nonlinear limit state functions. Therefore, the sampling methods, which require
only the information about the value of the model, are applicable. With the development of
computers in the forties, the sampling methods have gained their growth as well. Many simula-
tion methods are based on Monte Carlo simulation, which was invented by METROPOLIS and
ULAM and published in 1949 [131]. The original purpose of the Monte Carlo was a statisti-
cal approach for studying differential equations; however, due to its versatility, it extended into
a field of all kinds of integro-differential equations that occur in many branches of the natural
sciences [131]. The Monte Carlo method is a very robust tool. Nevertheless, it is also compu-
tationally very demanding, especially for solving reliability problems with small probabilities
of failure. Therefore, several advanced sampling methods based on the Monte Carlo principle
have been developed. These advanced methods reduce the variance of the probability failure
estimator by several techniques. The sampling distribution can be modified (e.g. an Importance
sampling, or Latin Hypercube sampling). The failure probability can be extrapolated with the
expectation of its asymptotic behaviour (e.g. an Asymptotic sampling, Enhanced Monte Carlo
simulation, or Scaled sigma sampling). Alternatively, the failure probability can be expressed
as a product of larger conditional failure probabilities (e.g. a Subset simulation). In this sec-
tion, we describe selected simulation techniques with a demonstration of their behaviour on the
stress-strength model. All those mentioned methods are used for a reliability index evaluation
in multi-objective reliability-based design optimization in Section 7.

4.4.1 Monte Carlo simulations (MC)

A Monte Carlo method is a numerical approach that solves equations from differential and
integral calculus by experiments on random numbers. In structural reliability, the probability of
failure is an essential measure for the safety of the engineering design. The failure probability
from Equation (4.20) is possible to be rewritten via an indicator function Ig(x) that is equal to
one for a failure domain g(X) ≤ 0 and zero for a safe region g(X) > 0, the failure probability
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is then

pF =

∞∫

−∞

· · ·
∞∫

−∞

Ig(x)fX(x)dx. (4.56)

The probability of failure expressed in Equation (4.56) is thus an expected value of the indicator
function [111]. The Monte Carlo method is a statistical sampling technique; the elementary
principle is to generate samples as pseudo-random numbers from a given distribution, then to
evaluate the value of the limit state function for all samples, and finally to assess how many
samples felt into the failure domain. The ratio between the number of failures nf and the
number of all samples m denotes the estimator of the failure probability, which is

pF ≈ p̂F = E[Ig(x)] =
1

m

m∑

i=1

Ig(x
(i)) =

nf
m
. (4.57)

The approximate general reliability index β is an inverse cumulative distribution function of the
standard normal distribution

β = Φ−1(1− pF ). (4.58)

The variance of the failure probability estimator can be computed as [111]

Var p̂F = Var

[
1

m

m∑

i=1

Ig(x
(i))

]
= Var

[
1

m2

m∑

i=1

Ig(x
(i))

]
. (4.59)

Since the indicator function comes from independent outputs of the limit state function [111],

Var p̂F =
1

m2
mVar

[
Ig(x

(i))
]
, (4.60)

the variance is defined as [167]

VarX = E[X2]− (EX)2. (4.61)

Therefore Equation (4.60) is possible to be rewritten as

Var p̂F =
1

m

(
E[I2

g (x(i))]− (E[Ig(x
(i))])2

)
. (4.62)

Since the indicator function is a binary number, then E[I2
g (x(i))] = E[Ig(x

(i))] and p̂F =
E[Ig(x)],

Var p̂F =
1

m
(p̂F − p̂2

F ) =
p̂F (1− p̂F )

m
. (4.63)

For p̂F close to zero, the variance of the failure probability estimator is simplified as

Var p̂F ≈
p̂F
m
. (4.64)

The standard deviation of the failure probability estimator is according to Equation (4.64)
and Equation (4.14)

σp̂F =

√
p̂F
m
. (4.65)

This indicator σp̂F can be understood as a measure for a range in which the possible realizations
of the probability failure estimators p̂F may fall from different Monte Carlo simulations of the
same problem using the identical parameter setting.
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A coefficient of variation is another remarkable measure. It is equal to a standard deviation
normalized by a mean value and therefore for a Monte Carlo simulation failure probability
estimator evaluated as

CoV p̂F =

√
1− p̂F
m · p̂F

≈
√

1

m · pF
|pF→0. (4.66)

Confidence interval (1 − α) · 100% can also be employed for presenting an accuracy of
the Monte Carlo method. The value of the probability failure estimator lies in this confidence
interval with a statistical guarantee of (1− α) confidence; the level α is in the range [0, 1]. The
larger confidence is required, the wider the confidence interval is. This confidence interval is
based on the central limit theorem. The central limit theorem says that if we have a large number
of independent and identically distributed random variables X1, . . . , Xn with common mean µ
and common variance σ2, then their summation X1 + · · · + Xn is approximately a normally
distributed variable with mean nµ and variance nσ2 [5]. Since the failure probability estimator
of the Monte Carlo simulation is a summation of the indicator function over the failure samples
as written in Equation (4.57), the estimator is approximately a normally distributed random
variable. Each variable from a normal distribution can be transformed into the standard normal
distribution. Therefore, for level α, it holds that

1− α = Prob[−kc ≤ Z ≤ kc], Z =
pF − p̂F
σp̂F

(4.67)

1− α = Prob[p̂F − kcσp̂F ≤ pF ≤ p̂F + kcσp̂F ] (4.68)

where Z belongs to the standard normal distribution which is substituted by a scaled probability
of failure pF into the standard normal distribution with mean p̂F and standard deviation σp̂F ;
these estimates are known from sampling, therefore symbol ·̂ is used. The parameter kc is de-
rived from the cumulative distribution function of a standard normal distribution; the probability
density function of the normal distribution is symmetric. Therefore the kc value corresponds to

kc = Ψ−1
(

1− α

2

)
. (4.69)

Figure 4.11 depicts the graphical representation of the parameter kc on the probability density
function of the standard normal distribution. The area below the whole curve is equal to one
since the maximum possible probability is equal to 1. Table 4.2 shows some typical confidence
limit values (1− α) · 100% together with the parameter kc. Thus, for example, 95% confidence
interval is (p̂F − 1.96σp̂F , p̂F + 1.96σp̂F ).

A crude Monte Carlo method utilizes a common pseudorandom number generator (PRNG).
There exist plenty of generators, for instance, a very simple linear congruential generator [110]
or the widely used Mersenne twister [130], which is currently used in MATLAB, Excel, Maple,

-kc

Area is equal to (1-α)

kc0

Figure 4.11: Confidence interval (1− α) · 100% representation together with parameter kc.
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(1− α) · 100% kc

90% 1.64
95% 1.96
99% 2.58

Table 4.2: Several kc values for (1− α) · 100% confidence intervals.

Python, R, C++11, and in many other programs as the default pseudorandom number generator.
The true randomness is usually not used in the computer programs, but if necessary in specific
problems (e.g. cryptography or lotteries), it can come from, e.g. an atmospheric noise [158].
The difference between the stream of pseudorandom numbers and the stream of real random
numbers is that PRNG generates a series of numbers that are deterministic and periodic. The
period should be as large as it should not be noticed. For example, the Mersenne twister has the
period 219937− 1 [6]. A good PRNG is fast, and the stream of random numbers looks as similar
to a truly random sequence of numbers in many statistical tests.

In the structural reliability, a Monte Carlo method is the most robust and in most cases,
the most computationally demanding method for estimating the probability of failure. The
number of samples needed in a crude Monte Carlo simulation is very high to obtain a pre-
cise approximation of pF . A common rule of thumb recommends a number of samples from
10/pF [24] over 100/pF [186] up to 500/pF samples. The nominator in the previous formula
has a meaning of failed samples; the coefficient of variation of the Monte Carlo failure proba-
bility estimator is shown in Table 4.3 for several numbers of failed samples. Table 4.4 shows
how many samples are needed for 10% coefficient of variation of the Monte Carlo failure prob-
ability estimator p̂F . In case that a number of samples in a crude Monte Carlo simulation is
not sufficient, several techniques are available for the improvement of the probability of failure
estimate, e.g.see [195, 197].

The Latin Hypercube Sampling exploits the division of the investigated space to N strata;
thus, it covers the space more uniformly. While considering a standard uniform space, the
interval [0, 1] is therefore segmented into

[0,
1

N
), [

1

N
,

2

N
), . . . , [

N − 1

N
, 1], (4.70)

where one value is chosen in each interval. Concerning this sample selection, several variants
of LHS exist. Namely, median LHS, in which a sample is represented by a median from each
interval and random LHS, in which a sample is generated randomly [193]. Subsequently, these
samples are shuffled by generating several random permutations of N numbers from a series
1, 2, . . . , N and by assigning samples to elements of the permutation. The best design is then
chosen as the final Design of Experiments. The advantage of the LHS is that the Design of
Experiments is more uniformly distributed than a pseudorandom sequence. Therefore samples
are taken from the whole range of the distribution even with a relatively small sample size [193].
The disadvantage is that the sample size is not possible to determine as mentioned for a crude

number of failed samples 1 10 100 500
C.o.V. of MC prediction 100% 31.62% 10.0% 4.47%

Table 4.3: Number of failed samples in Monte Carlo simulation for a needed coefficient of variation of
Monte Carlo failure probability estimator p̂F
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β 0 1 2 3 4
pF 0.5 0.159 2.28·10−2 1.35·10−3 3.17·10−5

MC samples 200 629 4.39·103 7.41·104 3.15·106

β 4.5 5 5.5 6
pF 3.40·10−6 2.87·10−7 1.90·10−8 9.87·10−10

MC samples 2.94·107 3.49·108 5.27·109 1.01·1011

Table 4.4: Number of samples needed for a 10% coefficient of variation of Monte Carlo failure probability
estimator pF

Monte Carlo simulation. However, the number of samples is typically less than the number of
crude Monte Carlo samples. Another problem is that it is problematic to add new samples into
the LHS Design of Experiments to maintain the uniformity of the design.

Another improving alternative to a crude Monte Carlo method is a quasi-Monte Carlo
method. The quasi-MC uses low-discrepancy sequences, e.g. the one-dimensional van der Cor-
put sequence [53], the Halton sequence [84] (i.e. an extension of the van der Corput sequence
to higher dimensions), the Sobol sequence [177], the Faure sequence [69], or the Niederreiter
sequence [138]. The discrepancy of a sequence is a measure of its uniformity. These sequences
are n-tuples of samples that fill the n-dimensional space, they are a deterministic stream of
numbers, but since they have a low discrepancy, they appear to be random. The convergence
of a crude Monte Carlo is O(1/

√
n) for n number of samples, while the convergence of quasi-

Monte Carlo method is potentially close to O(1/n) [6]. These low-discrepancy sequences can
fail in some statistical tests, and their projection in higher dimensions can have troubles with
repetitive patterns [6]. Nevertheless, their generation is fast, and their properties are sufficient
in many cases.

Figure 4.12 shows a crude Monte Carlo sampling for a rod under tension depicted in Fig-
ure 4.6. The left figure illustrates samples from the original distribution (the normal space)
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Figure 4.12: A rod under tension: 104 crude Monte Carlo samples of the capacity R ∼
N(550, 50) and the demand S ∼ N(300, 100). 126 samples (red crosses) are in the failure
domain which means that pF is equal to 0.0126. The corresponding reliability index βMC is
equal to 2.238.
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and the original limit state. The variables represented by samples are transformed into non-
Gaussian components; first, the standard uniform space is sampled, and subsequently, samples
are transformed into the normal space. The limit state function remains without any transforma-
tion. This procedure is useful for the black-box solvers, e.g. a finite element method, in which
the transformation of the performance function would be complicated. The right figure shows
samples in the standard normal space together with the transformed limit state ḡ(uR, uS) = 0.
In this case, the limit state remains without any nonlinear transformation, and it is only shifted
since there is only a linear relation between a normal distribution and a standard normal distri-
bution. This procedure is preferred for analytical functions that are easily transformed from the
original space to the standard normal space since the limit state function is transformed prior
to the sampling. The samples are subsequently performed only in the standard normal space
without any transformation to the original space.

4.4.2 Importance sampling (IS)
Importance sampling (IS) is a variance reduction method in a reliability assessment field. Prob-
ably the very first formulation of the idea behind the Importance sampling is in the article [98]
of KAHN and HARRIS. HAMMERSLEY and HANDSCOMB described details of the technique
in their monograph on Monte Carlo methods [85] in 1964. This method is beneficial for tasks
with small failure probabilities, in which a crude Monte Carlo method would need an enormous
number of samples to hit a failure region at least by one sample. An Importance sampling sam-
ples from a different distribution called an Importance sampling distribution (ISD) or a biasing
density [181]. The goal is to sample in the important region to get more knowledge about in-
teresting areas. In the best case of ISD choice, samples are located close to the failure region.
For obtaining the approximated probability of failure, the weighting factor, which is equal to
the ratio of the original PDF fX(x) and the Importance sampling PDF hY(x), is used to scale
the indicator function Ig(x)

pF =

∞∫

−∞

· · ·
∞∫

−∞

Ig(x)
fX(x)

hY(x)
fY(x)dx. (4.71)

The above equation is possible to sample via a Monte Carlo simulation from the density hY(x)
and then weight the indicator function by the evaluated weighting ratio

p̂F ≈
1

m

m∑

i=1

fX(x)

hY(x)
Ig(x), (4.72)

where m is the total number of samples.
The Importance sampling probability density function hY(x) has to be picked very care-

fully. With a very poor choice of hY(x), the Importance sampling can be more computationally
demanding than a classical Monte Carlo. The variance of the probability failure estimator of an
Importance sampling method σ2

p̂F
according to [65] is

σ2
p̂F

=
1

m− 1

[
1

m

m∑

i=1

fX(x)2

hY(x)2
Ig(x)− p2

F

]
. (4.73)

This formula gives the information about the optimal sampling density since it would be ideal if
the variance of the probability failure estimator were minimal. Therefore, the optimal sampling
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density is [172]

hOPT (x) =
fX(x)

pF
Ig(x). (4.74)

Unfortunately, this distribution requires the knowledge of the probability of failure, which is not
known in advance. Several strategies to obtain the Importance sampling density are presented
in the literature, namely scaling, translation, and exponential twisting of the original probability
density function [181], approaches based on kernel density estimators [2], on design points
found by e.g. by optimization method [21] or adaptive sampling [27].

In this thesis, we use marginal ISDs having the same family of distribution as the original
distribution. This means that if, for example, a normal distribution is used as the original distri-
bution, this distribution stays the same even for ISDs. The standard deviations of the variables
remain unchanged. The n-dimensional copula is translated to the design point ū∗. The design
point is first found in the standard normal space (SNS) as the point u∗ by sequential quadratic
programming. The optimization task is carried out in SNS as the minimization of the distance
from SNS origin to the limit state g(·) = 0, which is the (n-1)-hyper-surface dividing the space
into the failure region and the safe area

u∗ = min (
√

uTu) (4.75)
s.t. g(T−1(u)) = 0. (4.76)

Since the limit state function g(·) can be an implicit function and its transformation from the
original space (OS) to the SNS is not straightforward, the transformation of each evaluated
sample is carried out outside by iso-probabilistic transformation T−1(·). Then, the design point
u∗ is transformed into the original space as a point ū∗, i.e.

ū∗ = T−1(u∗). (4.77)

A design point is a point that lies on the limit state and having the highest value of the probabil-
ity density of the normal distribution. However, if such a point is transformed into the original
space, then it remains at the limit state, but no longer has the highest value of the probability
density. Figure 4.13 shows the position of the design point (red filled circle) in the standard
normal space and the Gumbel space for the modified illustrative example of the stress-strength
model used in FORM in Figure 4.10.

Figure 4.14 on the left shows an Importance sampling for a rod under tension depicted in
Figure 4.6. The red crosses depict samples that belong to the failure domain, whereas the blue
crosses are samples sampled in the safe domain. The original distribution function (the green
dashed contours represents joint PDF) is shifted from the original means [µR, µS] = [550, 300]
MPa (green square) into the design point [DPR, DPS] = [500, 500] MPa (yellow circle) to get
more samples in the failure domain. The yellow solid contours represent joint Importance sam-
pling density. The classical Monte Carlo simulation, that sample from the original distribution
function, is depicted in Figure 4.12 in the previous section. The right figure shows only the
samples from the failure domain (from a different simulation); the size of the crosses represent
their relevance contribution into the failure probability estimator according to the weighting ra-
tio. The indicator function Ig(x) is equal to one in the failure domain and equal to zero in the
safe domain (red crosses in Figure 4.14). The second case, therefore, does not contribute to the
failure probability estimator in Equation (4.72) since this component of the summation is null.

The system reliability is assessed similarly as in the First-Order reliability method with the
knowledge of the more precise reliability indices βj from the Importance sampling. The N
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Figure 4.13: Position of the design point in standard normal space (left) and Gumbel space
(right) for an illustrative stress-strength model.

number of design points u∗j is found for each limit state function gj, j = 1, 2, . . . , N by

u∗j = min (
√

uTu) (4.78)

s.t. gj(T
−1(u)) = 0. (4.79)

The original PDF fX(x) is then N -times translated into u∗j design points to obtain N number of
Importance sampling PDFs hY,j(x). The N number of failure probabilities is then obtained via

p̂F,j ≈
1

m

m∑

i=1

fX(x)

hY,j(x)
Igj(x), (4.80)

together with corresponding reliability indices βj = φ−1(1− p̂F,j). The utilization of the max-
imum or the minimum βj index for the series or the parallel system would be too optimistic
because of the possible dependency of the limit state functions. We, therefore, use the same
methodology as was mentioned in FORM. The necessary unit normal to the hyperplane αj is
evaluated via

αj = − ∇gj(u
∗
j)

||∇gj(u∗j)||
. (4.81)

If we suppose that vj = αju, j = 1, 2, . . . , N are normal random variables with zero means,
unit variances, and correlation coefficients ρkl = αkα

T
l , k, l = 1, 2, . . . , N , it is valid that [139]

pF,series = 1− ΦN(B,R), (4.82)
pF,parallel = ΦN(−B,R), (4.83)

where ΦN is N -variate standard normal cumulative distribution function with argument B =
[β1, β2, . . . , βN ]T and a correlation matrix R = [ρkl]; a correlation coefficient is evaluated as
ρkl = αTk αl.
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Figure 4.14: A rod under tension: the left figure shows 103 Importance sampling samples of
the capacity R ∼ N(550, 50) and the demand S ∼ N(300, 100). Four hundred ninety-eight
samples (red crosses) are located in the failure domain. The probability of failure is equal
to 0.0125, and the corresponding reliability index βMC is equal to 2.241. The coefficient
of variation of the failure probability estimator is approximately 5.1 %. The original joint
probability density function of the problem (green dashed contours) was translated into the
design point [DPR, DPS ] = [500, 500] MPa (yellow circle); the yellow solid contours depict it.
The right figure shows the impact of the sample into the failure probability estimator from the
different simulation.

4.4.3 Asymptotic sampling (AS)
An Asymptotic sampling is a methodology that predicts a reliability index from an asymptotic
behaviour of the probability of failure in an n-dimensional independent and identically dis-
tributed normal space [24, 175]. A principal idea is to sequentially scale random variables over
the standard deviation σ to get more samples from a failure domain. An approximation of the
asymptotic behaviour with original distributions gives the reliability index of the problem

βAS = Aϕ+
B

ϕ
, (4.84)

where ϕ denotes a scale factor that is expressed as ϕ = 1
σ

. Equation (4.84) can be written in
terms of a scaled reliability index for better fitting purposes as

βAS
ϕ

= A+
B

ϕ2
. (4.85)

Coefficients A and B are obtained by a linear regression analysis through several so-called
support points, see Figure 4.15.

Each support point represents an MC estimate of the reliability index for a specific value of
the scale factor ϕ. The user determines the number of samples for one MC simulation m with
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the same σ’s as well as the number of necessary samples belonging to the failure domain N0

and the decreasing coefficient ϕd for the factor ϕ. If the number of failures Nf is higher than
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Figure 4.15: A basic concept of the
Asymptotic sampling.
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Figure 4.16: A flowchart of the Asymptotic sampling
algorithm.
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Figure 4.17: A rod under tension: Asymptotic sampling samples of the capacity R ∼
N(550, 50) and the demand S ∼ N(300, 100). The limit state g(r, s) = 0 divides the space to
the failure region (on the left from the limit state) and the safe domain (on the right from the
limit state). βAS is equal to 1.94 and the probability of failure pF is approximately equal to
0.0261. The total number of the limit state function evaluation is equal to 5,120.
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N0, the reliability index βAS,i and the corresponding factor ϕi are stored as one support point.
In another case, the factor ϕd decreases the factor ϕ without any support point storage. After
gathering a sufficient number of support points K, the procedure stops, and coefficients A and
B are obtained through linear regression of the model in Equation (4.85). If coefficients A and
B are arranged into the vector Θ as [A,B], the vector Θ can be calculated as

Θ = (ATA)−1AT b, (4.86)

where

A =




1 ϕ−2
1

1 ϕ−2
2

...
...

1 ϕ−2
K


 , (4.87)

b =




βAS,1/ϕ1

βAS,2/ϕ2
...

βAS,K/ϕK


 . (4.88)

Summation of A and B then represents an estimated reliability index βAS for unscaled
random variables as an extrapolation of ϕ equal to 1. The whole routine is depicted in the
flowchart in Figure 4.16.

Figure 4.17 shows sequential Asymptotic sampling populations for a rod under tension de-
picted in Figure 4.6. The setting is as follows: there have to be at least 10 samples in the failure
domain (N0); every Monte Carlo simulation has 1024 samples (m); the initial coefficient ϕ is
equal to 0.9; the decreasing factor ϕd is equal to 0.8 due to graphical purposes; the number of
sample pointsK (combinations of saved βi and ϕi) is equal to 5; and Halton sequences are used
to generate Monte Carlo population.

The next iteration is wider than previous ones. The difference in the Monte Carlo result and
the Asymptotic sampling result is due to the unsuitable coefficient setting that was performed
for the sake of graphical output. Increasing m to 2048 and ϕd to 0.9, the reliability index βAS
is equal to 2.11 and the probability of failure pF equals to 0.0174. The total number of the
limit state function evaluations is equal to 10,240. It can be seen that the disadvantage of this
method is in the sensitivity to coefficients. The analysis of Asymptotic sampling parameters for
the truss structure bridge, which is used later in this thesis statement is presented in [148].

4.4.4 Subset simulation (SS)
A Subset simulation [8] is based on a formulation of the failure event F as an intersection of
M nested intermediate events FM ⊂ FM−1 ⊂ · · · ⊂ F2 ⊂ F1, in which FM = F is the failure
event

F = ∩Mi=1Fi. (4.89)

Therefore, the rare event problem is reformulated into a series of more frequent events that
are easier to solve. An estimation of the probability of failure is evaluated as a product of
conditional probabilities

pF = Prob[F ] = Prob[∩Mi=1Fi] = Prob[FM |FM−1] · Prob[FM−1] =

= Prob[F1] ·
M∏

i=2

Prob[Fi|Fi−1] (4.90)
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Each intermediate event is defined as

Fi = x : g(x) ≤ y∗i , i = 1, . . . ,M, (4.91)

where y∗i is a series of threshold values of the structural response. Unfortunately, this series
cannot be determined in advance but has to be found adaptively during the sequential evaluation
of intermediate failure probabilities.

The failure probability of conditional level 0 (i.e. unconditional) Prob[F1] is evaluated by
a classical Monte Carlo method with hundreds or a few thousands of samples N . The user
sets the parameter N , and it remains the same during the whole Subset simulation. Samples
are generated in the standard normal space U described by a joint probability density function
(PDF) ϕd(u) obtained as

∏D
d=1 ϕ(ud), where ϕ(·) is a standard normal PDF and d is a coordinate

out of the total number of coordinates D. Samples in U-space are transformed afterwards, e.g.
by the Rosenblatt transformation [166] to the target X-space, where the family and statistical
moments are known, and therefore a value of the limit state function can be evaluated as y =
g(T−1(u)) = g(x). The X-space is used only for limit state function evaluation; the Subset
simulation is carried out in the U-space. The intermediate failure event F1 is defined as F1 =
{u : g(T−1(u)) < y∗1}, where the level probability pF,1 = Prob[F1] is chosen in the interval
pF,i ∈ (0, 1), and it remains the same for all levels. If already simulated samples are sorted
in ascending order according to their value of the limit state function, a threshold value y∗1 is
pF,i-quantile of the N sampled system response. The threshold value y∗1 can be estimated as
y

(Nc)
0 [7] or as in reference [214]

y∗1 =
y

(Nc)
0 + y

(Nc+1)
0

2
, (4.92)

where the subscript 0 signifies that samples y correspond to the 0-level, superscript denotes the
number of a sample in the sorted set of samples and Nc is equal to the level probability pF,1
multiplied by the number of samples N .

The failure probability in the first intermediate domain is estimated via sampling from a con-
ditional distribution ϕd(u|F1), e.g. by Markov chain Monte Carlo (MCMC) with modified
Metropolis algorithm. The domain F1 is characterized as {u : g(T−1(u)) ≤ y∗1} and the thresh-
old value y∗1 is known from the previous level. All samples y(1)

0 to y(Nc)
0 belong to F1 domain

and they are used as seeds for the Markov chains. Thus, the remainder of the samples at the first
level is generated. Seeds can be used or discarded; both approaches are common in literature.
However, AU and WANG [9] claim that seeds should be discarded after their usage since their
rejection reduces the correlation between samples at different simulation levels. Each chain has
Ns samples equal to 1

pF,i
or ( 1

pF,i
− 1) if seeds are discarded or kept, respectively. Note, that Ns

times Nc amounts to the number of samples in one level N .
Markov chain Monte Carlo samples can be generated with various algorithms; a modified

Metropolis algorithm is a suitable sampling approach specially designed for sampling from
conditional distributions such as ϕd(u|Fi). The seed u

(1)
0 belongs to a conditional distribution

ϕd(u|F1), a modified Metropolis algorithm generates the next sample ū in the following man-
ner. A proposal sample η is generated from a chosen proposal distribution with the symmetric
property, that has a mean value equal to u

(1)
0 and standard deviation to σ. This distribution can

be uniform, normal, triangular, or other symmetrical. The standard deviation can be estimated
by expert opinion or by evaluation of standard deviations of all seeds in level (i − 1) in all
dimensions d. An acceptance ratio rd is evaluated for each coordinate d as

rd =
ϕ(ηd)

ϕ(ud)
, (4.93)
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where ϕ(·) is a PDF of the standard normal distribution since whole Subset simulation is exe-
cuted in a standard normal space, the numerator is a PDF value of the standard normal distribu-
tion of the dth-dimension of proposal sample, and the denominator is a PDF value of the standard
normal distribution of the previous Markov chain step. If a randomly generated number from
the standard uniform distribution rand() is lesser than min(1, rd), then ηd is accepted as a can-
didate solution ξd, otherwise ξd is equal to the previous value ud. The candidate solution ξ has
to be located in F1 for the first level, or Fi for the ith level in general, i.e. F1 = {ξ : g(ξ) ≤ y∗1}
for the first level. If a case that ξ is located outside F1, the next state of Markov chain Monte
Carlo is identical with the previous state, i.e. ū = u. State ū is then a next state of the Markov
chain, and it is the next mean value of the proposal distribution. Since the seed of the Markov
chain is incontrovertibly located in the desired region where we want to sample, there is no
burn-in phase, and the Markov chain is stationary [143].

The next intermediate levels of i are simulated in the same manner. Seeds for Markov chains
are taken from the previous level asNc sorted samples according to their values of the limit state
function. The rest of the samples is generated from a conditional distribution ϕd(u|Fi). Samples
are again sorted; the threshold value y∗i+1 is detected such that the level probability pF,i is equal
to the prescribed value. The last level M is reached if the threshold value y∗i+1 change its sign
compared to previous levels. The estimation of the failure probability is then

pF = pF,1 · p(M−1)
F,i · 1

N

N∑

j=1

IFi(uj), (4.94)

where pF,1 stands for the intermediate failure probability of conditional level 0 carried out by
a Monte Carlo, pF,i is for the intermediate failure probability of conditional levels 1 to (M − 1)
executed by a Markov chain Monte Carlo; note that usually pF,1 and pF,i are set to the same
number. The last factor in Equation (4.94) evaluates the intermediate failure probability of the
last level M , where IFi(·) is an indicator function equal to 1 in case of failure and 0 otherwise.
The whole algorithm described above is depicted in Figure 4.18.

Setting the level probability pF,i close to zero provides less number of intermediate levels,
but the number of samples N would have to be enormous to get the required precision and vice
versa, the level probability pF,i close to one follows in a large number of intermediate levels.
The level probability and the number of samples have to be therefore set carefully such that
the number of chains Nc = pF,i · N and the number of samples in one chain Ns = 1

pF,i
are

positive whole numbers. The value pF,i equal to 0.1 is a relatively common recommendation
in literature, however wider setting is possible as in AU et al. in [7], who recommend to set
pF,i in interval 0.1 ∼ 0.2 or even to a higher number in ZUEV et al. in [215], who suggests
setting pF,i in an interval of 0.1 ∼ 0.3. The analysis of Subset simulation parameters for series
system of mathematical functions and the truss structure bridge, which is used later in this thesis
statement, is presented in [90].

Figure 4.19 shows a Subset simulation for a rod under tension depicted in Figure 4.6; the
capacity is R ∼ N(550, 50) and the demand is S ∼ N(300, 100), the limit state function is
equal to subtraction the demand and the capacity. In this example, we set the number of samples
in one stepN equal to 5000 and the level probability pF,i equal to 0.2. The proposal distribution
in a modified Metropolis algorithm is chosen as a normal distribution. The standard deviation σ
of the proposal distribution is evaluated as standard deviations of all seeds in level (i− 1) in all
dimensions d. A classical Monte Carlo simulation generates the level 0, which is depicted by
blue dots. The blue dashed line represents the shifted limit state function for the first level. The
seeds (orange dots) are separated from samples in level 0, and Markov chains are subsequently
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Figure 4.18: A flowchart of the Subset Simulation algorithm

generated (red dots). The next level is evaluated. The seeds (pink dots) are separated anew from
the samples in the previous set, and Markov chains (green dots) are generated afterwards anew
as well. The cyan dashed line represents the shifted limit state function for the second level. In
the next hypothetical step, the shifted limit state function would appear on the other size than
the limit state functions for the level 1 and 2 in comparison with the original limit state function
(solid black line), which means that the algorithm terminates. The black cross represents the
mean of the original joint distribution function, which is depicted by dashed black contours.
The failure probability estimator is equal to 0.0137, and subsequent reliability index is equal to
2.206.
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Figure 4.19: A rod under tension: Subset simulation samples of the capacity R ∼ N(550, 50)

and the demand S ∼ N(300, 100). The limit state g(r, s) = 0 divides the space to the fail-
ure region and the safe domain. βSS is equal to 2.206 and the probability of failure pF is
approximately equal to 0.0137.

The previous example, the stress-strength model, is linear. We tested our implementation on
the nonlinear models as well. We found the main problem in the instability of the selection of
the subsequent random walks directions. A Subset simulation method proceeds in the steepest
descent direction. A fixed portion of samples is taken from samples generated in the previous
step and sorted in the ascending order serves for initial seeds in a random walk. Since a pseudo-
random generator sampler does not always hit all possible directions to all most probable failure
points, some crucial regions can be omitted. Figure 4.20 illustrates this behaviour and shows
two independent runs of a Subset simulation with the same setting.

4.4.5 Enhanced Monte Carlo simulation (eMC)
The Enhanced Monte Carlo simulation is based on the idea of sequentially shifting the limit
state function to obtain more responses in the failure domain. This novel idea was brought by
ARVID NAESS et al. in [136]. The original problem is defined as the evaluation of the failure
probability using

pF = Prob[g(X) ≤ 0], (4.95)

where g(·) is the limit state function and g(·) ≤ 0 denotes failure. The limit state function g (the
original paper uses a symbol M for the limit state function) is extended into the parameterized
class of limit state functions as

g(X, λ) = g(X)− (1− λ)E[g(X)], (4.96)
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Figure 4.20: A Subset simulation shows instability in the selection of sampling directions.
Colours of samples serve for distinction of levels as well as with their seeds. Coloured dashed
contours distinguish different y?m threshold levels. Each Subset simulation assessment com-
prised of eight levels. Both simulations have the same mean values of variables, µX1 = 2.74

and µX2 = 2.71 (the black cross). The bold solid line is the limit state, black dashed circles
mark the mean values plus one, two, and three standard deviations, respectively.

where λ is a scaling factor, and E[·] is an expectation operator. The scaling factor λ is from an
interval [0, 1]. The limit state function remains unchanged for λ equal to one, and this case is
intended to extrapolate since it corresponds to Equation (4.95). With the decreasing value of the
scaling factor λ, the failure region is larger. The expectation operator E[·] is generally unknown
a priori. If it cannot be calculated analytically, it is estimated by Monte Carlo simulation as the
mean value of limit state function responses.

The original probability of failure in Equation (4.95) is therefore reformulated into

pF (λ) = Prob[g(X, λ) ≤ 0]. (4.97)

Practically, only one Monte Carlo simulation is performed, and several scaling factors from
the interval [0, 1] are utilized for Equation (4.96) to obtain several probabilities of failure for
different λ values as

p̂F (λ) =
Nf (λ)

N
, (4.98)

where p̂F (λ) is an estimator of the scaled probability of failure corresponding with λ, Nf (λ) is
a number of samples in the failure domain for corresponding λ and N is the total number of
samples in the Monte Carlo simulation. For extrapolating the probability of failure p̂F (λ = 1),
pairs p̂F (λ) and λ are fitted by simplified regression function

p̂F (λ) ≈ q exp[−a(λ− b)c], (4.99)

where parameters q, a, b, c are obtained by Levenberg-Marquardt least-squares optimization
method.
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The coefficient of variation of the estimator in Equation (4.98) is

CoV[p̂F (λ)] =

√
1− p̂F (λ)

p̂F (λ)N
. (4.100)

NAESS et al. in [136] recommend using the approximation of the 95% confidence interval for
the value p̂F (λ) as CI0.95(λ) = (C−(λ), C+(λ)), where

C±(λ) = p̂F (λ)(1± 1.96 · CoV[p̂F (λ)]). (4.101)

The estimation of the parameters q, a, b, c is then carried out by minimizing the mean square
error function with respect to all four parameters in the logarithmic formulation

F (q, a, b, c) =
M∑

j=1

wj (log p̂F (λj)− log q + a(λj − b)c)2 , (4.102)

where λj contains a set of all valid scaling parameters with their total number ofM together with
corresponding estimators of the failure probability p̂F (λj) and wj are weight factors. NAESS et
al. in [136] recommend using weights as

wj = (logC+(λj)− C−(λj))
−2. (4.103)

The failure probability of interest is then obtained by setting λ to one

pF (1) ≈ q̂ exp[−â(1− b̂)ĉ] (4.104)

for estimated parameters q̂, â, b̂, and ĉ.
Even though according to authors, the Levenberg-Marquardt method generally works well,

they recommend a simplification of Equation (4.102) by fixing parameters b and c and evaluat-
ing parameters a∗ and q∗. The parameter a∗ is obtained via

a∗(b, c) = −
∑M

j=1 wj(xj − x̄)(yj − ȳ)
∑M

j=1wj(xj − x̄)2
, (4.105)

where yj = log p̂F (λj), xj = (λj − b)c, x̄ =
∑M

j=1 xj/M , and ȳ =
∑M

j=1 yj/M . The logarithm
of q∗ is then evaluated by

log q∗(b, c) = ȳ + a∗(b, c)x̄. (4.106)

Authors use the Levenberg-Marquardt method on the function F̃ (b, c) = F (q∗(b, c), a∗(b, c), b, c)
to find the optimal values of parameters b∗ and c∗. The corresponding parameters a∗ and q∗ are
then calculated from Equations (4.105) and 4.106.

We have to remark that we could not use the Levenberg-Marquardt least-squares optimiza-
tion algorithm for searching for the parameters. Instead of it, we used the Trust region reflective
algorithm since the Levenberg-Marquart least-squares optimization does not use the bounds for
the inputs. However, if the b parameter is smaller than any λj , the xj part of the simplification
becomes a complex number since the mantissa (λj−b) of the exponential function is a negative
number, and this negative number is then raised to the power of c, which is a real number. We
also had to restrict the parameters from below. If the algorithm found the optimum with the
parameters in the order of magnitude larger than 3, the probability of failure becomes NaN. It
seems that the minimized function F̃ (b, c) has several local optima or the problem is multimodal
in our testing benchmarks, especially in Example 4 in Section 7.
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Figure 4.21 shows an illustrative example with a rod under tension depicted in Figure 4.6.
The first row of images presents the samples in the random X-space; the red dots are samples
in the failure domain; the blue dots are samples in the safe domain. The green line shows
the original unscaled limit state g(x) = 0. The first image in this row depicts the original
Monte Carlo simulation with corresponding λ equal to one. The rest of images in this row show
samples with scaled limit state function values; the samples in the random X-space remain
unchanged since the scaling is carried out only in the space of the limit state function responses.
The second row of images shows the histogram of the limit state function responses normalized
into the probability density function appearance. These histograms correspond to samples and
λ factors in the first row of images. The histograms have the same shape; their modification
is carried out as translation closer to the failure domain, that is mathematically expressed as
g(x) ≤ 0. The bottom image shows a graph with a scaling factor λ and the corresponding
probability of failure p̂F (λ). The red points show the pairs of [λ,p̂F (λ)] from images above.
The blue curve represents a fitted curve from Equation (4.99), where the value with λ equal to
one is an approximation of the desired probability of failure. The green curve shows the Monte
Carlo simulation with a very high number of samples, and therefore it should be very close to
the correct solution. The magenta cross shows the analytical solution. The parameters [q̂, â, b̂, ĉ]
are approximated as [4.25 · 10−18,−19.75, 13.85, 24.20] and therefore the approximation of the
probability of failure p̂F is equal to 1.595 · 10−2. The number of samples in the Monte Carlo
simulation is equal to 500.

This methodology is also capable of solving system reliability analysis, as was published
in the pioneering paper [136]. The extended parameterized class of limit state functions in
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Figure 4.21: A rod under tension: Enhanced Monte Carlo simulation of the problem with two
random variables - the capacity R ∼ N(550, 50) and the demand S ∼ N(300, 100).
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Equation (4.96) becomes

gj(X, λ) = gj(X)− (1− λ)E[gj(X)], (4.107)

where j-index corresponds to the j th limit state function. The probability of failure for a series
system is then

pF (λ) = Prob

[
np⋃

j=1

(gj(λ) ≤ 0)

]
. (4.108)

In contrast, the probability of failure for a parallel system becomes

pF (λ) = Prob

[
np⋂

j=1

(gj(λ) ≤ 0)

]
; (4.109)

in both system reliability problems, np is a number of limit state functions. The combination of
parallel-series systems is accomplishable as well.

Asymptotic sampling developed by Christian Bucher is based on a similar concept of ex-
trapolation of the probability of failure. Both methods were published in the same year – 2009.
The difference between the Enhanced Monte Carlo simulation and the Asymptotic sampling
is that the formerly mentioned method eMC scales only the responses of the limit state func-
tion, the latter mentioned method AS scales the random variables. The Enhanced Monte Carlo,
therefore, simulates only one Monte Carlo simulation and scales the responses of the limit state
function in the post-process. The Asymptotic sampling needs several sequential simulations
since it scales the inputs into the limit state function as the pre-process.

4.4.6 Scaled sigma sampling (SSS)
The Scaled sigma sampling methodology is based on fitting the relation of traditional numerical
integration for failure probability evaluation by sequential Importance sampling with increasing
standard deviations. SUN et al. published it in [185] as the novel methodology. The original
problem of the failure probability is defined as

pF = Prob[x ∈ F ] =

∫

F

f(x)dx, (4.110)

which means that the failure probability pF is defined as the probability of events x that lie
in the failure domain F . This occurrence is also possible to express through the integration
of the probability density function f(x) over the failure domain F . The probability of fail-
ure is theoretically possible to evaluate by traditional numerical integration, which divides the
D-dimensional random X-space into a union of disjoint hypercubes. For each hypercube i,
a representative point x(i) is selected inside the hypercube. If a volume of the hypercube i is ωi,
then the probability of failure is possible to approximate as

pF ≈
∑

x(i)∈F
f(x(i))ωi. (4.111)

Introducing the indicator function IF (x(i)) equal to 1 if the x(i) is in the failure domain F and
equal to 0 otherwise; the probability of failure pF is approximately

pF ≈
N∑

i=1

IF (x(i))f(x(i))ωi, (4.112)
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where N is a number of hypercubes. If all variables are divided into the equal number of
intervals n, the number of hypercubes is equal to nD. This traditional numerical integration is,
therefore, unaffordable for a large number of variables. SUN et al. in [185], therefore, suggest
approximating this relation with a linear regression through a sequential Monte Carlo simulation
with an increasing standard deviation. They use a probability density function of a joint normal
distribution with zero mean and equal standard deviation for all variables σ

h(x) =
1

(σ
√

2π)D
exp

[−||x||2
2σ2

]
. (4.113)

Operator || · || denotes the Euclidean norm. Substitution this probability density function into
Equation (4.111) and assuming that all volumes of hypercubes ωi are identical ω one obtain

pF,h ≈
ω

(σ
√

2π)D

∑

x(i)∈F
exp

[−||x(i)||2
2σ2

]
. (4.114)

The subscript h in pF,h denotes the substitution of the probability density function h(·) into
Equation 4.111. Calculating the logarithm of both sides in Equation 4.114 and approximating
log-sum-exp operator as the maximum we get

log pF,h ≈ log
ω

(2π)
D
2

−D log σ + max
x(i)∈F

[−||x(i)||2
2σ2

]
(4.115)

The previous equation is possible to substitute with α, β, and γ parameters to obtain

log pF,h ≈ α + β log σ +
γ

σ2
(4.116)

α = log
ω

(2π)
D
2

(4.117)

β = −D (4.118)

γ = max
x(i)∈F

[
−||x

(i)||2
2

]
. (4.119)

The above equation shows the relation between the scaled failure probability log pF,h and the
standard deviation σ, which is possible to understand as a scaling factor. The search for pa-
rameters α, β, and γ is, however, problematic due to the lack of knowledge about the failure
region. Therefore, SUN et al. in [185] fit the analytical model in Equation (4.116) by linear
regression for different scaling factors σ and corresponding scaled failure probabilities log pF,h.
The original probability of failure pF is then approximated as extrapolation

pF ≈ exp[α + γ]. (4.120)

The maximum likelihood estimation fits the model in Equation (4.116). The number of
sequential Monte Carlo simulations is set in advance as Q as well as the values of the standard
deviations σq for q = 1, 2, . . . , Q. For each σq, a probability density function h(x) is sampled
with setting σ = σq and with Nq samples. The limit state function is evaluated Nq times for
each q Monte Carlo simulation and the probability of failure is estimated as

pMC
F,h,q =

1

Nq

Nq∑

n=1

I[x(n)]. (4.121)
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For each estimation of pMC
F,h,q a variance of the estimator is evaluated

Var pMC
F,h,q =

1

Nq

pMC
F,h,q(1− pMC

F,h,q). (4.122)

With this information, the maximum likelihood estimation of parameters [α, β, γ] arranged into
a vector Θ is estimated from relation

Θ = (ATΣ−1h A)−1ATΣ−1h log PMC
F,h . (4.123)

The matrix A contains standard deviations used as scaling factors of Monte Carlo simulations
arranged as

A =




1 log σ1 σ−2
1

...
...

...
1 log σQ σ−2

Q


 , (4.124)

the covariance matrix Σh is arranged as

Σh = diag

[
Var pMC

F,h,1

(pMC
F,h,1)2

, . . . ,
Var pMC

F,h,Q

(pMC
F,h,Q)2

]
, (4.125)

and the logarithm random variable log PMC
h is adjusted as

log PMC
F,h =

[
pMC
F,h,1, . . . ,p

MC
F,h,Q

]T
. (4.126)

This approach is quite similar to the Asymptotic sampling, which also extrapolates the prob-
ability of failure from several Monte Carlo simulations with different scaling factors projected
into the standard deviations. The difference is in the model of extrapolation and its fitting.
An Asymptotic sampling utilizes only reliability indices and the scaling factors from Monte
Carlo simulations with a sufficient amount of samples in the failure domain. These pairs create
the support points for the model in Equation (4.85), and subsequently, Asymptotic sampling
parameters are predicted by a linear regression model written in Equation (4.86). While the
Scaled sigma sampling methodology utilizes more information from Monte Carlo simulations,
not only the probability of failure and the scaling factors as in the Asymptotic sampling but also
a variance of the failure probability estimator is included into the fitting of the model in Equa-
tion (4.116). The estimators log PMC

F,h are therefore weighted by the inverse of the covariance
matrix Σh. This means that the large variance of the estimator log PMC

F,h reduces its influence to
parameter fitting in Θ.

The probability of failure was evaluated for the illustrative example as well as for the other
reliability assessment methods; a rod under tension depicted in Figure 4.6. The number of all
structural analyses was set to 5,000, and the scaling factor σq was set to [2,3,4,5,6]. Figure 4.22
(left) shows all sequential sampling sets (called generations 1 - 5) differentiated from each other
with different colours. Each sampling set is sampled via a Monte Carlo simulation with differ-
ent scaling factors. The problem was sampled in the standard normal space and subsequently
transformed into the target space for evaluation of the limit state function purposes as well as
for the illustrative purposes. The teal line represents the limit state dividing the space into the
safe and the failure region. Figure 4.22 (right) shows the pairs of scaling factor σq together
with log value of the failure probability for each generation log pMC

F,h,q. Those pairs were inter-
posed by an approximation curve (blue curve), and the approximation of the failure probability
estimator is read for the scaling factor σq equal to 1. The probability of failure estimator is
equal to 6.49 · 10−3, and the corresponding reliability index is equal to 2.484 for this particular
simulation.
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Figure 4.22: A rod under tension: Scaled sigma sampling of the problem stress-strength
model with two random variables - the capacity R ∼ N(550, 50) and the demand S ∼
N(300, 100). The probability of failure estimator is equal to 6.49 · 10−3 and the corresponding
reliability index is equal to 2.484. The maximum likelihood estimation of parameters [α, β, γ]

arranged in the vector Θ is equal to [−1.1430; 0.0792;−3.8945].

4.4.7 Comparison of individual methods for a rod under tension example

An illustrative example for all reliability assessment methodologies has the following inputs.
The capacity is a normally distributed random variable with a mean µR equal to 550 MPa and
a standard deviation σR equal to 50 MPa. The demand is also a normally distributed random
variable with a mean µS equal to 300 MPa and a standard deviation σS equal to 100 MPa. The
limit state function is defined as the difference between the capacity R and the demand S

g(R, S) = R− S. (4.127)

Methodology g(x)-calls β pF

AS 10,240 2.111 1.74 · 10−2

eMC 500 2.949 1.60 · 10−3

FORM 10 2.236 1.27 · 10−2

IS 1,000 2.241 1.25 · 10−2

MC 10,000 2.238 1.26 · 10−2

SSS 5,000 2.484 6.49 · 10−3

SS 15,000 2.206 1.37 · 10−2

Table 4.5: A summary of all the results for the stress-strength model obtained using all the
reliability methods described in this chapter. Abbrevs.: AS - Asymptotic sampling, eMC -
Enhanced Monte Carlo simulation, FORM - First-order reliability method, IS - Importance
sampling, MC - Monte Carlo simulation, SSS - Scaled sigma sampling, and SS - Subset
simulation.
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Figure 4.23: A rod under tension: Histograms for 100 run of reliability assessment methods.
The red filled circle represents the analytical solution.

The analytical solution is evaluated in Section 4.2, the probability of failure pF is equal to
1.2674 · 10−2 and the adequate reliability index β is equal to 2.23607. However, the summary
table for all results, Table 4.5, shows that the same number of calls to the g(x) function was not
set, either for illustrative or other reasons. Therefore, for a real comparison of all mentioned
methods run for this example, we selected 12,000 simulations in each simulation method, and
we ran each method 100 times. Table 4.6 shows the minimum and maximum achieved β-indices
as well as their mean and standard deviation from 100 run. Figure 4.23 depicts the histograms
of the reliability indices for all used methods together with the red filled circle representing
the analytical solution. The setting of each method is in the legend for possible reproduction
of the results. The only FORM method, as a representative of approximation methods, does
not have the possibility of setting the number of the limit state function simulations. But since
the illustrative example has a normally distributed variables and a linear limit state function, the
FORM results are equal to the analytical solution. However, if the space were different from the
normal space and / or the limit state of the function was non-linear, then the error rate of FORM
would increase. The best results omitting FORM were gained with the Importance sampling

Methodology min β max β Eβ std β g(x)-calls
AS 2.148 2.302 2.237 0.031 12,000
eMC 2.204 2.249 2.233 0.009 12,000
FORM 2.236 2.236 2.236 3.438 · 10−15 10
IS 2.235 2.238 2.237 0.001 12,000
MC 2.236 2.252 2.242 0.004 12,000
SSS 2.151 2.347 2.246 0.038 12,000
SS 2.196 2.282 2.238 0.020 12,000

Table 4.6: A statistical comparison of results for a stress-strength model obtained with different
reliability assessment methods. Setting of the methods: Asymptotic sampling (AS): N0 =

10,m = 2000, ϕ = 0.7, ϕd = 0.95.K = 5; enhanced Monte Carlo simulation (eMC): λ =

[0.8, 0.6, 0.4]; First-order reliability method (FORM): HLRF, central differentiation; Importance
sampling (IS): DP via fmincon; Monte Carlo simulation (MC): - ; Scaled sigma sampling (SSS):
σq = [1.2, 1.36, 1.52, 1.68, 1.84, 2]; Subset simulation (SS): pF,i = 0.1, N = 6, 000. The color
scale shows the best (green) to worst (red) results in terms of the reliability index standard
deviation for 100 run.
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followed by the quasi-Monte Carlo simulation. The latter method is precise since the probability
of failure is relatively large and therefore Monte Carlo simulation need only a small number of
limit state function simulations. On the other side, the Scaled sigma sampling method got the
largest spread of the reliability index results followed by the Asymptotic sampling. Both these
methods are based on the same idea of extrapolating the probability of failure or the reliability
index, respectively, from several Monte Carlo simulations with different standard deviations of
the variables. They differ in the extrapolating model of the probability of failure or reliability
index, respectively. This could be the reason for the similar results.
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Chapter 5
Surrogate models

Parts of this chapter are reproduced from the author’s contributions [87, 88, 89, 134, 149, 151,
154].

Surrogate models can be divided into two fundamental parts: (i) non-interpolating models
minimizing the sum of squared errors from some predetermined functional form (e.g. poly-
nomial surfaces) and (ii) interpolating models intersecting all support points based on an idea
of a linear combination of some basis functions. Interpolating models can contain fixed basis
functions (e.g. thin-plate splines or multiquadrics) in Radial basis functions model or basis
functions to be tuned, e.g. Gaussian basis in Radial basis functions model or Kriging [96].

5.1 Radial Basis Functions model

A Radial Basis Functions model (RBF) approximates a complicated but smooth and continuous
true function or produces an estimate to an unknown function from a set of input data. The
approximation is made by evaluation of easier basis functions using input dataset, multiplying
these results by weight coefficients and summing them together. For noise-free data, the model
is typically of the form

ŷ(x) = wTψ =
nc∑

i=1

wiψ(||x− c(i)||), (5.1)

where w is a weighting vector, ψ is a vector of length nc holding evaluated basis functions on
Euclidean distances between the prediction x and centres of basis functions c. The Euclidean
norm is evaluated as

||r|| =

√√√√(
ne∑

i=1

r2
i ) (5.2)

for a vector r with ne elements. Other metrics are possible; however, the Euclidean metric is
quite often used.

The basis functions are symmetric due to the Euclidean norm [28] and centred on a set of
support points [74]. Basis functions can be fixed or parametric (to be tuned) and are chosen by
the user according to the type of the original function. Table 5.1 and Figure 5.1 show frequently
used functions. An optimization algorithm can found parameters of these bases.
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Fixed bases
linear ψ(r) = r

cubic ψ(r) = r3

thin plate spline ψ(r) = r2 ln[r]

Parametric bases
Gaussian ψ(r) = exp [−r

2

σ2 ]

Hardy multiquadrics ψ(r) =
√
r2 + σ2

Inverse multiquadrics ψ(r) = 1√
r2+σ2

Inverse quadrics ψ(r) = 1
r2+σ2

C0 Matérn ψ(r) = exp [−σr]
C2 Matérn ψ(r) = (1 + σr) exp [−σr]
C4 Matérn ψ(r) = (3 + 3σr + (σr)2) exp [−σr]

Table 5.1: Radial basis functions according to [73], [74], [82], [145], [164]

A Gaussian radial basis function is one of the most common choices; however, several
variants of a definition of Gaussian basis exist. The difference is mainly in the definition of
a scaling parameter σ (in some literature called shape parameter). Other variants are for example
exp [−r

2

2σ2 ], exp [f − (σr)2] or exp [−σr2]. For the Gaussian basis defined in Table 5.1, Figure 5.2
plots different scaling parameters σ. According to [137], the approximation of parameter σ can
be computed as

σ =

√
dmax

nd
√
nd · nc

(5.3)

where dmax is a maximum distance among the data and nd is the number of dimensions equiv-
alent to the number of variables. This formula represents how large would be a space around
each point in DoE if the points in DoE had been optimally uniformly distributed.

Centres of basis functions can be identical to the Design of Experiments c(i) = x(i). This
DoE is then used as a set of training data. It is necessary to evaluate the original function y(x)
in the training dataset, assemble DoE to the Gram matrix Ψ and solve the linear system of
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Figure 5.1: Commonly used radial basis functions listed in Table 5.1.
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Figure 5.2: Gaussian radial basis functions with different scaling parameter setting.

equations
nc∑

i=1

wiψ(||x(j) − x(i)||) = y(x(j)), j = 1, . . . , nc. (5.4)

to obtain parameters in a weighting vector. Equation (5.4) can be rewritten in a matrix form as

Ψw = y (5.5)

where each element of the Gram matrix Ψ is Ψi,j = ψ(||x(i) − x(j)||), where i, j = 1, . . . , nc
and nc is a number of points in the DoE, fully rewritten as

Ψ =




ψ(||x(1) − x(1)||) ψ(||x(1) − x(2)||) · · · ψ(||x(1) − x(nc)||)
ψ(||x(2) − x(1)||) ψ(||x(2) − x(2)||) · · · ψ(||x(2) − x(nc)||)

...
... . . . ...

ψ(||x(nc) − x(1)||) ψ(||x(nc) − x(2)||) · · · ψ(||x(nc) − x(nc)||)


 . (5.6)

This Gram matrix is symmetric and positive definite, e.g. for the Gaussian basis functions or
the inverse multiquadrics [74, 191]. Therefore, Cholesky decomposition is advantageous to
use for small and moderate problems. Iterative methods can solve large-scale problems. The
Gram matrix can also be preconditioned. It is also worth mentioning, that if points in the
training dataset are very close to each other, it can cause ill-conditioning of the Gram matrix
and problems with Cholesky decomposition [74].

Radial basis functions model can be represented as a network structure with one hidden
layer; the example of the representation is depicted in Figure 5.3. The input layer contains
the data x̄(1), . . . , x̄(J), where the prediction of the meta-model is desired. The number of the
data is identical to the number of nodes in this input layer. The data is then distributed to
the next hidden layer, and it comprises evaluated basis functions for the Euclidean distances
between the data for the response prediction and the centres of basis functions, where the meta-
model is trained. The number of nodes is identical to the number of centres. Each of the
nodes contains a scalar value for one particular node from the input layer. The evaluated basis
functions are passed into the output layer via weighted connections, and the weighted values of
basis functions are summed to the final prediction of the meta-model ŷ(1), . . . , ŷ(J). The output
layer contains as many nodes as the input layer and is independent of the number of nodes in
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Figure 5.3: Diagram showing the Radial basis function model as a network structure.

the hidden layer, which corresponds to the number of centres. In case that the training data are
identical to the centres of the bases, i.e. the number of centres is identical to the number of the
data where the meta-model is trained, then the number of nodes in the hidden layer is identical
to the number of nodes in the input/output layer, i.e. nc is equal to J .

5.1.1 Global meta-models
The first model that we have used is the classical model that contains all information from all
DoE points. This model satisfies everything that is described in the previous section. Therefore,
it comprises links between all support points, where the links are represented by elements in
a dense Gram matrix. Figure 5.4 shows a 2-dimensional illustrative example with 20 points in
DoE, the image on the left depicts this DoE, and the right part represents the visualisation of the
sparsity pattern of the Gram matrix constructed from the DoE. The large green dot represents
one construction sample. In the dense global meta-model, the whole DoE creates the influence
domain for all points; therefore the influence domain covers all points in DoE (magenta circles).

5.1.2 Sparse global meta-models
The influence of the point diminishes with the increasing distance from the point. This means
that the distant construction samples have a little impact on one another. If the domain is large,
as it is for the optimization tasks, the global meta-model would need a large number of points
in DoE to describe the whole space and the dense matrix would have large memory demands.
Therefore, instead of utilizing all links between all support points, each support point has its
influence domain in the closest neighbourhood, and other points outside the influence domain
are omitted. The resulting Gram matrix is, therefore, sparse and should be faster to solve.

Two possible algorithms exist for finding the influence domain. The first one is a range
search algorithm; this algorithm selects all points lying inside the sphere with a perimeter rs
and the centre of the sphere in the query point Q identical to the ith support point. The second
one is a k-nearest neighbour algorithm (k-NN), a frequently used tool for classification. The
closest point from DoE to the query point Q is called the nearest neighbour nn(Q). For this
point, it holds [196]

nn(Q) = P ∈ DoE | ∀P ′ ∈ DoE : ||P −Q||2 ≤ ||P ′ −Q||2, (5.7)
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Figure 5.4: Influence domain for classical RBF and the sparsity pattern visualization of
a Gram matrix for a global meta-model. Abbreviations: nz - number of nonzero elements.

where P is the nearest neighbour, and P ′ is any point from DoE. The distance is then evaluated
as

nndist(Q) = ||nn(Q)−Q||2. (5.8)

The k-NN algorithm finds k-closest points in the DoE to the query pointQ, that is again identical
to the ith support point. Algorithms for the range search as well as for the k-NN algorithm use
the same algorithms in MATLAB according to [128]. A kd-tree is used if DoE is not sparse, the
dimension is less than or equal to 10, and the metric is Minkowski

d = p

√√√√
nd∑

j=1

|xj − yj|p, (5.9)

where d is the distance, nd is a dimensionality of the problem, x is a point from DoE and y
is a query point. Special cases of Minkowski metric are the City Block metric (also called the
Manhattan metric) with p equal to 1, the Euclidean metric with p equal to 2 and the Chebychev
metric with p equal to ∞. If DoE is sparse, the dimension of the problem is greater than ten,
and the metric is different from the Minkowski, the exhaustive search is used. The exhaustive
search evaluates the distances from the query point to each point in DoE, the list of points is
sorted in ascending order according to the distances, the k number of points is selected, and the
list with selected points is returned as a result. The dimensionality greater than 10 is critical to
the similarity searches methods [196], tree-based algorithms are even slower than a brute-force
search in which the exhaustive search belongs to as well.

In our work, we use the radial basis functions model with Gaussian basis. The maximal
range rs taken into account as influential is possible to relate to the scaling parameter σ. The ba-
sis exp [−r

2

σ2 ] can be identified with the weight of the point. Therefore, the influential order x of
this weight is considered as in the relation

10−x = exp

[−r2

σ2

]
. (5.10)
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Figure 5.5: Influence domain for sparse global RBF using a range search algorithm and
sparsity pattern visualization of a Gram matrix for a sparse global meta-model. Abbreviations:
nz - number of nonzero elements.

After some easy math, we obtain

− x ln[10] =
−r2

σ2
. (5.11)

The influential distance r is made identical to the perimeter of the sphere rs as

rs ≈ σ
√

2.3x. (5.12)

In practice, if we want to consider as influential distances given to seven decimal places as
nonzero, we set x equal to seven. All other distances will be neglected and therefore considered
in the Gram matrix as zero if the matrix is dense or not considered at all if the matrix is sparse.

Figure 5.5 on the left shows the same DoE as Figure 5.4 with identical construction samples.
The right part of this figure is dedicated to the sparse Gram matrix. For one particular con-
struction sample, the influential perimeter of the sphere is evaluated, and the range-algorithm
determines points inside this sphere. These points are influential for the ith construction sample.
Then, the next point of the DoE is selected and another influential set of samples is selected
for the same influential perimeter. The algorithm terminates when all design samples have
their influence domains. Specifically, Figure 5.5 depicts the 1st construction sample (the large
green dot) with influence domain depicted by the grey dot-and-dash circle and defined by points
D1 ∈ (1, 2, 12, 13, 14) represented by magenta circles, which appears in the sparse Gram ma-
trix by filling the first row and the first column in these positions. Other distances are omitted.
Note, that the range search algorithm variant of the sparse Gram matrix provides a symmetric
and positive definite matrix which is decomposable by the Cholesky decomposition. Another
interesting aspect is that the number of points differs in the influence domain for each construc-
tion point. If the influential perimeter is set too narrow, the influence domain contains only the
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Figure 5.6: Influence domain for sparse global RBF using a k -NN algorithm and sparsity
pattern visualization of a Gram matrix for a sparse global meta-model. Abbreviations: nz -
number of nonzero elements.

particular construction point. On the other side, if the perimeter is set to the distance between
the most distant points, all points will be placed in the influence domain, and the Gram matrix
will be dense.

Figure 5.6 shows the selection of the points in the influence domain for a k-NN algorithm.
This algorithm always keeps k number of points in each influence domain for each construction
point. This provides an advantage that the number of filled positions in the Gram matrix is
known in advance and do not vary. On the other side, the matrix is not always symmetric,
as apparent from the right side of Figure 5.6. To show the difference between Gram matrices
constructed using the range search and k-NN algorithm, we selected the number of influence
points equal to five. This number of points is identical to the number of influence points for the
first construction sample in the example with the range search algorithm in Figure 5.5. These
points have an impact on the sparse Gram matrix by filling the first row in these positions.
Other distances are omitted. Note that the first column is not filled identically as the first row
and therefore the matrix is not symmetric. The same phenomenon may occur in other rows and
columns.

5.1.3 Local meta-models
Local meta-models are constructed only in the influence domain. They use a similar idea as
sparse meta-models; however, the idea about omitting the non-interesting domain goes further.
As being said, the domain for the optimization is extensive. The area for the reliability as-
sessment around the potential optimum is much narrower. Therefore, local meta-models are
constructed only with samples in this area in contrast to sparse global meta-models that uti-
lize the influence area only for ith construction sample. The Gram matrix is smaller in con-
trast to a global meta-model and dense in contrast to a sparse global meta-model. Specifically
for Figure 5.7 on the left, if the first point of a DoE (green filled circle) is a potential op-
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timum, the influence domain for whole local meta-model is chosen by a k-NN algorithm as
D1 ∈ (1, 2, 12, 13, 14) (the magenta circles). Other samples of DoE are omitted (only blue dots
without any other specification). After this selection of influence domain, the local meta-model
is constructed in the same manner as the dense global meta-model. Therefore, the Gram ma-
trix has only five rows and five columns for this illustrative example. For a different potential
optimum, it is necessary to choose its influence domain by a k-NN algorithm and construct
a different local meta-model. The advantage of local meta-models is that the Gram matrix is
smaller than for a global meta-model and the solving of the linear equation system is fast, and
it has fewer memory demands. The disadvantage is that the span of the influence domain has to
be selected in advance and the meta-model needs to extrapolate for the choice of a too narrow
area.

5.1.4 Implementation details
Since the meta-model construction and its evaluation takes a significant portion of evaluation
time, we had to optimize the implementation. The steps of the procedure (pseudocode) are as
follow:

1. Find a Design of Experiments as a dataset X for a meta-model construction and evaluate
the original function y(x) in the dataset X.

2. For the selected basis function, assemble the Gram matrix Ψ for centres of basis functions
identical to the dataset X.

3. Evaluate weights w = Ψ−1y.

4. Find a Design of Experiments Z in which the meta-model should predict the model be-
haviour.
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5. Evaluate the response of the meta-model by ŷ(z) =
∑nc

i=1wiψ(||z− c(i)||).

For a complicated original model, the most time-consuming part is its evaluation in the dataset X.
If the parameter of the Gaussian basis functions is estimated by Equation (5.3), the second most
time-consuming part is a calculation of the interpoint distances, which are requisite in Step 2 as
well as in Step 5 of the pseudocode above. The next place regarding the consumed computa-
tional time is for the linear equation solving for weight evaluation in Step 3.

Interpoint distances

Assume a Design of Experiments as a dataset for a meta-model construction stored in a ma-
trix X and a set of samples for a meta-model prediction stored in a matrix Z, both in d-
dimensional space. We need to compute the distances between any point in X and any other
point in Z, or vice-versa. The basic and the most straightforward evaluation of these interpoint
(pairwise) distances is via three embedded for-loops. The outer loop runs over the number of
points in X (line 5-9 in the following code), the inner loop runs over the number of points in
Z (line 6-8), and the third hidden loop is vectorized via dimensions of the problem (line 7).
Unfortunately, this code is slow because of the mentioned for-loops.

Fundamental evaluation of interpoint distance via three for-loops
1 function distMat_2 = distance2_basic(X,Z)
2 numInX = size(X,1); % number of points in X
3 numInY = size(Z,1); % number of points in Z
4 distMat_2 = zeros(numInX,numInZ); % preallocation
5 for i = 1:numInX
6 for j = 1:numInZ
7 distMat_2(i,j) = sum((X(i,:)-Z(j,:)).^2);
8 end
9 end

10 end

The interpoint distances are evaluated in the meta-model assembly and subsequent meta-
model evaluation. Since we use Gaussian parametric bases, where Euclidean distances are
raised to the power of two, see Table 5.1, the output matrix containing distances are squared in
all compared distance functions.

Method A: MATLAB standard pdist2 algorithm Method A uses a MATLAB algorithm
distMat = pdist2(X,Z), which returns a matrix distMat with the Euclidean distances be-
tween each pair of observations in the matrix X and Z, where rows correspond to observations
and columns correspond to variables [129]. The algorithm itself is unfortunately inaccessible
due to conversion of an m-file into a mex-file, and therefore whole evaluation routine is hidden
in pdist2mex. This mex-file version of pdist2 has been used since MATLAB version R2010a.

distance2_A.m file
1 function distMat_2 = distance2_A(X,Z)
2 numInX=size(X,1); % number of points in X
3 numInY=size(Z,1); % number of points in Z
4 distMat = zeros(numInX,numInZ); % preallocation
5 distMat = pdist2(X,Z); % MATLAB pairwise distance calculation
6 distMat_2 = distMat.*distMat;
7 end
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Method B: bsxfun version Method B was proposed in [182]. Here, xi is used as a vector
in X and zj as a vector in Z. The squared distance dij between xi and zj is

d2
ij = ‖xi − yj‖2 = ‖xi‖2 + ‖zj‖2 − 2 < xi, zj >, (5.13)

where < ·, · > is a dot product. The squared distance d2
ij can be considered as an entry of the

matrix D2. Therefore, the formula in matrix form can be written as:

D2 = x̄1′ + 1z̄′ − 2X′Z (5.14)

where, x̄ is a column vector of squared norms of all vectors in X. Equation (5.14) can be
easily implemented in MATLAB just by one line, see line 5 of the following code. The MAT-
LAB function C = bsxfun(fun,A,B) applies the element-wise binary operation specified by
the function handle fun to arrays A and B.

distance2_B.m file
1 function distMat_2 = distance2_B(X,Z)
2 numInX=size(X,1); % number of points in X
3 numInY=size(Z,1); % number of points in Z
4 distMat_2 = zeros(numInX,numInZ); % preallocation
5 distMat_2 = bsxfun(@plus,dot(X,X,2),dot(Z,Z,2)’)-2*(X*Z’);
6 end

Method C: two helper matrices This approach was proposed in [125] as the fastest among
other comparable algorithms. It is based on a matrix multiplication (line 15 in the following
code) of two matrices that are composed of addends from Equation (5.13) stepwise for all
dimensions via for-loop as

helpA = [ 1, −2 ·X1, X2
1, . . . 1, −2 ·Xn, X2

n ],
helpB = [ Z2

1, Z1, 1, . . . Z2
n, Zn, 1 ],

where a lower index in matrices X and Z means the particular dimension.
distance2_C.m file

1 function distMat_2 = distance2_C(X,Z)
2 numDim=size(Z,2); % number of dimensions
3 numInX=size(X,1); % number of points in X
4 numInY=size(Z,1); % number of points in Z
5

6 helpA = zeros(numInX,3*numDim); % preallocation
7 helpB = zeros(numInZ,3*numDim); % preallocation
8 for idx = 1:numDim
9 helpA(:,3*idx-2:3*idx) = ...

10 [ones(numInX,1), -2*X(:,idx), X(:,idx).^2 ];
11 helpB(:,3*idx-2:3*idx) = ...
12 [Z(:,idx).^2 , Z(:,idx), ones(numInZ,1)];
13 end
14 distMat_2 = zeros(numInX,numInZ); % preallocation
15 distMat_2 = helpA * helpB’;
16 end

Method D: one for-loop over DoE This method is a slightly modified version with two for-
loops. Here, the only for-loop runs over the number of samples in X, the rest of the code is
vectorized. Another version of line 6 is via bsxfun as already used in Method B as
d = sum(bsxfun(@minus,X(i,:),DoE).^2,2);

however, we obtained faster results with the proposed code.
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distance2_D.m file
1 function distMat_2 = distance2_D(X,Z)
2 numInX=size(X,1); % number of points in X
3 numInY=size(Z,1); % number of points in Z
4 distMat_2 = zeros(numInX,numInZ); % preallocation
5 for i=1:numInX
6 distMat_2(i,:) = sum((ones(numInZ,1)*X(i,:)-Z).^2,2);
7 end
8 end

Method E: one for-loop over MC Samples The method E is slightly modified version of the
method D. Here, the only for-loop runs over the number of samples in Z, the rest of the code is
vectorized using repmat function that repeats a copy of an array.

distance2_E.m file
1 function distMat_2 = distance2_E(X,Z)
2 numInX=size(X,1); % number of points in X
3 numInY=size(Z,1); % number of points in Z
4 distMat_2 = zeros(numInX,numInZ); % preallocation
5 for i=1:numInZ
6 distMat_2(:,i) = sum((X-repmat(Z(i,:),numInX,1)).^2,2);
7 end
8 end

Parallelization We implemented a parallelization of presented five methods A – E in MAT-
LAB environment via a parfor loop technology. Hardware and software parameters are spec-
ified in Table 11.1. The testing methodology setup has studied the influence of the number of
CPUs and the size of the batched data that are sent at once to CPUs on the performance of the
individual algorithms. A million random samples are evaluated for the distance calculation in
consecutive batches containing 100, 1, 000, 10, 000, and 100, 000 points, respectively. For the
sake of statistics, all data are averages out of 10 independent runs.

Obtained times are listed in Table 5.2. The first column describes the number of used CPUs;
a zero number is used for a serial version with a for-loop, in which MATLAB utilizes more than
one CPU by itself; one number is used for a parallel version using a single CPU. From the first
sight, methods A, B and C are faster than methods D and E; the method C is being the fastest
almost irrespective to the number of CPUs and batch sizes.

Figure 5.8 presents data for method A in a graphical format. The trends of other methods
in terms of obtained times are very similar. The deterioration caused by sending too much
data is visible in the case of 100, 000 sample batches. Figure 5.9 highlights the same trend
showing the speed-up for all four batch sizes. While using smaller batches, the linear speed-up
is obtained, reaching value above 6 for 8 CPUs. Figure 5.9 also shows an interesting point that
the MATLAB serial version using classical for-loop is able to use more processing units without
user intervention.

Another interesting issue is the bad performance of method E with small batches. Unfortu-
nately, MATLAB does not allow memory profiling and, therefore, it is difficult to deduce the
cause of the problem. We assume that MATLAB needs some additional memory for ten thou-
sand small batches that runs out of free memory. Except method C, all other methods need the
same amount of memory. Only method C uses two additional helper matrices.
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CPUs Batch A B C D E

0

1·105 26,2 18,3 15,4 60,8 24,5
1·104 30,2 25,0 15,1 60,5 34,3
1·103 30,3 24,9 19,0 51,3 62,9
1·102 30,2 18,3 26,1 52,3 275,2

1

1·105 68,9 63,2 61,9 103,8 85,7
1·104 68,7 65,7 60,2 104,8 84,9
1·103 65,0 62,0 57,8 91,8 101,7
1·102 68,5 59,8 58,1 82,9 294,8

2

1·105 35,8 33,8 32,3 55,1 44,1
1·104 36,0 33,1 30,8 53,6 43,9
1·103 34,6 31,4 31,3 48,2 52,9
1·102 35,5 31,7 30,7 43,2 151,8

3

1·105 28,2 26,3 25,3 42,1 34,8
1·104 24,5 23,0 21,1 36,4 29,6
1·103 23,7 21,9 21,5 32,6 36,2
1·102 25,3 23,0 21,8 29,8 102,8

4

1·105 21,7 21,2 19,8 32,2 27,0
1·104 18,7 17,8 16,4 27,9 22,9
1·103 18,4 17,1 16,6 24,8 27,5
1·102 19,3 17,8 16,7 22,8 78,3

5

1·105 15,5 24,8 14,5 22,7 20,4
1·104 15,5 14,7 13,6 22,9 18,9
1·103 15,3 14,4 13,8 20,6 22,8
1·102 16,3 15,0 14,0 19,1 65,7

6

1·105 16,8 82,0 14,3 22,3 22,2
1·104 13,5 13,1 12,0 20,0 16,6
1·103 13,0 12,5 12,0 17,5 19,4
1·102 13,9 13,0 12,0 16,3 55,5

7

1·105 80,3 95,4 149,4 110,1 50,7
1·104 11,5 11,5 10,4 17,0 14,2
1·103 11,3 11,0 10,6 15,2 16,9
1·102 12,2 11,4 10,5 14,1 47,8

8

1·105 137,7 310,3 260,4 225,5 88,3
1·104 10,4 10,5 9,4 15,3 12,7
1·103 10,0 9,8 9,4 13,5 14,9
1·102 10,8 10,2 9,5 12,7 42,0

Table 5.2: Obtained times in seconds for a different number of CPUs and size of batches for five imple-
mented algorithms A – E.

70



5.1. RADIAL BASIS FUNCTIONS MODEL

number of GPUs
1 2 3 4 5 6 7 8

tim
e 

[s
]

0

20

40

60

80

100

120

140

100000 evaluated samples
10000 evaluated samples
1000 evaluated samples
100 evaluated samples

Figure 5.8: Obtained times for method A and four sizes of batch data.

Comparison of sparse and dense RBF models

The Gram matrix of the sparse global meta-model is assembled in a slightly different man-
ner than the Gram matrix of the dense model, and therefore, not all of the interpoint distances
algorithms from Section 5.1.4 can be used. We made the comparison of the Gram matrices
assembling on Distance2_d.m algorithm version. Both models require X matrix with the cen-
tres of bases identical to the training points, sigma parameter as the scaling factor and lambda

parameter for a regularization. The output is the rbfs variable containing the Gram matrix.
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Figure 5.9: Speed-up for method A for four sizes of batch data.
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Optimization founds the σ parameter or its approximation can be calculated by Equation (5.3).
The regularization factor λ ensures that the Gram matrix is not singular1. The singularity of the
matrix can occur if two or more training points are identical. If the Gram matrix contains only
training points from a DoE created in advance, the user can easily eliminate this event. How-
ever, if an updating procedure adds new training points to DoE, these points can be identical
or almost identical to the original points in DoE, and the matrix becomes singular or close to
singular. The small positive constant λ is then added to diagonal entries of the Gram matrix Ψ
as Ψ + λI ensuring that any of the row or the column of the Gram matrix is not identical. The
singular matrix turns into the regular Gram matrix.

assembly_Gram_matrix function
1 function rbfs = assembly_Gram_matrix(X,sigma,lambda)
2 % inputs: X ... Design of Experiments corresponding to centres of bases,
3 % number of rows represents a number of points,
4 % number of columns represents a number of dimensions
5 % sigma ... scaling factor
6 % lambda ... regularization factor
7 % output: rbfs ... Gram matrix
8 numInX=size(X,1); % number of centres
9 rbfs = zeros(numInX,numInX);

10

11 for i=1:numInX
12 delta = sum(bsxfun(@minus,X(i,:),X).^2,2)’; % squared Euclid. dist.
13 rbfs(i,:) = exp( -delta./sigma); % Gaussian basis
14 rbfs(i,i) = rbfs(i,i) + lambda; % regularization
15 end

The assembling of the sparse Gram matrix utilizing k-NN algorithm is outlined in the fol-
lowing algorithm. The training points X, the scaling factor sigma, and the regularization factor
lambda have the same meaning as in the previous code. Besides, it is necessary to define the
number of nearest points in the influence domain K. A k-NN algorithm is used as the built-in
function from MATLAB and its ’Statistics and Machine Learning Toolbox’. The first input is
a matrix, the second input is a matrix of query points, and the third input defines that the fourth
input is a positive integer specifying the number of nearest neighbours K in the first input for
each point in the second input of this function. The Gram matrix is sparse, and therefore it is
necessary to save the position of the filled element by its row and column index and its value.
The memory is preallocated for row indices in variable sparse_x, for the column indices in
variable sparse_y and values of the element in variable sparse_vals. The number of nonzero
points is known in advance because of the k-NN algorithm and the fixed number of points in
the influence domain. The matrix is assembled and then converted into the sparse matrix by the
MATLAB command sparse(i,j,v) from triplets i, j, and v such that S(i(k),j(k))=v(k).
The last line performs regularization of the Gram matrix to ensure that this matrix is not singu-
lar.

assembly_sparse_Gram_matrix function
1 function rbfs = assembly_sparse_Gram_matrix(X,sigma,lambda,K)
2 % inputs: X ... Design of Experiments corresponding to centres of bases,
3 % a number of rows represents number of points,
4 % a number of columns represents number of dimensions
5 % sigma ... scaling factor
6 % lambda ... regularization factor

1A singular squared matrix is not invertible, and its determinant is equal to zero. The rank h(·) of the singular
matrix A with m rows and n columns h(A(m,n)) is lesser than min(m,n).
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7 % K ... number of points in the influence domain
8 % output: rbfs ... sparse Gram matrix
9 numInX=size(X,1); % number of centres

10 points_id = knnsearch(X,X,’k’,K); % map for the nearest points
11

12 % allocation of memory for sparse matrix
13 sparse_x = zeros(1,K*numInX);
14 sparse_y = zeros(1,K*numInX);
15 sparse_vals = zeros(1,K*numInX);
16

17 for i=1:numInX
18 delta = sum(bsxfun(@minus,X(i,:),X(points_id(i,:),:)).^2,2)’;
19 % delta ... squared Euclidean distances
20 rbfs_loc = exp( -delta./sigma); % Gaussian basis
21 indx = i*ones(1,length(points_id(i,:)));
22 sparse_x(1,(i-1)*K+1:i*K) = indx; % id of filled row positions
23 sparse_y(1,(i-1)*K+1:i*K) = points_id(i,:); % id of filled col. pos.
24 sparse_vals(1,(i-1)*K+1:i*K) = rbfs_loc; % values of filled positions
25 end
26

27 rbfs = sparse(sparse_x,sparse_y,sparse_vals); % sparse matrix assembly
28 rbfs = rbfs + sparse(1:numInX,1:numInX,lambda*ones(1,numInX));

Figure 5.10 shows the memory requirements for sparse and dense Gram matrices. The in-
fluence region contains 10% of the points from the whole domain in the nearest neighbourhood.
The comparison is made for hundred, thousand, and ten thousands of construction samples.
The memory requirements for hundred of samples are larger for a sparse Gram matrix than for
the dense Gram matrix. For other cases are memory requirements for a sparse Gram matrix
lesser than for the dense Gram matrix. The darkest shade of green is for hundred construction
samples; the last point of this curve represents the dense matrix since the influence domain also
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Figure 5.10: Memory requirements for the sparse Gram matrix and dense Gram matrix. 100,
1,000, and 10,000 construction samples were used. Dense Gram matrix is fully populated,
while the sparse Gram matrix utilizes influence region occupying the number of points on the
x-axis from the whole domain.
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contains a hundred of samples. The sparse container requires more space for storing the dense
matrix than the regular storage of a variable.

Solvers of the linear equation system

Sparse and dense RBF models were compared to achieve the best time savings. Three designs of
experiments were generated with a hundred, thousand, and ten thousand construction samples.
We chose a Cholesky decomposition to solve a system of linear equations with the dense Gram
matrix, while a conjugate gradient squared method (cgs) and the MATLAB mldivide function
(namely the Unsymmetric MultiFrontal PACKage) were used for the sparse Gram matrix.

Figure 5.11 shows the time spent on evaluation of weights by solving the system of linear
equations. Blue lines are for conjugate gradient squared method, the red lines are for Unsym-
metric MultiFrontal PACKage, and the green lines are for the Cholesky decomposition on the
dense matrix. The darkest shades are for hundred points, the middle shades for thousand points,
and the lightest shades for ten thousands of construction points. The horizontal axis represents
the number of points in the influence domain for the sparse Gram matrix. It is efficient to use
sparse Gram matrices together with Unsymmetric MultiFrontal PACKage only for hundred of
construction samples, designs of a larger number of construction samples are more efficient to
solve by sparse matrices with a conjugate gradient squared method. Evaluation of weights with
the Cholesky decomposition was most computationally intensive in comparison with the other
solvers for the same number of construction samples.

Since the size of the influence domain does not affect only the computing time but also
the precision of the result, we measured the root-mean-square error (RMSE) of the response ŷ
obtained from the dense Gram matrix between the sparse solver and the Cholesky decomposi-
tion on the same testing dataset represented in Figure 5.12. Above fifty points in the influence
domain, the Unsymmetric MultiFrontal PACKage provides the same results as the Cholesky de-
composition and the RMSE is zero. The conjugate gradient squared method was faster but the
precision is worse in comparison with the Unsymmetric MultiFrontal PACKage; nevertheless,
4% error is acceptable for thousand and ten thousand of construction points with more than 20
points in the influence domain. The RMSE would probably be zero for a large number of steps
but at the expense of the computational time.
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Figure 5.11: Time for RBF weights evaluation.

74



5.2. KRIGING

Number of points in influence domain
20 40 60 80 100 120 140 160 180 200

R
oo

t-
m

ea
n-

sq
ua

re
 e

rr
or

 [-
]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
100 con. samples: Matlab mldivide
1,000 con. samples: Matlab mldivide
10,000 con. samples: Matlab mldivide
100 con. samples: cgs
1,000 con. samples: cgs
10,000 con. samples: cgs

Figure 5.12: RMSE between dense and sparse RBF.

5.2 Kriging
Kriging is very often called the DACE stochastic process model where DACE is an abbreviation
for Design and Analysis of Computer Experiments. In different research areas, this process has
several names. It is called e.g. Kriging [41] in mathematical geology and Bayesian global
optimization [97, 210] or Random function approach [15] in global optimization. Kriging was
originally developed by the South African mining engineer D.G. KRIGE in the early fifties. In
the 1960s, the French mathematician G. MATHERON [126] gave theoretical foundations to this
method and named the method after KRIGE [74].

The value of a response function y(x(i)) at a point x(i) is derivable as a linear combination
of functions loaded by an error, i.e.

y(x(i)) =
∑

h

βhf(x
(i)
h ) + ε(i), i = 1, . . . , n, (5.15)

where βhs are unknown coefficients to be estimated, f(x
(i)
h ) are (non)linear functions, n is

a number of functions to be combined, and n is a number of points. Kriging is working under
the assumption that computational experiments are deterministic and they are affected by a de-
pendent error [74], which can be pictured as the left-out terms in x. The closer any two points,
the more related (correlated) errors are.

To consider the distance between two points, the weighted distance function d(x(i), x(j)) is
presented

d(x(i), x(j)) =
k∑

h=1

θh

∣∣∣x(i)
h − x

(j)
h

∣∣∣
ph
, θh ≥ 0, ph ∈ [1, 2], (5.16)

where k is a number of variables and θhs and phs are correlation parameters; θh measures the
sensitivity of a function to the change of the variable xh (’width parameter’) and ph measures
smoothness of the function (’smoothness parameter’). Some literature refers to use ph equal to 2
and fit only θh parameters [176]. In some cases, only one parameter θh for the whole process is
also recommended [176].
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Since the error ε(i) is dependent on the location of the function evaluation f(·), it changes
from ε(i) to ε(x(i)). The correlation between two errors ε(x(i)) and ε(x(j)) can be defined as

Corr
[
ε(x(i)), ε(x(j))

]
= exp

[
−d(x(i), x(j))

]
. (5.17)

This metric is called the Gaussian correlation function (or anisotropic generalized exponential
model [59]), and it is the most used in literature. If point x(i) and x(j) are close to each other,
the correlation is approaching one and reversely, the correlation is near zero for distant points.

Equation (5.15) is a linear regression. The first addend of the relation describes the function
itself, the second addend is the error. Since correlations in Equation (5.17) simulates all the
dependencies between the points, a constant µ can replace the regression part (the first term
in Equation (5.15)). Kriging is concentrated on the mutual dependence between the data and
describes how a function behaves. The Kriging model reads as

y(x(i)) = µ+ ε(x(i)), (5.18)

which is a mean of a stochastic process and the error ε(x(i)) (stationary Gaussian process [59])
is normally distributed zero-mean random variable with auto-covariance matrix CXX

CXX = σ2R. (5.19)

Each element of the correlation matrix Rij
2 is created by Corr

[
ε(x(i)), ε(x(j))

]
as in Equa-

tion (5.17). Another possibility is to use linear or other polynomial functions instead of the first
term in Equation (5.15) [176]; however, only the constant µ term is used in the following work.

Now, we have 2k + 2 unknown parameters µ, σ, p1, . . . , pk and θ1, . . . , θk. Maximizing
the likelihood function L is one way how to estimate them. Other methods are variographic
analysis or Bayesian estimation [59].

The predictor is defined as [169]

ŷ(x∗) = µ̂+ rTR−1(y − 1µ̂), (5.20)

where r is a correlation vector between a new point x∗ where the response is predicted and the
data used for meta-model construction.

The mean squared error (MSE) of the predictor is

s2(x∗) = σ2

[
1− rTR−1r +

(1− 1TR−1r)2

1TR−11

]
(5.21)

and the standard error is the squared root of MSE

s(x∗) =
√
s2(x∗). (5.22)

5.3 Update of meta-models for reliability assessment
The type of a meta-model update depends on a field of the model application. Despite ap-
pearing similar, a reliability assessment and reliability optimization require a different updating
approach. Consider the evaluation of the failure probability pF in an D-dimensional space of
random variablesX1, . . . , XD as a multiple integral of a joint probability density function fX(x)

2The correlation matrix is symmetric, thus it is possible to assembly just the half of it and use the Cholesky
decomposition instead of inverse matrix enumeration.
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over the failure domain G(X) ≤ 0. In the standard normal space, the Hasofer-Lind reliability
index β can be geometrically understood as the shortest connecting line between the origin and
the most probable failure point (MPFP) also called the design point. For improving the be-
haviour of the meta-model for the reliability assessment, the update is the most essential around
this MPFP, because this region contributes most to the total failure probability. BUCHER and
BOURGUND [26] came with this idea of updating the response surface utilizing second-order
polynomials.

5.4 Updates for reliability-based design optimization
Meta-models can replace both the cost function and the deterministic and probabilistic con-
straints. Nevertheless, there is a difference in their consecutive update. If the meta-model is
used to compute the values of the objective function, an improvement of the meta-model is nec-
essary for the vicinity of the best-so-far optimum found to allow for convergence to the global
optimum. This idea is adopted from global optimization. Several strategies are used, namely
minimizing a response surface [96], minimizing a statistical lower bound [96], maximizing
the probability of improvement [107, 96], maximizing the expected improvement [97] or goal-
seeking [96]. On the other hand, if a meta-model is utilized for the constraint replacement, some
contour (e.g. a limit state) has to be approximated. Algorithms as the Efficient Global Reliability
Analysis (EGRA) [17], modified Active Kriging + Monte Carlo Simulation [62] or Meta-model-
based importance sampling [59] can be effectively employed. The latter algorithms utilize some
special meta-models features that are not available for all types of meta-models. The generic
update can be carried out through placing new support points in a vicinity of the limit state
still ensuring the uniform space-filling criterion, e.g. by the MiniMax metric which leads to
the multi-objective optimization [135]. Although the replacement of the probabilistic constraint
by a meta-model seems to be a similar problem as in the reliability assessment, the layout is
different due to its repeated evaluation for different designs. The limit state function can be
understood as a collection of the MPFPs for different design variables combinations, and thus
the meta-model updating only in the one MPFP vicinity is not sufficient, but the vicinity of the
whole contour needs to be updated.

5.4.1 Updates for meta-models replacing an objective function in RBDO

Minimizing a response surface approach

Minimizing a response surface approach [96] is independent of a used meta-model type. New
support points are added sequentially into the best-so-far optimum found on the meta-model.
In the case of multi-modal problems, this method can converge prematurely in a local optimum
or fail in the worst possible case. Additional points in DoE for the non-interpolating meta-
models with a fixed number of degrees of freedom need not help at all, and this method can be
misleading in finding any optima.

Figure 5.13 shows a function y(x) = (6x−2)2 sin(12x−4) which is replaced by a quadratic
surface and the next support point is adaptively added into the response surface minimum. Nor
the fourth iteration cannot improve the response surface behaviour for the low polynomial de-
gree. The behaviour of interpolating surrogate model is much better than for a non-interpolating
meta-model which is shown in Figure 5.14, but the quality of the meta-model highly depends
on the initial Design of Experiments. Since the new support point is added to the meta-model
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Figure 5.13: Minimizing a response surface approach with a quadratic surface. The original
function is y(x) = (6x− 2)2 sin(12x− 4).
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Figure 5.14: Minimizing a response surface approach - Kriging. The behaviour is much better
than by a quadratic surface in Figure 5.13. The original function is y(x) = (6x− 2)2 sin(12x−
4).
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Figure 5.15: Minimizing a response surface approach with a Kriging meta-model. The min-
imum of the true function is missed due to the inappropriate initial Design of Experiments.
The original function is y(x) = (6x− 2)2 sin(12x− 4).
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minimum, the true minimum can be missed as depicted in Figure 5.15.

Minimizing a statistical lower bound

Minimizing a statistical lower bound [74], [97] utilizes the ability of Kriging to compute MSE
of a prediction. Uncertainty in the prediction is lesser (low MSE) in areas with a higher con-
centration of support points and reversely. The statistical lower bound is then evaluated as

LB(x) = ŷ(x)− ALBs(x) (5.23)

where ŷ(x) is a Kriging prediction, s(x) is a Kriging error, and ALB is a constant that influ-
ences the search of areas to be improved. The closer is ALB to zero, the more exploitation is
involved in the minimum of the predictor because the Kriging prediction predominates in Equa-
tion (5.23). DACE prediction itself is a lower bound with ALB equal to zero. The more ALB
approaches infinity, the more exploration is participated because of the prevailing the second
addend in Equation (5.23). Figure 5.16 shows several statistical lower bounds with different
settings of the parameter ALB. FORRESTER [74] chooses the parameter manually according to
the behaviour of the function. JONES [97] sets different parallel ALB levels and clusters new
gained support points, however, this approach is relatively time consuming. Figure 5.17 depicts
sequential updates with ALB equal to 2.

Maximizing the probability of improvement

Maximizing the probability of improvement [107], [97] also employs the knowledge of the Krig-
ing prediction error. The output y∗ at the point x∗ not identical to any support point is not known,
therefore y∗ can be modelled as a random normal variable Y with a mean equal to the Kriging
prediction ŷ(x) and a standard deviation s equal to the Kriging standard error. To find the global
optimum, the minimum value ymin of the true function evaluated on initial DoE is determined,
and the probability of improvement is maximized across the whole domain of x. The improve-
ment of the meta-model at a point x? is therefore I = max(fmin − Y, 0) and the probability of
improvement is [74]

P [I(x)] =
1

s
√

2π

∫ 0

−∞

(I − ŷ(x))2

2s2
dI. (5.24)

This idea was first introduced by KUSHNER for 1D problems [107] and extended to higher
dimensions, e.g. by ŽILINSKAS [210]. Figure 5.18 shows a graphical interpretation of the
probability of improvement in an illustrative example.

Later on, JONES in [96] extended the idea that there is a target improvement T to achieve
instead of a basic improvement I . The improvement is achieved when the target T is greater
than the uncertain output Y . The target T is slightly lesser than the ymin and it can be evaluated
as T = ymin − API |ymin| where API is a constant defining the distance between the best so far
optimum and the target T . For example, T = ymin − 0.25|ymin| means that the improvement of
at least 25% is searched. This method is quite sensitive due to a setting of the T . Higher T is
good for exploring (a global search); however, the convergence is slow. Lower T helps exploit
(a local search), but there is a premature local convergence threat. JONES in [96] proposes to
set up the target T to several levels and find several support points in each iteration. Those
points can be clustered to reduce computational demands. This procedure is possible to be run
in parallel.
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Figure 5.16: Minimizing a statistical lower bound. Several statistical lower bounds
are shown. The original function is y(x) = (6x− 2)2 sin(12x− 4).
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Figure 5.17: Minimizing a statistical lower bound. The parameter ALB is set to 2.
The original function is y(x) = (6x− 2)2 sin(12x− 4).
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Figure 5.18: A graphical interpretation of the probability of improvement. The original
function is y(x) = (6x− 2)2 sin(12x− 4).
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The probability of improvement P [I(x)] is

P [I(x)] =
1

s
√

2π

∫ T

−∞
exp

(y − ŷ(x))2

2s2
dy

∣∣∣∣∣
NS→SNS

= (5.25)

=

∫ T−ŷ(x)
s

−∞
exp

[
−y
′2

2

]
dy′ = Φ

(
T − ŷ(x)

s

)
. (5.26)

The target T remains the same for the whole range of x. The standard error s as well as
a Kriging prediction ŷ(x) differs for each value of x. New support points are sequentially added
into the maximum value of P [I(x)] until the P [I(x)] approximates zero. P [I(x)] shows the
location of the maximum improvement but not its amount. Therefore, the better criterion is the
expected improvement function. Figure 5.19 shows an illustrative example of the maximizing
the probability of improvement on the function y(x) = (6x−2)2 sin(12x−4) with 7 iterations.

0 0.5 1
−10

0

10

20

x

y(
x)

Initialization

0 0.2 0.4 0.6 0.8 1
−20

0

20

x

y(
x)

Iteration 1

 

 
true function
DACE prediction
sampled points
P[I(x)]
maximum of P[I(x)]

0 0.2 0.4 0.6 0.8 1
−20

0

20

x

y(
x)

Iteration 2

0 0.2 0.4 0.6 0.8 1
−20

0

20

x

y(
x)

Iteration 3

0 0.2 0.4 0.6 0.8 1
−20

0

20

x

y(
x)

Iteration 4

0 0.2 0.4 0.6 0.8 1
−20

0

20

x

y(
x)

Iteration 5

0 0.2 0.4 0.6 0.8 1
−20

0

20

x

y(
x)

Iteration 6

0 0.2 0.4 0.6 0.8 1
−20

0

20

x

y(
x)

Iteration 7

Figure 5.19: Maximizing the probability of improvement. The original function is
y(x) = (6x− 2)2 sin(12x− 4).

Maximizing the expected improvement function

Maximizing the expected improvement function (EIF) [97] is based on the idea of the probability
of improvement. EIF is an expected value of P [I(x)] defined as

E[I(x)] = E[max(fmin − Y, 0)] = (fmin − ŷ)Φ

(
fmin − ŷ

s

)
+ sφ

(
fmin − ŷ

s

)
. (5.27)
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The maximum value of EIF localizes the next point that should be added into the surrogate
model to make it more accurate. Proposed EIF makes a balance between a local and a global
search. The local search is focused on an improvement of the minimum local vicinity, and the
global search concentrates primarily on unknown areas exploration where the standard error of
the predictor has the maximum value. This approach is sequential, and maximization of EIF is
done repeatedly until the maximum of EIF is greater than some prescribed value. JONES in [97]
uses the Branch and Bound method for the optimization of EIF in Efficient Global Optimization
(EGO); however, this approach is quite often too expensive to run to final convergence [17].
Figure 5.20 shows an illustrative example of the maximizing the expected improvement function
on the function y(x) = (6x− 2)2 sin(12x− 4) with 7 iterations.
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Figure 5.20: Maximizing the expected improvement function. The original function is
y(x) = (6x− 2)2 sin(12x− 4).

5.4.2 Updates for meta-models replacing constraints functions in RBDO

Efficient Global Reliability Analysis

BICHON et al. in [17] use an adaptive update of Kriging together with an adaptive importance
sampling (AIS). An update of a meta-model is inspired by JONES et al. in [97]. Instead of
EIF, expected feasibility function (EFF) is utilized. Since an improvement of the meta-model
is not used for global minimization but for the reliability assessment, the bound dividing the
domain into the safe and the failure region has to be more accurate. An equality constraint for
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a reliability assessment is defined as G(u) = z̄ where z̄ is a threshold value. EFF is therefore
integrated over a region z̄ ± ε

EF [Ĝ(u)] =

∫ z̄+ε

z̄−ε
[ε− |z̄ −G|]fḠ dG (5.28)

EF [Ĝ(u)] = (µG − z̄)

[
2Φ

(
z̄ − µG
σG

)
− Φ

(
z− − µG
σG

)
− Φ

(
z+ − µG
σG

)]

−σG
[
2φ

(
z̄ − µG
σG

)
− φ

(
z− − µG
σG

)
− φ

(
z+ − µG
σG

)]

+ε

[
Φ

(
z+ − µG
σG

)
− Φ

(
z− − µG
σG

)]
, (5.29)

where ε is proportional to the standard deviation of the Gaussian process model predictor and
z− and z+ are shorter notations of z̄ ∓ ε. All z−, z+, µG, σG and ε3 are functions of the
location u, whereas z̄ is a constant. Efficient Global Reliability Analysis (EGRA) first generates
a small number of support points (at least to define the quadratic polynomial) and computes true
function values in those support points for building the Gaussian process model. Those samples
are recommended to cover the design space uniformly over the bounds ±5σ. The point that
maximizes the EFF is located by DIRECT algorithm and the true function is calculated. EFF
is maximized and support points are added into the meta-model repeatedly until the stopping
criterion in the form of the prescribed maximum EFF value is not fulfilled.

Active Kriging + Monte Carlo Simulation

Active Kriging + Monte Carlo Simulation [62] creates and updates a meta-model only on a gen-
erated Monte Carlo (MC) population and not on any other points. At the beginning, few support
points are chosen from the whole MC population by e.g. k-means clustering. Subsequently, sup-
port points for an update are obtained by minimizing the so-called Learning function on whole
MC population,

U(x) =
|Ĝ(x)|
s2(x)

,

where |Ĝ(x)| is a predicted value by a meta-model and s2(x) is Kriging variance. Since the MC
population is generated only for one combination of design variables, this method in its unmod-
ified version works only for reliability assessment. Nevertheless, several options are available
to extend it for RBDO. First, a new meta-model can be trained for each combination of design
variables proposed by RBD optimizer, however, this approach can be quite time-consuming.
Second, a meta-model is kept for all design variables combinations, and just new points from
new MC populations are added to make the meta-model more precise across the whole design
space. Third, the MC population can be widened just for meta-model improvement purposes.

3ε is recommended to be equal to 2σG.
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Chapter 6
Proposed Reliability-based design
optimization procedure

Parts of this chapter are reproduced from the author’s contributions [87, 89, 135, 151].

The double-loop Reliability-based design optimization (RBDO) approach utilizing reliabil-
ity assessment methods based on a quasi-Monte Carlo simulation provides the most precise
solutions among other formulations. Even though several advanced simulation techniques can
assess the reliability task, the computational demands are still high while evaluating the failure
probability of the original model. Therefore, we have constructed a meta-model to accelerate
the reliability assessment. The first meta-model assembled on the DoE that is only space-filling
is not precise enough; therefore, we have proposed an adaptive multi-objective optimization
updating procedure. In our previous work [135], a meta-model was updated independently of
an optimization routine. This procedure, described in the following section, turned up to be
accurate but computationally very demanding since the meta-model was updated in the whole
design space and not only in the desired target space. Therefore, we included the updating of
the DoE (and subsequently the meta-model) inside the optimization routine utilizing data from
the simulation techniques evaluating the reliability. Since we work with several formulations
of the meta-models, more specifically, the local and the global meta-models, we propose two
different routines for the updating procedure in the following text.

6.1 Adaptive multi-objective-optimization updating procedure

6.1.1 DoE updating independent of RBDO

This procedure uses a multi-objective double-loop optimization for locating additional support
points regardless of the meta-model type [135]. The achieved quality of the meta-model so far
controls the outer loop, and the inner loop contains the optimization method for discovering the
proper points to be added to DoE, which is subsequently used to assemble new meta-model.
Those points should be far from already added points; the miniMax metric controls this space-
filling criterion as the first objective. All adaptively added points should lie on the limit state of
the performance function to improve the quality in this region. The meta-model evaluates this
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Figure 6.1: A flow chart of the adaptive meta-model updating.

second objective. After several inner loops of the multi-objective optimization algorithm1, the
methodology examines and clusters the best points and the true model2 evaluates a response in
these points to extend the dataset, that is used for assembling of an improved meta-model. After
several outer loops, when the stopping criterion is fulfilled, the final meta-model is established.

1We use the Non-dominated sorting genetic algorithm II that is briefly outlined in Section 3.1.
2We are aware that the “true” model still does not describe the reality of the real-life problem exactly in all

cases, however, we assume that this description is sufficient for our needs.

Figure 6.2: Comparison of the contour plots of the true model (the first two plots on the left)
and the first meta-model without an update and the last updated meta-model (the last two
plots on the right). Even subplots show all contours of a model whereas odd subplots show
only the zero contour of the function (the limit state). The solid line is used for the real model
while dashed line serves for meta-models drawings.
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In the simplest case, the procedure is stopped after the finite number of outer loops. In the best
case, a different dataset exists only for testing of quality and computing a Root-mean-square
error (RMSE) and a Coefficient of determination (r2). Figure 6.1 depicts the flow chart of this
adaptive meta-model updating procedure. Figure 6.2 shows the initial meta-model trained for
one limit state function in Example 2 described in Chapter 7. We used 40 iterations/updating of
the original DoE. The updating procedure added approximately 220 points.

6.1.2 DoE updating dependent on RBDO

Global meta-models employed

Global meta-models are advantageous to their coverage of the whole design space, contrarily,
disadvantageous for the memory demands and a large number of necessary added points into the
DoE by the meta-model update. Figure 6.3 depicts the whole optimization algorithm proposing
the candidate design solutions in the outer loop (the grey box). The inner loop (the light blue
box in the same figure) is for the reliability assessment. For the illustration purposes, we used
Monte Carlo simulation, but any other reliability assessment method is adequate. The pink
boxes represent the steps for the meta-model assembly and the subsequent update. The yellow
boxes depict the evaluation of the original response model.

First of all, we construct the primary Design of ExperimentsQ. In our previous work [154],
we have found out that Halton sequences [105] are efficient, fast, and well distributed. Thus,
we have used them for every uniform design in this thesis. The true response function g(·), that
is computationally very demanding in real-life optimization problems (e.g. FEM simulation),
evaluates responses G for DoEQ. Therefore, the DoE should be relatively sparse to save up the
computational time. This dataset is saved as Dataset 1 [Q,G] for the following meta-modelling.
The optimizer proposes one individual d(k) or a set of individuals (in case of an evolutionary
algorithm) for each generation k. Every individual has the meaning of the mean of a stochastic
design variable, or it is a deterministic design variable. For each individual, deterministic func-
tions, as well as the reliability assessment, are necessary to evaluate. Deterministic functions
are not computationally demanding in most cases, and if so, they are calculated only once for
each individual. However, the reliability assessment slows down the computational speed of
the whole process. Since we use a sampling approach for the failure probability estimation, we
evaluate the response function repeatedly. Therefore, a surrogate model substitutes the response
function, and the meta-model is uniquely assembled by S (·) for each generation as g(·). Since
we use (µ + λ) genetic algorithm3, the Monte Carlo simulation using newly assembled meta-
model has to evaluate the whole population including the elitist individuals that survived from
the previous generations. This update of the reliability results ensures that the reliability results
are comparable for all individuals in the mating pool.

This algorithm slightly differs for a sparse global meta-model (SGMM) and a dense global
meta-model (GMM). If we employ an ordinary global meta-model, all points from the dataset
Q are used to construct a surrogate for the original limit state function as described in Sec-
tion 5.1.1 and 5.1.4. The sparse global meta-models support points have its influence domain
in the closest neighbourhood, and other points outside the influence domain are omitted as de-
scribed in Section 5.1.2 and 5.1.4. Therefore, a range search algorithm R(·) selects only the
most interesting points for each support point from the dataset Q. The information about the

3(µ + λ) means that individuals for the next generation are selected from the mating pool created by parents
(µ) as well as offspring (λ) from the actual generation. We chose the Non-dominated sorting genetic algorithm II
as the optimization algorithm, which is described in Section 3.1.

86



6.1. ADAPTIVE MULTI-OBJECTIVE-OPTIMIZATION UPDATING PROCEDURE

Outer loop (k=1,. . ., Nk)

Optimization algorithm

Evaluation of deterministic functions
d(k)

H
(
d(k)

)

Reliability assessment
Evaluation of expected cost

Optimized DoE
Dataset 1 Virtual simulation withVirtual simulation with

“true” response function
Virtual simulation with

Optimized DoE
Dataset 1 Virtual simulation of

original response function

C
(
d(k)

)
, pF

(
d(k)

)

meta-model assembly
for whole

Q,G

Q

G,Q

Reliability assessment
Evaluation of expected cost

Inner loop (s=1,. . ., Ns)

Reliability assessment

Virtual simulation
of meta-model

d(k)

SGMM: g (·)← S
(
R(Q),G[R(Q)]

)
response function

X (k),Q

Pareto-front search

Inner loop (j=2,. . ., Nj)

G = g(Q)

M = m
(
X (k),Q

)

M = m
(
X (j:Nj),Q

)Pareto-front search:

Q = Q∪ X (j)

Q,G

G(k,s) = g
(
X (k,s)

)

Monte Carlo simulation

X (k,s) =
(
x(s),d(k)

)

X (k) =
⋃
s
X (k,s)

G(k) =
⋃
s
G(k,s)

P1 = p
(∣∣G [X (j=1)

]∣∣ ,M)

Q = Q∪ X (j=1)

M = m
(
X (j:Nj),Q

)
Pareto-front search

Pj = p
(∣∣G [X (j:Nj)

]∣∣ ,M)

Q = Q∪ X (j)

G = G ∪ g(X (j))

Expansion (updating) of DoE Virtual simulation withVirtual simulation of
original response function

G = G ∪ g(X (j=1))

X (j=1)

Inner loop (j=2,. . ., Nj)

Expansion (updating) of DoE

Virtual simulation withVirtual simulation with
“true” response function
Virtual simulation withVirtual simulation withVirtual simulation with

original response function
Virtual simulation of

X (j)

generation k
GMM: g (·)← S

(
Q,G[Q]

)

X (k), G(k)

space-filling metric

space-filling metric

Figure 6.3: Schematic representation of a double-loop RBDO problem extended to the global
meta-models update.

individual from the evolutionary algorithm does not influence the meta-model. The estimation
of the probability of failure pF (d(k)) as well as a value of the cost function C(d(k)) are given
back to the optimization algorithm.

The reliability simulation method samples around the design variable and the reliability
assessment needs the response in these samples. Generally, the accuracy of the meta-model
is increased by the addition of new samples into the DoE Q including their true responses of
the original model. This response is more reliable than the meta-model response. Thus, new
samples have to be added to DoE into the vicinity of the limit state; this is the first criterion
of our updating procedure. We already know the meta-model responses of the Monte Carlo
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samples, and therefore, we choose those new updating points from the Monte Carlo sample set.
Every single sample from the reliability sampling method and its response value are therefore
stored in X (k) and G(k)

, respectively. These new samples should also be situated into the area
with the deficient knowledge to uncover more possible limit states. For this second criterion
– the space-filling metric, the closest distances m are evaluated between the samples from the
Monte Carlo simulation and all points in DoE Q and subsequently stored in M. These two
criteria are antagonistic; therefore, we select the Pareto front with the best indifferent solutions.
The updating procedure adds points from the Pareto set (the corresponding coordinates in the
design space for the Pareto front) to the DoE one by one. The first point of the Pareto set P1

is placed into the final DoE Q and the true model evaluates its response g(·). Since the DoE
changed, the space-filling metric has to be recalculated. As a result, the second criterion for the
update also changed, and therefore, the updating procedure has to find the new Pareto front Pj .
If the j th point of the P1 is still in the Pareto front Pj , it is embedded into the DoE Q and the
original model evaluates the true response for this sample. Therefore, the procedure extends the
DoE in every kth step of the optimization algorithm or every generation of the genetic algorithm,
respectively.

Local meta-models employed

This methodology proceeds from the updating of the global meta-model inside the optimization
described in the previous section. The green dash-dot-dotted boxes and the blue captions and ar-
rows in Figure 6.4 highlight the differences between the updating of the global meta-model and
updating of the Design of Experiments for the local meta-models with subsequent model assem-
bly. The beginning of the procedure is identical, first of all, we construct the primary Design of
Experiments Q and the true response function g(·) evaluates this DoE. This dataset is saved as
Dataset 1 [Q,G]. The optimization algorithm in the outer loop (depicted by a grey background)
nominates a candidate solution d(k) for an optimum. The deterministic and stochastic functions
have to be evaluated for this candidate d(k). Since deterministic functions are usually facile to
evaluate and only one evaluation is necessary for one candidate, the original function does not
have any surrogate. A sampling method evaluates the stochastic function. Figure 6.4 mentions
a Monte Carlo simulation as a sampling method, but any other simulation method, such as an
Asymptotic sampling or Subset simulation, is viable to use. The response function g(·) would
be necessary to be evaluated Ns times here. Any approximation method, such as a First Order
Reliability Method, can reduce the evaluation requirements for the stochastic function; however,
the approximation can carry the computational errors into reliability. The surrogate model ḡ(·),
that is uniquely assembled by S (·) for each individual d(k), substitutes the response function
g(·) due to its repetitive evaluation. Thus every individual has its meta-model and individuals do
not share them. The meta-model is constructed from DoE dataset points Q that are nearby the
individual d(k); the selection of the dataset is labelled as Qd(k) . We use the k-nearest neighbours
algorithm4 [77] for the proximity assessment with the prescribed number of points in the influ-
ence domain. The k-NN algorithm is labelled as K(a,B), where a is a point or a set of points
for which the nearest neighbour has to be found from a set of query points B. We found out
that one-tenth of the all DoE points is sufficient but this setting varies from problem to problem.
However, the tenth is a good initial guess. The estimation of the probability of failure pF (d(k)),
as well as a value of the cost function C(d(k)), are given back to the optimization algorithm.

Some samples provided by the sampling methodology for reliability assessment updates the
DoE held in Q. In every step k, the reliability simulation method samples around the design

4We use k-NN algorithm implemented in MATLAB.
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Figure 6.4: Schematic representation of a double-loop RBDO problem extended to the local
meta-models update.
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variable d(k) with Ns points X (k,s); a union of these points creates a set X (k) together with
the meta-model responses set Ḡ(k). As in the updating procedure of the global meta-model,
there are two criteria for selection of new points into DoE stored in the dataset Q. The first
criterion is the space-filling metric m(·, ·), which represents the minimal distances between
X (k) and Q stored in the setM. The second criterion is the difference between the response of
the meta-model value and the limit state

∣∣G(k)
∣∣. The first criterion focuses on the distances in

the design space and the second criterion aims at the distances in the objective space. Pareto-
optimality conditions select the Pareto front P0 using these two criteria for all points in X (k).
We assume that the meta-model is more accurate in the middle of the influence domain than
at its edge. Therefore, the procedure assembles a new meta-model for each point in the Pareto
set to make sure that the limit state prediction value is the most accurate value we can get from
the meta-model at a given time. The influencing area of the local meta-model is hereby centred
around each point in the Pareto set. These meta-models are subsequently used to get a better
meta-model response for the Pareto set. Since we have Ni number of points in the Pareto set
corresponding to the Pareto front P0, the updating procedure has to assemble Ni meta-models
in the inner loop (green rectangle) to get more precise meta-model responses. Subsequently, the
new Pareto front has to be found again as P1. If the responses of the former local meta-models
have the same accuracy as the responses of the later meta-models, the Pareto set outgoing from
the later Pareto-optimality rescreening will contain the same number of samples as the previous
one. The last step identical to the updating of the global meta-model is the sequential addition
of new points from the Pareto set into the dataset Q. The updating procedure adds the first
point of the Pareto set into the DoE, together with its response to the original model. Since
the DoE changed, the space-filling metric has to be recalculated among points in new DoE and
the remaining points in the Pareto set. The new Pareto front is recalculated, and the next point
from the Pareto set is added into the DoE together with the response of the original model. This
sequential extension of the dataset [Q,G] runs in another inner loop with Nj steps.

Figure 6.5 shows an illustrative example of the presented updating procedure utilizing lo-
cal meta-models. Since the updating procedure is independent of the reliability assessment
method, we selected Asymptotic sampling as a representative. Image a) presents the analyti-
cal model of the limit state function depicted with coloured contours, and blue dots have the
meaning of the initial DoE. The orange contour illustrates the limit state; the positive numbers
represent the safe space, and, conversely, negative LSF values indicate the failure region. The
initial DoE is space-filling; we used quasi-random sequences to design it. For illustrative rea-
sons, we used only four individuals in a population of the evolutionary algorithm. The green
triangles represent those individuals in image b). For these individuals representing the mean
values of stochastic design variables, the algorithm calculates their reliability using Asymptotic
sampling. Asymptotic sampling samples are plotted in different colours for each individual.
In each Asymptotic sampling, a single simulation step is colour-coded representing a single
step of sequential Monte Carlo simulation. Asymptotic sampling calls a local meta-model of
the limit state function to evaluate the indicator function. Each individual has its unique local
meta-model assembled, using support points of DoE around the individual. One of the local
meta-models is depicted in image c) by solid contours, the black box represents the bounds
where the meta-model interpolates, and the red circles show the selected support points. Natu-
rally, the local meta-model may also extrapolate beyond these limits; however, the output values
will no longer be as accurate as inside these bounds if the original model is highly nonlinear.
Two criteria evaluate each sample from Asymptotic sampling, the already calculated response
value of the meta-model and the distance to the nearest point from the DoE. Image e) shows
these criteria, where each colour of the dot is for a different Asymptotic sampling representa-
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Figure 6.5: An illustrative example of the updating procedure using local meta-models. Im-
age a) represents original LSF (dash-dotted contours) and initial DoE (blue dots). Image b)
shows four individuals (green triangles) of an evolutionary algorithm with Asymptotic sam-
pling samples (dots). Image c) depicts one local meta-model (solid contours) with support
points (red circles) in the influence domain assembled for one individual of an evolutionary
algorithm (green triangle), the black box represents the meta-model interpolation domain.
Image d) shows new support points (green circles) in DoE (blue dots). Image e) depicts
two criteria (a distance to a limit state and a distance to the nearest DoE support point) for
decision making of DoE potential candidates.
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tion. The yellow circles show the points on the Pareto front that are candidates for the DoE
update. For each yellow point on Pareto front, the new meta-model is assembled, and the dis-
tance to the limit state is recalculated. Image d) demonstrates the resulting support points that
update the DoE.

6.2 Parallelization of Reliability-based Design Optimization
using Surrogates

For an outer optimization loop, we use Non-dominated sorting genetic algorithm II [49] as a ba-
sic multi-objective algorithm with a simulated binary crossover operator, a Gaussian mutation
operator, and a tournament selection operator; probabilities of the operator utilization for cre-
ating offspring populations are 0.9, 0.5 and 1, respectively. The number of individuals was set
to 50, and the number of total generations was set to 30. For the inner loop, we use the pure
Monte Carlo method to provide unified results for the application of surrogates.

β 0 1 2 3 4 4.5
pf 0.5 0.159 2.28·10−2 1.35·10−3 3.17·10−5 3.40·10−6

MC samples 200 629 4.39·103 7.41·104 3.15·106 2.94·107

Table 6.1: Number of samples needed for 10% coefficient of variation of Monte Carlo failure probability
estimator pf

6.2.1 Computational demands of RBDO
The most challenging part of the RBDO is the assessment of reliability. Table 6.2 presents
basic settings of our double-looped approach together with computational demands in terms of
time and the number of meta-model evaluations. Hardware and software details are listed in
Table 11.1. Besides time, the last line shows the most demanding part of the RBDO bench-
mark problem, where almost ten billion evaluations of the meta-model are needed. This is in
correspondence with Table 6.1, which presents a minimum number of samples for particular
probabilities of failures and 10% coefficient of variation for Monte Carlo sampling procedure
for our range of reliability indices.

Taking into account that data presented in Table 6.2 are just for the simple 2D benchmark,
the application of parallelization is inevitable for real-world examples. There are two main
possibilities, how to parallelize double-looped RBDO:

1. Parallelization of the optimization procedure: Since we are dealing with the multi-
objective version of RBDO, evolutionary algorithms, using a set of possible solutions
usually called a "population", are the best choice for optimization algorithms here. There-
fore, the evaluation of the population can be done in parallel using a well-known master-
slave paradigm, where each individual is one computing unit, and CPU workers are enu-
merating the reliability for each of them. The main advantage is the simplicity of the
formulation; however, since each solution can differ in orders of magnitude in terms of
probability of failure, the computation demands are highly unbalanced. Therefore, bad
load-balancing can be expected, and particular attention must be paid to synchronization
issues.
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number of CPUs 8
number of individuals 50
number of generations 30
elapsed time [sec] 29,171
elapsed time [hours] 8.10
Number of samples in initial DoE 50
Number of added samples to DoE during optimization 280
Number of analytical limit state function evaluations 330
Number of meta-models built for optimization purposes 1,500
Number of meta-models’ evaluations 9,179,723,956

Table 6.2: Typical computational demands of RBDO with meta-models.

2. Parallelization of the reliability assessment: Here, all requests for reliability assess-
ment are collected for all individuals in the population, hence forming a huge dataset for
objective/constraints evaluation for all Monte Carlo samples. This set is then evaluated
in a parallel fashion using a classical "parameters sweep" parallel paradigm. Here, linear
speed-up can be achieved because the load is uniformly spaced along with available com-
puting units. However, the data are sent in batches, and the size of these packages must
be carefully chosen not to bee too small or too big.

The second approach was implemented in the MATLAB environment. Profiling has shown
that almost 20% of the time is spent on the solution of the system of equations (5.1); however,
more than 70% of the time was spent on the evaluation of the interpoint distances. Therefore,
we concentrated mainly on this issue in code optimization, and several implementation details
are described in Section 5.1.4.
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Chapter 7
Numerical examples for the multi-objective
reliability-based design optimization
procedure

This chapter presents a selected set of examples to validate the proposed methodology described
in Chapter 6. Every example is introduced together with a short description of its history and
already published results that authors found for single-objective optimization.

A Non-dominated sorting genetic algorithm II (NSGA-II) was used for multi-objective op-
timization with a setting 50 individuals in each generation, 30 offspring generations, 10%
probability of mutation, 20% distance between the upper bound and the lower bound for the
design variables as the standard deviation of the Gaussian mutation, 90% probability of cross-
over, and 100% probability of selection. Since each new generation of the genetic algorithm
provides a new update to DoE, a reliability assessment method recalculates reliability indices
of a parental population with a new meta-model for the selection purposes. The Pareto front
is constrained by the bounds [0,4.5] since this interval is the most interesting for the struc-
tural optimization from our point of view. The same constraint would be equal to bounds
[3.398 · 10−6, 0.5] if recalculated to the failure probabilities. The failure probability bounds are
reverse to the reliability index bounds since the higher the probability of failure, the lower the
reliability index is. The dependence is given via the cumulative distribution function of the
standard normal distribution pF = Φ(−β) as depicted in Figure 7.1.

The global meta-models are assembled for the whole generation of the genetic algorithm;
we used one initial generation and 30 subsequent generations; therefore, 31 meta-models were
built for the whole designing process. Local meta-models were assembled for each individual
from all 50 individuals across all 31 generations resulting in 50 + 30 × (50 + 50) = 3050
meta-models assembled during optimization designing process. If we compare the parental
population with the offspring, the reliability indices have to be recalculated with new meta-
models since the next generation DoE contains newly added update support points, and the
meta-model is more accurate than for the previous generation. Therefore, each generation 2-
31 needs 100 reliability indices evaluations, which means 100 local meta-models assembly or
100 evaluations of the reliability assessment using dense or sparse global meta-models in one
generation. For local meta-models, we build additional meta-models for each potential new
sample in DoE to ensure that this sample is truly needed and the response is not distorted,
e.g. because of the extrapolation. We set the number of support point in initial DoE to 200
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Figure 7.1: The dependence between the probability of failure pF and the reliability index β.

samples for MO-RBDO using local meta-models and 50 samples for MO-RBDO using the
global meta-model and the sparse global meta-model. Both global meta-models need smaller
initial DoE than local meta-models since they are assembled for the whole design domain.
Local meta-models need a larger portion of an initial DoE since they are covering a smaller
area and therefore need more information around each potential design candidate. The number
of support points added to DoE by the updating procedure is not restricted for any meta-model.

To assess the quality of the obtained solutions, we use (i) visual evaluation of the resulting
recalculated Pareto sets and Pareto fronts, and (ii) numerical evaluation using a) metrics from
Subsection 3.2, b) errors of the achieved solutions using meta-models, simulation methods or
approximation techniques and c) a number of discarded solutions due to ±∞ in the reliability
index after recalculation. The used performance measures are unary metrics (a Hypervolume,
Spacing, and Spread) working with the recalculated Pareto fronts and binary metrics (a Gen-
erational distance, Two set coverage metric, and Coverage difference of two sets) comparing
the recalculated Pareto fronts with a superior Pareto front. The reliability index error is equal
to the absolute value of the difference between the solution from the original Pareto front and
the recalculated front. If the recalculated value is equal to ±∞, we discarded this result, and
the corresponding solution is excluded from the error evaluation. Since each solution from the
original Pareto front has a potential error of the reliability index error, and we have several inde-
pendent results available for each method, we evaluate four types of error indicators. Therefore,
on each original Pareto front, we evaluate the corresponding error indicator

|βMCCoV<0.05
− βoPF|, (7.1)

and we average these errors for all independent Pareto fronts. The value βMCCoV<0.05
represents

the corrected and therefore accurate and precise reliability index and βoPF is the original value.
We corrected the original Pareto fronts with an analytical model and a quasi-Monte Carlo simu-
lation with recurring addition of sampling data to get the coefficient of variation lesser than 5%
since we suppose that this combination provides the most precise results of the reliability index.
First, we calculate the average minimum error to see if the method can achieve at least one good
result, and in the case of worse results, it, therefore, fails only in some specific areas. We also
evaluate the average maximum error to find the weakest point of the methodology. Finally, we
evaluate the average mean error and the average standard deviation of the reliability index error
for each methodology. These two error indicators provide information about the quality of the
method in terms of accuracy and precision. Figure 7.2 shows the four options that can arise
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Figure 7.2: Accuracy and precision

from the results. The mean value affects accuracy, and the standard deviation affects precision.
If the mean value is high, and the standard deviation is low, then the result is precise but has low
accuracy. If the mean is low, but the standard deviation is high, then the result is accurate but
has low precision. If there are small or large mean values and standard deviations of the error,
respectively, then we speak of a result with high or low accuracy and precision, respectively.

Throughout the whole chapter, we work with four types of datasets. The first dataset con-
sists of the original Pareto fronts and Pareto sets obtained directly from MO-RBDO algorithms.
However, these Pareto fronts are potentially erroneous because of the approximation technique
- the meta-model, the reliability assessment method, or both. The recalculated fronts together
with the original Pareto sets comprise the second dataset, we corrected those values as de-
scribed for βMCCoV<0.05

value. The recalculated fronts may not be Pareto efficient because the
pure recalculation does not use any Pareto efficiency conditions but only the quasi-Monte Carlo
simulation. Therefore, the recalculated fronts are re-sorted by using the Pareto efficiency con-
ditions and the solutions with the best rank create recalculated Pareto fronts. The third dataset
consists of the original Pareto sets and the recalculated Pareto fronts. The superior Pareto set
and superior Pareto front create the fourth dataset. Because we do not have the Pareto-optimal
solutions, we created their approximation. We merged all the Pareto fronts from several runs of
MO-RBDO utilizing an analytical model and a preconditioned quasi-Monte Carlo simulation,
and the Pareto efficiency conditions selected the superior Pareto front as the approximation of
the Pareto-optimal front. The superior Pareto set corresponds with the superior Pareto front by
mapping with the reliability assessment method and the cost function.

Since we use a uniform random design plans for a Design of Experiments for a meta-model
assembly, each variable in DoE needs interval bounds. We work with three types of variables:
deterministic design variables, stochastic variables, and stochastic design variables. Determin-
istic design variables do not bring any uncertainty into the problem, and therefore the interval
bounds for optimization are the same as the interval bounds for DoE. Stochastic variables are not
bounded (e.g. normally and Gumbel distributed random variables), one-sidedly bounded (e.g.
log-normally, exponentially, and Weibull distributed random variables on the interval (0,∞)),
or bounded (e.g. a uniformly distributed random variable on the interval [a, b]). Therefore, we
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need to set up the bounds for variables with a domain of definition with open intervals and
one-sided intervals. Otherwise, the Design of Experiments would be unnecessarily wide, and
therefore it would need a lot more samples to get the same details as if the variable is artifi-
cially bounded. We use 0.15th and 99.85th percentiles as the lower and the upper bound for
each random variable. These percentiles correspond approximately to ±3 standard deviations
of a standard normal distribution. Technically, we sample from a standard uniform distribution
and this sample plan is then transformed into the uniform distribution with 0.15th and 99.85th

percentiles bounds. Stochastic design variables combine the designing intervals defined for
mean values of random variables together with uncertainty. The bounds are specified as the
extension for the stochastic variables; the lower bound is 0.15th percentile of a random vari-
able with a minimum allowed mean value and given standard deviation and the upper bound
is 99.85th percentile of a random variable with a maximum permissible mean value and given
standard deviation.

We present our results of the multi-objective reliability-based design optimization (MO-
RBDO) utilizing the analytical model and three types of meta-models, namely global meta-
models, sparse global meta-models, and local meta-models described in Sections 5.1.1, 5.1.2,
and 5.1.3. To compare the behaviour of these three meta-models and the analytical model,
a quasi-Monte Carlo method was used for the reliability assessment. It would be computa-
tionally very demanding to use a fixed number of samples for each reliability assessment in
MO-RBDO. Therefore, we estimated the probability of failure of the individual candidate so-
lution with the Subset simulation (SS) with a level probability pF,i equal to 0.1, the number of
samples N in one level to 5,000, and the proposal distribution as normal with the standard devi-
ation equal to standard deviations of all seeds in all dimensions d. Subsequently, the probability
of failure pF was recalculated with a quasi-Monte Carlo simulation with a number of samples
equal to 100/pSSF . With this preconditioning, we saved the computational resources for high
failure probabilities where only a low number of samples is necessary. Due to the precondi-
tioning by the Subset simulation, we distinguish this method as a preconditioned quasi-Monte
Carlo simulation in the following text from the classical Monte Carlo simulation with a fixed
number of evaluations for each individual. Every MO-RBDO with each model was run several
times to obtain data for statistics.

As the second part of the published results, we compare several reliability assessment tech-
niques for the multi-objective reliability-based design optimization utilizing only an analytical
model. We use these results to minimize the error of the model and to concentrate on the er-
rors in the reliability assessment technique. We use several reliability assessment techniques,
namely a First-order reliability method (FORM), classical quasi-Monte Carlo simulation with-
out any preconditioning (MC), Importance sampling (IS), Asymptotic sampling (AS), Subset
simulation (SS), Enhanced Monte Carlo simulation (eMC), and Scaled Sigma Sampling (SSS).
Sections 4.3 and 4.4 describe all the reliability assessment methods. We set the simulation
techniques to get approximately the same number of limit state function evaluations during the
MO-RBDO run; the First-order reliability method is the approximation method, and the larger
number of limit state function evaluations does not satisfy the more precise failure probability
estimates. A First-order reliability method employs a MATLAB fmincon() function utilizing
an Active-set algorithm to find the design point. A quasi-Monte Carlo simulation used in this
results section differs from the preconditioned quasi-Monte Carlo simulation from the first re-
sults section used with meta-models. We simply fix the number of samples of Halton sequences
to 30,000 samples regardless of a failure probability. An Importance sampling utilizes a transla-
tion of the original PDF from mean values into the design point; an Active-set algorithm founds
that design point via a MATLAB fmincon() function. The number of samples for each indi-
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vidual is equal to 30,000 in case of component reliability, and 30,000 samples divided by the
number of limit state functions in case of system reliability, which is 30,000 samples in total per
one individual reliability assessment. An Asymptotic sampling utilizes m number of samples
in each quasi-Monte Carlo simulation equal to 2,048 samples per one level, an initial coefficient
ϕ equal to 1, a decreasing factor ϕd equal to 0.95, N0 equal to 10 representing failure samples
quantity - if at least 10 samples are located in the failure domain, an Asymptotic sampling stores
this step as a support point, and K number of support points equal to 10. A Subset simulation
uses N equal to 5,000 samples in each level of probability pF,i = 0.1. We chose a normal dis-
tribution as a proposal distribution with a standard deviation evaluated as a standard deviation
of all seeds in level (i − 1) in all dimensions. An Enhanced Monte Carlo simulation utilizes
30,000 samples and λ is set to 100 values uniformly distributed in the interval [0.1, 0.9]; we
also had to use a different optimization algorithm for a parameter search, namely a Trust region
reflective algorithm instead of the Levenberg-Marquardt method used by authors since we had
to use parameter bounds to stay in the real numbers in a domain of definition. A Scale sigma
sampling uses five levels of Monte Carlo simulations with a σ parameter equal to 2, 3, . . . , 6,
and 30,000 number of samples in total.

As the last part of the results, we combined the computationally inexpensive reliability as-
sessment methods with meta-models to have the approximation in both parts of the algorithm.
We selected the two best meta-models according to the first part of the results and the three
best reliability assessment methods according to the second part of the results to obtain the
best combination of approximation techniques for each numerical benchmark. As the indicator
of quality, we selected the mean and the standard deviation of the error since we prefer hav-
ing as much accurate and precise results as possible. Although these selected indicators are
non-conflicting, we can compare them with Pareto efficiency conditions to find out the best
algorithm. Therefore, we assigned a rank to each reliability assessment method for every exam-
ple, and we summed those ranks for each reliability assessment method. Table 7.1 on the left
presents the results. As the best reliability assessment method, we selected an Importance sam-
pling, Subset simulation, and Asymptotic sampling. Tables and figures summarizing the worst
meta-models with the selected reliability assessment methods for each example are published in
Appendix 12. We use those results for the overall evaluation of achieved results in Section 7.6.

Example AS eMC FORM IS MC SS SSS GMM LMM SGMM
1 4 5 2 1 2 3 6 2 3 1
2 1 3 5 4 2 1 4 1 3 2
3 1 5 4 2 3 3 3 1 2 3
4 2 4 3 1 3 2 3 2 1 1
5 3 4 3 2 4 1 3 3 1 2

Sum 11 21 17 10 14 10 19 9 10 9
Placings 3 7 5 1-2 4 1-2 6 1-2 3 1-2
Table 7.1: Sorting to fronts according to Pareto efficiency conditions with a mean and stan-
dard deviation of the error criteria. Reliability assessment techniques and meta-models are
compared independently.
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7.1 Example 1: Mathematical problem with a nonlinear limit
state function

This problem considers two deterministic design variables d1 and d2 and two stochastic vari-
ables X1 and X2; the deterministic design variables contribute only to the cost function while
both deterministic design variables, as well as stochastic variables, are comprised in the limit
state function.

min C(d) = d2
1 + d2

2 (7.2)
max β(x,d) = −Φ−1

(
Prob

[
g(x,d) ≤ 0

])
(7.3)

g(x,d) =
1

5
d1d2x

2
2 − x1 (7.4)

0 ≤ d1,2 ≤ 15. (7.5)

Stochastic variables X1 and X2 have a normal distribution with the mean value µX1 equals to 5
and µX2 equals to 3. Both variables have a coefficient of variation equal to 0.3 and they are
statistically independent. For practical purposes, we limit the reliability index β to the range
0 ≤ β ≤ 4.5.

AOUES and CHATEAUNEUF published this example as a single-objective reliability opti-
mization problem in [3]. Their formulation is to minimize the cost function subject to the
probability constrain bounded by the target failure probability pTF = 0.01 corresponding to the
target reliability index βT = 2.32 and the same constrain as in Equation (7.5).

min C(d) = d2
1 + d2

2 (7.6)

s.t. Prob
[1

5
d1d2x

2
2 − x1 ≤ 0

]
≤ pTF (7.7)

0 ≤ d1,2 ≤ 15. (7.8)

Paper [3] shows the single-objective optimum as d∗ = [d1, d2] = [5.65, 5.65]. We run the
quasi-Monte Carlo simulation with 107 samples for this particular optimum and we obtained
the reliability index β equal to 2.3363 and the failure probability 9.74 · 10−3, which satisfies
the constraint. The optimum cost C(d∗) is equal to 63.845 according to the authors and 63.88
according to the substitution to Equation (7.2). The small inaccuracy is in the rounding of the
optimum values d∗.

7.1.1 Comparison of meta-models and analytical model results together
with a preconditioned quasi-Monte Carlo simulation

To study the behaviour of the meta-models, we used a preconditioned quasi-Monte Carlo sim-
ulation as a reliability assessment method as the most stable one. We run all the simulations
on a desktop computer with hardware and software settings defined in Table 11.1. Table 7.2
shows the elapsed time and average values of simulations for one optimization run. Among
the meta-models, the global meta-model was the slowest in utilization with MO-RBDO if the
code was run parallel on eight threads. In the serial run, times are almost comparable among
the meta-models. Since the analytical model does not use the meta-model assembly, there is no
need to evaluate any samples in the Design of Experiments (DoE) and responses of the model
in DoE. On the other hand, all the reliability assessment uses the analytical model. Therefore,
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OPTIMIZATION PROCEDURE

AM LMM GMM SGMM
elapsed time [hours] (1 core) 0.05 0.87 1.00 0.98
elapsed time [hours] (8 cores) 0.02 0.13 0.54 0.16
initial DoE 0 200 50 50
added samples 0 187 323 316
analytical g(x)-calls 1.11 · 108 387 373 366
MM built for opt. 0 3050 31 31
MM built for update 0 672 0 0
MM-calls 0 1.43 · 108 9.06 · 107 1.24 · 108

Table 7.2: Example 1: Comparison of statistics for RBDO utilizing quasi-Monte Carlo simula-
tion with an analytical model (AM), local meta-model (LMM), global meta-model (GMM), and
sparse global meta-model (SGMM).

all the responses are hidden in the table item “analytical g(x)-calls”. The global meta-model
and the sparse global meta-model need the same number of samples in the initial DoE since
they are assembled for the whole design domain; local meta-models need a larger portion of an
initial DoE since they are covering a smaller area and therefore need more information around
each potential design candidate. On the other hand, the number of added samples into the ex-
isting DoE was larger for both versions of the global meta-models, the dense as well as the
sparse versions, respectively. Thus the number of analytical g(x)-calls in all versions of meta-
models is comparable. If we compare the number of meta-models evaluations and the number
of analytical model evaluations for reliability purposes, the results are comparably the same.

Figure 7.3 depicts all the final Pareto sets and Pareto fronts from all runs used for the statis-
tics above. Superior Pareto fronts dominate the single-objective optimum from reference [3]
(see Figure 7.40). The global meta-model, as well as the sparse global meta-model, show sim-
ilar behaviour as the analytical model. The Pareto sets are slightly wider compared to the ana-
lytical model, but the Pareto fronts are almost identical among the global meta-models and the
analytical model in all runs. The local meta-models work well at the early stage of the Pareto
front, but the behaviour is worse above the reliability index equal approximately to 2.5. The
reason is that the local meta-models work nicely only if the proposed individual of the genetic
algorithm is not so far from the limit state. In this particular example, the domain is small, and
our universal setting of the selection of the number of points for the meta-model assembly to
1/10 of all DoE support points is too narrow. The sampling for larger reliability indices forces
the local meta-model to extrapolate, and this is the reason for the worse behaviour at the tail of
the Pareto front in higher reliability indices values. This effect is obvious in Figure 7.4. The
influence domain is set to 1/10 of all points of DoE that are the closest to the selected individual.
The meta-model behaves similarly as the analytical model in the area of the training data. How-
ever, the extrapolation around the limit state is evident. The limit state function has four inputs;
this figure represents only a projection of the 4D function into 2D with fixed stochastic variables
in their mean values. On the contrary, Figure 7.5 shows the space with fixed d1 and d2 values
to 8.8381 and 12.2061 (the green point from Pareto set and Pareto front in Figure 7.4), where
magenta circles depict the same training points for a local meta-model. The original model is
hard to imitate by the local meta-model; especially around the limit state (thick contours). All
the points in DoE depicted in Figure 7.4, and Figure 7.5 are only projections into 2D, the limit
state function is, however, a section of the 4D function (with fixed values on mean values of
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Figure 7.3: Example 1: Pareto sets (circles, left) and Pareto fronts (large circles, right) for all
models, namely an analytical model (AM), global meta-model (GMM), sparse global meta-
model (SGMM), and local meta-models (LMM). Larger circles with black edges depict original
Pareto sets and fronts. Smaller circles with magenta edges in the objective space repre-
sent the recalculated fronts with an analytical model. The magenta cross depicts a single-
objective optimum published in [3]. Green dots sets show the superior Pareto set and su-
perior Pareto front. Every colour has the meaning of a different run. The contour plot in the
design space represents an analytical limit state function; the bold contour is for the limit
state g(X) = 0.
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OPTIMIZATION PROCEDURE

Figure 7.4: Example 1: Pareto sets and Pareto fronts from one MO-RBDO run utilizing local
meta-models. (DS - design space, ObjS - objective space, LMM - local meta-models, AM
- analytical model, DoE - Design of Experiments.) The first row of pictures represents all
generations from the optimization algorithm (circles). The dark blue circles depict the first
generation; the next generations continue with cyan, green, yellow, orange, and red colours.
Empty circles denote the solutions, not satisfying β constraints. The last generation (Pareto
set on the left and Pareto front on the right) is depicted in the second row of pictures together
with the DoE (blue dots for initial DoE, red dots for added samples into DoE with an update).
Set of green dots represents the superior Pareto front. The last picture represents LMM
assembled for one individual (green circle) depicted for the whole design space by dashed
contours. Solid contours represent the analytical model in all DS images.
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Figure 7.5: Example 1: The reliability space for fixed values of d1 and d2 equal to 8.8381 and
12.2061, respectively (the green individual from Figure 7.4). The reliability index is evaluated
using the local meta-model.

the stochastic variables in Figure 7.4 and on the green point d in Figure 7.5). Some samples,
therefore, can give the impression that they are closer than already selected points. However,
the k-NN algorithm is set to choose the closest points to the proposed optimum by the genetic
algorithm.

Table 7.3 shows the comparison of the mean values of performance measures described in
Section 3.2 and errors; the last two columns represent the minimum and maximum achieved
values. The sparse global meta-model behaves the best among all meta-models in unary met-
rics in total. The second-best meta-model is the global meta-model comparable with the local
meta-model only in the Spacing metric. The results of the binary metrics are not as straight-
forward as the unary metric results. The Generational distance, representing how far is a re-
calculated Pareto front from a superior Pareto front, shows that the global meta-model was
the best, followed by the sparse global meta-model, and the local meta-models behave worst.
The Two set coverage metric C(A,B) calculates the proportion of solutions in set B that are
weakly dominated by solutions in set A. This operator is non-symmetric. Therefore we calcu-
lated both versions of this metric. Metric C(sPF,rPF) indicates a proportionate part of a total
of how many solutions of a superior Pareto front weakly dominates the solutions from recal-
culated Pareto fronts and vice versa, metric C(rPF,sPF) denotes a proportion of the dominating
solutions from a recalculated Pareto fronts to a superior Pareto front. Surprisingly, the best
performance C(sPF,rPF) was obtained by the local meta-models followed by the sparse global
meta-model and subsequently the last global meta-model. The metric C(rPF,sPF) has almost
comparable values for the local meta-models and the sparse global meta-model, closely fol-
lowed by the global meta-model. The Coverage difference of two sets is a similar metric as the
Two set coverage metric C(A,B) but operating with the hypervolumes. The Coverage difference
of two sets D(A,B) measures the size of the space that is weakly dominated by front A but not
weakly dominated by front B. The best performance was again achieved with the sparse global
meta-model, followed by the global meta-model and the worst value got the local meta-models.
The last part of the table shows the error of the reliability index in the original Pareto fronts.
The sparse global meta-model again achieved the best performance, the second-best precise and
accurate model was the global meta-model, and the worst model in the accuracy and precision
of the obtained reliability index β was the local meta-model. Figure 12.1 in Appendix 12 shows
the box-plots for the performance measures and the standard deviation of the Error.
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OPTIMIZATION PROCEDURE

AM GMM LMM SGMM min max
HV(rPF) 1574.5 1569.2 1519.7 1572.2 1456.1 1576.5
S(rPF) 0.0103 0.0125 0.0124 0.0111 0.0048 0.0525
∆(rPF) 0.41 0.48 0.76 0.45 0.34 0.92
GD(rPF,sPF) - 5.5 · 10−4 6.5 · 10−4 5.7 · 10−4 3.1 · 10−4 2.3 · 10−3

C(sPF,rPF) - 0.643 0.533 0.613 0.298 0.838
C(rPF,sPF) - 0.019 0.027 0.025 0 0.074
D(sPF,rPF) - 15.99 65.47 12.93 11.51 129.13
min ε(βoPF) - 0.0002 0.0016 0.0001 0 0.013
max ε(βoPF) - 0.107 0.677 0.046 0.0195 1.77
E ε(βoPF) - 0.015 0.120 0.009 0.0063 0.49
std ε(βoPF) - 0.020 0.165 0.010 0.0055 0.51
Table 7.3: Example 1: Comparison of performance measures for RBDO utilizing quasi-Monte
Carlo simulation with an analytical model (AM), local meta-model (LMM), global meta-model
(GMM), and sparse global meta-model (SGMM). Used metrics are a Hypervolume (HV),
Spacing (S), Spread (∆), Generational distance (GD), Two set coverage metric (C(A,B)), Cov-
erage difference of two sets (D(A,B)), and Error of the reliability index βoPF. Datasets: rPF -
recalculated Pareto fronts, sPF - superior Pareto front, oPF - original Pareto fronts. The best
values are tinged with the green colour, the worst values with the red colour. The scale shows
the visual comparison of the results.

7.1.2 Results comparison of different reliability assessment techniques
utilizing an analytical model

We run the multi-objective reliability-based design optimization utilizing an analytical model
together with different reliability assessment techniques to find the differences between the
methods and the subsequent results. All MO-RBDO routines run ten times to get the relevant
statistical data. All the simulations were performed on a laptop computer with hardware and
software settings defined in Table 11.2. Table 7.4 shows average elapsed times for whole MO-
RBDO runs together with the necessary number of limit state function evaluations. We tried
to keep the number of limit state functions evaluations approximately the same except for the
FORM since FORM is an approximation method, and the larger number of limit state function

AS eMC FORM IS MC SS SSS
elapsed time [s] 116 57 66 71 20 39 36
g(x)-calls 5.3 · 107 4.7 · 107 1.3 · 105 4.4 · 107 4.7 · 107 3.3 · 107 4.7 · 107

Table 7.4: Example 1: Comparison of statistics for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).

104



7.1. EXAMPLE 1: MATHEMATICAL PROBLEM WITH A NONLINEAR LIMIT STATE FUNCTION

evaluations do not provide the more precise failure probability estimate in comparison with the
other simulation methods. Our fastest implementation is unsurprisingly MO-RBDO utilizing
a quasi-Monte Carlo simulation; the slowest is MO-RBDO utilizing Asymptotic sampling.

Figure 7.6 and 7.7 show all Pareto sets (on the left) with corresponding Pareto fronts (on the
right) obtained from MO-RBDO and different reliability assessment methods. MO-RBDO uti-
lizing an Asymptotic sampling provides Pareto fronts that are noticeably below the recalculated
data; this means that an Asymptotic sampling systematically underestimates the reliability in-
dex and the design approximation is on the safe side. The superior Pareto front is slightly above
the recalculated Pareto fronts. The MO-RBDO utilizing an Enhanced Monte Carlo simulation
provides the worst results from the visual point of view. The recalculated Pareto fronts are con-
siderably above the provided data by MO-RBDO using eMC. MO-RBDO utilizing a First-order
reliability method surprisingly provides very nice Pareto fronts that are almost identical with the
recalculated fronts. MO-RBDO utilizing an Importance sampling provides very good numeric
equality of recalculated and original Pareto fronts as well. Since the Pareto fronts do not exceed
reliability index equal to 3, the number of quasi-Monte Carlo simulation samples are sufficient
for the coefficient of variation of failure probability estimator slightly above the 10% for all in-
dividuals. Therefore the Pareto fronts are very precise. The number of samples for the β-index
equal to 3 in the quasi-Monte Carlo simulation is equal to 7.41 ·104 for 10% coefficient of varia-
tion and we simulate 30,000 samples in each quasi-Monte Carlo simulation for each individual.
Since we keep the number of limit state function evaluations approximately the same for all
MO-RBDO except for the FORM, we can compare the efficiency of the advanced simulation
techniques and the quasi-Monte Carlo simulation. MO-RBDO utilizing a Subset simulation
provides Pareto fronts with slightly tremulous tails with the increasing cost function C. The
reliability indices mostly overestimate the real value in comparison with the recalculated data
from the visual point of view, which is on the hazardous side of the design. MO-RBDO utiliz-
ing a Scaled sigma sampling overestimates the reliability indices systematically and therefore
provides the most hazardous Pareto fronts from all mentioned MO-RBDO methodologies in
this section.

Table 7.5 shows the performance measures and errors for the data depicted in previous
figures. The Hypervolume metric values are comparably the same, which means that even
though the original Pareto fronts differ especially for MO-RBDO utilizing an Enhanced Monte
Carlo simulation, the Pareto sets are located approximately in the same region; therefore, the
subsequent recalculation provides almost identical data. All the recalculated Pareto fronts have
very low Spacing performance measure, which means that according to this metric, all members
are equidistantly spaced. This statement is not valid in comparison with the next performance
measure, the Spread, therefore we suppose that the data are distributed in pairs, groups, or both,
and these pairs or groups are uniformly distributed. The Spacing metric cannot capture this
trend, and the metric is therefore somehow skewed. The Spread differs more considerably;
the worst Spread is in the Pareto fronts from MO-RBDO utilizing a Subset simulation, Scaled
sigma sampling, and Asymptotic sampling. The rest of the methodologies have approximately
the same value of this metric, but none of these has an ideal Spread close to zero. All the
recalculated Pareto fronts have a Generational distance metric close to zero. Therefore all of
them are close to the superior Pareto front. The result for MO-RBDO utilizing a Scale sigma
sampling is the worst of all, the GD metric is higher by one order of magnitude than for other
MO-RBDO results in this section, but its GD value is still very close to zero, and therefore the
correspondence between the data is very good; see the last set of images in Figure 7.7 - the
aqua dots set compared to the small circles with the green edges. The superior Pareto front
however weakly dominates more than half of the recalculated Pareto fronts, but almost none of
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Figure 7.6: Example 1: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Enhanced Monte Carlo simu-
lation (eMC), First-order reliability method (FORM), and Importance sampling (IS) together
with an analytical model. The smaller circles with green edges in the objective space rep-
resent the recalculated Pareto sets to Pareto fronts with quasi-Monte Carlo simulations with
CoV < 5%. The magenta cross represents a result published in [3]. Aqua dots sets show
the superior Pareto set and Pareto front obtained with an analytical model together with
a quasi-Monte Carlo simulation. Every colour means a different run. The contour plot in
the design space represents an analytical limit state function; the bold contour is for the limit
state g(X) = 0.
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Figure 7.7: Example 1: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing a quasi-Monte Carlo simulation (MC), Subset simulation (SS),
and Scaled sigma sampling (SSS) together with an analytical model. The smaller circles with
green edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV lesser than 5%. The magenta cross represents
a result published in [3]. Aqua dots sets show the superior Pareto set and Pareto Pareto front
obtained with an analytical model together with quasi-Monte Carlo simulation. Every colour
means a different run. The contour plot in the design space represents an analytical limit
state function; the bold contour is for the limit state g(X) = 0.
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AS eMC FORM IS MC SS SSS min max
HV(rPF) 1667.7 1670.7 1670.7 1670.9 1671.7 1663.1 1667.1 1655.1 1672.7
S(rPF) 0.016 0.011 0.011 0.012 0.011 0.019 0.017 0.008 0.031
∆(rPF) 0.57 0.39 0.39 0.39 0.39 0.64 0.58 0.26 0.72
GD(sPF,rPF) [·10−4] 5.4 6.4 6.7 6.1 6.3 5.0 49.9 3.4 63.9
C(sPF,rPF) 0.57 0.59 0.62 0.65 0.63 0.51 0.51 0.36 0.82
C(rPF,sPF) 0.026 0.028 0.019 0.024 0.023 0.023 0.018 0 0.041
D(sPF,rPF) 16.32 13.36 13.33 13.09 12.39 20.96 17.57 11.33 29.01
min ε(βoPF) 0.0003 0.0004 0.007 0 0.00002 0.0002 0.046 0 0.08
max ε(βoPF) 0.074 0.475 0.036 0.011 0.034 0.077 0.641 0.01 0.69
E ε(βoPF) 0.022 0.196 0.017 0.003 0.009 0.017 0.286 0.002 0.31
std ε(βoPF) 0.020 0.179 0.007 0.002 0.009 0.018 0.192 0.002 0.20

Table 7.5: Example 1: Comparison of performance measures for RBDO utilizing an analyt-
ical model and different reliability assessment techniques, namely an Asymptotic sampling
(AS), Enhanced Monte Carlo simulation (eMC), First-order reliability method (FORM), Impor-
tance sampling (IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled
sigma sampling (SSS). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Gen-
erational distance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets
(D(A,B)), and Error of the reliability index ε(β). The used datasets: rPF - recalculated Pareto
front, sPF - superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The
best values are tinged with the green colour, the worst values with the red colour. The scale
shows the visual comparison of the results.

the recalculated Pareto fronts dominate the superior Pareto front. The size of the space which is
weakly dominated by the superior Pareto front but not weakly dominated by recalculated Pareto
fronts from MO-RBDO is also very small in comparison with the Hypervolume metric. The last
part of the table shows the Error of the reliability assessment techniques. MO-RBDO utilizing
an Importance sampling obtained the most precise and accurate Pareto fronts, the worst mean
error in the β-index is 0.011, and the standard deviation of the error is 0.003. The next most
accurate Pareto fronts were obtained by MO-RBDO utilizing a quasi-Monte Carlo simulation
with 30,000 samples for each individual. This result is obtained because the Pareto fronts have
a maximum β-index equal to 3 for this example. MO-RBDO utilizing FORM has the second-
best precision of the reliability indices. The worst accuracy and precision of the Pareto fronts
were obtained by MO-RBDO utilizing a Scaled sigma sampling and second-worst accuracy
and precision by MO-RBDO utilizing an Enhanced Monte Carlo simulation. Figure 12.2 in
Appendix 12 shows the box-plots for the performance measures and the mean and standard
deviation of the error.

7.1.3 Results for approximation using meta-models and reliability assess-
ment techniques

As the final part of the testing of our proposed method, we merged the advanced reliability as-
sessment methods with meta-models. The three best-behaving reliability assessment methods,
namely an Asymptotic sampling, Importance sampling, and Subset simulation, are combined
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with all meta-models. We discuss only two best-behaving meta-models in this section, namely
a sparse global meta-model, and global meta-model. The results for the local meta-models are
given in Appendix 12 without further comments. The ranks of all methods, together with the
best placings for all five examples, are in Table 7.1; the first example is in the first row of the
table.

Table 7.6 shows the statistics for MO-RBDO for ten independent runs. All the computations
run on a laptop computer with specifications defined in Table 11.2. Our fastest implementation
is a combination of a Subset simulation together with a sparse global meta-model closely fol-
lowed by a global meta-model together with the same simulation technique. Since both models
are global, the number of initial samples in DoE is equal to 50. An Asymptotic sampling
seems to provide more diverse samples for an update of DoE in comparison with an Importance
sampling and Subset simulation. We kept the same setting of the simulation methods for an an-
alytical function as well as for meta-models. The number of meta-model calls is approximately
the same for both meta-models for the same simulation technique; from 3.5 · 107 to 8.9 · 107.
The number of analytical function evaluations is dependent on the number of added samples to
DoE; from 349 to 418 samples in total.

Figure 7.8 and 7.9 show all Pareto sets and Pareto fronts from MO-RBDO utilizing a global
meta-model and sparse global meta-model together with all three selected simulation tech-
niques. The difference between the original data and the recalculated counterparts is small from
a visual point of view. The superior data nicely imitate the obtained data from MO-RBDO.
Our superior Pareto sets and fronts dominate the single-objective optimum published in [3] (see
Figure 7.40). MO-RBDO using an Asymptotic sampling and sparse global meta-model pro-
vides less stable solutions in both tails as well as MO-RBDO using Subset simulation and both
versions of the global meta-model in the upper tail.

Table 7.7 provides performance measures and errors. According to the unary metrics and
the errors indicators, MO-RBDO utilizing an Importance sampling performed the best; the
differences between the models are inappreciable. The Hypervolumes are comparable for all
the methods. The differences among the methods, as well as models, are minimal as well.
The Spacing metric is close to zero for all methods, which means that distances between the
solutions in the objective space are almost ideal. However, the Spread metric is at least 0.34.
The difference between Spacing and the Spread metric is in several points. One difference

GMM SGMM
AS IS SS AS IS SS

elapsed time [sec] 369 618 226 353 584 211
elapsed time [hours] 0.103 0.172 0.063 0.098 0.162 0.059
initial DoE 50 50 50 50 50 50
added samples 368 308 319 354 299 308
analytical g(x)-calls 418 358 369 404 349 358
MM built for opt. 31 31 31 31 31 31
MM-calls 5.3·107 8.9·107 3.6·107 5.2·107 8.9·107 3.4·107

Table 7.6: Example 1: Comparison of statistics for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a global meta-model (GMM), and sparse
global meta-model (SGMM).
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Figure 7.8: Example 1: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with a global meta-model (GMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross represents a result
published in [3]. Green dots sets show the superior Pareto set and Pareto front obtained
with an analytical model together with a quasi-Monte Carlo simulation. Every colour means
a different run. The contour plot in the design space represents an analytical limit state
function; the bold contour is for the limit state g(X) = 0.
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Figure 7.9: Example 1: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with a sparse global meta-model (SGMM). The smaller cir-
cles with magenta edges in the objective space represent the recalculated Pareto sets to
Pareto fronts with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross repre-
sents a result published in [3]. Green dots sets show the superior Pareto set and Pareto
front obtained with an analytical model together with a quasi-Monte Carlo simulation. Every
colour means a different run. The contour plot in the design space represents an analytical
limit state function; the bold contour is for the limit state g(X) = 0.
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GMM SGMM
AS IS SS AS IS SS min max

HV (rPF) 1395.16 1397.79 1389.42 1395.18 1397.78 1388.87 1367.35 1399.43
S (rPF) 0.020 0.013 0.018 0.021 0.012 0.020 0.009 0.056
∆ (rPF) 0.60 0.42 0.67 0.60 0.39 0.68 0.34 0.83
GD (rPF,sPF) 5.9·10−4 7.0·10−4 6.0·10−4 7.3·10−4 7.4·10−4 5.4·10−4 3.1·10−4 2.3·10−3

C(sPF,rPF) 0.56 0.66 0.55 0.50 0.66 0.58 0.37 0.80
C(rPF,sPF) 0.023 0.017 0.027 0.028 0.019 0.022 0.004 0.053
D(sPF,rPF) 15.0 12.3 20.7 15.0 12.4 21.3 10.7 42.8
min ε(βoPF) 3·10−4 2·10−6 7·10−4 6·10−4 3·10−5 4·10−4 0 1.6·10−3

max ε(βoPF) 0.06 0.02 0.10 0.09 0.02 0.08 0.01 0.32
E ε(βoPF) 0.014 0.0039 0.021 0.024 0.0044 0.018 0.003 0.100
std ε(βoPF) 0.014 0.0046 0.021 0.023 0.0049 0.019 0.002 0.100

Table 7.7: Example 1: Comparison of performance measures for RBDO utilizing different relia-
bility assessment techniques namely an Asymptotic sampling (AS), Importance sampling (IS),
and Subset simulation (SS) using a global (GMM) and sparse global meta-model (SGMM).
Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Generational distance (GD),
Two set coverage metric (C(A,B)), Coverage difference of two sets (D(A,B)), and Error of the
reliability index ε(β). The used datasets: rPF - recalculated Pareto front, sPF - superior Pareto
front, oPF - original Pareto front, and rF - recalculated front. The best values are tinged with
the green colour, the worst values with the red colour. The scale shows the visual comparison
of the results.

is that the cumulative distances are divided by the number of solutions in the Spacing metric
and by the ideal cumulative distances in the Spread metric. Both measures can be zero in the
ideal case; however, the Spacing does not consider any other solutions except for the solutions
belonging to the Pareto front, while the Spread is zero only if the extreme solutions merge with
the boundary solutions in the Pareto front and the distances between the solutions are equal.
In case that the extreme solutions that are selected by the user in advance do not merge, the
Spread metric is nonzero. This condition is however omitted in case of the Spacing metric. The
second difference is in search of the closest point. The Spacing metric looks for the closest
solution among all solutions for each one; this means that it can omit the pairwise, groupwise,
or both spread since the pairs, groups, or both are always close to each other; on the contrary, the
Spacing metric can detect only outlier solutions and not the gaps between groups. The Spread
metric employs the sorted distances, and therefore it can embrace the larger gaps between the
consecutive solutions. Accordingly, these two metrics provide different data in our work. We
select the extreme solutions as the boundary solutions from the union of the superior Pareto
front and the actual recalculated Pareto front.

The binary metrics shows that all the recalculated Pareto fronts are close to the superior
Pareto front. The superior Pareto front weakly dominates at least half of the solutions from the
recalculated Pareto fronts, and the recalculated Pareto fronts weakly dominate only a minimal
number of solutions belonging to the superior Pareto front. The worst results for the binary
metrics come from the MO-RBDO utilizing an Importance sampling with one exception, the
Coverage difference of two sets, which is the best for MO-RBDO utilizing IS. The error is the
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smallest for the MO-RBDO utilizing IS regardless of the meta-model. The error is even smaller
for the combination of the sparse global meta-model and an Importance sampling (E ε(βoPF) =
0.0044, std ε(βoPF) = 0.0049) than for the preconditioned Monte Carlo simulation and the
sparse global meta-model (E ε(βoPF) = 0.0089, std ε(βoPF) = 0.010). The reason is that the
Importance sampling provides better samples for DoE update since the Importance sampling
density samples around the design point instead of the mean values. The updating procedure
has more points to choose from the Importance sampling than from the preconditioned MC,
and the limit state of the meta-model can be very precise after the update from the Importance
sampling. Just for comparison, MO-RBDO utilizing an analytical model and an Importance
sampling also performed the best if the error indicators are considered (E ε(βoPF) = 0.0026,
std ε(βoPF) = 0.0024). Figure 12.3 in Appendix 12 shows the box-plots for the performance
measures and the mean and standard deviation of the error.

7.2 Example 2: Mathematical problem with a highly nonlin-
ear series system reliability

This problem considers two stochastic design variables X1 and X2 contributing to the cost
function with their mean values and concurrently to the limit state function as the stochas-
tic variables. The problem has two component limit state functions, where the components
are connected into the series system. Therefore, we use the minimum value from both limit
state functions values, and this representative value determines whether the system fails or not.
Mathematically written

min C(µX1 , µX2) = (µX1 − 3.7)2 + (µX2 − 4)2 (7.9)
max β(X) = −Φ−1(Prob[g(X) ≤ 0]) (7.10)

g(X) = min

(
−x1 sin(4x1)− 1.1x2 sin(2x2)
x1 + x2 − 3

)
(7.11)

0 ≤ µX1 ≤ 3.7, 0 ≤ µX2 ≤ 4. (7.12)

Stochastic design variable X1 and X2 have a normal distribution, the mean value µX1 and
µX2 represent the design variables bounded from below with 0 and from above with 3.7 and 4,
respectively. The standard deviations are both equal to 0.1. The variables are statistically inde-
pendent. For practical purposes, we limited the reliability index β to the range 0 ≤ β ≤ 4.5.
The cost function, as well as the limit state function, are depicted in Figure 7.10.

This example was first studied as the single-objective optimization problem utilizing a sur-
rogate model by [109] and subsequently as the decoupling approach by [32]. The optimization
problem of the original single-objective optimization problem is according to reference [109]

min C(µX1 , µX2) = (µX1 − 3.7)2 + (µX2 − 4)2 (7.13)
s.t. g1(X) = −X1 sin(4X1)− 1.1X2 sin(2X2) (7.14)

g2(X) = X1 +X2 − 3, (7.15)
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Figure 7.10: Example 2: The cost function (left) and the limit state function (right). The bold
orange contour (right) is a limit state g(x) = 0; the failure region is for g(x) ≤ 0, i.e. from the
yellow to the blue on the scale.

and according to reference [32] in a probabilistic formulation

min C(µX1 , µX2) = (µX1 − 3.7)2 + (µX2 − 4)2 (7.16)

s.t. Prob
[
g(X) ≤ 0

]
≤ Φ(−βt) (7.17)

g1(X) = −X1 sin(4X1)− 1.1X2 sin(2X2) (7.18)
g2(X) = X1 +X2 − 3 (7.19)
0 ≤ µX1 ≤ 3.7, 0 ≤ µX2 ≤ 4. (7.20)

Table 7.8 summarizes the single-objective optima published in the literature.

Reference µX1 µX2 C(µX1 , µX2) [-] β [-]
published corrected published corrected

[59] 2.81 3.25 1.26 1.3546 1.67 2.083
[109] 2.8235 3.2963 - 1.2634 2 1.6764
[109] 2.7971 3.2266 - 1.4134 2.9 2.3118
[32] 2.8163 3.2768 1.3038 1.3039 1.837 1.8575

Table 7.8: Example 2: Published single-objective optima.

7.2.1 Comparison of meta-models and analytical model results together
with a preconditioned quasi-Monte Carlo simulation

First of all, the study of the behaviour of the meta-models was carried out as in the previous
Example 1. A preconditioned quasi-Monte Carlo simulation was used as a reliability assessment
method since we have the best experiences with its stability. To get relevant outputs, we run each
optimization procedure with the same setting and the same meta-model several times. Table 7.9
shows the average values for one optimization run. The analytical model is the simplest; the
time of the MO-RBDO evaluation with its utilization is the fastest. Local meta-models are the
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AM LMM GMM SGMM
elapsed time [hours] (1 thread) 1.37 5.94 23.61 22.88
elapsed time [hours] (8 threads) 0.80 2.81 5.26 4.85
initial DoE 0 200 50 50
added samples 0 228 323 296
analytical g(x)-calls 8.21 · 109 428 373 346
MM built for opt. 0 3050 31 31
MM built for update 0 4208 0 0
MM-calls 0 8.48 · 109 7.32 · 109 7.53 · 109

Table 7.9: Example 2: Comparison of statistics for RBDO utilizing a quasi-Monte Carlo sim-
ulation with an analytical model (AM), local meta-models (LMM), global meta-model (GMM),
and sparse global meta-model (SGMM).

fastest type of a meta-model that we implemented; followed by the sparse global meta-model
and the global meta-model. We run the code in serial on one thread as well as parallel at eight
threads. The speed-up is evident particularly for the global meta-model evaluations; the speed-
up is not linear, but it is possible to save up to 79% of computational time. The total number
of analytical function evaluations was the highest for the local meta-models, followed by the
global meta-model and the sparse global meta-model if we take into account only MO-RBDO
with meta-models. All three versions of meta-models, as well as the analytical model, were
simulated comparably in the order of magnitude for the reliability assessment purposes.

Figure 7.11 depicts all Pareto fronts and Pareto sets from several runs. All the models show
similar behaviour with very few exceptions in outliers, namely two components of the Pareto
front using the global meta-model and similarly the sparse global meta-model.

Table 7.10 shows the comparison of performance measures described in Section 3.2. Since
the quality of all meta-models is excellent, there are only minor deviations in the metrics. The
analytical model got the best metric value for the Hypervolume; on the other side, it got the
worst value for the Spread metric. The global meta-model was insignificantly better in unary
metrics among the meta-models. The Spacing measure is close to zero for all models; therefore,
almost all members in Pareto fronts are equidistantly spaced. On the other side, the Spread met-
ric ∆ is approximately 0.37, which means that the Spread is not ideal, however, if we compare
the meta-models metric values to the analytical model metric value, they are almost identical.
Therefore, the Spread metric is affected by choice of the multi-objective optimization algorithm
and not by the meta-model itself. The difference in these two metrics can be influenced by the
pairwise spread, which is omitted by the Spacing metric and not by the Spread metric. The
local meta-models were insignificantly better in binary metrics. A Generational distance metric
shows that all the Pareto fronts obtained by utilizing meta-models are very close to the superior
Pareto front. However, the superior Pareto front weakly dominates almost half of the solutions
obtained by using meta-models according to the Two set coverage metric. The error shows that
the global meta-model had the smallest errors in the evaluation of the limit state function in gen-
eral except for the minimum error, which was the smallest for the sparse global meta-model.
However, all the errors are very low, and therefore meta-models show the very accurate and
precise prediction of the limit state function. Figure 12.4 in Appendix 12 shows the box-plots
for the performance measures and the mean and standard deviation of the error.
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Figure 7.11: Example 2: Pareto sets (circles, left) and Pareto fronts (large circles, right)
for all models, namely an analytical model (AM), global meta-model (GMM), sparse global
meta-model (SGMM), and local meta-models (LMM). Smaller circles with magenta edges
in the objective space represent the recalculated fronts with an analytical model. Crosses
represent results published in [59, 109, 32]. Green dots sets show the superior Pareto set
and superior Pareto front. Every colour has the meaning of a different run. The contour plot
in the design space represents an analytical limit state function; the bold contour is for the
limit state g(X) = 0.
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AM GMM LMM SGMM min max
HV 12.99 12.91 12.90 12.89 12.70 13.03
S 0.0108 0.0098 0.0102 0.0103 0.0072 0.0156
∆ 0.37 0.37 0.38 0.39 0.29 0.47
GD - 0.00059 0.00058 0.00055 0.00033 0.00180
C(PFAM,PFMM) - 0.49 0.47 0.51 0.20 0.75
C(PFMM,PFAM) - 0.030 0.033 0.030 0.004 0.067
D(PFAM,PFMM) - 0.19 0.21 0.22 0.07 0.40
min ε(βoPF) - 0.0002 0.0002 0.0001 0 0.002
max ε(βoPF) - 0.032 0.043 0.040 0.016 0.093
E ε(βoPF) - 0.0080 0.0090 0.0085 0.0063 0.014
std ε(βoPF) - 0.0070 0.0085 0.0079 0.0039 0.019

Table 7.10: Example 2: Comparison of performance measures for RBDO utilizing a quasi-
Monte Carlo simulation with an analytical model (AM), local meta-models (LMM), global meta-
model (GMM), and sparse global meta-model (SGMM). Used metrics are a Hypervolume
(HV), Spacing (S), Spread (∆), Generational distance (GD), Two set coverage metric (C(A,B)),
Coverage difference of two sets (D(A,B)), and Error of the reliability index βoPF. The best values
are tinged with the green colour, the worst values with the red colour. The scale shows the
visual comparison of the results.

7.2.2 Results comparison of different reliability assessment techniques
utilizing an analytical model

This section provides results for the multi-objective reliability-based design optimization utiliz-
ing an analytical model and approximation techniques for the reliability assessment minimizing
the error in the model part. The differences in the Pareto fronts are caused only by the simula-
tion techniques or the First-order reliability method. All the simulations were run on the laptop
computer with the hardware and software settings recorded in Table 11.2. The setting of all the
reliability assessment methods is described at the beginning of this chapter.

The number of limit state function evaluations is lower by two orders of magnitude if com-
pared to results in the previous section, see Table 7.11 and 7.9. Our fastest implementation
is MO-RBDO utilizing a quasi-Monte Carlo simulation followed by a Scale sigma sampling.
The slowest implementation is MO-RBDO utilizing an Asymptotic sampling followed by an
Importance sampling and Enhanced Monte Carlo simulation.

AS eMC FORM IS MC SS SSS
elapsed time [s] 91 86 49 87 15 44 23
g(x)-calls 6.3 · 107 4.7 · 107 6.2 · 104 5.9 · 107 4.7 · 107 4.4 · 107 4.1 · 107

Table 7.11: Example 2: Comparison of statistics for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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The Importance sampling, as well as the First-order reliability method, have to be extended
for the series system reliability since these methods work only for the components. The ex-
tension is the same for both methods. The reliability is evaluated for each limit state function
together with the unit normal to the hyperplanes. The multi-normal CDF is subsequently eval-
uated for the final failure probability. The Enhanced Monte Carlo simulation is also used in the
different form than for the component reliability; we used the recommendations in the NAESS

et al. paper [136] described in Section 4.4.5.
A Scaled sigma sampling can have difficulties if the limit state function contains a finite

failure domain or a finite safe domain creating a bounded area. The combination of both cases is
shown in Figure 7.12; the limit state function consists of two functions, one is highly nonlinear,
and together with the second one, it creates the island of the safe space. With an enlarged
area of the design space, the safe space appears behind the failure region with larger values of
variable x1 once more. The vector pMC

F,h,q in SSS has to contain only increasing values of the
failure probabilities with the increasing q since the growing σq performs the growing failure
probability in every quasi-Monte Carlo simulation. However, because of the high nonlinearity
often changing the sign of the limit state particularly with the increasing values of a variable x1

in this example, the pMC
F,h,q contains decreasing numbers from the beginning and the increasing

numbers at the end with the increasing q. The theory behind the Scaled sigma sampling is then
not working and the resulting approximation of the failure probability pF can be even larger
than 1 (which is a wrong result). We handled this problem in this example by changing vector σ
into smaller values to avoid generating samples outside the failure region to hit the safe region
with the large values of variable x1.

Figure 7.13 and 7.14 show the Pareto sets on the left and the Pareto fronts on the right from
different MO-RBDO runs utilizing seven different reliability assessment techniques. The bold

x
1

0 2 4

x 2

-1

0

1

2

3

4

5
p

F,h,1
MC  =0.65077

x
1

0 2 4

x 2

-1

0

1

2

3

4

5
p

F,h,2
MC  =0.61779

x
1

0 2 4

x 2

-1

0

1

2

3

4

5
p

F,h,3
MC  =0.59442

x
1

0 2 4

x 2

-1

0

1

2

3

4

5
p

F,h,4
MC  =0.5968

x
1

0 2 4

x 2

-1

0

1

2

3

4

5
p

F,h,5
MC  =0.61833

Figure 7.12: Example 2: Scaled sigma sampling on a combination of finite safe and failure
domains. Red dots show the samples in the failure domain, while the blue dots represent the
samples in the safe domain.
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Figure 7.13: Example 2: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Enhanced Monte Carlo simu-
lation (eMC), First-order reliability method (FORM), and Importance sampling (IS) together
with an analytical model. The smaller circles with green edges in the objective space rep-
resent the recalculated Pareto sets to Pareto fronts with quasi-Monte Carlo simulations with
CoV lesser than 5%. Orange, yellow, green and grey crosses represent results published in
[109], [32], [59], and [32]. Aqua dots sets show the superior Pareto set and superior Pareto
front. Every colour means a different run. The contour plot represents the limit state function.
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Figure 7.14: Example 2: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing a quasi-Monte Carlo simulation (MC), Subset simulation (SS),
and Scaled sigma sampling (SSS) together with an analytical model. The smaller circles with
green edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV lesser than 5%. Orange, yellow, green and
grey crosses represent results published in [109], [32], [59], and [32]. Aqua dots sets show
the superior Pareto set and superior Pareto front. Every colour means a different run. The
contour plot represents the limit state function.
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orange contour represents the limit state dividing the space into the safe and the failure region;
the safe region is inside the orange island, moreover, if the bounds of the problem are large, and
this can happen for several sampling techniques such as an Asymptotic Sampling, a Scale sigma
sampling, the failure region will turn into the valley, and the safe region appear the soonest with
the increasing variable X2. The bounds of the image are nevertheless set to the bounds of the
design variables µX1 and µX2 .

The datasets in the objective space obtained with MO-RBDO utilizing an Asymptotic sam-
pling have visually very nice correspondence among the obtained Pareto fronts, the recalculated
fronts and the superior Pareto front. The Pareto fronts obtained with MO-RBDO utilizing an
Enhanced Monte Carlo simulation have very nice similarity between the recalculated fronts and
the superior Pareto front. However, this methodology is slightly more sensitive to the bounding
of the reliability index from the above to the value 4.5, which explains the red individual with
the largest value of the cost function and the β-index close to 4.5. This individual is indifferent
with the other individuals from its Pareto front. MO-RBDO utilizing a First-order reliability
method provides Pareto fronts that are very inaccurate; one limit state function is highly non-
linear, and the approximations of the reliability indices show large errors. Unfortunately, the
Pareto fronts obtained via MO-RBDO utilizing an Importance sampling method suffer from the
same problems; the problematic part is the extension of these methodologies into the series sys-
tem reliability. The Pareto fronts from the MO-RBDO utilizing a quasi-Monte Carlo simulation
have nice congruence between the recalculated fronts and the superior Pareto front below the
reliability index equal to 4. The reason is that a quasi-Monte Carlo simulation with 30,000 sam-
ples cannot capture larger reliability indices than 4; we would increase the number of samples
to have more precise reliability indices, but this would appear in the rise of the total number of
the limit state function evaluations for each individual in each generation. MO-RBDO utiliz-
ing a Subset simulation provides visually very good Pareto fronts, only one individual suffered
from the bounding of the Pareto front from above (the teal individual with the cost function
value greater than 8). The Pareto fronts from MO-RBDO utilizing a Scale sigma sampling have
significantly overestimated the reliability indices, which is unfortunately on the unsafe side of
the designing. This method also suffers from the bounding of the Pareto fronts from above.

Table 7.12 provides mean values of the performance measures and errors. The Hypervol-
ume performance measure has an average value around 33; the minimum value was obtained
from the Pareto front obtained by MO-RBDO utilizing FORM; this value is an outlier for this
methodology. According to this metric, the best-recalculated Pareto fronts were obtained by
MO-RBDO utilizing an Enhanced Monte Carlo simulation, closely followed by an Asymptotic
Sampling and a Subset simulation. All the recalculated Pareto fronts suffer from the pairwise
layout as in the previous example, Section 7.1.2. The Spacing metric provides very low values
which refer to the almost ideal spread, while the Spread metric has the average value around
0.55 with the minimum 0.35 (by MO-RBDO utilizing eMC) and the maximum above 1 (by
MO-RBDO utilizing FORM). The pairwise layout is partially visible from Figure 7.13 and
7.14 - small circles with green edges in the objective space. Note that the recalculated datasets
from mentioned figures are not necessary Pareto fronts since the Pareto efficiency conditions
are not used. Recalculated Pareto fronts from MO-RBDO utilizing an Asymptotic sampling,
and Enhanced Monte Carlo simulation, and a Subset simulation have the best Spread according
to the ∆ metric in comparison with other recalculated Pareto fronts. The worst Spread is for the
recalculated Pareto fronts obtained via MO-RBDO utilizing FORM followed by MO-RBDO
utilizing an Importance sampling.

Low Generational distance values show that the recalculated Pareto fronts are close to the
superior Pareto front. The Two set coverage metric reveals that the superior Pareto front weakly

121



CHAPTER 7. NUMERICAL EXAMPLES FOR THE MULTI-OBJECTIVE RELIABILITY-BASED DESIGN

OPTIMIZATION PROCEDURE

AS eMC FORM IS MC SS SSS min max
HV(rPF) 35.3 35.6 30.0 30.5 31.1 35.1 34.2 10.0 36.1
S(rPF) 0.0063 0.0073 0.0071 0.0078 0.0057 0.0065 0.0058 0.0019 0.014
∆(rPF) 0.45 0.45 0.83 0.70 0.51 0.46 0.45 0.35 1.10
GD(sPF,rPF) [·10−4] 2.7 2.4 5.7 4.3 2.4 2.5 3.6 1.8 17.1
C(sPF,rPF) 0.54 0.44 0.55 0.50 0.46 0.49 0.66 0.23 0.86
C(rPF,sPF) 0.028 0.032 0.012 0.023 0.026 0.027 0.018 0 0.052
D(sPF,rPF) 1.2 0.9 6.5 5.9 5.4 1.3 2.2 0.4 26.5
min ε(βoPF) 0.0005 0.0005 0.044 0.0001 3 · 10−5 0.0002 0.24 3 · 10−5 0.24
max ε(βoPF) 0.12 0.31 1.92 1.36 0.26 0.138 0.57 0.11 1.9
E ε(βoPF) 0.024 0.073 0.33 0.25 0.028 0.023 0.43 0.023 0.43
std ε(βoPF) 0.027 0.075 0.450 0.390 0.053 0.028 0.079 0.027 0.45

Table 7.12: Example 2: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques and an analytical model, namely an Asymptotic sampling
(AS), Enhanced Monte Carlo simulation (eMC), First-order reliability method (FORM), Impor-
tance sampling (IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled
sigma sampling (SSS). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Gen-
erational distance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets
(D(A,B)), and Error of the reliability index ε(β). The datasets: rPF - recalculated Pareto front,
sPF - superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The best
values are tinged with the green colour, the worst values with the red colour. The scale shows
the visual comparison of the results.

dominates around half of the individuals from recalculated Pareto fronts, while the recalculated
Pareto fronts weakly dominate almost none of the individuals from the superior Pareto front.
In comparison with the whole hypervolume, the weakly dominated hypervolume is also very
small. Almost all of the reliability methods can provide very precise and accurate reliability
indices at least on the part of the Pareto front; the exception is a Scaled sigma sampling. On the
other hand, the error can be very large for a First-order reliability method and an Importance
sampling. A Subset simulation closely followed by an Asymptotic sampling, and a quasi-Monte
Carlo simulation provide accurate and precise results. A Scaled sigma sampling produces re-
liability indices with low accuracy and high precision. A First-order reliability method and
Importance sampling are imprecise and inaccurate. Figure 12.5 in Appendix 12 shows the box-
plots for the performance measures and the mean and standard deviation of the error.

7.2.3 Results for approximation using meta-models and reliability assess-
ment techniques

As the last part of our experiments, we combined all meta-models and three selected simulation
techniques that behaved the best according to the error indicators, namely the mean and the
standard deviation of the error. In overall, an Importance sampling, Subset simulation, and
Asymptotic sampling were the best three methods. We are aware that the quasi-Monte Carlo
simulation and the Enhanced Monte Carlo simulation provided better results for this particular
example; however, we wanted to show coherent results through all examples. We discuss only
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GMM SGMM
AS IS SS AS IS SS

elapsed time [sec] 393 1183 224 444 1155 237
elapsed time [hours] 0.109 0.329 0.062 0.123 0.321 0.066
initial DoE 50 50 50 50 50 50
added samples 370 733 297 383 799 301
analytical g(x)-calls 420 783 347 433 849 351
MM built for opt. 31 2×31 31 31 2×31 31
MM-calls 6.23·107 1.18·108 4.25·107 6.19·107 1.18·108 4.30·107

Table 7.13: Example 2: Comparison of statistics for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a global meta-model (GMM), and sparse
global meta-model (SGMM).

two best-behaving meta-models in this section, namely a global meta-model, and sparse global
meta-model. The results for the local meta-model are given in Appendix 12 without further
comments. The ranks of all methods, together with the best placings for all five examples, are
in Table 7.1; the second example is in the second row of the table.

Each combination of an Asymptotic sampling, Importance sampling, and Subset simula-
tion together with dense and sparse global meta-models in MO-RBDO was run ten times to
have valid data for our statistics. We run all the evaluations on the laptop computer with hard-
ware and software specifications defined in Table 11.2. All the simulations were modelled in
MATLAB; we use serial MATLAB codes without any inner parallelization. Table 7.13 shows
some statistics. Our fastest implementation is MO-RBDO utilizing a Subset simulation and
a global meta-model followed closely by a Subset simulation and a sparse global meta-model;
one simulation was running approximately 4 minutes. Our slowest implementation is MO-
RBDO utilizing an Importance sampling with both types of meta-models; one simulation was
running approximately 20 minutes. The number of samples in an initial DoE is equal to 50 for
both types of meta-models. The number of samples added into DoE for an update differs among
methods, especially for the Importance sampling. The Importance sampling runs for each limit
state function separately and the reliability indices together with the correlation matrix for the
linearized limit state functions provide the final series system reliability index [139]. There-
fore, we assembled two different meta-models since the system limit state function is serial
employment of two-component limit state functions.

Each update is two-criterion if the example uses only a component limit state function;
the first criterion is space-filling; the second is the shortest distance to the limit state. We
had two choices of the updating procedure if several meta-models are used at once. The first
choice is a parallel update having as many criteria for an update, as many component limit
state functions are available plus one criterion for the space-filling needs. The sample from the
Importance sampling holds information about only one limit state function; the rest of the limit
state function meta-models has to be evaluated together with the space-filling metric. The risk
of this method is that the computational effort arises since each of the meta-models has to be
evaluated for each sample and not only one meta-model for one sample. If the example uses
more than two limit state functions, selecting points to the Pareto front may be more difficult,
see the paragraph on many-objective optimization in Chapter 3. The second choice is a serial
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update; DoE is updated sequentially as many times as many component limit state functions the
system has. Therefore, the update is two-criterion; the first criterion is a space-filling metric;
the second criterion is a distance to the limit state only for the actual limit state function. The
risk of this method is that we will have more samples for DoE update and therefore, more
enumerations of the limit state functions would be necessary. We selected the latter updating
methodology, the minimization of computational effort in the meta-model field at the cost of
the larger computational efforts in analytical function evaluations. We can afford this reduction
since our analytical function is easy and fast to evaluate. In the opposite case, the former method
would be more suitable.

We used global meta-models in dense and sparse versions; therefore, 31 meta-models were
assembled in case of an Asymptotic sampling and a Subset simulation, and 62 meta-models
were assembled for an Importance sampling. The setting of all simulation methods is described
at the beginning of this chapter resulting in a different number of meta-model simulations across
the simulation methods. The maximum number of meta-model evaluations was performed for
MO-RBDO utilizing an Importance sampling regardless of the meta-model type. The lowest
number of samples was used for MO-RBDO utilizing a Subset simulation differing slightly in
the meta-model type; the minimum number of evaluations was for MO-RBDO utilizing SS and
a global meta-model.

Figure 7.15 and 7.16 show the design space and objective space of MO-RBDO utilizing
three simulation methods and two meta-models, the former is devoted to results with a global
meta-model, the latter to results with a sparse global meta-model. An Asymptotic sampling and
a Subset simulation provide very nice results for MO-RBDO regardless of the meta-model type.
On the contrary, an Importance sampling works nicely only up to reliability indices equal to 2.3,
where LEE and JUNG in [109] found the single-objective optimum (Table 7.8 – optimum with
the highest reliability index). Our MO-RBDO utilizing Importance sampling is quite unstable
with higher reliability indices. This trend is also visible in Figure 7.13; the instability is evident
from the same reliability index value.

Performance measures and error indicators evaluate the quality of the MO-RBDO outputs
in Table 7.14. According to unary metrics, the worst simulation method is an Importance sam-
pling. An Asymptotic sampling, in combination with a global meta-model, performs slightly
better than other combinations except for an Importance sampling. The results of binary met-
rics are ambiguous, a Generational distance provides the best results for MO-RBDO utilizing
a Subset simulation and a sparse global meta-model, closely followed by MO-RBDO using an
Asymptotic sampling and a global meta-model. The other combinations except for an Impor-
tance sampling also perform well, therefore recalculated Pareto fronts are close to the superior
Pareto front. Even the Importance sampling results are in the same order of magnitude as the
other results. The reason is that most of the solutions in the Pareto front are located in the lower
part of the front where the error is minimal; we also scaled all the Pareto fronts to intervals (0, 1)
to have approximately the same weights on both criteria. The smallest portion of solutions in the
superior Pareto front, which weakly dominates solutions in the recalculated Pareto fronts, pro-
vides MO-RBDO utilizing an Importance sampling and a sparse global meta-model followed
closely by MO-RBDO utilizing SS and SGMM and MO-RBDO using IS and GMM. The largest
portion of weakly dominated solutions of superior Pareto front by recalculated Pareto fronts are
from the same three methodologies; however, this size of data is insignificant.

The error indicators show that the Importance sampling can provide at least one best result
according to the average minimum of the error. As being said, the lower part of the Pareto front
is very precise, and the problems occur from the reliability index greater than approximately 3.
For that reason, this method has also the largest maximum error. The most accurate and precise
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Figure 7.15: Example 2: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with a global meta-model (GMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. Orange, yellow, green and grey crosses
represent results published in [109], [32], [59], and [32]. Green dots sets show the superior
Pareto set and Pareto front obtained with an analytical model together with a quasi-Monte
Carlo simulation. Every colour means a different run.
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Figure 7.16: Example 2: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS),
and Subset Simulation (SS) together with a sparse global meta-model (SGMM). The smaller
circles with magenta edges in the objective space represent the recalculated Pareto sets to
Pareto fronts with quasi-Monte Carlo simulations with CoV < 5%. Orange, yellow, green
and grey crosses represent results published in [109], [32], [59], and [32]. Green dots sets
show the superior Pareto set and Pareto front obtained with an analytical model together with
a quasi-Monte Carlo simulation. Every colour means a different run.
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GMM SGMM
AS IS SS AS IS SS min max

HV (rPF) 30.2 26.9 29.8 29.9 27.7 29.5 22.8 30.6
S (rPF) 0.0074 0.0086 0.0082 0.0077 0.0125 0.0077 0.0048 0.0295
∆ (rPF) 0.41 0.72 0.45 0.45 0.73 0.45 0.33 0.85
GD (rPF,sPF) 2.7·10−4 5.8·10−4 2.9·10−4 3.1·10−4 3.0·10−4 2.6·10−4 2.1·10−4 1.56·10−3

C(sPF,rPF) 0.50 0.43 0.51 0.58 0.38 0.42 0.24 0.76
C(rPF,sPF) 0.023 0.027 0.025 0.016 0.027 0.028 0 0.056
D(sPF,rPF) 0.78 4.05 1.12 1.05 3.22 1.45 0.38 8.13
min ε(βoPF) 2.·10−4 5·10−5 1.1·10−4 2.6·10−4 6.5·10−5 1.4·10−4 0 8.6·10−4

max ε(βoPF) 0.12 0.57 0.13 0.14 0.64 0.12 0.01 1.47
Eε(βoPF) 0.023 0.041 0.024 0.026 0.065 0.023 0.004 0.121
stdε(βoPF) 0.027 0.116 0.028 0.030 0.148 0.027 0.003 0.320

Table 7.14: Example 2: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques namely an Asymptotic sampling (AS), Importance sam-
pling (IS), and Subset simulation (SS) using a global (GMM) and sparse global meta-model
(SGMM). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Generational dis-
tance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets (D(A,B)), and
Error of the reliability index ε(β). The used datasets: rPF - recalculated Pareto front, sPF -
superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The best values
are tinged with the green colour, the worst values with the red colour. The scale shows the
visual comparison of the results.

results provide MO-RBDO utilizing an Asymptotic sampling and global meta-model and MO-
RBDO using a Subset simulation and sparse global meta-model. On the other side, MO-RBDO
utilizing an Importance sampling with both models had the least accurate and precise reliability
indices; a global meta-model is slightly better. Figure 12.6 in Appendix 12 shows the box-plots
for the performance measures and the mean and standard deviation of the error.

7.3 Example 3: Mathematical problem with a series system
containing three limit states

This problem considers two stochastic design variables X1 and X2 contributing to the cost
function with their mean values and simultaneously to the limit state function as the stochastic
variables. The problem has three component limit state functions, where the components are
connected into the series system. Therefore, we use the minimum value from all limit state
functions values, and this representative value determines whether the system fails or not for
the majority of the reliability assessment methods. The rest of the methods, namely a First-
order reliability method, Importance sampling, and Enhanced Monte Carlo simulation, uses
three limit state functions separately as described in the theoretical part, Sections 4.3 and 4.4.
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Figure 7.17: Example 3: The cost function (left) and the limit state function (right). The bold
white contour (right) is a limit state g(x) = 0; g(x) ≤ 0 is valid for the failure region, i.e. the
region outside the white island.

Mathematically written

min C(µX1 , µX2) = µX1 + µX2 (7.21)
max β(X) = −Φ−1(Prob[g(X) ≤ 0]) (7.22)

g(X) = min
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 (7.23)

0 ≤ µX1,2 ≤ 10. (7.24)

The third part of the limit state function is reformulated according to [59] to

G3 = {x ∈ X : g3(x) = 80− (x2
1 + 8x2 + 5) ≤ 0} (7.25)

due to the possibility of 0 in the denominator. Figure 7.17 depicts cost function as well as
the combination of the limit state functions into the series system. Stochastic variable X1 and
X2 have a normal distribution with the mean value µX1 and µX2 , respectively, and both have
a standard deviation equal to 0.3. They are statistically independent. Both mean values µX1 and

Reference µX1 µX2 C(µX1 , µX2) [-] β [-]
published corrected published corrected

[59] 3.46 3.27 6.74 6.73 2.98 2.7762
[174] 3.4406 3.2800 6.7205 6.7206 - 2.7796
[115] 3.441 3.285 6.726 6.726 - 2.7916
[202]: RIA 3.609 3.661 7.270 7.270 2 3.8445
[202]: PMA 3.609 3.660 7.269 7.269 2 3.8449
[55] 3.440 3.287 6.726 6.727 2.9686 2.7951

Table 7.15: Example 3: Published single-objective optima.
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µX2 represent design variables. For practical purposes, we limited the reliability index β to the
range 0 ≤ β ≤ 4.5.

YOUN and CHOI first studied this example as the single-objective problem utilizing a Re-
liability index approach (RIA) and a Performance measure approach (PMA) in [202]. The
single-objective problem was subsequently studied by different authors as well. Table 7.15
summarizes the single-objective optima published in the literature together with the recalcu-
lated values of the cost function and the reliability index. The published optima are obtained
most likely with the approximation methods and therefore, we used the original model and the
Monte Carlo simulation with one hundred million samples.

7.3.1 Comparison of meta-models and analytical model results together
with a preconditioned quasi-Monte Carlo simulation

In this section, we minimize the reliability assessment method error by using a preconditioned
quasi-Monte Carlo simulation. Several independent runs with different meta-models, as well
as an analytical model, were used to obtain statistical data. Table 7.16 shows average values
of some statistics from these runs. The local meta-models were the fastest among the meta-
models. We run our code in serial and parallel using eight threads; the best-obtained speed-up
was up to 4.72 utilizing sparse global meta-models, followed by speed-up 4.49 utilizing global
meta-model, and the slowest speed-up is 2.12 utilizing the local meta-models. The initial DoE
was set to 200 samples in local meta-models, and 50 samples to both global meta-models us-
ing the sparse as well as the dense Gramm matrix. The total number of evaluated analytical
functions in methods utilizing meta-models was from 346 for SGMM to 438 for LMM. 31
global meta-models, or 3050 local meta-models were assembled during the optimization pro-
cess. Local meta-models need an assembly for each individual in each generation and another
assembly for each potential candidate sample to be added into DoE. In total, meta-models were
simulated from 6.1 billion times for SGMM to 7.3 billion times for LMM for the reliability as-
sessment evaluation. The analytical model needs a similar number of samples for the reliability
assessment, i.e. 7.5 billion samples.

All the independent runs are depicted in Figure 7.18. With only a few exceptions, RBDO

AM LMM GMM SGMM
elapsed time [hours] (1 thread) 1.25 6.50 24.81 22.82
elapsed time [hours] (8 threads) 0.69 2.58 5.40 4.56
initial DoE 0 200 50 50
added samples 0 238 300 296
analytical g(x)-calls 7.48 · 109 438 350 346
MM built for opt. 0 3050 31 31
MM built for update 0 2015 0 0
MM-calls 0 7.29 · 109 7.00 · 109 6.07 · 109

Table 7.16: Example 3: Comparison of statistics for RBDO utilizing a quasi-Monte Carlo sim-
ulation with an analytical model (AM), local meta-models (LMM), global meta-model (GMM),
and sparse global meta-model (SGMM).
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Figure 7.18: Example 3: Pareto sets (circles, left) and Pareto fronts (large circles, right)
for all models, namely an analytical model (AM), global meta-model (GMM), sparse global
meta-model (SGMM), and local meta-models (LMM). Smaller circles with magenta edges
in the objective space represent the recalculated fronts with an analytical model. Crosses
represent results published in [59, 174, 115, 202, 55]. Green dots sets show the superior
Pareto set and the superior Pareto front. Every colour has the meaning of a different run.
The contour plot in the design space represents an analytical limit state function; the bold
contour is for the limit state g(X) = 0.
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utilizing a global meta-model terminated into the Pareto fronts that are almost identical to the
superior Pareto front. The problems occur for reliability indices above 4. RBDO utilizing local
meta-models was fast, and the results are excellent. Except for one individual from one RBDO
run, the Pareto fronts are almost mutually identical as well as almost identical to the superior
Pareto front. RBDO utilizing sparse global meta-models got the worst results visually for some
runs. Figure 7.19 shows the whole optimization process of RBDO utilizing SGMM for a run
with a poor Pareto front. The whole procedure started very promisingly (first row of pictures),
and it is visible that the optimization algorithm reached the results similar to the superior Pareto
front in around the 25th generation. Figure 7.21 shows a sparse global meta-model assembled for
selected generations in MO-RBDO. The meta-model works fine from the early generations up
to 25th generation. After the 25th generation, the meta-model seems to be overfitted. Therefore,
this meta-model is too flexible and fitting the noise as well as the actual behaviour of the model.
The problematic area is in the plateau (see Figure 7.17) that emerged with the union of three
limit state functions, and this plateau is hard to fit. Figure 7.20 shows a good termination of
the sparse global meta-model and Figure 7.22 unifies images of the assembled sparse global
meta-models for selected generations together with DoE. Even the fifth generation of RBDO
in this run uses a good approximation of the meta-model around the limit state. The updating
procedure concentrates the new samples (red dots) in the DoE, mainly in the plateau to detect
any other potential limit states to distinguish the space into the safe regions and failure regions.

Table 7.17 shows the comparison of performance measures for RBDO utilizing a precondi-
tioned quasi-Monte Carlo simulation together with an analytical model and meta-models. All
the data represent mean values for all performed runs. A closer inspection of the column with
the sparse global meta-model metric values shows that this model performed worst in total. The
Hypervolume measure value is the smallest from all other values for different models on the

AM GMM LMM SGMM min max
HV 18.06 17.73 18.03 17.22 12.84 19.48
S 0.0079 0.0084 0.0084 0.0141 0.0051 0.0674
∆ 0.39 0.43 0.39 0.53 0.29 1.06
GD - 0.00087 0.00049 0.00131 0.00029 0.00546
C(PFAM,PFMM) - 0.56 0.47 0.56 0.22 0.82
C(PFMM,PFAM) - 0.013 0.027 0.017 0 0.074
D(PFAM,PFMM) - 0.52 0.25 1.20 0.13 5.40
min ε(βoPF) - 0.0001 0.0004 0.0026 0 0.0414
max ε(βoPF) - 0.027 0.094 0.542 0.018 3.720
E ε(βoPF) - 0.007 0.020 0.124 0.006 1.162
std ε(βoPF) - 0.006 0.019 0.135 0.005 1.306

Table 7.17: Example 3: Comparison of performance measures for RBDO utilizing a quasi-
Monte Carlo simulation with an analytical model (AM), local meta-model (LMM), global meta-
model (GMM), and sparse global meta-model (SGMM). Used metrics are a Hypervolume
(HV), Spacing (S), Spread (∆), Generational distance (GD), Two set coverage metric (C(A,B)),
Coverage difference of two sets (D(A,B)), and Error of the reliability index (ε(β)). The best
values are tinged with the green colour, the worst values with the red colour. The scale shows
the visual comparison of the results.
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Figure 7.19: Example 3: Pareto sets and Pareto fronts from one MO-RBDO run utilizing
a sparse global meta-model with poor results. Abbreviations: DS - design space, ObjS - ob-
jective space, SGMM - sparse global meta-model, AM - analytical model, MM - meta-model,
DoE - Design of Experiments. The first row of pictures represents all generations from the
optimization algorithm (circles). The colour scale of circles show the number of generation in
the MO-RBDO procedure; the corresponding colour-bar is in the first-row second-column im-
age. The last generation (a Pareto set on the left and a Pareto front on the right) is depicted in
the second row of pictures together with DoE (dots). Set of green dots represents a superior
Pareto set and Pareto front obtained by an analytical model. The last row of images rep-
resents a sparse global meta-model assembled for the last generation of NSGA-II (dashed
contours) and the analytical model (solid contours) together with the initial (blue dots) and
updated DoE (red dots). The bold contour on the right image highlights the limit state.
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Figure 7.20: Example 3: Pareto sets and Pareto fronts from one MO-RBDO run utilizing
a sparse global meta-model with good results. Abbreviations: DS - design space, ObjS - ob-
jective space, SGMM - sparse global meta-model, AM - analytical model, MM - meta-model,
DoE - Design of Experiments. The first row of pictures represents all generations from the
optimization algorithm (circles). The colour scale of circles show the number of generation in
the MO-RBDO procedure; the corresponding colour-bar is in the first-row second-column im-
age. The last generation (a Pareto set on the left and a Pareto front on the right) is depicted in
the second row of pictures together with DoE (dots). Set of green dots represents a superior
Pareto set and Pareto front obtained by an analytical model. The last row of images rep-
resents a sparse global meta-model assembled for the last generation of NSGA-II (dashed
contours) and the analytical model (solid contours) together with the initial (blue dots) and
the updated DoE (violet dots).
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Figure 7.21: Example 3: The sparse global meta-model (dashed lines) compared with the
analytical model (solid lines) depicted for selected generations of MO-RBDO run for an opti-
mization run shown in Figure 7.19. Blue dots represent the initial DoE; red dots are for the
updated DoE.

Figure 7.22: Example 3: The sparse global meta-model (dashed lines) compared with the
analytical model (solid lines) depicted for selected generations of MO-RBDO run represented
in Figure 7.20. Blue dots symbolize an initial DoE; red dots are for an updated DoE.
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average. These values are affected by the poor-quality Pareto fronts that terminated below the
superior Pareto front; this trend can be seen in Figure 7.18, third row, the second column of
images, small circles with magenta edges. Note that not all the individuals from the recalcu-
lated fronts (small circles with magenta edges) emerge in the final recalculated Pareto fronts.
The Spread and the Spacing measures also have the worst results for SGMM, which means
that the individuals in the Pareto fronts are poorly distributed creating clusters of individuals.
The General distance metric shows that the Pareto fronts from RBDO utilizing SGMM are the
farthest from the superior Pareto front. The Two set coverage metric has not as bad results for
SGMM as other metrics; this value can be comparable with the metric value for the global meta-
model. The Two set coverage metric value can be influenced by the large scale of the obtained
data and by the outlying data, the median of the Two set coverage metric for RBDO utilizing
SGMM is again the highest from all values of this metric, which is evident from Figure 12.7 in
Appendix 12. The space that is weakly dominated by the superior Pareto front but not weakly
dominated by the recalculated Pareto front from RBDO utilizing meta-models D(PFAM,PFMM)
has the worst results for SGMM again. MO-RBDO using the sparse global meta-model shows
the largest error even in all observed error indicators, it provides the least accurate and precise
reliability indices. On the contrary, it is apparent from this table that the local meta-models
performed the best among all used meta-models. The Hypervolume metric value is very close
to the value for RBDO utilizing an analytical model. The Spacing metric value is comparable
with the metric value for RBDO using AM and the same for the RBDO utilizing GMM. The
Spread of the Pareto fronts is also comparable with RBDO using AM. The binary metrics pro-
vide the best results for RBDO utilizing LMM as well. The Pareto fronts from RBDO using
LMM are closest to the superior Pareto front, the weakly dominated individuals, as well as
hyperspace, is the smallest among RBDO using any meta-model. Surprisingly, the global meta-
model provides the most precise and accurate data for the reliability index prediction; however,
the RBDO utilizing LMM still provides very nice results and high-quality Pareto fronts with
the best elapsed times of computations. Figure 12.7 in Appendix 12 shows the box-plots for the
performance measures and the mean and standard deviation of the error.

7.3.2 Results comparison of different reliability assessment techniques
utilizing an analytical model

We run our multi-objective reliability-based design optimization algorithm with the analytical
model only but using different reliability assessment methodologies described in Sections 4.3
and 4.4. All MO-RBDO methodologies were run ten times for each reliability assessment

AS eMC FORM IS MC SS SSS
elapsed time [s] 85 106 77 115 13 36 26
g(x)-calls 5.7 · 107 4.7 · 107 9.9 · 104 4.5 · 107 4.7 · 107 3.9 · 107 4.1 · 107

Table 7.18: Example 3: Comparison of statistics for RBDO utilizing an analytical model
and different reliability assessment techniques, namely Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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method to have enough statistical data; Table 7.18 shows the number of analytical function
simulations together with elapsed time of the serial code. The setting of the reliability methods
is described at the beginning of this chapter. If we compare the number of limit state function
evaluations in the previous section (RBDO combining a preconditioned quasi-MC with meta-
models) with the number of limit state function evaluations obtained by simulation techniques,
the difference is lower by two orders of magnitude. MO-RBDO utilizing a First-order reliability
method is even lower by five orders of magnitude in comparison with the previous section.
Our fastest implementation of MO-RBDO is with quasi-Monte Carlo simulation, followed by
a Scaled sigma sampling and a Subset simulation. The slowest implementation is MO-RBDO
utilizing an Importance sampling, followed by an Enhanced Monte Carlo simulation.

Figure 7.23 and 7.24 depict all the independent runs of MO-RBDO utilizing different reli-
ability assessment techniques. With few little exceptions, all the Pareto fronts are almost iden-
tical to the recalculated front data, and the superior Pareto front is close to these data as well.
Small perturbations are at both tails of the Pareto fronts in MO-RBDO utilizing an Asymptotic
sampling. An Enhanced Monte Carlo simulation has difficulties in capturing correctly larger
reliability indices than approximately four. The Pareto fronts from MO-RBDO utilizing a First-
order reliability method suffer from the bounding of the reliability index to the 4.5 value as
well as the Pareto fronts from MO-RBDO utilizing an Importance sampling. A quasi-Monte
Carlo simulation in MO-RBDO utilizing q-MC would need more samples than 30,000 to eval-
uate the upper tail of the Pareto fronts correctly, therefore, the method itself bounded the Pareto
front from above artificially at value 4. The Pareto fronts obtained via MO-RBDO utilizing

AS eMC FORM IS MC SS SSS min max
HV(rPF) 12.9 13.4 13.1 13.1 11.9 12.7 12.9 11.7 13.9
S(rPF) 0.0091 0.01 0.01 0.0093 0.0087 0.0105 0.0089 0.0059 0.0147
∆(rPF) 0.43 0.43 0.45 0.41 0.52 0.48 0.42 0.31 0.61
GD(SPF,rPF) [·10−4] 5.8 12.7 8.3 7.0 5.0 5.0 9.3 3.0 28.1
C(sPF,rPF) 0.49 0.48 0.49 0.46 0.49 0.52 0.81 0.26 0.90
C(rPF,sPF) 0.028 0.057 0.027 0.031 0.020 0.018 0.004 0 0.093
D(sPF,rPF) 0.32 0.16 0.15 0.15 1.31 0.53 0.37 0.12 1.50
min ε(βoPF) 0.0002 0.014 0.001 0.0001 0.0001 0.0004 0.003 0 0.035
max ε(βoPF) 0.11 0.48 0.18 0.13 0.27 0.22 0.19 0.03 1.12
E ε(βoPF) 0.020 0.094 0.036 0.024 0.025 0.029 0.061 0.005 0.12
std ε(βoPF) 0.023 0.081 0.050 0.038 0.051 0.044 0.042 0.0055 0.20

Table 7.19: Example 3: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques and an analytical model, namely an Asymptotic sampling
(AS), Enhanced Monte Carlo simulation (eMC), First-order reliability method (FORM), Impor-
tance sampling (IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled
sigma sampling (SSS). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Gen-
erational distance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets
(D(A,B)), and Error of the reliability index ( ε(β)). The datasets: rPF - recalculated Pareto
front, sPF - superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The
best values are tinged with the green colour, the worst values with the red colour. The scale
shows the visual comparison of the results.

136



7.3. EXAMPLE 3: MATHEMATICAL PROBLEM WITH A SERIES SYSTEM CONTAINING THREE LIMIT

STATES

Figure 7.23: Example 3: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Enhanced Monte Carlo simu-
lation (eMC), First-order reliability method (FORM), and Importance sampling (IS) together
with an analytical model. The smaller circles with green edges in the objective space repre-
sent the recalculated Pareto sets to Pareto fronts with a quasi-Monte Carlo simulation with
CoV lesser than 5%. A yellow, green, and orange cross are hidden behind a blue cross,
and they represent solutions published in [59], [174], [115], and [55]; the grey cross repre-
sents optima published in [202] (RIA as well as PMA methodology). Aqua dots sets show the
superior Pareto set and Pareto Pareto front obtained with an analytical model together with
a quasi-Monte Carlo simulation. Every colour means a different run. The contours represent
the limit state function which corresponds to the colour bar with the limit state highlighted
with a thick line.
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Figure 7.24: Example 3: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing a quasi-Monte Carlo simulation (MC), Subset simulation (SS),
and Scaled sigma sampling (SSS) together with an analytical model. The smaller circles with
green edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with a quasi-Monte Carlo simulation with CoV lesser than 5%. A yellow, green, and orange
cross are hidden behind a blue cross, and they represent solutions published in [59], [174],
[115], and [55]; the grey cross represents optima published in [202] (RIA as well as PMA
methodology). Aqua dots sets show the superior Pareto set and Pareto Pareto front obtained
with an analytical model together with a quasi-Monte Carlo simulation. Every colour means
a different run. The contours represent the limit state function which corresponds to the
colour bar with the limit state highlighted with a thick line.
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a Subset simulation have small perturbations on the upper tails. The Pareto fronts obtained via
MO-RBDO utilizing a Scaled sigma sampling have visible perturbation on both tails as well as
suffering from the bounding of the reliability index from above.

Table 7.19 shows the performance measures for RBDO utilizing different reliability assess-
ment techniques and an analytical model. The Hypervolume metric has almost identical outputs
with only small perturbations. The Spacing performance measure indicates that the individu-
als in the Pareto fronts are distributed almost ideally, but the Spread performance measure is
in modest opposition. The same problem, as in Example 1 and Example 2, is in the pairwise,
groupwise, or both, distribution of the individuals, which is unfortunately unrecognizable by
this metric. A Generational distance is close to zero, which means that the superior Pareto front
is very close to the recalculated Pareto fronts. The superior Pareto front weakly dominates al-
most half of the individuals in all the recalculated Pareto fronts on average with an exception for
the Pareto fronts from MO-RBDO utilizing a Scaled sigma sampling. Oppositely, only a small
portion of the solutions in the recalculated Pareto fronts weakly dominates the superior Pareto
front. All of the methods can achieve a small value of the minimum of the error at least on
the part of the Pareto fronts. The maximum error is also acceptable except for an Enhanced
Monte Carlo simulation. The mean value of the error is minimal for the Asymptotic sampling,
followed by the Importance sampling and surprisingly a quasi-Monte Carlo simulation. The
standard deviation of the error is the smallest again for an Asymptotic sampling, followed by
an Importance sampling and a Scaled sigma sampling. The Scaled sigma sampling provides
a consistently shifted reliability indices which means that this method provides precise but not
accurate responses, while an Enhanced Monte Carlo simulation is the method with the worst
mean of the error accompanied by the worst standard deviation of the error. The most precise
and accurate method is an Asymptotic sampling; the second-best is an Importance sampling.
Figure 12.8 in Appendix 12 shows the box-plots for the performance measures and the mean
and standard deviation of the error.

7.3.3 Results for approximation using meta-models and reliability assess-
ment techniques

In the previous sections, we studied the influence of the different meta-models and different re-
liability assessment methods on the performance and errors separately. The three best-behaving
reliability assessment methods, namely an Asymptotic sampling, Importance sampling, and
Subset simulation, are combined with all meta-models. We discuss only two best-behaving
meta-models in this section, namely local meta-models and global meta-model. The results for
the sparse global meta-model are given in Appendix 12 without further comments. The ranks
of all methods, together with the best placings for all five examples, are in Table 7.1; the third
example is in the third row of the table.

We run all the combinations of our methodology with different meta-models and selected
simulation methods ten times to have relevant data for statistics that are summarized in Ta-
ble 7.20. We used a laptop computer with a software and hardware specification defined in
Table 11.2. Our fastest implementation is MO-RBDO utilizing a Subset simulation and local
meta-models, followed by the same meta-model and a Subset simulation, and an Asymptotic
sampling using local meta-models. In general, the local meta-models have a faster evaluation
that a global meta-model if the same simulation method is considered. The number of samples
in the initial DoE differs with the type of meta-model used. The number of samples that are
added into DoE as an update differs from the used methods. The largest portion of the samples

139



CHAPTER 7. NUMERICAL EXAMPLES FOR THE MULTI-OBJECTIVE RELIABILITY-BASED DESIGN

OPTIMIZATION PROCEDURE

GMM LMM
AS IS SS AS IS SS

elapsed time [sec] 384 1567 209 215 544 153
elapsed time [hours] 0.107 0.435 0.058 0.060 0.151 0.043
initial DoE 50 50 50 200 200 200
added samples 337 1314 300 218 303 246
analytical g(x)-calls 387 1364 350 418 503 446
MM built for opt. 31 31 31 3050 3050 3050
MM built for update 0 0 0 788 3714 1237
MM-calls 5.61·107 9.05·107 3.68·107 5.98·107 9.05·107 3.39·107

Table 7.20: Example 3: Comparison of statistics for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a global meta-model (GMM), and local
meta-models (LMM).

was added if an Importance sampling was used as the reliability method. Since the Importance
sampling works with limit state functions separately, we extended the update definition and
kept separate meta-models for each function. The update is implemented serial as described in
Section 7.2.3. The total number of meta-model simulations is in the same order of magnitude
for all used variants of MO-RBDO.

Figure 7.25 and 7.26 show the results of MO-RBDO using different simulation methods
with a global meta-model and local meta-models, respectively. From the visual point of view,
the best results were obtained with an Importance sampling. The local meta-models seem to be
more stable than global meta-model within whole Pareto fronts, especially in the upper tails.
Several Pareto fronts obtained using a global meta-model show significant differences from the
superior Pareto front. With closer observation, an Importance sampling, however, does not have
the correspondence between the recalculated fronts and the original Pareto fronts as the other
simulation methods, especially in the lower tails of fronts.

The first, the second, and the third part of Table 7.21 present unary and binary metrics and
error indicators. The fourth part shows the average (and total) number of rejected individuals
because of the ±∞ values for reliability indices. The unary metrics prefer the Importance sam-
pling; a Hypervolume, Spacing and Spread have the best results. MO-RBDO using an Asymp-
totic sampling and global meta-model has great results for a Spacing metric. Binary metrics
prefer results obtained with local meta-models to global meta-model. The generational distance
is small; the recalculated Pareto fronts are close to the superior Pareto front in general. On
average, at least 43% of individuals in the superior Pareto front weakly dominates recalculated
Pareto front individuals (MO-RBDO using SS and LMM); the worst result is from MO-RBDO
utilizing an Asymptotic sampling and a global meta-model with 61% individuals from recal-
culated Pareto fronts weakly dominated by individuals from the superior Pareto front. On the
contrary, only a minimal portion of solutions from recalculated Pareto fronts weakly dominates
individuals from the superior Pareto front; the best result is from MO-RBDO using an Im-
portance sampling and local meta-models with 2.9% of weakly dominated individuals. Errors
indicators clearly show that a global meta-model provides more precise results for a reliabil-
ity index evaluation than local meta-models. In general, an Importance sampling can get the
minimum error value, which means that the meta-model together with this sampling method,
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Figure 7.25: Example 3: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with a global meta-model (GMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. A yellow, green, and orange cross are
hidden behind a blue cross, and they represent solutions published in [59], [174], [115], and
[55]; the grey cross represents optima published in [202] (RIA as well as PMA methodology).
Green dots sets show the superior Pareto set and Pareto front obtained with an analytical
model together with a quasi-Monte Carlo simulation. Every colour means a different run. The
contour plot in the design space represents an analytical limit state function; the bold contour
is for the limit state g(X) = 0.
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Figure 7.26: Example 3: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS),
and Subset Simulation (SS) together with local meta-models (LMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. A yellow, green, and orange cross are
hidden behind a blue cross, and they represent solutions published in [59], [174], [115], and
[55]; the grey cross represents optima published in [202] (RIA as well as PMA methodology).
Green dots sets show the superior Pareto set and Pareto front obtained with an analytical
model together with a quasi-Monte Carlo simulation. Every colour means a different run. The
contour plot in the design space represents an analytical limit state function; the bold contour
is for the limit state g(X) = 0.
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GMM LMM
AS IS SS AS IS SS min max

HV (rPF) 17.18 18.11 17.28 18.24 18.13 17.21 14.86 19.61
S (rPF) 0.0062 0.0061 0.0091 0.0082 0.0065 0.0079 0.0043 0.0180
∆ (rPF) 0.44 0.41 0.52 0.45 0.41 0.50 0.34 0.68
GD (rPF,sPF) 7.1·10−4 4.2·10−4 4.3·10−4 6.3·10−4 3.8·10−4 2.9·10−4 2.2·10−4 2.94·10−3

C(sPF,rPF) 0.61 0.54 0.52 0.50 0.47 0.43 0.26 0.90
C(rPF,sPF) 0.020 0.020 0.016 0.026 0.029 0.024 0.004 0.062
D(sPF,rPF) 1.06 0.19 0.99 0.34 0.15 1.03 0.11 3.38
min ε(βoPF) 1.6·10−4 7·10−5 2.4·10−4 2.7·10−4 8·10−5 4.8·10−4 0 1.42·10−3

max ε(βoPF) 0.11 0.11 0.24 0.25 0.35 0.22 0.06 2.45
Eε(βoPF) 0.020 0.022 0.026 0.032 0.029 0.033 0.006 0.077
stdε(βoPF) 0.023 0.033 0.042 0.043 0.066 0.042 0.010 0.346
rejected ind. 0 0 0.1 (1) 0.1 (1) 0 0 0 0.1 (1)

Table 7.21: Example 3: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques namely an Asymptotic sampling (AS), Importance sampling
(IS), and Subset simulation (SS) using a global (GMM) and local meta-models (LMM). Used
metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Generational distance (GD), Two
set coverage metric (C(A,B)), Coverage difference of two sets (D(A,B)), and Error of the reli-
ability index ε(β). The used datasets: rPF - recalculated Pareto front, sPF - superior Pareto
front, oPF - original Pareto front, and rF - recalculated front. The best values are tinged with
the green colour, the worst values with the red colour. The scale shows the visual comparison
of the results.

can credibly imitate the true behaviour at some sub-domains. The Importance sampling with
a global meta-model also has the largest maximum error on average. However, 0.35 is an ac-
ceptable error. This value is unfortunately influenced by one outlier with error value equal to
2.45 (Figure 7.26, grey generation, the individual with C = 9.172, βoPF = 4.496, βrF = 6.944);
if we omit this outlier, the average maximum error for MO-RBDO using SS and GMM is 0.112.
The average mean and the standard deviation of the error has the lowest values for an Asymp-
totic sampling in combination with a global meta-model, which means that this method is the
most accurate and precise, followed by an Importance sampling and a global meta-model, the
latter combination of methods has almost the same error means but the slightly larger stan-
dard deviation of the error. The combination of simulation methods with local meta-models
are indifferent if we consider both means and standard deviations at the same time since an
Importance sampling simulating LMM has the smallest mean and the larger standard deviation
of the error among all LMM combinations and the rest of the methods vice versa. Figure 12.9
in Appendix 12 shows the box-plots for the performance measures and the mean and standard
deviation of the error.
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7.4 Example 4: A short column under oblique bending
A short column under axial loading F and bi-axial bending M1 and M2 as depicted in Fig-
ure 7.27 is considered in this example. The column has a rectangular cross-section with width
b and height h. Geometrically and physically linear behaviour is assumed. This problem con-
siders four stochastic variables and two stochastic design variables. The stochastic variables
are applied bending moments M1 and M2, yield stress σ0, and applied normal force F . The
stochastic design variables are width b and height h contributing to the cost function by their
mean values such that the cross-sectional area of the column is minimized. The problem has
one component limit state function employing all stochastic variables as well as stochastic de-
sign variables sorted in a vector X = [b, h,M1,M2, F, σ0]. The collapse of the structure occurs
with the ultimate plastic state. Therefore, we consider this state as the limit state.

M2

M1

F

b

hx

z

y

Figure 7.27: Example 4: A short column under oblique bending.

Problem definition is

min C(µb, µh) = µb · µh (7.26)
max β(X) = −Φ−1(Prob[g(X) ≤ 0]) (7.27)

g(X) = 1− 4M1

bh2σ0

− 4M2

b2hσ0

−
(

F

bhσ0

)2

(7.28)

0.5 ≤ µb/µh ≤ 2. (7.29)

For more details, see Appendix 10. The axial force F , bending moments M1 and M2 and yield
stress σ0 are statistically independent random variables with Gumbel and Weibull distribution.
Cross-section dimensions b and h are also statistically independent variables with a log-normal
distribution. The statistical description of variables is in Table 7.22.

Variable Distribution Mean C.o.V
M1 N.mm GUM 2.5 · 108 30%
M2 N.mm GUM 1.25 · 108 30%
F N GUM 2.5 · 106 20%
σ0 MPa WEI 40 10%
b mm LN µb 5%
h mm LN µh 5%

Table 7.22: Example 4: A probabilistic description of the short column under oblique bending
example.
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Reference C(µoptb , µopth ) β

[3]: RIA 0.2087 2.999
[3]: KKT 0.2268 2.999
[3]: SLA 0.2077 2.978

Table 7.23: Example 4: Published single-objective optima

This example is used in the literature quite often in different modifications. We adapted a
version with a cost function equal to the cross-sectional area from [3] into the multi-objective
version. A different version can be seen, e.g. in [59] that was inspired by [168], where a cost
function considers a life-time function containing the built costs together with the failure costs.
The original version from [3] is

min C(µb, µh) = µb · µh (7.30)

s.t. Prob
[
1− 4M1

bh2σ0

− 4M2

b2hσ0

−
(

F

bhσ0

)2

≤ 0
]
≤ pTF (7.31)

0.5 ≤ µb/µh ≤ 2. (7.32)

The target reliability index βT is equal to 3 which corresponds with the target probability of
failure pTF equal to 1.35 · 10−3. Unfortunately, AOUES et al. [3] do not show the optimum of
design variables, only the value of the cost function together with the corresponding reliability
index. Therefore, we could not verify the accuracy of their results. AOUES et al. compare
several single-objective reliability methods. We selected results from three methods, namely
Reliability index approach (RIA), classical RBDO replaced by Karush-Kuhn-Tucker optimality
conditions of the First-order reliability method (KKT) and Single loop approach (SLA) for our
comparison purposes. Table 7.23 summarizes the selected optima.

7.4.1 Comparison of meta-models and analytical model results together
with a preconditioned quasi-Monte Carlo simulation

Each MO-RBDO procedure using a preconditioned quasi-Monte Carlo simulation and a dif-
ferent model was run several times to get the required statistical data. Table 7.24 shows some
interesting statistics. Average time spent on the MO-RBDO evaluation utilizing an analytical
model with eight threads was 1.62 hour, MO-RBDO utilizing local meta-models evaluation
was approximately one hour long. On the other side, RBDO utilizing global meta-models in
the sparse, as well as the dense version of the Gramm matrix, was suspiciously fast. This
fast evaluation time together with the lower number of meta-models calls than for GMM and
SGMM indicates problems during the optimization, which is evident from Figure 7.28. The
global versions of meta-models failed, and the Pareto fronts are completely distorted. Since
the meta-models predicted lower reliability indices than is the true value, the time, as well as
the number of the total limit state function evaluations, was different from MO-RBDO utiliz-
ing an analytical model evaluation. The number of samples in the initial DoE was identical to
the setting in other examples, 200 samples for LMM and 50 samples for GMM and SGMM.
The updating procedure added 108 samples into DoE for MO-RBDO utilizing LMM, and al-
most four hundred samples for MO-RBDO utilizing GMM and SGMM. Even this number of
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added samples into DoE was not able to improve the behaviour of the meta-model to provide
satisfactory Pareto fronts.

All the Pareto sets and Pareto fronts obtained from MO-RBDO utilizing all types of used
models are depicted in Figure 7.28. From the visual evaluation, the best results matching the
superior Pareto front are obtained by MO-RBDO utilizing local meta-models. The global meta-
models, as well as the sparse global meta-models, failed in many cases to find the correct solu-
tions even for small reliability indices. Figure 7.29 shows one MO-RBDO simulation utilizing
a global meta-model to analyze the problem more closely. It is evident that the optimization
found the false Pareto front in the very early generation, and this remains unchanged for the rest
of the optimization run. The update is mainly around the genetic algorithm population. This
DoE data are however only a 2D projection from 6D space omitting stochastic behaviour of
M1, M2, F , and σ0 variables. The contours of the analytical model (solid lines) unfortunately
do not correspond to the global meta-model (dashed lines) where thick lines for both models
highlight the limit states. The problem is in the definition of the model itself, as evident in the
last row of images, where the left image represents the analytical model and the right image is
for the global meta-model after the last updating procedure of DoE. This analytical model is
very flat on the majority of the design space, and the steep descent is around the zero values
of the width and the height of the analysed column. This behaviour is very hard to imitate for
the global meta-models if the DoE update concentrates in the different area of the design space
than in this steepest descent of the function. The local meta-models omit this problem since the
procedure does not assemble the model for the whole domain but only for the vicinity around
the optimum candidate solution.

Table 7.25 shows the performance measures for MO-RBDO utilizing all models. The ana-
lytical model behaves the best in all unary metrics. Recalculated Pareto fronts from MO-RBDO
using local meta-models obtained the best Hypervolume among meta-models. On the other
side, a Spacing was the best for a sparse global meta-model, and a Spread is comparable for
both global meta-models. It follows that MO-RBDO utilizing local meta-models has the best
shape of the Pareto front approximation but the distribution among the individuals is better in
MO-RBDO utilizing GMM and SGMM. However, the latter two metrics are not so important
as the Hypervolume performance measure. The second part of the table takes into account the
recalculated Pareto fronts compared to the superior Pareto fronts. The differences between re-
liability indices values were significant; the recalculated fronts are depicted in Figure 7.28 in

AM LMM GMM SGMM
elapsed time [hours] (8 threads) 1.62 2.78 0.06 0.06
initial DoE 0 200 50 50
added samples 0 108 374 378
analytical g(x)-calls 1.10 · 1010 308 424 428
MM built for opt. 0 3050 31 31
MM built for update 0 441 0 0
MM-calls 0 7.00 · 109 2.52 · 107 2.49 · 107

Table 7.24: Example 4: Comparison of statistics for RBDO utilizing a quasi-Monte Carlo sim-
ulation with an analytical model (AM), local meta-models (LMM), global meta-model (GMM),
and sparse global meta-model (SGMM).
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Figure 7.28: Example 4: Pareto sets (circles, left) and Pareto fronts (large circles, right)
for all models, namely an analytical model (AM), global meta-model (GMM), sparse global
meta-model (SGMM), and local meta-models (LMM). Smaller circles with magenta edges
in the objective space represent the recalculated fronts with an analytical model. Crosses
represent results published in [3]. Green dots sets show the superior Pareto set and superior
Pareto front. Every colour has the meaning of a different run. The bold contour represents
the limit state g(X) = 0. The grey shaded areas represent inadmissible subspace by the
constraint in Equation (7.29).
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Figure 7.29: Example 4: Pareto sets and Pareto fronts from one MO-RBDO run utilizing
a global meta-model. Abbreviations: DS - design space, ObjS - objective space, GMM -
global meta-model, DoE - Design of Experiments. The first row of pictures represents all
generations from the optimization algorithm (circles). Empty circles denote the solutions not
satisfying β constraints. The dark blue circles depict the first generation; the next generations
continue with cyan, green, yellow, orange, and red colours. The last generation (Pareto set
on the left and Pareto front on the right) is depicted in the second row of pictures together
with DoE. Set of green dots depicts the superior Pareto set and the superior Pareto front.
The dashed contours serve for the representation of GMM and the solid contours for the
analytical model. The bold contours are for the limit state g(X) = 0. The last row of images
represents an analytical model (left) for fixed values of M1, M2, F , and σ0 on their mean
values; and a global meta-model assembled for the last generation of NSGA-II. The grey
shaded areas represent inadmissible subspace by the constraint in Equation (7.29).
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the objective space with smaller circles with magenta edges. Note that the Pareto fronts are
not restricted to values [0, 4.5] but are stretched to larger magnitudes because the constraint is
considered only in MO-RBDO. Since the limit state function is flat in the most of the design
space which the meta-models cannot imitate very well, the recalculated Pareto fronts turned out
to be better than original Pareto fronts from meta-models if they are compared to the superior
Pareto front (green dots set). However, several individuals had to be rejected since the recalcu-
lated reliability indices β were equal to ±∞. We had to reject at least one solution per Pareto
front obtained by MO-RBDO utilizing LMM. On the other hand, MO-RBDO utilizing SGMM
or GMM were able to get a Pareto front without ±∞ values after recalculation at least once.
MO-RBDO utilizing SGMM provided the worst Pareto front, where the recalculation rejected
38 solutions out of 50 solutions.

The Generational distance is comparable for all-meta-models on an average; the recalcu-
lated fronts are very close to the superior Pareto front. However, mostly all solutions from the
superior Pareto front weakly dominate the solutions in the Pareto fronts obtained by MO-RBDO
utilizing GMM or LMM; the Pareto fronts obtained by MO-RBDO utilizing SGMM are weakly
dominated only from a half. The recalculated Pareto fronts dominate almost none of the solu-
tions from the superior Pareto front. According to the Two set coverage metric, MO-RBDO
utilizing SGMM provided the best-obtained fronts. By contrast, the Coverage difference of two
sets metric prefers the Pareto fronts obtained by MO-RBDO utilizing LMM.

As can be seen from Figure 7.28 in the objective space, if larger circles are compared to

AM GMM LMM SGMM min max
HV(rPF) 4.9 · 106 4.5 · 106 4.7 · 106 4.3 · 106 2.4 · 106 5.1 · 106

S(rPF) 0.0046 0.0094 0.0072 0.0065 0.0022 0.0370
∆(rPF) 0.38 0.69 0.98 0.69 0.35 1.13
GD(rPF,sPF) - 0.0085 0.0080 0.0090 0.0002 0.0612
C(sPF,rPF) - 0.81 0.90 0.55 0.17 1.00
C(rPF,sPF) - 0.005 0.001 0.031 0 0.097
D(sPF,rPF) - 5.4 · 105 2.9 · 105 7.0 · 105 4.1 · 104 2.7 · 106

min ε(βoPF) - 0.470 0.003 0.406 6.1 · 10−5 2.836
max ε(βoPF) - 3.244 2.969 2.195 0.191 5.061
E ε(βoPF) - 1.659 0.398 1.178 0.074 3.622
std ε(βoPF) - 0.786 0.787 0.530 0.053 1.567
rejected ind. - 3.75 (45) 1.23 (16) 3.79 (53) 0 38
Table 7.25: Example 4: Comparison of performance measures for RBDO utilizing a quasi-
Monte Carlo simulation with an analytical model (AM), local meta-models (LMM), global meta-
model (GMM), and sparse global meta-model (SGMM). Used metrics are a Hypervolume
(HV), Spacing (S), Spread (∆), Generational distance (GD), Two set coverage metric (C(A,B)),
Coverage difference of two sets (D(A,B)), Error of the reliability index (ε(β)), and a number of
the mean value of rejected individuals with a total number of rejected individuals in paren-
theses from all 12 runs with 50 individuals. datasets: rPF - recalculated Pareto fronts, sPF -
superior Pareto front, oPF - original Pareto front. The best values are tinged with the green
colour, the worst values with the red colour. The scale shows the visual comparison of the
results.
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the smaller ones, the best minimum error of the reliability index is obtained using local meta-
models. On the other hand, if we observe the maximum error, the values are poor for all
meta-models. Local meta-models are accurate but not precise; on the contrary, a sparse global
meta-model is the most precise but nor accurate. However, the standard deviation of the error
does not differ much for all three models as the mean value of the error. These values of error
are slightly skewed since we had to reject plenty of solutions with the recalculated β-indices
equal to ±∞; the number of rejected individuals is in the last row of the table. The mean
number of rejected solutions per one front is tinged, the values in parentheses represent the
total number of rejected solutions per 12 fronts, i.e. 600 solutions in total. The minimum and
maximum rejected solutions are per one recalculated front. Figure 12.10 in Appendix 12 shows
the box-plots for the performance measures and the mean and standard deviation of the error.

7.4.2 Results comparison of different reliability assessment techniques
utilizing an analytical model

We run our multi-objective reliability-based design optimization with an analytical model to
test the behaviour of different reliability assessment techniques. We run each MO-RBDO with
a different reliability assessment method ten times to check the behaviour and to have enough
statistical data. Table 7.26 shows some statistics. Our implementation of MO-RBDO utilizing
a quasi-Monte Carlo simulation was the fastest, followed by an Enhanced Monte Carlo simu-
lation and Scaled sigma sampling. On the other hand, our slowest implementation was MO-
RBDO utilizing an Importance sampling followed by MO-RBDO utilizing a First-order relia-
bility method. An Enhanced Monte Carlo simulation is extremely unstable in this benchmark.
We had to switch the recommended Levenberg-Marquart least-squares optimization algorithm
for searching for the parameters into a Trust region reflective algorithm since the Levenberg-
Marquart least-squares optimization does not use the bounds for the inputs. However, if the
b parameter is lesser than any λ, the xj part of the simplification becomes a complex number
since the mantissa of the exponential function is a negative number, and this negative number
is then raised to the power of c, which is a real number. In the same way, we had to restrict the
parameters from below because if the algorithm found the optimum with the parameters in the
order of magnitude larger than 3, the probability of failure becomes Not a Number (NaN). It
seems that the minimized function has several local optima or the problem is multi-modal.

Figure 7.30 and 7.31 show all the resulting data from all MO-RBDO runs. The Pareto
fronts obtained from MO-RBDO utilizing an Asymptotic sampling are visually almost identical
as their recalculated counterpart with a small exception on the right tail of the Pareto front,

AS eMC FORM IS MC SS SSS
elapsed time [s] 143 68 278 335 31 121 84
g(x)-calls 7.1 · 107 4.7 · 107 1.8 · 105 4.5 · 107 4.7 · 107 3.9 · 107 4.4 · 107

Table 7.26: Example 4: Comparison of statistics for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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Figure 7.30: Example 4: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Enhanced Monte Carlo simu-
lation (eMC), First-order reliability method (FORM), and Importance sampling (IS) together
with an analytical model. The smaller circles with green edges in the objective space repre-
sent the recalculated Pareto sets to Pareto fronts with a quasi-Monte Carlo simulation with
CoV lesser than 5%. An orange cross represents RIA and SLA optimum published in [3],
a green cross represents KKT optimum published ibid. Aqua dots sets show the superior
Pareto set and superior Pareto Pareto front. Every colour means a different run. The contour
plot in the design space represents an analytical limit state function; the bold contour is for
the limit state g(X) = 0.
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Figure 7.31: Example 4: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing a quasi-Monte Carlo simulation (MC), Subset simulation (SS),
and Scaled sigma sampling (SSS) together with an analytical model. The smaller circles with
green edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with a quasi-Monte Carlo simulation with CoV lesser than 5%. An orange cross represents
RIA and SLA optimum published in [3], a green cross represents KKT optimum published
ibid. Aqua dots sets show the superior Pareto set and superior Pareto front. Every colour
means a different run. The contour plot in the design space represents an analytical limit
state function; the bold contour is for the limit state g(X) = 0.
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the recalculated fronts almost imitate the superior Pareto front. The Pareto fronts from MO-
RBDO utilizing an Enhanced Monte Carlo simulation have good performance below reliability
index equal to approximately 3; the original Pareto fronts above this value differ from their
recalculated counterparts and the superior Pareto front. The orange Pareto front also suffers
from bounding of the reliability index to 4.5 as is the definition of the optimization task. The
Pareto fronts obtained via a First-order reliability method are consistently underestimated in
the reliability index objective function, the recalculated fronts, however, imitate the superior
Pareto front. MO-RBDO utilizing an Importance sampling provides one of the best solutions
among the rest of the reliability assessment methods, the Pareto fronts, recalculated fronts, and
superior Pareto fronts have the same shape with only one exception suffering from the bounding
of the reliability index from above to value 4.5. MO-RBDO utilizing a quasi-Monte Carlo
simulation cannot provide reliable data with larger reliability index than 4 since a quasi-Monte
Carlo simulation would need more samples than 30,000. Up to reliability index 3.5, the shape of
the original Pareto fronts traces the recalculated fronts as well as the superior Pareto front. The
Pareto fronts obtained via a Subset simulation provide visually similar shape as the recalculated
fronts as well as the superior Pareto front, again with a small exception at the upper tail of the
Pareto fronts. The Pareto fronts obtained via MO-RBDO utilizing a Scaled sigma sampling have
consistently underestimated reliability indices. However, their recalculated counterparts imitate
the shape of the superior Pareto front with a few exceptions - the outlier solutions depicted with
the pink, the light green and the royal blue colours; these individuals differ in the design space
as well as in the objective space.

AS eMC FORM IS MC SS SSS min max
HV(rPF) [·106] 3.90 3.80 3.85 3.92 3.34 3.89 3.82 3.28 3.93
S(rPF) [·10−3] 6.6 6.6 5.4 5.6 5.3 5.9 6.3 3.6 9.2
∆(rPF) 0.45 0.47 0.45 0.42 0.56 0.43 0.50 0.33 0.62
GD(rPF,sPF) [·10−4] 2.8 2.6 7.2 2.7 2.5 2.6 3.0 2.1 7.9
C(sPF,rPF) 0.63 0.73 0.57 0.63 0.60 0.67 0.63 0.43 0.82
C(rPF,sPF) 0.044 0.028 0.037 0.048 0.023 0.041 0.031 0 0.068
D(sPF,rPF) [·104] 4.4 14 8.9 1.9 60 4.8 12 1.2 66
min ε(βoPF) 0.002 0.001 0.12 0.001 0.0003 0.001 0.105 0.0003 0.14
max ε(βoPF) 0.22 0.49 0.30 0.062 0.34 0.19 0.39 0.062 1.02
E ε(βoPF) 0.045 0.093 0.24 0.023 0.046 0.046 0.21 0.023 0.24
std ε(βoPF) 0.045 0.115 0.043 0.016 0.069 0.043 0.053 0.016 0.17

Table 7.27: Example 4: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques and an analytical model, namely an Asymptotic sampling
(AS), Enhanced Monte Carlo simulation (eMC), First-order reliability method (FORM), Impor-
tance sampling (IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled
sigma sampling (SSS). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Gen-
erational distance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets
(D(A,B)), and Error of the reliability index (ε(β)). The datasets: rPF - recalculated Pareto front,
sPF - superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The best
values are tinged with the green colour, the worst values with the red colour. The scale shows
the visual comparison of the results.
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Table 7.27 shows the performance measures and the error of the reliability indices. The Hy-
pervolume values differ from 3.3 million to 3.9 million, the smallest Hypervolume value was
approximately obtained by MO-RBDO utilizing MC, while the largest by MO-RBDO utilizing
IS closely followed by AS and SS. The Spacing performance measure indicates that the indi-
viduals in the Pareto fronts are almost ideally distributed, but the Spread performance measure
is in modest opposition. The same problem occurred most likely in Examples 1 - 3 in the pair-
wise distribution of the individuals, which is unfortunately unrecognizable by this metric. The
Spread metric has similar values for all methods on average, the best Spread is between indi-
viduals from MO-RBDO utilizing IS closely followed by MO-RBDO utilizing SS, the worst
Spread is between solutions in Pareto fronts from MO-RBDO utilizing MC.

The Generational distance is small for all methods, the distance between the recalculated
Pareto fronts and the superior Pareto front is therefore really small as visible from Figure 7.30
and 7.31. The smallest proportion of weakly dominated solutions by the superior Pareto front is
in the recalculated Pareto fronts obtained by MO-RBDO utilizing FORM on average, followed
by MO-RBDO utilizing MC. On the other hand, the largest proportion of weakly dominated
solutions is in the recalculated Pareto fronts from an Enhanced Monte Carlo simulation, fol-
lowed by a Subset simulation. 4.8% of solutions from the recalculated Pareto fronts obtained
by MO-RBDO utilizing an Importance sampling dominated solutions in the superior Pareto
front, which is the best result. On the contrary, the worst result is from MO-RBDO utilizing
a quasi-Monte Carlo simulation. The smallest size of the space that is weakly dominated by the
superior Pareto front but not weakly dominated by the recalculated Pareto fronts is obtained by
MO-RBDO utilizing an Importance sampling, followed by MO-RBDO utilizing an Asymptotic
sampling, and MO-RBDO utilizing a Subset simulation. Compared to the Hypervolume, this
space is twice the order of the Coverage difference of two sets.

The smallest minimum error was obtained via a plain quasi-Monte Carlo simulation fol-
lowed by an Importance sampling and a Subset Simulation. The quasi-Monte Carlo simulation
can provide very precise reliability indices for low values, even with a low number of sam-
ples. The best result of the maximum error is for an Importance sampling; the maximum error
was 0.062 on average. An Enhanced Monte Carlo simulation provided results with the worst
maximum error on average as well as in total, which is the maximum of the maximum error
1.02.

The most accurate and precise method is an Importance sampling. The second- and the
third-best method is an Asymptotic sampling and a Subset simulation. If we compare these
two methods, the Asymptotic sampling is slightly more accurate, and the Subset simulation
is slightly more precise; however, both methods are relatively comparable. A FORM has the
same precision as a Subset simulation, but the accuracy is the worst of all methods. This trend
is evident from Figure 7.30, where the original Pareto fronts are translated vertically from the
recalculated fronts. An Enhanced Monte Carlo simulation provides Pareto fronts that have the
worst precision. This behaviour is also evident from Figure 7.30, where the upper tails of the
Pareto fronts indeed differ from the recalculated solutions, but the bottom tails are relatively
precise and accurate. Figure 12.11 in Appendix 12 shows the box-plots for the performance
measures and the mean and standard deviation of the error.
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SGMM LMM
AS IS SS AS IS SS

elapsed time [sec] 116 1364 158 442 706 404
elapsed time [hours] 0.032 0.379 0.044 0.123 0.196 0.112
initial DoE 50 50 50 200 200 200
added samples 355 398 369 80 111 100
analytical g(x)-calls 405 448 419 280 311 300
MM built for opt. 31 31 31 3050 3050 3050
MM built for update 0 0 0 322 544 430
MM-calls 1.18·107 8.41·107 1.93·107 6.11·107 8.65·107 4.59·107

Table 7.28: Example 4: Comparison of statistics for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a sparse global meta-model (SGMM), and
local meta-models (LMM).

7.4.3 Results for approximation using meta-models and reliability assess-
ment techniques

The last part of the results is the combination of the meta-models and different reliability
assessment techniques. The three best-behaving reliability assessment methods, namely an
Asymptotic sampling, Importance sampling, and Subset simulation, are combined with all
meta-models. We discuss only two best-behaving meta-models in this section, namely local
meta-models and global meta-model. The results for the sparse global meta-model are given
in Appendix 12 without further comments. The ranks of all methods, together with the best
placings for all five examples, are in Table 7.1; the fourth example is in the fourth row of
the table. We run all MO-RBDO with all combinations of selected simulation techniques and
meta-models ten times to have relevant data for our statistics. We used a laptop computer
with hardware and software specifications defined in Table 11.2. Our fastest implementation
is MO-RBDO utilizing an Asymptotic sampling and sparse global meta-model, followed by
MO-RBDO using a Subset simulation and sparse global meta-model, see Table 7.28. Nonethe-
less, with a closer observation of the results with sparse global meta-model employment in
Figure 7.33, the original Pareto fronts are different from the recalculated counterparts; the reli-
ability indices are significantly underestimated in most cases, and therefore fewer samples are
necessary to evaluate the reliability indices. Even though an updating procedure terminated with
more samples in DoE than for local meta-models, local meta-models show the better prediction
of the limit state function, which has an impact on the reliability index prediction.

Figure 7.32 and 7.33 show the design and the objective space of the optimization results
together with their recalculated counterparts. Unfortunately, the sparse global meta-model pro-
vides an unsatisfying response of the model as evident from Figure 7.32. We got similar results
with a preconditioned quasi-Monte Carlo simulation, see Figure 7.28. The bottom image on the
left in Figure 7.29 shows the analytical model, the image on the right the global meta-model
assembled after the last update of DoE. The sparse global meta-model has a similar trend. It
is tough to imitate the steep trend of the model with low values of width and height of the col-
umn. The global meta-model, in general, is therefore not suitable for this type of problems.
On the contrary, local meta-models are assembled only in the vicinity of the individuals of the
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Figure 7.32: Example 4: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with a sparse global meta-model (SGMM). The smaller cir-
cles with magenta edges in the objective space represent the recalculated Pareto sets to
Pareto fronts with quasi-Monte Carlo simulations with CoV < 5%. An orange cross repre-
sents RIA and SLA optimum published in [3], a green cross represents KKT optimum pub-
lished ibid. Green dots sets show the superior Pareto set and Pareto front obtained with an
analytical model together with a quasi-Monte Carlo simulation. Every colour means a differ-
ent run. The contour plot in the design space represents an analytical limit state function; the
bold contour is for the limit state g(X) = 0.
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Figure 7.33: Example 4: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS),
and Subset Simulation (SS) together with local meta-models (LMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. An orange cross represents RIA and
SLA optimum published in [3], a green cross represents KKT optimum published ibid. Green
dots sets show the superior Pareto set and Pareto front obtained with an analytical model
together with a quasi-Monte Carlo simulation. Every colour means a different run. The
contour plot in the design space represents an analytical limit state function; the bold contour
is for the limit state g(X) = 0.
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SGMM LMM
AS IS SS AS IS SS min max

HV (rPF) 5.9·106 5.3·106 5.6·106 6.62·106 6.7·106 6.8·106 0 7.0·106

S (rPF) 0.009 0.039 0.010 0.0097 0.0092 0.0063 0 0.18
∆ (rPF) 0.77 1.05 0.73 0.92 0.79 0.77 0.52 1.54
GD (rPF,sPF) 0.024 0.014 0.025 0.0040 0.00035 0.0033 0.00015 0.16
C(sPF,rPF) 0.65 0.44 0.54 0.88 0.79 0.78 0 1
C(rPF,sPF) 0.010 0.011 0.006 0.005 0.011 0.011 0 0.081
D(sPF,rPF) 1.2·106 1.9·106 1.5·106 4.7·105 3.37·105 3.38·105 1.0·105 7.1·106

min ε(βoPF) 0.83 0.51 0.65 0.015 0.0043 0.0046 0 3.5
max ε(βoPF) 3.63 3.46 3.02 1.62 0.59 1.20 0.14 5.4
Eε(βoPF) 2.13 1.73 1.84 0.32 0.12 0.27 0.04 4.00
stdε(βoPF) 0.82 0.69 0.70 0.39 0.13 0.35 0.04 1.63
rejected ind. 8.9 10.7 10.9 7.8 6.8 4.6 0 50
Σ rejected ind. 89 107 109 78 68 46 46 109
Table 7.29: Example 4: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques namely an Asymptotic sampling (AS), Importance sam-
pling (IS), and Subset simulation (SS) using a sparse global (SGMM) and local meta-models
(LMM). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Generational dis-
tance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets (D(A,B)), and
Error of the reliability index ε(β). The used datasets: rPF - recalculated Pareto front, sPF -
superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The best values
are tinged with the green colour, the worst values with the red colour. The scale shows the
visual comparison of the results.

genetic algorithm. The steepest trend of the function is in the failure region, and therefore the
individuals are not concentrated around the hard-imitating subspace. The local meta-models
are assembled outside this subspace, and the limit state function prediction is more accurate
than the sparse global meta-model response. Unfortunately, the simulation methods using local
meta-models still fail in the prediction of the response in the failure region.

Table 7.29 is devoted to the qualitative appraisal of the Pareto front results. The Hypervol-
ume metric provides better results for the recalculated Pareto fronts from MO-RBDO utilizing
local meta-models; values of this metric are almost comparable for different reliability methods
and meta-models. The Spacing metric has results close to zero for all presented combinations
of methodologies, which means that not so much outliers or separate individuals exist in the
recalculated Pareto fronts. On the contrary, the Spread metric provides larger values which
means that the spread of the data is not ideal. The recalculated Pareto fronts are surprisingly
not as far from the superior Pareto front as their original counterparts. The recalculated Pareto
fronts from MO-RBDO utilizing local meta-models are closer to the superior Pareto front than
recalculated Pareto fronts obtained from MO-RBDO utilizing sparse global meta-models. The
number of weakly dominated solutions is higher for the recalculated Pareto fronts using local
meta-models than sparse global meta-models; at least 44% of members are weakly dominated
on average. For the global meta-models, at least 78% of members from recalculated Pareto
fronts are weakly dominated by the superior Pareto front on average. An amount of weakly
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dominated solutions in the superior Pareto front by the recalculated fronts is low. Nevertheless,
the recalculated Pareto fronts differ from the original Pareto fronts. Therefore, the comparison
of the dominated solutions is only for the record to keep the consistency of the results.

The bottom half of Table 7.29 presents the most critical data since the original Pareto fronts
differ from their recalculated counterparts. The local meta-models can be very precise at some
subspaces according to the minimum error; on the contrary, global meta-models have the best
performance with the 0.51 difference in the reliability index on average. The difference between
the true reliability index and its approximation with the simulation technique and a meta-model
is enormous for the maximum error, especially for a global meta-model. The largest maximum
error for local meta-models is 1.62 for an Asymptotic sampling; however, the maximum error
using local meta-models with a preconditioned quasi-Monte Carlo simulation in Section 7.4.1
is 2.969 (see Table 7.25), and the maximum error using an analytical model and Asymptotic
sampling is 0.22 (see Table 7.27). These results mean that Asymptotic sampling can provide
better potential candidates for the DoE update than a preconditioned quasi-Monte Carlo simu-
lation. Therefore, we can assembly better local meta-models with DoE update candidates from
an Asymptotic sampling compared to a preconditioned quasi-Monte Carlo simulation.

The mean error for local meta-models is no more than 0.32 on average for an Asymptotic
sampling, while for the sparse global meta-model, the best average value is 1.73. The dif-
ference in the standard deviation between the models is also significant. MO-RBDO using
an Importance sampling and local meta-models provides the most accurate and precise results
in this Section. However, if we compare results from local meta-model utilizing a precondi-
tioned quasi-Monte Carlo simulation (E ε(βoPF) = 0.398, std ε(βoPF) = 0.787, see Table 7.25),
the advanced simulation techniques perform better (E ε(βoPF) = 0.12, std ε(βoPF) = 0.13 for an
Importance sampling, see Table 7.29). If we compare the results for an Importance sampling
using an analytical model (E ε(βoPF) = 0.023, std ε(βoPF) = 0.016, see Table 7.27) and local
meta-models (E ε(βoPF) = 0.12, std ε(βoPF) = 0.13, see Table 7.29), the error is lower-order
value in case of an analytical model. However, the result is excellent, considering that only 311
simulations of an analytical model were performed.

Unfortunately, not all individuals from the recalculated fronts are depicted in Figure 7.32
and 7.33. Last part of Table 7.29 shows quantities of individuals that have reliability indices
equal to ±∞ after recalculation by a quasi-Monte Carlo simulation with CoV lesser than 5%.
Since we run ten independent MO-RBDO simulations for all methodology combinations, the
average number of rejected individuals due to ±∞ is ten times lower than their sum. Each
original Pareto set/front contains 50 individuals. MO-RBDO using a sparse global meta-model
and Importance sampling provided once such inaccurate reliability index values, that all indi-
viduals in recalculated fronts were equal to ±∞ and the whole front had to be discarded after
recalculation. Figure 12.12 in Appendix 12 shows the box-plots for the performance measures
and the mean and standard deviation of the error.

7.5 Example 5: A 23-bar truss

The 23-bar planar truss bridge is a simply supported structure, see Figure 7.34. Bars are divided
into two groups; upper and lower chords (11 members) are included in one group, and 12
diagonals create the second group. The vertically oriented static loading is located in all six
upper chord nodes. All truss bars are made from the same material. LEE and KWAK first
published a probabilistic description of the problem in paper [108], where they calculated only
reliability of this benchmark. Subsequently, DUBOURG defined a single-objective optimization
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problem in his PhD thesis [59].

P1 P2 P3 P4 P5 P6

E1, A1 E2, A2

6×4 m = 24 m

2
m

1 2 3 4 5 6
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2212 14 16 18 20

w1

Figure 7.34: A 23-bar plane truss bridge.

Table 7.30 gives the probabilistic description of ten statistically independent random vari-
ables. Young’s modulus E1 and E2, as well as cross-sectional areas assigned to two groups A1

and A2, are lognormally distributed; six gravity loads Pi have a Gumbel distribution. Table 7.30
does not define the means of the cross-sectional areas since they represent design variables to
be optimized. This problem, therefore, considers eight stochastic variables with given distri-
butions described exactly by two statistical moments and two stochastic design variables with
given distributions and standard deviations, where the mean values are the optimized targets.

The design rule in this task is that the mid-span displacement should not exceed maximum
displacement wmax = 10 cm mathematically expressed as

g(x) = wmax − |w1(x)|; (7.33)

positive or zero g(x) denotes safety of the system, negative g(x) indicates failure. All random
variables are arranged in the vector x. Note that the mid-span displacement need not be the max-
imal one due to the randomness of variables; however, the mid-span displacement is presumed
to be the maximum one for the limit state function purposes. Since the structure is statically

Variable Distribution Mean Standard deviation
E1, E2 Pa Lognormal 2.1 · 1011 2.1 · 1010

A1 m2 Lognormal µA1 2 · 10−4

A2 m2 Lognormal µA2 1 · 10−4

P1 . . . P6 N Gumbel 5 · 104 7.5 · 103

Table 7.30: A probabilistic description of the 23-bar planar truss bridge.
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determinate, the analytical formulation of the mid-span displacement is simple to obtain:

wmax = −2
√

2A1 P1 + 6
√

2A1 P2 + 10
√

2A1 P3 + 10
√

2A1 P4

A1A2E2

+ (7.34)

. . . +
6
√

2A1 P5 + 2
√

2A1 P6

A1A2E2

− 36A2E2 P1 + 100A2E2 P2

A1A2E1E2

+

. . . +
140A2E2 P3 + 140A2E2 P4 + 100A2E2 P5 + 36A2E2 P6

A1A2E1E2

.

Considering the mean values of all the variables (SUDRET in [183] used µA1 = 2 · 10−3 m2 and
µA2 = 1 · 10−3 m2), the vertical displacement in the middle of the truss structure is 7.78 cm.

The optimal design of the structure should be on the one hand the most light-weighted
as possible; on the other hand, the safest as possible. These two criteria are antagonistic.
DUBOURG in [59] formulated the single-objective optimization problem as

d∗ = arg min
d∈D

L1µA1 + L2µA2 : Prob[g(x(d)) ≤ 0] ≤ Φ(−β0), (7.35)

in which L1 and L2 are cumulative lengths of all bars in each group, β0 is a prescribed reliability
index equal to 3 and Φ(·) is a Laplace function that represents a cumulative distribution function
of the standard normal distribution. D space is bounded to [6 ·10−4, 6 ·10−3]× [3 ·10−4, 3 ·10−3].
DUBOURG in [59] provides an optimum obtained by metamodel-based RBDO utilizing Kriging
as dopt = [2.53 ·10−3, 8.13 ·10−4] with a cost function equal to 0.1388 m3 and a probability index
β = 3.05.

We reformulated the single-objective problem to the multi-objective formulation into

min C(µA1 , µA2) = L1µA1 + L2µA2 (7.36)
max β(X) = −Φ−1(Prob[g(X) ≤ 0]) (7.37)

g(X) = wmax − |w1(x)|. (7.38)

For practical purposes, the reliability index β was limited to the range 0 ≤ β ≤ 4.5.

7.5.1 Comparison of meta-models and analytical model results together
with a preconditioned quasi-Monte Carlo simulation

First of all, we analyzed the behaviour of the meta-models and the analytical model with a pre-
conditioned quasi-Monte Carlo simulation. We run the problem on one thread and eight threads.
Table 7.31 shows some interesting statistical data from several optimization runs. MO-RBDO
utilizing an analytical model (AM) was the fastest among all models. The speed-up of the paral-
lelization is from 2.08 for MO-RBDO using AM to 4.60 for MO-RBDO utilizing sparse global
meta-model (SGMM). The number of samples in the initial DoE was set to the same values
as in the previous examples regardless of the dimensionality of the problem, therefore 50 sam-
ples for both versions of global meta-models and 200 samples for local meta-models (LMM).
MO-RBDO utilizing LMM added 154 points on an average, MO-RBDO using both versions of
GMM added around 430 samples on an average. Quantity of meta-models assembled during
the optimization was 3050 for MO-RBDO utilizing LMM since each individual in each gener-
ation needs unique meta-model. MO-RBDO utilizing GMM or SGMM identically constructed
a unique meta-model for the first generation and 30 offspring generation, 31 generations in total.
Local meta-models version of MO-RBDO needs a new meta-model for each candidate solution
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to be updated with the DoE; therefore 689 meta-models were assembled for this purposes on an
average. The total number of meta-models evaluations is almost identical for all used models at
least in the order of magnitude.

Figure 7.35 depicts all the independent MO-RBDO runs.MO-RBDO utilizing a global meta-
model, as well as a sparse global meta-model, have problems to approximate the upper tail of
Pareto fronts. These methodologies underestimate the β-indices greater than or equal to 3; the
approximation is therefore on the safe side. However, the problem with meta-models for β
greater than three is evident. The recalculated Pareto fronts with both types of global meta-
models have tail ending around β-index equal to 8. On the other hand, MO-RBDO utilizing
LMM provides excellent Pareto fronts that are close to the superior Pareto front from a visual
point of view. The Pareto set obtained by MO-RBDO using AM is the most resembling the
Pareto set from MO-RBDO using LMM.

Table 7.32 shows the comparison of performance measures described in Section 3.2. The
unary metrics evince the best results for the recalculated Pareto fronts obtained from MO-RBDO
utilizing the analytical model. The Hypervolume, however, does not have a large difference
in the mean values of the metrics for any model. The recalculated Pareto fronts obtained by
MO-RBDO using both versions of the global meta-models have similar Spacing metric and
Spread metric values. The recalculated Pareto fronts obtained by MO-RBDO utilizing LMM
have a nice behaviour according to a Spacing metric but not according to a Spread performance
measure. The pairwise or the groupwise distribution do not affect the Spacing metric but the
Spread metric, which happened in this case as well. A Generational distance is very close to the
zero in all cases, which means that the recalculated Pareto fronts are close to the superior Pareto
front. The solutions in the superior Pareto front dominate the solutions in the recalculated Pareto
fronts obtained by MO-RBDO utilizing any meta-model in at least 72% on average; recalculated
Pareto fronts obtained by MO-RBDO utilizing SGMM have the best behaviour, MO-RBDO
utilizing LMM provided the worst data. On the other hand, 3% solutions of recalculated Pareto
front obtained by MO-RBDO using LMM dominated the solutions of the superior Pareto front,
which is approximately the best result for the Two set coverage metric C(rPF, sPF ). MO-
RBDO utilizing SGMM provided the smallest size of the space that is weakly dominated by the
superior Pareto front but not weakly dominated by the recalculated Pareto front.

Overall, the most precise and accurate data provided MO-RBDO utilizing local meta-models,

AM LMM GMM SGMM
elapsed time (1 thread) [hours] 4.61 14.65 21.56 26.76
elapsed time (8 threads) [hours] 2.22 4.24 5 5.82
initial DoE 0 200 50 50
added samples 0 154 422 433
analytical g(x)-calls 9.45 · 109 354 472 483
MM built for opt. 0 3050 31 31
MM built for update 0 689 0 0
MM-calls 0 8.32 · 109 5.16 · 109 5.26 · 109

Table 7.31: Example 5: Comparison of statistics for RBDO utilizing a quasi-Monte Carlo sim-
ulation with an analytical model (AM), local meta-models (LMM), global meta-model (GMM),
and sparse global meta-model (SGMM).
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Figure 7.35: Example 5: Pareto sets (circles, left) and Pareto fronts (large circles, right)
for all models, namely an analytical model (AM), global meta-model (GMM), sparse global
meta-model (SGMM), and local meta-models (LMM). Smaller circles with magenta edges in
the objective space represent the recalculated fronts with an analytical model. A magenta
cross is for a result published in [59]. Green dots sets show the superior Pareto set and
superior Pareto front. Every colour has the meaning of a different run. The contour plot in
the design space represents an analytical limit state function; the bold contour is for the limit
state g(X) = 0.
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which is evident both from the comparison of the original Pareto fronts with their recalculated
counterparts in Figure 7.35 and from all error indicators in Table 7.32. On the contrary, the
worst error is on the original Pareto fronts from MO-RBDO utilizing global meta-models. We
had to discard approximately 1.11 solutions from each Pareto front obtained by MO-RBDO uti-
lizing GMM, the total number of discarded solutions was 21 out of 950 (19 independent runs,
50 individuals in the last generation). We did not discard any solution from the Pareto fronts
obtained by MO-RBDO utilizing LMM. The recalculation by a quasi-Monte Carlo simulation
with CoV lesser than 5% discarded approximately 0.9 solutions from each Pareto front obtained
by MO-RBDO utilizing SGMM; the total number of discarded solutions was 17 out of 950.

7.5.2 Results comparison of different reliability assessment techniques
utilizing an analytical model

We run the multi-objective reliability-based design optimization with an analytical model and
several different reliability assessment techniques to minimize the error and examine the be-
haviour of simulation methods and an approximation technique. Table 7.33 shows some statis-
tics. We run all the methods ten times on a computer with hardware and software specifications
defined in Table 11.1 and work with these data in the following section. The number of limit
state function evaluations is two orders of magnitude smaller for simulation methods in com-
parison with MO-RBDO utilizing a preconditioned quasi-MC. Our fastest implementation is
MO-RBDO utilizing a quasi-Monte Carlo simulation; the same primacy is obtained in the pre-
vious four examples as well. The second fastest implementation is MO-RBDO utilizing an

AM GMM LMM SGMM min max
HV 0.79 0.77 0.76 0.78 0.65 0.84
S 0.0053 0.0083 0.0073 0.0080 0.0038 0.0180
∆ 0.37 0.43 0.59 0.43 0.31 0.81
GD - 8.3 · 10−4 7.9 · 10−4 8.1 · 10−4 3.3 · 10−4 3.9 · 10−3

C(PFAM,PFMM) - 0.75 0.81 0.72 0.53 1.00
C(PFMM,PFAM) - 0.019 0.030 0.025 0 0.107
D(PFAM,PFMM) - 0.03 0.04 0.02 0.01 0.15
min ε(βoPF) - 0.021 0.004 0.008 0 0.164
max ε(βoPF) - 3.012 0.449 1.872 0.02 7.89
Eε(βoPF) - 0.812 0.126 0.473 0.01 2.61
stdε(βoPF) - 0.792 0.109 0.519 0.00 2.02
rejected ind. - 1.11 (21) 0 (0) 0.90 (17) 0 2

Table 7.32: Example 5: Comparison of performance measures for RBDO utilizing a quasi-
Monte Carlo simulation with an analytical model (AM), local meta-models (LMM), global meta-
model (GMM), and sparse global meta-model (SGMM). Used metrics are a Hypervolume
(HV), Spacing (S), Spread (∆), Generational distance (GD), Two set coverage metric (C(A,B)),
Coverage difference of two sets (D(A,B)), and Error of the reliability index (ε(β)). The best
values are tinged with the green colour, the worst values with the red colour. The scale shows
the visual comparison of the results.
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Enhanced Monte Carlo simulation followed by MO-RBDO utilizing a Scaled sigma sampling.
Our slowest implementation is MO-RBDO utilizing an Asymptotic sampling, the problem is the
setting most likely, but we prefer to keep the setting the same for all five testing benchmarks.
The second slowest is the implementation of MO-RBDO utilizing an Importance sampling fol-
lowed closely by MO-RBDO utilizing a Subset simulation.

Figure 7.36 and 7.37 show all the data from the multi-objective reliability-based design opti-
mization together with the recalculation of the Pareto sets by the quasi-Monte Carlo simulation
with a coefficient of variation lesser than 5%. The Pareto fronts obtained from MO-RBDO
utilizing an Asymptotic sampling differ visually from their recalculated counterparts for the
reliability index greater than 3; however, an Asymptotic sampling underestimated the β-index
which is on the safe side of the design. The Pareto fronts obtained via MO-RBDO utilizing an
Enhanced Monte Carlo simulation differ visually as well. Unfortunately, this method overes-
timated the reliability indices, and the design is on the unsafe side of the design. The Pareto
fronts also suffer from the bounding the β-index to the value 4.5 from above. A First-order reli-
ability method systematically underestimated the reliability indices. The original Pareto fronts
are vertically translated in comparison with their recalculated counterparts. This method also
suffers from the bounding of the β-index to the value 4.5 from above. The Pareto fronts from
MO-RBDO utilizing an Importance sampling visually imitate the recalculated fronts as well as
the superior Pareto front. Still, the upper tails of the original Pareto fronts also suffer from the
bounding of the reliability index from above. A quasi-Monte Carlo simulation in MO-RBDO
would need more samples than 30,000 for the upper tails of the Pareto fronts, the shape of the
original Pareto fronts with a β-index from the interval [0, 3] imitates nicely the recalculated
counterparts as well as the superior Pareto front. The Pareto fronts obtained from MO-RBDO
utilizing a Subset simulation have similar shapes like their recalculated counterparts and the su-
perior Pareto front with only one outlier from one simulation out of 10 runs. MO-RBDO using
a Scaled sigma sampling overestimates the reliability indices with a growing cost function, and
therefore the Pareto fronts are slightly rotated around the lower tail of the Pareto front. This
method also suffers from the bounding of the β-index from above in one run out of 10 runs.

Table 7.34 shows the performance measures and the error for the Pareto fronts obtained
from MO-RBDO. The Hypervolume is between values 0.76 and 0.79 with one exception - the
Hypervolume calculated on the Pareto fronts obtained from MO-RBDO utilizing a quasi-Monte
Carlo simulation. The best value is however obtained on the Pareto fronts from MO-RBDO us-
ing an Asymptotic sampling. The Spacing metric is close to zero for all the methodologies as
in all previous examples; however, the Spread metric is more extensive; therefore, the spread of
individuals in Pareto fronts is not ideal. The Generational distance is small for all the method-
ologies; the recalculated Pareto fronts are therefore close to the superior Pareto front. The lowest

AS eMC FORM IS MC SS SSS
elapsed time [s] 409 82 218 287 45 272 111
g(x)-calls 6.3 · 107 4.7 · 107 3.2 · 105 4.4 · 107 4.7 · 107 4.8 · 107 4.4 · 107

Table 7.33: Example 5: Comparison of statistics for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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Figure 7.36: Example 5: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Enhanced Monte Carlo simu-
lation (eMC), First-order reliability method (FORM), and Importance sampling (IS) together
with an analytical model. The smaller circles with green edges in the objective space repre-
sent the recalculated Pareto sets to Pareto fronts with a quasi-Monte Carlo simulation with
CoV lesser than 5%. A magenta cross represents an optimum published in [59]. Aqua dots
sets show the superior Pareto set and superior Pareto front. Every colour means a different
run. The contour plot in the design space represents an analytical limit state function; the
bold contour is for the limit state g(X) = 0.
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Figure 7.37: Example 5: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing a quasi-Monte Carlo simulation (MC), Subset simulation (SS),
and Scaled sigma sampling (SSS) together with an analytical model. The smaller circles with
green edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV lesser than 5%. A magenta cross represents an
optimum published in [59]. Aqua dots sets show the superior Pareto set and Pareto Pareto
front obtained with an analytical model together with quasi-Monte Carlo simulation. Every
colour means a different run. The contour plot in the design space represents an analytical
limit state function; the bold contour is for the limit state g(X) = 0.
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AS eMC FORM IS MC SS SSS min max
HV(rPF) 0.79 0.77 0.76 0.78 0.67 0.78 0.78 0.66 0.83
S(rPF) 0.0086 0.0068 0.0062 0.0061 0.0055 0.0062 0.0068 0.0046 0.013
∆(rPF) 0.47 0.45 0.45 0.42 0.54 0.40 0.45 0.28 0.61
GD(rPF,sPF) [·10−4] 4.1 2.9 7.6 2.8 2.8 2.8 2.8 2.2 10.5
C(sPF,rPF) 0.61 0.64 0.57 0.61 0.61 0.54 0.57 0.44 0.79
C(rPF,sPF) 0.038 0.037 0.027 0.034 0.031 0.037 0.034 0 0.064
D(sPF,rPF) 0.016 0.028 0.039 0.018 0.124 0.016 0.020 0.004 0.137
min ε(βoPF) 0.001 0.001 0.151 0.0005 0.0003 0.0002 0.007 0 0.17
max ε(βoPF) 0.27 0.28 0.27 0.10 0.35 0.085 0.25 0.057 0.91
E ε(βoPF) 0.043 0.055 0.228 0.027 0.043 0.021 0.102 0.018 0.24
std ε(βoPF) 0.057 0.067 0.027 0.025 0.068 0.018 0.053 0.015 0.203

Table 7.34: Example 5: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques and an analytical model, namely an Asymptotic sampling
(AS), Enhanced Monte Carlo simulation (eMC), First-order reliability method (FORM), Impor-
tance sampling (IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled
sigma sampling (SSS). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Gen-
erational distance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets
(D(A,B)), and Error of the reliability index (ε(β)). The datasets: rPF - recalculated Pareto front,
sPF - superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The best
values are tinged with the green colour, the worst values with the red colour. The scale shows
the visual comparison of the results.

portion of weakly dominated individuals in recalculated Pareto fronts by a superior Pareto front
is from the MO-RBDO utilizing a Subset simulation, followed by a Scaled sigma sampling and
by a First-order reliability method. On the contrary, the most significant percentage of weakly
dominated solutions in recalculated Pareto fronts by a superior Pareto front is from MO-RBDO
utilizing an Enhanced Monte Carlo simulation. In general, only a small portion of the recal-
culated data weakly dominated the superior Pareto front; the best result is from MO-RBDO
utilizing an Asymptotic sampling where 3.8% of Pareto front weakly dominated the superior
Pareto front.

A quasi-Monte Carlo simulation can obtain minimal error; however, it can also get the
maximum error on average. The problem is that any Monte Carlo simulation needs a higher
number of samples for higher reliability indices. Therefore the lower tail of the Pareto front
contains individuals with the best beta-index values, and the upper-tail individuals have the most
significant errors. The maximum of the maximum error surprisingly came from an Asymptotic
sampling (max ε(βoPF = 0.91), the last column). On average, the maximum error is smallest
for a Subset simulation, which also provides the most accurate and precise reliability indices;
this is the absolute winner in the field of the minimization of error indicators. The second
best is an Importance sampling with a small minimum and maximum error, mean value as
well as standard deviation. A First-order reliability method provides precise but not accurate
reliability indices for this example; this trend is visible from Figure 7.36, where the original
Pareto fronts are translated from the recalculated fronts. The last precise results came from
a quasi-Monte Carlo simulation; the problem is in a small number of samples that influences
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the upper tail of the Pareto fronts. Pareto fronts from MO-RBDO utilizing an Enhanced Monte
Carlo simulation show the same trend; the results are even less accurate than from a quasi-
Monte Carlo simulation. Figure 12.14 in Appendix 12 shows the box-plots for the performance
measures and the mean and standard deviation of the error.

7.5.3 Results for approximation using meta-models and reliability assess-
ment techniques

We selected three best-behaving reliability assessment methods, and we combined them with all
meta-models in our MO-RBDO methodology. We present only two best-behaving meta-models
according to Table 7.1, namely local meta-models and sparse global meta-model. Appendix 12
contains the data from MO-RBDO using global meta-model. The ranks of all methods, together
with the best placings for all five examples, are in Table 7.1; the fifth example is in the fifth row
of the table.

We run MO-RBDO with each combination of selected methods ten times to have solid
data for our statistics. Our fastest implementation is MO-RBDO using a Subset simulation
and sparse global meta-model, the second-best is MO-RBDO utilizing an Asymptotic sampling
and local meta-models, and the third-best is MO-RBDO using a Subset simulation and local
meta-models. Table 7.35 presents the statistical data from all runs. The number of meta-model
simulations is ten to the power of seven.

Figure 7.38 presents all obtained data from optimization runs with some additional informa-
tion. Except for one Pareto front, the sparse global meta-model works well up to the reliability
index equal to 3. This reliability index approximately corresponds with the single objective
optimum; a yellow cross depicts this solution. The tails of original Pareto fronts with reliability
index larger than three considerably differ from their recalculated counterparts as well as the su-
perior Pareto front. Moreover, the superior Pareto front is bounded to reliability indices [0,4.5],
but we keep the recalculated Pareto fronts without any bounding to see their real values. The
cost function values are identical for the original and the recalculated individuals, Therefore,
the corresponding values are only vertically translated. If the original individual does not have

SGMM LMM
AS IS SS AS IS SS

elapsed time [sec] 718 2198 496 554 1299 546
elapsed time [hours] 0.199 0.610 0.138 0.154 0.361 0.152
initial DoE 50 50 50 200 200 200
added samples 400 387 362 138 134 130
analytical g(x)-calls 450 437 412 338 334 330
MM built for opt. 31 31 31 3050 3050 3050
MM built for update 0 0 0 545 547 489
MM-calls 6.01·107 8.95·107 4.31·107 6.25·107 8.92·107 4.89·107

Table 7.35: Example 5: Comparison of statistics for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a sparse global meta-model (SGMM), and
local meta-models (LMM).
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Figure 7.38: Example 5: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS),
and Subset Simulation (SS) together with a sparse global meta-model (SGMM). The smaller
circles with magenta edges in the objective space represent the recalculated Pareto sets
to Pareto fronts with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross is
for the result published in [59]. Green dots sets show the superior Pareto set and Pareto
front obtained with an analytical model together with a quasi-Monte Carlo simulation. Every
colour means a different run. The contour plot in the design space represents an analytical
limit state function; the bold contour is for the limit state g(X) = 0.
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Figure 7.39: Example 5: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with local meta-models (LMM). The smaller circles with ma-
genta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross is for the result pub-
lished in [59]. Green dots sets show the superior Pareto set and Pareto front obtained with
an analytical model together with a quasi-Monte Carlo simulation. Every colour means a dif-
ferent run. The contour plot in the design space represents an analytical limit state function;
the bold contour is for the limit state g(X) = 0.
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SGMM LMM
AS IS SS AS IS SS min max

HV (rPF) 0.88 0.89 0.91 0.87 0.89 0.90 0.65 0.96
S (rPF) 8.6·10−3 7.8·10−3 7.6·10−3 1.0·10−2 6.1·10−3 6.9·10−3 3.6·10−3 2.3·10−2

∆ (rPF) 0.54 0.57 0.47 0.70 0.58 0.55 0.39 0.88
GD (rPF,sPF) 2.7·10−3 5.3·10−4 8.3·10−4 8.2·10−4 5.3·10−4 5.6·10−4 3.1·10−4 1.6·10−2

C(sPF,rPF) 0.76 0.75 0.79 0.86 0.75 0.79 0.52 1.00
C(rPF,sPF) 0.022 0.019 0.023 0.012 0.017 0.014 0 0.068
D(sPF,rPF) 0.050 0.039 0.026 0.063 0.039 0.031 0.006 0.28
min ε(βoPF) 0.040 0.017 0.005 0.005 0.003 0.003 3.5·10−5 0.31
max ε(βoPF) 2.3 0.9 1.6 0.8 0.4 0.8 0.2 3.7
Eε(βoPF) 0.50 0.15 0.24 0.16 0.10 0.15 0.06 0.78
stdε(βoPF) 0.49 0.17 0.32 0.15 0.09 0.15 0.05 0.78
rejected ind. 0.8 0 0.4 0 0 0 0 1.0
Σ rejected ind. 8 0 4 0 0 0 0 8

Table 7.36: Example 5: Comparison of performance measures for RBDO utilizing different
reliability assessment techniques namely an Asymptotic sampling (AS), Importance sampling
(IS), and Subset simulation (SS) using a sparse global meta-model (SGMM) and local meta-
models (LMM). Used metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Generational
distance (GD), Two set coverage metric (C(A,B)), Coverage difference of two sets (D(A,B)),
and Error of the reliability index ε(β). The used datasets: rPF - recalculated Pareto front, sPF
- superior Pareto front, oPF - original Pareto front, and rF - recalculated front. The best values
are tinged with the green colour, the worst values with the red colour. The scale shows the
visual comparison of the results.

any recalculated counterpart depicted in the objective space, the recalculated reliability index
is equal to ±∞. The best reliability assessment method seems to be the Importance sampling
in combination with the sparse global meta-model because the upper tails differ the least in
comparison with the other methods. Figure 7.39 shows results from MO-RBDO using local
meta-models. The original Pareto fronts from all selected simulation methods have nice con-
gruence with the superior Pareto front. The best simulation method seems to be the Importance
sampling because the original data is most closely related to their recalculated values. Except
for two individuals from the Pareto fronts calculated using Subset simulation, this method also
gave nice results.

Table 7.36 presents the results of performance measures, errors, and rejected individuals due
to ±∞ in the reliability indices after recalculation. The average values for Hypervolume for all
combinations of methodologies are almost the same. The minimum value of the Hypervolume
is for the Pareto fronts from MO-RBDO using AS and SGMM – the yellow recalculated Pareto
front in Figure 7.38, this value is an outlier also visible in Figure 12.15 in Appendix 12 and it is
profoundly influencing the mean value. If omitted, the mean value is 0.91, a value comparable to
the best placed MO-RBDO using SS and SGMM. A Spacing metric has low values. Therefore,
there is the ideal spacing between individuals or at least ideal spacing between individuals
in groups. MO-RBDO utilizing a Subset simulation and sparse global meta-model provides
the best distribution among the individuals according to the Spread metric. On the contrary,
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the worst distribution of individuals has MO-RBDO using an Asymptotic sampling and local
meta-models on average. Overall, unary metrics tend to prefer a Subset simulation over an
Asymptotic sampling, but the results are ambiguous. Similar results are also found for binary
metrics, which lack a clear preference for the methodology. A Generational distance provides
better results for an Importance sampling with any meta-model and a Subset simulation with
a local meta-model; their recalculated Pareto fronts are closest to the superior Pareto front. A
superior Pareto front weakly dominates at least 75% of individuals from recalculated Pareto
fronts on average. These results were obtained with MO-RBDO using an Importance sampling
with both meta-models. All solutions were dominated by the superior Pareto front twice in
the case of MO-RBDO using an Asymptotic sampling, once with a sparse global meta-model
(yellow Pareto front from Figure 7.38) and once with local meta-models (purple Pareto front
from Figure 7.39). Similarly, only a small portion of data dominates a superior Pareto front,
maximally 2.3% on average for a Subset simulation and sparse global meta-model. In overall,
binary metrics tend to prefer an Importance sampling regardless of the meta-model.

If we consider the accuracy and precision of the Pareto fronts, MO-RBDO achieved the
best results while using an Importance sampling and local meta-models. If only mean and
standard deviation of the error is considered, the second-best results are obtained by the rest of
the simulation methods and local meta-models and an Importance sampling and sparse global
meta-model. A Subset simulation using local meta-models and an Importance sampling using
a sparse global meta-model are slightly more accurate than an Asymptotic sampling using local
meta-models. On the contrary, an Asymptotic sampling and a Subset simulation both using
local meta-models were slightly more precise than an Importance sampling using a sparse global
meta-model. For local meta-models, none of the individuals was rejected after recalculation by
a quasi-Monte Carlo simulation with CoV lesser than 5% due to ±∞ in reliability indices, and
only a few individuals were rejected for sparse global meta-model with an Asymptotic sampling
and a Subset simulation. Figure 12.15 in Appendix 12 shows the box-plots for the performance
measures and the mean and standard deviation of the error.

7.6 Summary results for all examples

We tested our proposed methodology with three different types of meta-models and seven dif-
ferent reliability assessment methods. To keep the results well arranged, we divided the results
into three different sub-sections. The first part contains results with a preconditioned quasi-
Monte Carlo simulation and different types of meta-models as well as an analytical model. The
quasi-Monte Carlo simulation is computationally expensive, especially for low failure probabil-
ities and low coefficient of variation of the probability failure predictors. Therefore, for saving
the computational demands, we estimated the needed number of samples for a constant coeffi-
cient of variation of the failure probability prediction by a Subset simulation. This part tends to
minimize the error of the reliability assessment and concentrate on the error of the meta-models.
Since we do not have any benchmark for validation, we constructed the superior Pareto set with
the corresponding Pareto front from solutions resulting from the preconditioned quasi-Monte
Carlo simulation and the analytical model. We validated the quality of the superior Pareto front
with the single-objective optima found in the literature by using the Pareto-efficiency condi-
tions. The solutions in the superior Pareto fronts dominate the single-objective optima with
only one exception, Example 4. Unfortunately, AOUES et al. in [3] published only the values
of the cost function values with the corresponding reliability indices and therefore, we could
not verify the published values with our methodology as we did for the other examples. Fig-
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ure 7.40 shows superior Pareto sets and superior Pareto fronts compared to all single-objective
optima. The first column of images represents the design space, the second column is dedicated
to the objective space, and the third column zooms in the single objective optima compared to
our superior Pareto fronts. The second part embraces the results with an analytical model and
different types of reliability assessment techniques. This part concentrates on the minimiza-
tion of the model error and investigates the error of the reliability index prediction. Finally,
the third part interconnects the best meta-models with the best reliability assessment methods.
We selected three best-performing reliability methods the same for all tested examples and two
best-performing meta-models differing from example to example. The most important criteria
for the selection of methods are mean of the reliability index error and its standard deviation
from our point of view. Therefore, we evaluated the Pareto-efficiency of these two criteria,
and the result is shown in Table 7.1. Best-performing reliability assessment methods were an
Importance sampling, Subset simulation, and Asymptotic sampling in overall.

We presented five examples of testing our methodology. Each example differs from oth-
ers. The first example contains only one limit state function using two deterministic design
variables and two stochastic variables from normal space. The second example is much more
complicated than the first one for its nonlinearity of one limit state function; overall, the system
reliability comprises two components connected into the series system, and therefore two limit
state functions are defined. The two input variables are stochastic design variables from nor-
mal space. The third example works with three limit state functions that are connected into the
series system; the two input variables are stochastic design variables from normal space. The
first three examples are mathematical problems with different degrees of nonlinearity, which
is concentrated only into the limit state functions. The fourth example is a short column under
oblique bending, where the ultimate plastic state as the limit state reveals high nonlinearity. The
two stochastic design variables are from lognormal space, and four stochastic variables are from
Gumbel and Weibull spaces – 6 non-normal stochastic variables in total. The fifth example is
a 23-bar truss; the mid-span displacement represents the limit state function. Two stochastic
design variables are from lognormal space, and eight stochastic variables are from lognormal
and Gumbel space – 10 non-normal stochastic variables in total. A summary of the presented
examples is in Table 7.37.

Example 1 2 3 4 5
Type of problem math. math. math. short column 23-bar truss
A number of det. des. var. 2 0 0 0 0
A number of stoch. des. var. 0 2 2 2 2
A number of stoch. var. 2 0 0 4 8
The total number of var. 4 2 2 6 10
A number of LSFs 1 2 3 1 1
Type of a reliability system component series series component component
Type of a stochastic space normal normal normal LN-GUM-WEI LN-GUM

Table 7.37: Description of presented examples. Abbreviations: math. - a mathematical prob-
lem, det. - deterministic, stoch. - stochastic, des. - design, var. - variables, LSFs - limit state
functions, LN - lognormal, GUM - Gumbel - WEI - Weibull.

Each example reveals a different type of problem that we had to solve. Example 1 is com-
plicated because of its small design space and the nonlinearity of the limit state function. The
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Figure 7.40: Superior Pareto sets and superior Pareto fronts (blue sets) are compared to the
single-objective optima reproduced from the literature (red sets).
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Figure 7.41: Scatter plot of the mean value and standard deviation of the error for all exam-
ples.
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Figure 7.42: Scatter plot of the mean value of the error and number of analytical model
simulations for all examples.
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local meta-models suffered from the restriction of the design space, and we found that this type
of meta-model is not suitable if the general setting, which we used for all examples, is used.
We could improve the behaviour of the meta-model with the extension of the influence domain.
However, if the design space is so small that the Pareto set is spread over its entire space or at
least its entire band including both extreme intervals of variables, the influence domain would
merge with the entire design space and the local meta-model would not differ from the global
meta-model. Both global meta-models work well with minimal errors, a sparse global meta-
model even better than a dense meta-model. Different reliability assessment methods using
an analytical model perform well except for an Enhanced Monte Carlo simulation and Scaled
sigma sampling. The best performing method for Example 1 is an Importance sampling if
we take into account only the reliability index. Because of the poor performance of the local
meta-models, we combined only global meta-models with the Asymptotic sampling, Impor-
tance sampling, and Subset simulation for results discussion. The Importance sampling using
both versions of global meta-models performed even better than the rest of the reliability assess-
ment techniques utilizing an analytical model which is evident from Figure 7.41. If we compare
the mean value of the error with the number of analytical model evaluations for whole RBDO,
the most economical method is the Importance sampling using a global meta-model with an ac-
ceptable error compared to the evaluation with the analytical model as evident from Figure 7.42.
Overall, both global meta-models performed very well in this example with a minimum mean
error. Table 7.38 compares both error indicators, and the number of analytical function simu-
lations by Pareto-efficiency conditions; an Importance sampling with an analytical model and
both global meta-models are the most economical low error methods for Example 1.

Example 2 is complicated for its high nonlinearity and the series system reliability. A con-
nection of two limit state functions creates a bounded safe space, but solutions are only bound
to one limit state. Our RBDO using a preconditioned quasi-Monte Carlo simulation simulating
all meta-models performed great with small error indicators. If we compare reliability assess-
ment methods using an analytical model, an Importance sampling and First-order reliability
method had difficulties with the reliability index precision. Both methods use the same system
reliability evaluation principle, differing only in the evaluation of partial component reliability.
Besides, Importance sampling uses the translation of the probability density to a design point,
which is searched in the same way as First-order reliability method. Therefore, the problem
of these methods is in the high degree of nonlinearity of one component limit state function.

MC-CoV AS eMC FORM IS MC SS SSS AS IS SS AS IS SS AS IS SS
No. LMM GMM SGMM AM GMM LMM SGMM

1 3 4 2 5 6 2 1 2 4 7 3 1 3 5 3 5 4 1 2
2 1 2 1 3 6 7 7 5 3 5 3 5 2 3 4 3 4 6 2
3 1 1 1 2 6 4 4 5 4 4 2 3 2 3 3 3 2 3 2
4 2 2 2 2 3 1 1 2 2 1 3 3 2 1 1 1 3 4 2
5 3 2 5 2 2 1 1 2 1 2 6 2 4 2 1 1 5 2 3

Table 7.38: Sorting to fronts according to Pareto efficiency conditions with three different
criteria, namely the mean and the standard deviation of the reliability index error, and a number
of analytical model simulations. The best solution has rank equal to one and tinted with the
green colour. The yellow colour represents an average solution, and the red colour indicates
the worst solution.
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A Scaled sigma sampling using an analytical model had an even larger mean error of the re-
liability index but a smaller standard deviation of this error in comparison with an Importance
sampling and FORM. An Asymptotic sampling and Subset simulation had comparable error
results for the analytical model and both global meta-models. The results from an Importance
sampling are interesting because the mean and the standard deviation of the reliability index
error for the results obtained by the analytical model were greater than for results obtained
from both meta-models; the error for the meta-models and the Importance sampling were sub-
tracted from each other. Table 7.38 shows the ranks if Pareto-efficiency conditions are used for
a mean and standard deviation of the reliability index error and the number of simulations of
the analytical model. The best-behaving methods, according to these three criteria, are RBDO
using a preconditioned quasi-Monte Carlo simulation with local meta-models and sparse global
meta-model.

The complexity of Example 3 is in a serial system connecting three limit state functions
that create a bounded safe space and the plateau of the failure region around the limit state bor-
der. The solutions in the design space converge into the intersection of two limit states. This
intersection and the plateau is hard to imitate by the sparse global meta-model; the sparse global
meta-model is easily overfitted in this case. The mean and the standard deviation of the reliabil-
ity index error for RBDO using a preconditioned quasi-Monte Carlo simulation and the sparse
global meta-model were the largest from all tested methods. In contrast, the global meta-model
with a dense Gram matrix used by the preconditioned quasi-Monte Carlo simulation had the
lowest error rate when considering the mean value and the standard deviation of the reliability
index error as evident from Figure 7.41. The preconditioned quasi-Monte Carlo simulation us-
ing the local meta-models has a similar error as the Asymptotic sampling using the analytical
model and the global meta-model. A very nice result, however, is that the accuracy and precision
of the reliability index from an Asymptotic sampling is the same from the global meta-model
as from the analytical model. As shown in Figure 7.42, RBDO using an Asymptotic sampling
and an analytical model needs several orders of magnitude more simulation of this analytical
meta-model than the global meta-model. However, both Importance sampling and Subset sim-
ulation using the global meta-model performed well with a low number of analytical model
simulations. If we compare the mean and standard deviation of the reliability index error and
the number of analytical model simulations via Pareto-efficiency conditions, the best-behaving
methods are RBDO with preconditioned quasi-Monte Carlo simulations using all three types of
meta-models.

Example 4 is the first application of a structure having one limit state function and six ran-
dom variables that are from a non-normal space. Thus, the complexity of this example lies
also in the non-linearity of the transformation. The limit state function has a very steep trend
with low design variables inputs that is hard to imitate by the global meta-models. The last
complexity is in the constraining of the design space by the inequality constraints. According
to Figure 7.41, the reliability indices obtained by all the reliability assessment methods using
an analytical model were more precise than the results from obtained by any meta-model. If
we consider the accuracy of the results, an Importance sampling using local meta-models got
better results than a Scaled sigma sampling and FORM both using the analytical model. From
all meta-models, local meta-models got more precise and accurate results if we combined them
with advanced simulation techniques, namely an Importance sampling, Subset simulation, and
Asymptotic sampling. If we combined local meta-models with a preconditioned quasi-Monte
Carlo simulation, the results were more accurate than any global meta-model, but the precision
is worse than most of the global meta-models and simulation techniques. Using advanced sim-
ulation techniques, the behaviour of meta-models has mostly improved. The exception is the
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sparse global meta-model, where results with preconditioned quasi-Monte Carlo simulation are
more precise and accurate than with advanced simulation techniques. In the global meta-model,
an Asymptotic sampling slightly impaired accuracy in comparison with preconditioned quasi-
Monte Carlo simulation. A Subset simulation turned out best for the global meta-model. If we
compare the accuracy concerning the number of simulations of the analytical model as depicted
in Figure 7.42, then the clear winner is an Importance sampling with the analytical model and
with the local meta-models. The former results are more accurate than the latter, but the latter
is computationally less demanding by five orders of magnitude. If we compare the accuracy,
precision and amount of evaluation of the analytical function as recorded in Table 7.38, then the
best methods are FORM, Importance sampling and Subset simulation while using an analytical
model and Importance sampling and Subset simulation while using local meta-models. FORM
is the least accurate of all reliability methods while using an analytical model, but its results are
the third best in terms of precision. FORM as an approximation method also requires orders of
magnitude fewer simulations of the analytical function than simulation techniques.

The complexity of Example 5 is in the number of stochastic variables; this example has
ten non-normal variables from lognormal and Gumbel space. Therefore, the nonlinearity is in
the component limit state function as well as in the transformation. If a preconditioned quasi-
Monte Carlo simulation was used, RBDO with both global meta-models had difficulties with
reliability indices greater than approximately 3. The reason is that the meta-limit state is shifted
closer to the mean values for the extreme values of variables in comparison with the analytical
limit state. These extreme regions are described by sampling only for higher values of the
reliability indices. The global meta-model may be less accurate at these extreme values due
to two reasons; first, because of insufficient description by support points of DoE, and second,
the trend of the function in extreme values is worse predicted due to missing information of the
function beyond the meta-model bounds. Local meta-models assembled for design variables
with subsequent higher values of reliability indices avoid the latter problem because they are
assembled only on small subspace around the actual values of design variables. This behaviour
is evident in Table 7.32 and Figure 7.41. Figure 7.41 shows that all simulation methods achieve
better results using the analytical function. Local meta-models used by an Importance sampling
provide a better prediction of the reliability indices than if a preconditioned quasi-Monte Carlo
simulation uses them. An Importance sampling proposes better candidate support points for
a DoE update than other simulation methods. The enhancement of the global meta-model by
the samples from the Importance sampling is also evident from Figure 7.41, where the mean
and the standard deviation of the reliability index error is less than for other simulation methods
using both versions of global meta-models. For most of the data in Figure 7.41, the mean
value of the error increases with the standard deviation. The biggest exception is FORM, which
proposes a systematically wrong reliability index, i.e. large mean value of the error with small
standard deviations; therefore, the reliability indices are precise but not accurate. Considering
the number of simulations of the analytical function concerning the mean of the reliability index
error, as shown in Figure 7.42, then the best-behaving method is RBDO using local meta-models
simulated by an Importance sampling and RBDO using a Subset simulation with an analytical
model. The latter variant is more accurate than the former one, but the latter needs five orders
of magnitude more analytical evaluations than the former. If we consider three criteria into
the Pareto-efficiency conditions as mean of the reliability index error and its standard deviation
and the number of analytical function simulations, the best approximation methods are FORM,
Importance sampling and Subset simulation while using an analytical model, and an Importance
sampling and Subset simulation while using local meta-models, as evident from Table 7.38.

Table 7.39 shows a comparison of computational complexity concerning the number of sim-
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Example Multi-objective optimization Single-objective optimization
LMM GMM SGMM Ref. Results

Mc-CoV 354 472 483 [3] RIA 426
AS 413 418 404 [3] PMA, KKT 198

1 IS 367 358 349 [3] SLA 27
SS 418 369 358 [3] SORA 150

[3] SAP 40
Mc-CoV 308 424 428 [59] meta-RBDO 80

2 AS 396 420 433 [109] Kriging&CBS 54
IS 409 783 849 [32] OSV 117
SS 412 347 351
Mc-CoV 438 350 346 [59] meta-RBDO 20
AS 418 387 380 [174] RDS 27
IS 503 1364 1251 [116] HORSM 91

3 SS 446 350 350 [202] RIA 19
[202] PMA 17
[109] Kriging&CBS 33
[55] Dir SM/EoD 18

Mc-CoV 428 373 346 [3] RIA 735
AS 280 435 405 [3] PMA 948

4 IS 311 447 448 [3] KKT 567
SS 300 420 419 [3] SLA 43

[3] SORA 309
[3] SAP 80

Mc-CoV 387 373 366 [59] meta-RBDO 350
5 AS 338 464 450

IS 334 443 437
SS 330 419 412

Table 7.39: Computational demands with respect to the number of simulations of the original
model. The best values are tinged with the green colour, the worst values with the red colour.
The scale shows the visual comparison of the results. Abbreviations: RIA - Reliability index
approach, PMA - Probability measure approach, KKT - RBDO based on Karush-Kuhn-Tucker
optimality conditions, SLA - Single loop approach, SORA - Sequential optimization and relia-
bility assessment, meta-RBDO - adaptive surrogate-based RBDO, CBS - Constraints bound-
ary sampling , OSV - Optimal shifting vector approach, RDS - Reliable design space and
complete single-loop RBDO, HORSM - High order response surface method, Dir SM/EoD -
Directional surrogate model / fitted by experiments on demand, LMM - Local meta-models,
GMM - Dense global meta-model, SGMM - Sparse global meta-model, MC-CoV - a quasi-
Monte Carlo simulation with a guaranteed coefficient of variation below 5%, AS - Asymptotic
sampling, IS - Importance sampling, SS - Subset simulation.
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ulations of the original model for all examples. The results from this thesis are located in the
left part of the table, the right part of the table shows the results overtaken from the literature.
For most single-objective results for mathematical functions, the number of simulations of the
original model is lower, however, with increasing dimensionality of the problem and its com-
plexity, we can compete with our results in meta-model assembly for a multi-objective problem,
which is inherently more complex.
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Chapter 8
Conclusions

This thesis aimed to develop a methodology that provides fast and computationally simple so-
lution of multi-objective reliability-based design optimization. However, our formulation of
MO-RBDO is different from the formulation in the literature. Several papers [44, 118, 121,
122, 178, 184] define multi-objective RBDO essentially as an extension of single-objective
RBDO so that there are several objective functions, but the reliability stays in the constraints
inequalities. We formulate the reliability as an objective function because we want to answer
the question: “How much does the reliability cost?” with the Pareto fronts as an answer. That
is why we formulated the assignment of the reliability problem as one of the objective func-
tions. Since this formulation is, to the author’s knowledge, unique in the structural optimization
field, we looked for the least computationally demanding implementation, optimized its im-
plementation and validated the methodology on selected examples. In terms of computational
complexity, the greatest demands appeared in the area of selection of (i) a multi-objective algo-
rithm, (ii) fast and reliable evaluation of reliability, (iii) and effective replacement of the original
model with a meta-model. We solved the (i) objective problem of computational complexity by
studying various literature and found the most used and most recommended algorithm, which
does not use the archive or the external population to preserve elitist solutions. Because our
methodology consists of updated DoE in each generation, recalculating the external archive for
each new generation would dramatically increase the computational demands. We solved the
(ii) objective problem by finding seven different methods for evaluating the reliability in the
available literature and using these methods together with the original model in multi-objective
RBDO to compare their qualities for our problem. We then mapped the resulting Pareto sets
to recalculated “Pareto” fronts using a quasi-Monte Carlo simulation with a guaranteed coeffi-
cient of variation below 5%. We used quotation marks because these “Pareto” fronts may not
be Pareto-optimal, as the Pareto-efficiency conditions are not used in the mapping. We used
these recalculated fronts only to evaluate the errors of the reliability methods. However, for
the computation of other metrics evaluating the quality of the Pareto fronts in general, we se-
lected only the Pareto-optimal solutions from these fronts. We solved the (iii) objective problem
by formulating two special forms of the radial basis functions model, namely local and sparse
global meta-models, and we compare these meta-models with the classical global meta-model.
We also compared their error first separately with the preconditioned quasi-Monte Carlo simu-
lation, and then we applied them with selected best reliability methods. On all these results, we
again evaluated the errors of the reliability index.

In the introductory chapter, we outlined the background of our research, together with sig-
nificance. In Chapter 2, we focused on various methods of reliability-based design optimization.
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The third chapter describes optimization in general, possibilities of solving multi-objective op-
timization via single-objective optimization solvers including disadvantages of this solution,
the transition from single-objective optimization to multi-objective version, the main principles
of multi-objective optimization including principles of domination, and the main differences
between multi- and many-objective optimization. This chapter also details the multi-objective
optimization solver Non-dominated sorting genetic algorithm II as we use it. It is an evolution-
ary elitist-preserving algorithm that employs two main principles, the non-dominated sorting
and a crowding distance as a diversity preserving mechanism. To create a new generation, we
use a tournament selection with two criteria – a non-dominated sorting ranks and a crowding
distance to select parents into the mating pool, simulated binary crossover operator creates two
offspring members from two parental members, and Gaussian mutation operator mutates some
individuals with a prescribed probability. The non-dominated sorting approach also works with
the constraints. Therefore we do not use any penalty functions for them. This chapter con-
cludes with performance measures evaluating the quality of the Pareto fronts; they are divided
into three categories: metrics evaluating the closeness to the Pareto front, diversity among non-
dominated solutions, and metrics evaluating closeness and diversity at the same time. We use
these metrics for rating the resulting Pareto fronts in Chapter 7.

The fourth chapter serves as a brief introduction into the statistics describing the distribution
of a single variable, including the central tendency and dispersion. It continues with the intro-
duction of the failure probability definition for components as well as systems. A First-order
reliability method is the main representative of the approximation techniques in this work; how-
ever, we focus more on simulation techniques, namely a Monte Carlo simulation, Importance
sampling, Asymptotic sampling, Subset simulation, Enhanced Monte Carlo simulation, and
Scaled sigma sampling. Since we work with the series systems in Chapter 7, we described
the evaluation of the system reliability for each method. Each approximation and simulation
method shows the failure probability evaluation, including graphical illustrations.

The fifth chapter describes the meta-models. Two main representatives of interpolation
models are described in more details, namely a Radial basis functions model and Kriging. In our
methodology, we work with three types of Radial basis functions model definition—-a global
meta-model using a dense Gram matrix, a sparse global meta-model applying only an influence
domain for a construction sample resulting in a sparse Gram matrix on the whole domain,
and local meta-models constructing a dense Gram matrix only on the influence domain. The
two latter formulations are our own work. In this chapter, we also discuss the implementation
details and the optimization of the meta-model performance, since the meta-model assembly
and its simulation takes a significant portion of the overall evaluation time. A compute-intensive
segment is the evaluation of the interpoint distances; these distances are used both for meta-
model assembly and simulation of the meta-model. We propose five different methods for the
interpoint distances evaluation, and we compare them for different numbers of support points of
Designs of Experiments in terms of computational time. For a dense and sparse Gram matrix,
we also compare computational demands in terms of time and memory usage, and a sparse
meta-model error compared to a dense meta-model. The initial meta-models need updates to
gain better precision in the domain of importance. Therefore, we divided these updates into
several categories based on the meta-model usage. Different updates are used for reliability
assessment and reliability-based design optimization. In RBDO, updates also differ if the meta-
model replaces an objective function and constraints.

The sixth chapter is the main part of the thesis. We propose two updating procedures of the
meta-models, the first updates the meta-model independently of optimization, and the second
updates the meta-model during the optimization. From our point of view, the latter update is
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more suitable for RBDO because the simulation techniques’ samples also serve as potential
candidates for updating the Design of Experiments. This update is described in detail for the
global, sparse, and local meta-models. The main idea of this update is the mentioned use
of samples from simulation methods. In each generation of the genetic algorithm, selected
samples update the Design of Experiments. Depending on the meta-model type, either one
global meta-model is generated for each generation or a local meta-model for each individual
in each generation. The algorithm selects samples from the simulation method for the DoE
update using a special multi-objective algorithm taking into account the distance to the limit
state function and the space-filling property.

The seventh chapter presents the verification of the proposed methodology. We showed that
our proposed methodology utilizing updated meta-models is better than MO-RBDO utilizing
FORM and an original model since FORM needs at least two orders of magnitude more eval-
uations of the original model than our proposed method as evident from Figure 7.42. We have
always been able to achieve better accuracy in the reliability index with at least one meta-model.
This discovery is an interesting entry step for further research into how to fill the Pareto front
individuals if we add or remove the number of support points in the updated DoE. There are
three solutions to this problem. First, it is possible that adding more support points into DoE
will greatly improve the accuracy of the reliability indices, as more information about the real
problem gets to DoE. Second, DoE may be adequately filled, and the addition of support points
do not improve the accuracy of the reliability index. Third, with the addition of data to DoE,
the meta-model will be subsequently overfitted and be prone to numerical noise. However, our
acquired solutions using meta-models always dominate solutions obtained by using FORM call-
ing the analytical model both in the accuracy of the solution and in the number of simulations
of the analytical function.

The global meta-model is the least sensitive to the choice of a simulation method. Con-
versely, the local meta-models are most sensitive to its choice. If we evaluate the ranks for
all used methods concerning the mean and standard deviation of the error, and compare these
ranks for a preconditioned quasi-Monte Carlo simulation and averaged values via advanced
simulation techniques (AST) as shown in Table 8.1 or Figure 7.41, then the sum of the differ-
ences across all examples is the smallest just for the global meta-model and largest for local
meta-models. If we evaluate the influence of a preconditioned quasi-MC and AST for each
example, as shown in Table 8.1, then the behaviour improved ones, twice, and twice by using
advanced simulation techniques for the GMM, LMM, and SGMM. For real applications, it will
be necessary to test the meta-model accuracy and precision as an intermediate step for selecting
a meta-model type. In case of inappropriate behaviour of the meta-model for the given example,
the update procedure cannot improve it to be a credible replacement for the original model.

If we examine the influence of the meta-model on the change of the result of the simulation
method using the analytical model, Table 8.2a) shows the trends of accuracy and precision for
Examples 1 – 3. These examples use mathematical functions as limit state functions that are
relatively smooth if we omit the intersections of functions. The global meta-models for these
three examples dominate, as both accuracy and precision have improved or only slightly dete-
riorated regardless of the reliability assessment method compared to the analytical model and
the simulation method. The table already contains subtracted values, where a negative number
means improvement and a positive number means deterioration. Conversely, local meta-models
dominate for application on simple structures as evident from Table 8.2b) for Examples 4 –
5. Limit state functions are no longer as smooth as in Examples 1 – 3, but they have more
failure modes and therefore more design points, the design space is larger, and the limit state
functions are more nonlinear as in Examples 1 – 3. Global meta-models then fail to capture this
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GMM SGMM LMM
Example pqMC ¯SM diff. pqMC ¯SM diff. pqMC ¯SM diff.

1 13 5.67 7.33 5 7 2.00 7 11.67 4.67
2 3 6.33 3.33 2 7.33 5.33 1 8 7.00
3 2 4.33 2.33 10 4.67 5.33 1 7 6.00
4 8 10 2.00 8 12 4.00 10 6 4.00
5 6 8.67 2.67 10 8.33 1.67 12 6.33 5.67

32 35 3.00 35 39.33 4.33 31 39 8.00
Table 8.1: Change in the behaviour of the meta-model depending on the simulation method.
Ranks evaluate the Pareto-efficiency conditions for a mean and standard deviation of the error.
For individual ranks see Table 12.2. Legend: pqMC - ranks for a preconditioned quasi-Monte
Carlo simulation, S̄M - averaged ranks for an Asymptotic sampling, Importance sampling,
and Subset simulation, diff. - difference between ranks for pqMC and S̄M, GMM - a global
meta-model, LMM - local meta-models, SGMM - a sparse global meta-model. The green
tinge represents an average improvement of the meta-model behaviour with the advanced
simulation methods in comparison with a preconditioned quasi-Monte Carlo simulation, the
red tinge worsening of the same behaviour.

complicated trend, and conversely, local meta-models work very well here due to their smaller
influence domain. Also, local meta-models have better accuracy and precision in comparison
with both types of meta-models, although the updating procedure ended up with fewer points
in DoE in total; they are therefore better copying the original model, and at the same time they
need less evaluation of the original model for accuracy and precision.

The resulting computational times published in the tables in Chapter 7 are dependent on our
implementation, and the hardware we used that mentioned in Tables 11.1 and 11.2. We know
that we have room for improvement in optimizing the code used, an experienced programmed
could certainly achieve even better computing times. We implemented our methods in the
MATLAB, which is a computational environment that uses the interpreted language. Certainly,
computing demands would also decrease if a programmer reprogrammed our methodology into
a compiled language, such as C++. We used MATLAB as it is a leading integrated environment
for scientific and technical computing, modelling, simulation, presentation and data analysis.
It is a tool for both comfortable, interactive work and development of a wide range of applica-
tions. It provides its users powerful graphical and computing tools, as well as extensive function
libraries along with a powerful fourth-generation programming language. At the same time, it
is possible to work with multi-dimensional arrays, with which MATLAB works vectorized and
thus significantly speeds up calculations. MATLAB also provides a library for parallel com-
putations that can further reduce the computational time of a problem. We have also used this
library for longer computations and at the same time have verified the speed-up of our imple-
mentation against a purely serial solution. Although it could change the computational com-
plexity of a problem in another programming language and on different hardware, the number
of simulation of the original model always remains approximately the same. It cannot be said
that it will be absolutely the same as it is a stochastic calculation and therefore there will always
be some deviation in all the achieved reliability index and the number of support points added
to the updated DoE as evident from Table 12.5 in Appendix 12.

Further study needs to be carried out in the field of system reliability. In this thesis, we
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GMM SGMM LMM
Example AS IS SS AS IS SS AS IS SS

accuracy change
1 -0.008 0.001 0.004 0.001 0.002 0.001 0.008 0.032 0.011
2 -4·10−4 -0.207 0.001 0.002 -0.183 2·10−4 0.003 -0.200 0.002
3 -3·10−5 -0.002 -0.003 0.001 -0.001 -0.004 0.012 0.005 0.004

precision change
1 -0.006 0.002 0.003 0.003 0.003 0.001 0.059 0.070 0.036
2 1·10−4 -0.275 -0.001 0.003 -0.242 -0.001 0.007 -0.280 0.002
3 5·10−4 -0.006 -0.002 0.011 0.002 -0.009 0.020 0.028 -0.002

(a) Example 1 – 3

GMM SGMM LMM
Example AS IS SS AS IS SS AS IS SS

accuracy change
4 1.679 1.699 1.451 2.080 1.706 1.794 0.272 0.092 0.225
5 0.532 0.091 0.281 0.453 0.124 0.217 0.117 0.077 0.130

precision change
4 0.737 0.522 0.491 0.777 0.674 0.662 0.341 0.112 0.308
5 0.553 0.104 0.349 0.435 0.148 0.305 0.097 0.064 0.136

(b) Example 4 – 5

Table 8.2: Accuracy and precision change in the behaviour of the simulation method depending on the
meta-model in comparison with the analytical model for a) Example 1 – 3 and b) Example 4 – 5. Legend:
GMM - a global meta-model, LMM - local meta-models, SGMM - a sparse global meta-model, IS - an
Importance sampling, AS - an Asymptotic sampling, SS - a Subset simulation. The green-yellow-red
colour scale represents a deterioration of the method using a meta-model, where green means the least
deterioration, while a red shows the worst. Blue colour represents an improvement.

did not solve any parallel systems, and a presented Importance sampling and FORM methods
have worked to a limited extent for serial systems. These two methods solve the reliability of
systems by an extension above themselves, and because they use this extension in the form of the
approximation of the surface by the tangent hyperplane, the result may be inaccurate for limit
state functions with high nonlinearity. An Importance sampling is otherwise a very accurate
method for reliability estimation. Therefore, its use in the system reliability needs to be further
explored. This work could thus be deepened in terms of application to general systems. This
thesis also worked only with uncorrelated input variables. However, many applications also
include correlated variables, especially when it comes to, for example, loads, or products of the
same material made in the same series. Therefore, the study could be repeated for applications
with correlated variables. One application of our methodology (Example 4) was carried out on
the constrained design space. However, constrained design domains can be significantly more
complex, hence the effect of restriction on adding points to DoE and assembling meta-models
needs to be investigated. In order to evaluate the reliability of the problem, it is necessary to have
a model assembled beyond the domain bounds if the design individual is on the border of this
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restricted domain. In this work, two objective functions are formulated for each example; the
cost function and the reliability evaluated by the β-index. Constraints are defined in the sense of
bounding the Pareto front from the bottom and top. Extending the number of objective functions
to more than three would mean that multi-objective optimization will become many-objective,
and the methodology we propose may not be effective in finding Pareto-optimal solutions. For
more than three objective functions, it would be necessary to choose an algorithm other than
NSGA-II while maintaining the idea of an updated DoE. Another study would be suitable for
determining the influence of more complex constraints on the behaviour of our methodology.
In the literature, we have also found examples of RBDO, in which the cost function includes
reliability; it is a so-called total cost function [59, 76]. The price of the structure does not only
depend on the initial costs but also on the expected failure costs. The initial costs are associated
with erection and operation of the structure during its design service life without any failure.
Whereas the expected failure costs depend on all the costs associated with the failure and its
probability, such as the estimated repair cost, loss of life or the cost of disruption of normal
use [76]. If the expected failure costs did not differ from the reliability of the structure, then the
same error, that we get for the reliability with the application of the meta-model and advanced
simulation techniques, would be reflected in the cost function. The computational complexity
of the problem would remain the same. However, if more reliability were to be determined for
one example, then the computational complexity would increase with each additional reliability
objective.
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Chapter 9
Distributions for continuous variables

9.1 Uniform distribution
A uniform distribution (also called a rectangular distribution) is from a family of symmetric
statistical distributions. If an event x from all possible events X is in the range [a, b], the
probability of the occurrence of each possible events x is the same. The bounds a and b are the
parameters of the distribution. The probability of the occurrence of the event x outside these
bounds is zero.

The probability density function of a continuous uniform random variable over the interval
[a, b] is given by

fX(x) =

{
1
b−a , a ≤ x ≤ b

0, x < a ∨ x > b.
(9.1)

It is a symmetrical and monotonic constant function on the interval [a, b].
The cumulative distribution function is given by

FX(x) =





0, x < a
x−a
b−a , a ≤ x < b

1, x ≥ b.
(9.2)

The first two statistical moments, i.e. the mean and the variance, are given by

EX =
b+ a

2
, (9.3)

VarX =
(b− a)2

12
. (9.4)

If there is a necessity to evaluate the parameters of the distribution, i.e. for the knowledge
of the bounds of the uniform space, the parameters a and b are given by

b =
√

3VarX + EX, (9.5)
a = EX −

√
3VarX. (9.6)

The example of the probability density function and the corresponding cumulative density
function is depicted in Figure 9.1. The parameters of this distribution are a = 2 and b = 7 and
analogous statistical moments are EX = 4.5 and VarX = 25

12
= 2.0833.
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9.2. NORMAL DISTRIBUTION
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Figure 9.1: Probability density function (PDF, left) and cumulative density function (CDF, right)
for the uniform variable.

A standard uniform distribution is a special case of the uniform distribution; the bounds
are restricted into the interval [a, b] = [0, 1]. This distribution is often used in random variable
generators that are available in many programming languages as well as in the statistical and
the computational programs.

9.2 Normal distribution
A normal distribution (also called Gaussian distribution after its discoverer CARL FRIEDRICH

GAUSS) is from a family of symmetric statistical distributions. It is often denoted by N(µ, σ2).
The probability density function of a continuous normal random variable is given by

fX(x|µ, σ) =
1

σX
√

2π
e
− (x−µX )2

2σ2
X , (9.7)

where x is from the interval (−∞,∞), the parameter µ is from the interval (−∞,∞) and
the parameter σ is greater than 0. The parameters µ and σ are closely related to the first two
statistical moments, i.e.

EX = µ, (9.8)
VarX = σ2. (9.9)

The cumulative distribution function is given by

FX(x|µ, σ) =

x∫

−∞

fT (t)dt. (9.10)

Moreover, it is feasible to enumerate numerically.
The standard normal distribution is a standardized form of a normal distribution with

µ = 0 and σ = 1. Corresponding probability distribution function is

fX(x) =
1√
2π

e−
x2

2 . (9.11)
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CHAPTER 9. DISTRIBUTIONS FOR CONTINUOUS VARIABLES

The cumulative distribution function of the standard normal distribution is often denoted by
Φ(z). To convert normally distributed variable into the standard normal, the formula

U =
X − µ
σ

(9.12)

is used, in which U is standard normally distributed variable and X is normal distributed vari-
able. Figure 9.2 shows the probability density function (PDF) and corresponding cumulative
distribution function (CDF) for a variable x that is from the standard normal space.
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Figure 9.2: Probability density function (PDF, left) and cumulative density function (CDF, right)
for the standard normal variable.

In the structural engineering, a normal distribution is used for modelling some kinds of
material properties such as a strength of a material, modelling of dead loading and geometrical
properties of the structure such as outer sizes of elements [92]. It is also favourable for stochastic
variables with a low coefficient of variation (e.g. CoV less than 0.3).

9.3 Log-normal distribution
The variable X has a log-normal distribution if its logarithm is normally distributed, i.e. the
variable X is log-normally distributed if a variable Y = ln(X) is normally distributed. The
probability density function of log-normal distribution is non-symmetrical, and all events x are
positive real values. In this thesis, we consider only two parameters in this distribution, namely
µ and σ.

The probability density function of a continuous log-normal random variable is given by

fX(x|µ, σ) =
1√

2πxσ
exp

(
−(lnx− µ)2

2σ2

)
, (9.13)

the event x is from the interval (0,∞), the parameter µ is from the interval (−∞,∞) and the
parameter σ is greater than 0.

The cumulative distribution function and its corresponding inverse function are given by

FX(x|µ, σ) = Φ

(
lnx− µ

σ

)
, (9.14)

F−1
X (y) = exp

(
σΦ−1(x) + µ

)
, (9.15)
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The first two statistical moments, the mean and the variance are given by

EX = exp

(
µ+

σ2

2

)
(9.16)

VarX = exp
(
(2µ+ σ2)(exp(σ2)− 1)

)
. (9.17)

The two parameters µ and σ of the log-normal distribution are calculable from the statistical
moments as

µ = ln

(
(EX)2

√
VarX + (EX)2

)
, (9.18)

σ =

√
ln

(
VarX

(EX)2 + 1

)
. (9.19)

Figure 9.3 shows the probability density function (PDF) and corresponding cumulative dis-
tribution function (CDF) for three variables x that are from the log-normal space.
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Figure 9.3: Probability density function (PDF, left) and cumulative density function (CDF,
right) for three log-normal variables; parameter µ differs values 0, 1 and 2, but the parameter
σ remains the same with the value 1.5.

In the structural engineering, a log-normal distribution is usually used for modelling of
the material properties such as the strength of a material and Young modulus, some kinds of
loading, and the geometrical properties of the structure. The positive skewness is for the low
strength materials, and the negative skewness is for the high strength materials [92].

9.4 Exponential distribution
An exponential distribution is an asymmetrical statistical distribution. It has only one parameter
called scale parameter, which is greater than 0. This parameter can be alternatively defined as
λ, which is connected to the scale parameter via the hazard function λ = 1/b [72].

The probability density function of a continuous exponential random variable is given by

fX(x|b) =
1

b
exp

(−x
b

)
, (9.20)
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the variable x as well as the parameter b are both greater than zero.
The cumulative distribution function and its corresponding inverse function are given by

FX(x|b) = 1− exp

(−x
b

)
, (9.21)

F−1
X (y|b) = −b ln(1− y). (9.22)

The first two statistical moments, the mean and the variance are given by

EX = b, (9.23)
VarX = b2. (9.24)

The examples of the probability density functions and cumulative distribution functions of
exponential variables with three different scale parameters are depicted in Figure 9.4.
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Figure 9.4: Probability density function (PDF, left) and cumulative density function (CDF, right)
for three exponential variables; the scale parameter b differs in values 0.5, 1 and 2.

9.5 Gumbel distribution
A Gumbel distribution is also called an extreme value distribution because it can model a distri-
bution of the largest quantity of values. Originally, it was applied in the estimation of the flood
levels [72]. It has two forms; the largest extreme is used for modelling of structural loading,
and the smallest extreme is used for modelling of load capacity. Since we use it for modelling
of the loading in this thesis, we will work with the largest extreme. The difference in these two
forms is in the reversal of the sign of x. This distribution utilizes two parameters, the location
parameter a and the scale parameter b.

The probability density function of a continuous Gumbel random variable is given by

fX(x|a, b) =
1

b
exp

(
−x− a

b

)
exp

(
− exp

(
−x− a

b

))
, b > 0. (9.25)

The cumulative distribution function and its corresponding inverse function are given by

FX(x|a, b) = exp

(
− exp

(
−x− a

b

))
, b > 0, (9.26)

F−1
X (y|a, b) = −b ln (− ln(y)) + a, 0 < y < 1. (9.27)

(9.28)
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The first two statistical moments, the mean and the variance are given by

EX = a+ γb, (9.29)

VarX =
π2b2

6
, (9.30)

where γ is Euler-Mascheroni constant which is approximately equal to 0.5772 15664 9.
The parameters a and b are given by

a = EX − γb, (9.31)

b =

√
VarX · 6
π

. (9.32)

Figure 9.5 shows examples of three Gumbel variables (the largest extreme form) with their
probability density functions as well as cumulative distribution functions. The variables differ
only in scale parameter b, which is from the set [1, 2, 3]; the location parameter remains a = 0.
By contrast, Figure 9.6 shows the alternation of the location parameter to the set of values
[0, 1, 2] and the scale parameter remains equal b = 2 for all three Gumbel variables.
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Figure 9.5: Probability density function (PDF, left) and cumulative density function (CDF, right)
for three Gumbel (the largest extreme form) variables; the scale parameter b differs from the
set of values [1, 2, 3], but the location parameter a remains the same with the value 0.

x
-10 -5 0 5 10 15

f X
(x

)

0

0.05

0.1

0.15

0.2
PDF

a = 0; b = 2
a = 1; b = 2
a = 2; b = 2

x
-10 -5 0 5 10 15

F
X
(x

)

0

0.2

0.4

0.6

0.8

1
CDF

a = 1; b = 2
a = 1; b = 2
a = 0; b = 2

Figure 9.6: Probability density function (PDF, left) and cumulative density function (CDF, right)
for three Gumbel variables; the location parameter a differs from the set [0, 1, 2], but the scale
parameter b remains the same with the value 2.
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9.6 Weibull distribution
The Weibull distribution is a continuous probability distribution, which was named after WAL-
ODDI WEIBULL. The Weibull distribution exists in two versions, a two-parameter distribution
with a scale parameter η, and a shape parameter β; this distribution is also called a bi-Weibull
distribution [72], and a three-parameter distribution with a scale parameter, a shape parameter,
and a location parameter γ. We work with the bi-Weibull distribution, which is defined in the
following passage. This distribution is usually used for material properties [92] or as a lifetime
distribution in reliability applications [72]. In the case of lifetime distribution utilization, the
bi-Weibull distribution can represent decreasing, constant, or increasing failure rates, which cor-
respond to the three sections of the “bathtub curve”. The bi-Weibull distribution then represents
combinations of two such phases of life [72].

The probability density function of a continuous Weibull random variable is given by

fX(x|η, β) =
βxβ−1

ηβ
exp

(
−
(
x

η

)β)
, (9.33)

the random variable x and the parameters η and β are from range (0,∞).
The cumulative distribution function and its corresponding inverse function are given by

FX(x|η, β) = 1− exp

(
−
(
x

η

)β)
, (9.34)

F−1
X (y|η, β) = η(− log (1− y))

1
β , 0 ≤ y ≤ 1. (9.35)

(9.36)

The first two statistical moments, the mean and the variance are given by

EX = ηΓ

(
1 +

1

β

)
, (9.37)

VarX = η2

(
Γ

(
1 +

2

β

)
−
(

Γ

(
1 +

1

β

))2
)
, (9.38)

where Γ(·) is a gamma function defined as a definite integral for positive real numbers as

Γ(n) =

∫ ∞

0

e−xxn−1dx. (9.39)

The parameters η and β are not able to obtain directly from the previous equations because
of the gamma function. Therefore, a crude approximation of parameters can be estimated via

β0 =

(√
VarX
EX

)−1.086

, (9.40)

η0 =
EX

Γ
(

1 + 1
β

) . (9.41)

If the accuracy is not sufficient, the more precise evaluation is possible. The parameter η is
expressed from Equation (9.37), substituted into Equation (9.38) and the equation is simplified
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to get

(VarX)2

(EX)2
−

Γ
(

1 + 2
β

)

(
Γ
(

1 + 1
β

))2 + 1 = 0. (9.42)

The root-finding procedure can find the root of this function equal to the parameter β. The
initial guess of the β parameter in Equation (9.40) is advantageous to use to shorten the iterative
procedure. The parameter η is subsequently easy to get via

η =
EX

Γ
(

1 + 1
β

) . (9.43)

Figure 9.7 shows examples of four bi-Weibull variables with their probability density func-
tions as well as cumulative distribution functions. The variables differ only in the shape param-
eter β, which is from the set [1, 2, 3, 4]; the scale parameter η remains 1. By contrast, Figure 9.8
shows the alternation of the scale parameter to the set of values [1, 2, 3, 4], and the shape param-
eter remains equal to 2 for all four bi-Weibull variables.
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Figure 9.7: Probability density function (PDF, left) and cumulative density function (CDF, right)
for four bi-Weibull distribution variables; the shape parameter β differs from the set of values
[1, 2, 3, 4], but the scale parameter η remains the same with the value 1.
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Figure 9.8: Probability density function (PDF, left) and cumulative density function (CDF, right)
for four bi-Weibull distribution variables; the scale parameter η differs from the set of values
[1, 2, 3, 4], but the shape parameter β remains the same with the value 2.
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We provide a simple code in MATLAB to obtain the parameters β and η for a bi-Weibull
distribution if a mean and variance are known.

Parameter estimation of bi-Weibull distribution
1 EX = 40; % mean value
2 Var = 16; % variance
3 std = sqrt(Var); % standard deviation
4

5 % A function handle with the left side of Equation 9.42:
6 f = @(beta)std^2/EX^2-gamma(1+2./beta)./gamma(1+1./beta).^2+1;
7

8 beta0 = (std/EX).^-1.086; % initial guess of beta (Equation 9.40)
9 beta = fzero(f,beta0); % solve for beta

10 eta = EX/gamma(1+1/beta); % substitute to find eta
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Chapter 10
Ultimate plastic state under bending and
tension

The collapse of the structure occurs with the ultimate plastic state. Fig. 10.1 shows the stress
diagram and force decomposition for the rectangular cross-section under bending and tension
in 2D. The special cases of the neutral axis position are depicted in Fig. 10.2.
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M =M+ +M− = σ0bh
+(h− h+)

Figure 10.1: Ultimate plastic state of the rectangular cross-section under bending and tension.
NA indicates neutral axis and GA indicates the centre of gravity axis. σ0 is yield stress.

To put together the bending momentM and the normal forceN into one equation, the height
of the tension area h+ and the height of the compressed area (h − h+) can be expressed from
the normal force N as

h+ =
h

2
+

N

2σ0b
, (10.1)

h− h+ =
h

2
− N

2σ0b
. (10.2)

Replacing h+ and (h−h+) in the bending momentM and consideringMpl equals to bh2σ0
4

leads
to

Mpl −M −
(
N2

4σ0b

)
= 0. (10.3)

Dividing the whole equation with theMpl and consideringNpl equals to bhσ0, the final resulting
equation is

1− M

Mpl

−
(
N

Npl

)2

= 0. (10.4)

213



CHAPTER 10. ULTIMATE PLASTIC STATE UNDER BENDING AND TENSION
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Figure 10.2: Special cases of the neutral axis position in the ultimate plastic state of the rect-
angular cross-section under bending and tension. NA indicates neutral axis and GA indicates
the centre of gravity axis. σ0 is yield stress.

For the rectangular shape of cross-section holds that

1− 4M

bh2σ0

− N2

b2h2σ0

= 0. (10.5)

Extending it into 3D, we get

1− 4My

bh2σ0

− 4Mz

b2hσ0

− N2

b2h2σ0

= 0. (10.6)
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Chapter 11
Hardware and software parameters

8 CPUs Intel(R) Xeon(R) CPU E5520 @ 2.27 GHz
Memory [MB] 12025
MATLAB R2015a, 64-bit, glnxa64
Operating system Debian 3.16.7

Table 11.1: Hardware and software settings of Computer 1.

8 CPUs Intel(R) Core(TM) i7-4702MQ CPU @ 2.20 GHz
Memory [MB] 8192
MATLAB R2015a, 64-bit
Operating system Windows 7 Home Premium 64-bit

Table 11.2: Hardware and software settings of Computer 2.
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Chapter 12
Unreported results for Examples 1 - 5

12.1 Box-plots for performance measures

In each box, the 25th and 75th percentiles are represented by the bottom and the top edges, and
the median value is symbolized by the red line. The the most extreme data points are depicted
with the whiskers and the outliers are plotted individually using the plus symbol [127]. Used
metrics are a Hypervolume (HV), Spacing (S), Spread (∆), Generational distance (GD), Two set
coverage metric (C(A,B)), Coverage difference of two sets (D(A,B)), and Error of the reliability
index (ε(βoPF)).
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Figure 12.1: Example 1: Performance measures for RBDO utilizing a preconditioned
quasi-Monte Carlo simulation with an analytical model (AM), local meta-models
(LMM), global meta-model (GMM), and sparse global meta-model (SGMM).
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Figure 12.2: Example 1: Performance measures for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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Figure 12.3: Example 1: Performance measures for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a global meta-model (GMM), and sparse
global meta-model (SGMM).
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Figure 12.4: Example 2: Performance measures for RBDO utilizing a preconditioned quasi-
Monte Carlo simulation with an analytical model (AM), local meta-models (LMM), global
meta-model (GMM), and sparse global meta-model (SGMM).
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Figure 12.5: Example 2: Performance measures for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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Figure 12.6: Example 2: Performance measures for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a global meta-model (GMM), and sparse
global meta-model (SGMM).
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Figure 12.7: Example 3: Performance measures for RBDO utilizing a preconditioned quasi-
Monte Carlo simulation with an analytical model (AM), local meta-models (LMM), global
meta-model (GMM), and sparse global meta-model (SGMM).
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Figure 12.8: Example 3: Performance measures for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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Figure 12.9: Example 3: Performance measures for RBDO utilizing an Asymptotic sampling,
Importance sampling, and Subset simulation with a sparse global meta-model (SGMM), and
local meta-models (LMM).
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Figure 12.10: Example 4: Performance measures for RBDO utilizing a preconditioned quasi-
Monte Carlo simulation with an analytical model (AM), local meta-models (LMM), global
meta-model (GMM), and sparse global meta-model (SGMM).
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Figure 12.11: Example 4: Performance measures for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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Figure 12.12: Example 4: Performance measures for RBDO utilizing an Asymptotic
sampling, Importance sampling, and Subset simulation with a sparse global meta-model
(SGMM), and local meta-models (LMM).
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Figure 12.13: Example 5: Performance measures for RBDO utilizing a preconditioned quasi-
Monte Carlo simulation with an analytical model (AM), local meta-models (LMM), global
meta-model (GMM), and sparse global meta-model (SGMM).

222



12.1. BOX-PLOTS FOR PERFORMANCE MEASURES

AS eMC FORM IS MC SS SSS

0.7

0.75

0.8

Hypervolume HV(rPF)

AS eMC FORM IS MC SS SSS

#10-3

6

8

10

12

Spacing S(rPF)

AS eMC FORM IS MC SS SSS

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Spread " (rPF)

AS eMC FORM IS MC SS SSS

#10-4

2

4

6

8

10

Generational distance GD(rPF,sPF)

AS eMC FORM IS MC SS SSS

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Two set coverage metric C(sPF,rPF)

AS eMC FORM IS MC SS SSS

0

0.01

0.02

0.03

0.04

0.05

0.06

Two set coverage metric C(rPF,sPF)

AS eMC FORM IS MC SS SSS
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Coverage difference of two sets D(sPF,rPF)

AS eMC FORM IS MC SS SSS
0

0.05

0.1

0.15

0.2

Error of meta-model on reliability indices       0(std(- ))

Figure 12.14: Example 5: Performance measures for RBDO utilizing an analytical model and
different reliability assessment techniques, namely an Asymptotic sampling (AS), Enhanced
Monte Carlo simulation (eMC), First-order reliability method (FORM), Importance sampling
(IS), quasi-Monte Carlo simulation (MC), Subset simulation (SS), and Scaled sigma sampling
(SSS).
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Figure 12.15: Example 5: Performance measures for RBDO utilizing an Asymptotic
sampling, Importance sampling, and Subset simulation with a sparse global meta-model
(SGMM), and local meta-models (LMM). Used metrics are a Hypervolume (HV), Spacing
(S), Spread (∆), Generational distance (GD), Two set coverage metric (C(A,B)), Coverage
difference of two sets (D(A,B)), and mean and standard deviation of Error of the reliability
index β (ε(β)).
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12.2 Supplementary combinations of simulation methods and
meta-models

Figure 12.16: Example 1: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with local meta-models (LMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross represents a result
published by [3]. Green dots sets show the superior Pareto set and Pareto front obtained
with an analytical model together with a preconditioned quasi-Monte Carlo simulation. Every
colour means a different run.
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Figure 12.17: Example 2: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with local meta-models (LMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross represents a result
published by [3]. Green dots sets show the superior Pareto set and Pareto front obtained
with an analytical model together with a preconditioned quasi-Monte Carlo simulation. Every
colour means a different run.

225



CHAPTER 12. UNREPORTED RESULTS FOR EXAMPLES 1 - 5

Figure 12.18: Example 3: Pareto sets (circles, left) and Pareto fronts (larger circles with
black edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling
(IS), and Subset Simulation (SS) together with a sparse global meta-model (SGMM). The
smaller circles with magenta edges in the objective space represent the recalculated Pareto
sets to Pareto fronts with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross
represents a result published by [3]. Green dots sets show the superior Pareto set and
Pareto front obtained with an analytical model together with a preconditioned quasi-Monte
Carlo simulation. Every colour means a different run.
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Figure 12.19: Example 4: Pareto sets (circles, left) and Pareto fronts (larger circles with
black edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling
(IS), and Subset Simulation (SS) together with a sparse global meta-model (SGMM). The
smaller circles with magenta edges in the objective space represent the recalculated Pareto
sets to Pareto fronts with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross
represents a result published by [3]. Green dots sets show the superior Pareto set and
Pareto front obtained with an analytical model together with a preconditioned quasi-Monte
Carlo simulation. Every colour means a different run.
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Figure 12.20: Example 5: Pareto sets (circles, left) and Pareto fronts (larger circles with black
edges, right) for RBDO utilizing an Asymptotic sampling (AS), Importance sampling (IS), and
Subset Simulation (SS) together with a global meta-model (GMM). The smaller circles with
magenta edges in the objective space represent the recalculated Pareto sets to Pareto fronts
with quasi-Monte Carlo simulations with CoV < 5%. The yellow cross represents a result
published by [3]. Green dots sets show the superior Pareto set and Pareto front obtained
with an analytical model together with a preconditioned quasi-Monte Carlo simulation. Every
colour means a different run.
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12.3 Summary data

AS IS SS AS IS SS AS IS SS
Example GMM LMM SGMM
1 6 2 9 12 12 11 10 3 8
2 4 10 5 8 10 6 7 11 4
3 3 4 6 7 7 7 4 5 5
4 11 10 9 7 5 6 13 11 12
5 11 6 9 7 5 7 10 7 8

Table 12.1: Ranks from Pareto-efficiency conditions for two criteria, namely the mean and
the standard deviation of the error, for approximation in the reliability assessment as well as
model.

MC-CoV AS eMC FORM IS MC SS SSS AS IS SS AS IS SS AS IS SS
Ex. LMM GMM SGMM AM GMM LMM SGMM
1 7 13 5 9 14 4 1 4 7 15 6 2 9 12 12 11 10 3 8
2 1 3 2 4 10 13 12 9 4 11 4 10 5 8 10 6 7 11 4
3 1 2 10 3 9 8 5 6 7 6 3 4 6 7 7 7 4 5 5
4 10 8 8 2 4 3 1 3 2 3 11 10 9 7 5 6 13 11 12
5 12 6 10 3 4 3 2 4 1 3 11 6 9 7 5 7 10 7 8

Table 12.2: Ranks from Pareto-efficiency conditions for two criteria, namely the mean and the
standard deviation of the error. This table corresponds with Figure 7.41.
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MC-CoV AS eMC FORM IS MC SS SSS AS IS SS AS IS SS AS IS SS
Example LMM GMM SGMM AM GMM LMM SGMM
1 0.015 0.120 0.009 0.022 0.196 0.017 0.003 0.009 0.017 0.286 0.014 0.004 0.021 0.031 0.035 0.028 0.024 0.004 0.018
2 0.008 0.009 0.008 0.024 0.073 0.334 0.248 0.028 0.023 0.432 0.023 0.041 0.024 0.027 0.048 0.025 0.026 0.065 0.023
3 0.007 0.020 0.124 0.020 0.094 0.036 0.024 0.025 0.029 0.061 0.020 0.022 0.026 0.032 0.029 0.033 0.021 0.023 0.025
4 1.659 0.398 1.178 0.045 0.093 0.236 0.023 0.046 0.046 0.209 1.724 1.721 1.497 0.317 0.115 0.270 2.125 1.728 1.840
5 0.812 0.126 0.473 0.043 0.055 0.228 0.027 0.043 0.021 0.102 0.575 0.118 0.302 0.160 0.104 0.151 0.496 0.150 0.239

Table 12.3: Average values of the mean reliability index error for all examples. The green
colour represents the best results; the red colour is for the worst results.

MC-CoV AS eMC FORM IS MC SS SSS AS IS SS AS IS SS AS IS SS
Example LMM GMM SGMM AM GMM LMM| SGMM
1 0.020 0.165 0.010 0.020 0.179 0.007 0.002 0.009 0.018 0.192 0.014 0.005 0.021 0.080 0.072 0.054 0.023 0.005 0.019
2 0.007 0.009 0.008 0.027 0.075 0.450 0.390 0.053 0.028 0.079 0.027 0.116 0.028 0.034 0.110 0.030 0.030 0.148 0.027
3 0.006 0.019 0.135 0.023 0.081 0.050 0.038 0.051 0.044 0.042 0.023 0.033 0.042 0.043 0.066 0.042 0.034 0.041 0.036
4 0.786 0.787 0.530 0.045 0.115 0.043 0.016 0.069 0.043 0.053 0.782 0.538 0.534 0.386 0.128 0.351 0.822 0.691 0.705
5 0.792 0.109 0.519 0.057 0.067 0.027 0.025 0.068 0.018 0.053 0.611 0.128 0.367 0.154 0.089 0.155 0.492 0.172 0.323

Table 12.4: Average values of the standard deviation reliability index error for all examples.
The green colour represents the best results; the red colour is for the worst results.
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MC-CoV AS eMC FORM IS MC SS SSS AS IS SS AS IS SS AS IS SS
Example LMM GMM SGMM AM GMM LMM| SGMM
1 354 472 483 5.3·107 4.7·107 1.3·105 4.4·107 4.7·107 3.3·107 4.7·107 418 358 369 413 367 418 404 349 358
2 308 424 428 6.3·107 4.7·107 6.2·104 5.9·107 4.7·107 4.4·107 4.1·107 420 783 347 396 409 412 433 849 351
3 438 350 346 5.7·107 4.7·107 9.9·104 4.5·107 4.7·107 3.9·107 4.1·107 387 1364 350 418 503 446 380 1251 350
4 428 373 346 7.1·107 4.7·107 1.8·105 4.5·107 4.7·107 4.9·107 4.4·107 435 447 420 280 311 300 405 448 419
5 387 373 366 6.3·107 4.7·107 3.2·105 4.4·107 4.7·107 4.8·107 4.4·107 464 443 419 338 334 330 450 437 412

Table 12.5: Average number of analytical model evaluations for all examples. The green
colour represents the best results; the red colour is for the worst results.
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GMM LMM SGMM
Example 1 AS IS SS AS IS SS AS IS SS

elapsed time [sec] 369 618 226 202 462 210 353 584 211
elapsed time [hours] 0.103 0.172 0.063 0.056 0.128 0.058 0.098 0.162 0.059
initial DoE 50 50 50 200 200 200 50 50 50
added samples 368 308 319 213 167 218 354 299 308
analytical g(x)-calls 418 358 369 413 367 418 404 349 358
MM built for opt. 31 31 31 3050 3050 3050 31 31 31
MM built for update 0 0 0 606.6 662 601.8 0 0 0
MM-calls 5.34·107 8.95·107 3.62·107 4.25·107 8.90·107 4.31·107 5.20·107 8.94·107 3.42·107

GMM LMM SGMM
Example 2 AS IS SS AS IS SS AS IS SS

elapsed time [sec] 393 1183 224 251 383 175 444 1155 237
elapsed time [min] 6.5 19.7 3.7 4.2 6.4 2.9 7.4 19.3 3.9
elapsed time [hours] 0.109 0.329 0.062 0.070 0.106 0.049 0.123 0.321 0.066
initial DoE 50 50 50 200 200 200 50 50 50
added samples 370 733 297 196 209 212 383 799 301
analytical g(x)-calls 420 783 347 396 409 412 433 849 351
MM built for opt. 31 31 31 3050 3050 3050 31 31 31
MM built for update 0 0 0 764 3595 1345 0 0 0
MM-calls 6.2·107 1.2.E+08 4.3·107 6.28E+07 5.94E+07 4.26E+07 6.2·107 1.2.E+08 4.3·107

GMM LMM SGMM
Example 3 AS IS SS AS IS SS AS IS SS

elapsed time [sec] 384 1567 209 215 544 153 364 1745 203
elapsed time [hours] 0.107 0.435 0.058 0.060 0.151 0.043 0.101 0.485 0.056
initial DoE 50 50 50 200 200 200 50 50 50
added samples 337 1314 300 218 303 246 330 1201 300
analytical g(x)-calls 387 1364 350 418 503 446 380 1251 350
MM built for opt. 31 31 31 3050 3050 3050 31 31 31
MM built for update 0 0 0 788 3714 1237 0 0 0
MM-calls 5.61·107 9.05·107 3.68·107 5.98·107 9.05·107 3.39·107 5.55·107 9.06·107 3.52·107

GMM LMM SGMM
Example 4 AS IS SS AS IS SS AS IS SS

elapsed time [sec] 169 1317 175 442 706 404 116 1364 158
elapsed time [hours] 0.047 0.366 0.049 0.123 0.196 0.112 0.032 0.379 0.044
initial DoE 50 50 50 200 200 200 50 50 50
added samples 385 397 370 80 111 100 355 398 369
analytical g(x)-calls 435 447 420 280 311 300 405 448 419
MM built for opt. 31 31 31 3050 3050 3050 31 31 31
MM built for update 0 0 0 322 544 430 0 0 0
MM-calls 1.60·107 8.67·107 1.95·107 6.11·107 8.65·107 4.59·107 1.18·107 8.41·107 1.93·107

GMM LMM SGMM
Example 5 AS IS SS AS IS SS AS IS SS

elapsed time [sec] 714 1757 492 554 1299 546 718 2198 496
elapsed time [hours] 0.198 0.488 0.137 0.154 0.361 0.152 0.199 0.610 0.138
initial DoE 50 50 50 200 200 200 50 50 50
added samples 414 393 369 138 134 130 400 387 362
analytical g(x)-calls 464 443 419 338 334 330 450 437 412
MM built for opt. 31 31 31 3050 3050 3050 31 31 31
MM built for update 0 0 0 545 547 489 0 0 0
MM-calls 6.22·107 8.95·107 4.38·107 6.25·107 8.92·107 4.89·107 6.01·107 8.95·107 4.31·107

Table 12.6: Comparison of statistics for RBDO using an Asymptotic sampling, Importance
sampling, and Subset simulation with a global meta-model, local meta-models, and sparse
global meta-model.

232


	Introduction
	Background
	Aims and objectives of the thesis

	Reliability-based design optimization
	Methods for solving Reliability-based design optimization
	Double-loop approach
	Single-loop approach and Decoupled approach


	Multi-objective optimization
	Non-dominated sorting genetic algorithm II (NSGA-II)
	Performance measures
	Metrics evaluating closeness to the Pareto front
	Metrics evaluating diversity among non-dominated solutions
	Metrics evaluating closeness and diversity


	Structural reliability
	Introduction into stochastic variables
	Probability of failure
	Approximation techniques
	First-Order Reliability Method (FORM)

	Simulation techniques
	Monte Carlo simulations (MC)
	Importance sampling (IS)
	Asymptotic sampling (AS)
	Subset simulation (SS)
	Enhanced Monte Carlo simulation (eMC)
	Scaled sigma sampling (SSS)
	Comparison of individual methods for a rod under tension example


	Surrogate models
	Radial Basis Functions model
	Global meta-models
	Sparse global meta-models
	Local meta-models
	Implementation details

	Kriging
	Update of meta-models for reliability assessment
	Updates for reliability-based design optimization
	Updates for meta-models replacing an objective function in RBDO
	Updates for meta-models replacing constraints functions in RBDO


	Proposed Reliability-based design optimization procedure
	Adaptive multi-objective-optimization updating procedure
	DoE updating independent of RBDO
	DoE updating dependent on RBDO

	Parallelization of Reliability-based Design Optimization using Surrogates
	Computational demands of RBDO


	Numerical examples for the multi-objective reliability-based design optimization procedure
	Example 1: Mathematical problem with a nonlinear limit state function
	Comparison of meta-models and analytical model results together with a preconditioned quasi-Monte Carlo simulation
	Results comparison of different reliability assessment techniques utilizing an analytical model
	Results for approximation using meta-models and reliability assessment techniques

	Example 2: Mathematical problem with a highly nonlinear series system reliability
	Comparison of meta-models and analytical model results together with a preconditioned quasi-Monte Carlo simulation
	Results comparison of different reliability assessment techniques utilizing an analytical model
	Results for approximation using meta-models and reliability assessment techniques

	Example 3: Mathematical problem with a series system containing three limit states
	Comparison of meta-models and analytical model results together with a preconditioned quasi-Monte Carlo simulation
	Results comparison of different reliability assessment techniques utilizing an analytical model
	Results for approximation using meta-models and reliability assessment techniques

	Example 4: A short column under oblique bending
	Comparison of meta-models and analytical model results together with a preconditioned quasi-Monte Carlo simulation
	Results comparison of different reliability assessment techniques utilizing an analytical model
	Results for approximation using meta-models and reliability assessment techniques

	Example 5: A 23-bar truss
	Comparison of meta-models and analytical model results together with a preconditioned quasi-Monte Carlo simulation
	Results comparison of different reliability assessment techniques utilizing an analytical model
	Results for approximation using meta-models and reliability assessment techniques

	Summary results for all examples

	Conclusions
	Distributions for continuous variables
	Uniform distribution
	Normal distribution
	Log-normal distribution
	Exponential distribution
	Gumbel distribution
	Weibull distribution

	Ultimate plastic state under bending and tension
	Hardware and software parameters
	Unreported results for Examples 1 - 5
	Box-plots for performance measures
	Supplementary combinations of simulation methods and meta-models
	Summary data


