

Vícekriteriální optimalizace léčebného plánu protonové terapie

Multi-criteria optimization of proton therapy treatment plan

Bakalářská práce

Studijní program:	Stavební inženýrství
Studijní obor:	Konstrukce pozemních staveb
Vedoucí práce:	Doc. Ing. Matěj Lepš, Ph.D.

Marek Tyburec

Praha 2015

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavební Thákurova 7, 166 29 Praha 6

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

studijní program:	Stavební inženýrství
studijní obor:	Konstrukce pozemních staveb
akademický rok:	2014/2015

Jméno a příjmení studenta:	Marek Tyburec
Zadávající katedra:	Katedra mechaniky
Vedoucí bakalářské práce:	doc. Ing. Matěj Lepš, Ph.D.
Název bakalářské práce:	Vícekriteriální optimalizace léčebného plánu protonové terapie
Název bakalářské práce v anglickém jazvce	Multi-criteria optimization of proton therapy treatment plan

támcový obsah bakalářské práce: Rešerše dostupné literatury; implementace Braggovy křivky									
v 1D, v rovině a v prostoru; porovnání aproximace s existující literaturou;									
zahrnutí nehomogenit do aproximace; formulace úlohy lineárního programování;									
grafické zobrazení léčebného plánu; implementace vícekriteriální optimalizace;									
paralelizace výpočtů; zpracování a prezentace výsledků									
Datum zadání bakalářské práce:	3 2 2015	Termín odevzdání:	15 5 2015						

(vyplňte poslední den výuky příslušného semestru)

student

Pokud student neodevzdal bakalářskou práci v určeném termínu, tuto skutečnost předem písemně zdůvodnil a omluva byla děkanem uznána, stanoví děkan studentovi náhradní termín odevzdání bakalářské práce. Pokud se však student řádně neomluvil nebo omluva nebyla děkanem uznána, může si student zapsat bakalářskou práci podruhé. Studentovi, který při opakovaném zápisu bakalářskou práci neodevzdal v určeném termínu a tuto skutečnost řádně neomluvil nebo omluva nebyla děkanem uznána, se ukončuje studium podle § 56 zákona o VŠ č. 111/1998. (SZŘ ČVUT čl. 21, odst. 4)

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

vedoucí bakalářské práce vedoucí katedry Zadání bakalářské práce převzal dne: 3.2.2015

Formulář nutno vyhotovit ve 3 výtiscích – 1x katedra, 1x student, 1x studijní odd. (zašle katedra) Nejpozději do konce 2. týdne výuky v semestru odešle katedra 1 kopii zadání BP na studijní oddělení a provede zápis údajů týkajících se BP do databáze KOS. BP zadává katedra nejpozději 1. týden semestru, v němž má student BP zapsanou.

(Směrnice děkana pro realizaci studijních programů a SZZ na FSv ČVUT čl. 5, odst. 7)

Čestné prohlášení

Prohlašuji, že jsem tuto bakalářskou práci s názvem "*Vícekriteriální optimalizace léčebného plánu protonové terapie*" vypracoval samostatně pod odborným vedením doc. Ing. Matěje Lepše, Ph.D.

Dále prohlašuji, že veškeré podklady, ze kterých jsem čerpal, jsou uvedeny v seznamu použité literatury.

Datum:

Podpis:

Poděkování

Na tomto místě bych rád poděkoval doc. Ing. Matěji Lepšovi, Ph.D. za odborné vedení, cenné rady a vstřícný přístup při psaní této práce.

Tento projekt byl realizován za finanční podpory Nadace na podporu rozvoje pokročilých technologií, inovací a technického vzdělávání v České republice ČVUT Media Lab.

Abstrakt

Tato práce se zabývá vícekriteriální optimalizací léčebného plánu protonové terapie.

Nejprve je představen zjednodušený model šíření záření prostorem, tj. je zavedena Bortfeldova analytická aproximace popisu šíření protonů v homogenním médiu, je zaveden vliv změny prostředí a nehomogenit. Vliv změny směru záření – mnohonásobný rozptyl – je zaveden Highlandovou aproximací.

V následující části práce je ve stručnosti představeno vícekriteriální lineární programování a několik možných přístupů vedoucích k jeho řešení, zejména Bensonův algoritmus, resp. jeho paralelní a neparalelní verze.

Samotná optimalizace je nejprve definována jako lineární program, ve kterém se minimalizuje množství vyzářených protonů. Z důvodu řešitelnosti je problém upraven na lineární program s volnými cíli. Finální modifikací je vícekriteriální řešení lineárního programu s volnými cíli, které umožní výběr nejvhodnějšího řešení rozhodovatelem.

V závěru práce je vyhodnocena časová náročnost implementace popsané v této práci a jsou shrnuty její výhody.

Abstract

This thesis deals with multi-criteria optimization of proton therapy treatment plan.

In the first chapter an approximate model describing radiation spread in space is introduced: Bortfeld's analytical approximation of Bragg curve in homogenous media, influence of tissues changeovers and heterogeneities. Direction change of proton beam is described by Highland's approximation of theory of multiple scattering.

In the second chapter there are shortly introduced some approaches which lead towards the solution of multiobjective linear programming (MOLP), especially parallel and nonparallel form of Benson's algorithm.

The optimization is firstly defined as a linear program minimizing the amount of radiated proton particles. Because of the uncertainty of feasibility of this task a linear program with free goals is introduced. Final modification is offered by multiobjective solution of linear programming with free goals which permits the decision maker to choose the most appropriate proton therapy treatment plan suitable for particular patient.

In the conclusion time demands of implementation proposed in this thesis are evaluated.

Klíčová slova

Rešerše dostupné literatury; implementace Braggovy křivky v 1D, v rovině a v prostoru; porovnání aproximace s existující literaturou; zahrnutí nehomogenit do aproximace; formulace úlohy lineárního programování; grafické zobrazení léčebného plánu; implementace vícekriteriální optimalizace; paralelizace výpočtů; zpracování a prezentace výsledků.

Keywords

Research of available literature; implementation of Bragg curve in 1D, plane and in space; comparison of approximation with current literature; evaluating heterogeneties; formulation of linear program; grafical representation of multicriteria treatment plan; paralelization; evaluation and prezentation of results.

Obsah

1	Úvo	od		1
	1.1	Radiotera	pie	1
	1.2	Srovnání j	protonové a fotonové terapie	2
	1.3	Léčebný p	olán protonové terapie	3
2	Šíře	ení záření	prostorem	4
	2.1	Analytick	é vyjádření Braggovy křivky	4
	2.2	Vliv neho	mogenit na tvar Braggovy křivky	7
	2.3	Teorie mn	ohonásobného rozptylu	10
3	Víc	ekriteriálı	ní programování	13
	3.1	Formulace	e vícekriteriálního programování	13
		3.1.1 Do	minované a nedominované řešení	13
		3.1.2 Pa	retova množina a Paretův povrch	14
	3.2	Vícekriter	iální lineární programování	14
		3.2.1 Me	etoda agregace účelových funkcí	15
		3.2.2 Ko	mpromisní řešení podle maximální komponenty	16
		3.2.3 Mi	nimalizace vzdálenosti od ideálních hodnot	18
		3.2.4 Cí	lové programování	19
		3.2.5 Be	${ m nson}$ ův algoritmus	20
		3.2.6 Ne	dominovaná řešení rovnoměrně rozmístěná na Paretově povrchu	23
4	Opt	imalizace	léčebného plánu	26
	4.1	Formulace	e problému	26
	4.2	Volba vho	dného řešení	28
	4.3	Příklady o	pptimalizace	28
		4.3.1 Mi	nimalizace primárních fluencí	28
		4.3.2 Lin	neární cílové programování	31
		4.3.3 Ví	cekriteriální lineární cílové programování	32
	4.4	Časová ná	iročnost výpočtu léčebného plánu	38

OBSAH	viii
Přílohy	Ι
A Modifikovaný algoritmus distmesh	Ι
B Numerické řešení určitých integrálů	III

Seznam tabulek

2.1	Porovnání přesnosti výpočtu vodního ekvivalentu	10
2.2	Porovnání hodnot charakteristického úhlu mnohonásobného rozptylu	12
4.1	1D případ s ozařováním z jedné strany. Vypočtené dávky záření Braggových křivek	
	v bodech, kde se ověřují podmínky	29
4.2	Vrcholy polytopu a jejich hodnota účelové funkce	30
4.3	Časová náročnost výpočtu léčebného plánu.	38

Seznam obrázků

1.1	Porovnání odevzdané dávky záření protonového a fotonového paprsku v závislosti na	
	hloubce	2
1.2	Porovnání léčebného plánu fotonové a protonové terapie	3
2.1	Znázornění základních parametrů Braggovy křivky o počáteční energi i $E_0=158, 6~{\rm MeV}.$	4
2.2	Vliv rozdílné počáteční energi e E_0 na výslednou dávku záření ve vodě	5
2.3	Vliv rozdílné počáteční energi e E_0 na poměrnou dávku záření ve vodě	5
2.4	Závislost $R_0 - z_{\text{max}}$ na počáteční energi i E_0 pro záření ve vodě	7
2.5	Vliv změny prostředí na Braggovu křivku	8
2.6	Závislost úhlu $\theta,$ hloubky z a $y.$	11
3.1	Konvexní a nekonvexní Paretův povrch	14
3.2	Příklad – agregace účelových funkcí	16
3.3	Příklad – kompromisní řešení podle maximální komponenty $\ldots \ldots \ldots \ldots \ldots$	17
3.4	Kompromisní řešení podle maximální komponenty – nedominované řešení	17
3.5	Příklad – minimalizace vzdálenosti od ideálních hodnot $\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	18
3.6	Příklad – cílové programování	20
3.7	Příklad – Bensonův algoritmus	23
3.8	Příklad – nedominovaná řešení rovnoměrně rozmístěná na Paretově povrchu $\ldots\ldots\ldots$	25
4.1	Volné cíle v úloze optimalizace léčebného plánu protonové terapie	27
4.2	Zobrazení omezujících podmínek v 1D úloze optimalizace léčebného plánu	29
4.3	Optimalizovaný jednoduchý 1D léčebný plán.	30
4.4	Optimalizovaný jednoduchý 1D léčebný plán – DVH	30
4.5	Optimalizovaný 1D léčebný plán s vlivem nehomogenit a ozařováním z obou stran	31
4.6	Optimalizovaný 1D léčebný plán vyřešený pomocí cílového lineárního programování.	
	Ozařování z obou stran.	32
4.7	Implementace zobrazení výsledků řešeného 1D vícekriteriálního lineárního cílového pro-	
	gramu	33
4.8	Implementace zobrazení řešení vícekriteriálního lineárního cílového programu – Paretův	
	povrch	34

4.9	Implementace zobrazení výsledků řešeného 3D vícekriteriálního lineárního cílového pro-	
	gramu. Zobrazen řez rovinou $x = 9,75$ cm	35
4.10	Implementace zobrazení řešení více kriteriálního lineárního cílového programu – 2 D $$	
	Paretův povrch	36
4.11	$3\mathrm{D}$ léčebný plán s ozařováním ze dvou směrů. Zde je dosaženo požadované dávky záření	
	$D_{\mathrm{TAR,min}}$	37
4.12	$3\mathrm{D}$ léčebný plán s ozařováním ze dvou směrů. Zde je dosaženo požadované maximální	
	dávky záření $D_{\text{OAR,max}}$	37
A 1	Přílad řečené 2D vileby uprevency metodou distresh	TT
A.1	r india resent zD mony upravenou metodoù distmesn.	11

Kapitola 1

Úvod

Onkologická onemocnění jsou jednou z nejčastějších¹ příčin úmrtí nejen na území České republiky². K jejich léčbě lze přistupovat různými způsoby, mezi které se řadí také radioterapie. Radioterapie je založena na ozařování zhoubného (maligního) nádoru pomocí ionizujícího záření, přičemž je snaha minimalizovat následky pro okolní zdravou tkáň. Nejčastěji používanými částicemi jsou svazky elektronů nebo fotonů. V poslední době se ale začínají používat také svazky hadronů – tedy protonů a lehkých iontů.

1.1 Radioterapie

Podle polohy zdroje záření lze radioterapii rozdělit na zevní radioterapii a brachyradioterapii. Brachyradioterapie je založena na postupu, kdy se zářič (tekutina nebo pevný útvar) dostane do blízkosti nádoru, který je ozářen. Je tak dosaženo poměrně malého poškození okolní tkáně. Při zevní radioterapii je naopak zdroj záření umístěn mimo tělo pacienta. Jelikož se záření šíří k nádoru skrz kůži a další tkáně, jedná se tedy o méně šetrnou metodu (Hynková, Doleželová, Šlampa).

Aby došlo k destrukci nádoru TAR (z anglického *target* – cíl), předepisují lékaři určitou dávku záření, kterou musí částice v místě nádoru odevzdat. Jelikož je tato předepsaná dávka záření poměrně značná, je pacient ozařován vícekrát dávkou nižší. Stejným způsobem je lékařem předepsána určitá maximální dávka záření pro okolní kritické orgány OAR (z anglického *Organs at Risk*), případně pro všechny okolní tkáně, aby nedošlo k jejich přílišnému poškození.

Procházející proud částic způsobuje ionizaci tkání, dochází k excitaci molekul a ke vzniku volných radikálů, čímž se poškozuje část molekul DNA jednotlivých buněk. Po ozáření používají buňky reparační mechanismy, aby DNA opravily. Buňky nádoru mají ale tyto mechanizmy narušené, čímž je v případě dostatečné dávky záření zabráněno jejich dělení, případně jsou přímo zničeny.

Pro tvorbu léčebného plánu je důležité sestavení trojrozměrného modelu tkáně v okolí nádoru. Z toho důvodu se používá magnetická rezonance (MR) nebo CT vyšetření (z anglického *Computed Tomography* – počítačová tomografie), kterými se získají dvourozměrné řezy tkání v určité vzdálenosti od sebe, z nichž se následně sestaví celý prostorový model tkáně (Schlegel et al., 2006).

 $^{^{1}\}mathrm{Dle}$ (sta, 2013) je rakovina po selhání oběhové soustavy druhou nejčastější příčinou úmrtí v České republice.

²Podle statistky Světového fondu pro výzkum rakoviny (WCRF) je v České republice ročně diagnostikováno 293,8 pacientů s rakovinou na 100 000 obyvatel, což jí zaručuje celkové 14. místo a jeden z nejvyšších výskytů rakoviny vůbec (Wcrf.org, 2015).

Do prostorového modelu nádoru jsou umístěny samostatně jednotlivé svazky záření a optimalizuje se jejich intenzita, resp. fluence. Cílem je, aby dávka záření mimo nádor byla nižší než v nádoru, a rozdíl obou dávek záření co největší. Také je umožněno ozařování nádorů složitějšího tvaru. Tomuto postupu se v případě fotonové terapie říká IMRT (z anglického *Intensity Modulated Radiation Therapy* – radioterapie s modulovanou intenzitou), v případě protonové terapie IMPT (z anglického *Intensity Modulated Proton Therapy* – protonová terapie s modulovanou intenzitou).

Při přípravě léčebného ozařovacího plánu pomocí IMPT nebo IMRT je použito tzv. inverzní plánování, kdy je lékařem nejprve vybrána oblast nádoru a jsou stanoveny požadované dávky záření, poté se vyberou kritické orgány. Vše probíhá formou zakreslení do snímků z CT vyšetření. Optimalizační program posléze dopočítá požadované intenzity (fluence) tak, aby bylo dosaženo požadovaného zadání (Hynková, Doleželová, Šlampa).

1.2 Srovnání protonové a fotonové terapie

V případech fotonové i protonové terapie jsou částice urychlovány v cyklickém urychlovači částic (cyklotronu nebo synchrocyklotronu) na požadovanou kinetickou energii (běžně se používá 70-230 MeV). Dávka záření, která je vyzářena ve směru hloubky z, závisí i na užitých částicích. Na obrázku 1.1 je zobrazeno srovnání odevzdané dávky záření protonů a fotonů ve vodě.

Protony odevzdávají většinu dávky záření v krátkém intervalu, tzv. Braggově vrcholu. Pozice tohoto vrcholu závisí na energii (rychlosti) protonů, lze tak dosáhnout dostatečného zasažení nádoru při současné nižší dávce záření okolním tkáním. Fotony oproti tomu odevzdávají největší hodnotu dávky záření v malé vzdálenosti od zdroje záření, zpravidla v tkáních ještě před nádorem. Hodnota absorbované dávky záření tkáněmi postupně se vzdáleností klesá. Z důvodu nižšího zasažení okolních tkání je dražší protonová terapie využívána zejména pro nádory v blízkosti kritických orgánů – nádory mozku, očí, krku, prostaty apod. (viz obrázek 1.2).

Obrázek 1.1: Porovnání odevzdané dávky záření protonového a fotonového paprsku v závislosti na hloubce. Protonový paprsek má výrazný extrém – Braggův vrchol. Obrázek byl převzat z (Lang, Riesterer, 2013).

Obrázek 1.2: Porovnání léčebného plánu IMRT (vlevo) a IMPT (vpravo). Obrázek byl převzat z (Taheri-Kadkhoda et al., 2008).

1.3 Léčebný plán protonové terapie

K samotnému návrhu léčebného plánu se používá velmi přesné pravděpodobnostní metody Monte Carlo, jejíž nevýhodou je velká časová náročnost. Následná optimalizace mnohdy trvá i více než půl dne. Optimální léčebné plány se proto připravují v předstihu, po předchozí návštěvě pacienta před ozařováním. Zároveň ozařování probíhá postupně v intervalu několika dnů.

Ve vzniklých časových rozestupech může ovšem nádor výrazně změnit tvar a starý pracně vytvořený léčebný plán nedává smysl. Je třeba v co nejkratší době opět sestavit nový plán, který by dané změny reflektoval.

Tato práce se postupně zabývá nejprve zjednodušeným popisem šíření protonového záření v prostoru a zavádí vliv rozdílných tkání, kterými se paprsek šíří. Uvažován je prostorový efekt mnohonásobného rozptylu záření. Dále ve stručnosti představuje vícekriteriální lineární programování a zavádí vícekriteriální model, kterým je možné získat celou množinu optimálních řešení daného problému. Následně je tato metoda aplikována na úlohu optimalizace léčebného plánu protonové terapie.

Cílem této práce je sestavit a vyřešit optimalizační úlohu v programu MATLAB, která umožní v dostatečně krátkém čase reflektovat změny v geometrii nádoru nebo jeho okolí.

Kapitola 2

Šíření záření prostorem

Léčba rakoviny ozařováním je založena na odevzdání určité dávky záření do určeného místa nádoru. Pro samotnou léčbu je proto nezbytné určit závislost odevzdané dávky záření (resp. absorbované dávky záření tkáněmi) na vzdálenosti od zdroje záření. V případě protonové terapie se křivka vyjadřující tuto závislost nazývá Braggova křivka.

2.1 Analytické vyjádření Braggovy křivky

V roce 1997 vyjádřil Thomas Bortfeld analytickou aproximaci tvaru Braggovy křivky pro protonové záření (Bortfeld, 1997). Samotnou funkci svazků záření protonů šířících se prostorem lze vyjádřit v závislosti na několika veličinách. První z nich je počáteční kinetická energie E_0^{-1} , která byla protonům udělena v cyklotronu. V důsledku srážek protonů s okolními částicemi jejich kinetická energie postupně klesá, až ve vzdálenosti R_0 – dosahu – má přesně polovina protonů o původně stejné počáteční energii E_0 kinetickou energii nulovou. Veličina R_0 je zobrazena na obrázku 2.1.

Obrázek 2.1: Znázornění základních parametrů Braggovy křivky o počáteční energii $E_0 = 158, 6$ MeV.

Mezi počáteční kinetickou energií a dosahem existuje vzájemná závislost, kterou lze nalézt v tabulkách (Janni, 1982) nebo (Berger et al., 1993). V přibližném analytickém tvaru ji uvádí také

¹Energie se v kvantové fyzice udává v jednotkách MeV.

Braggovo-Kleemanovo pravidlo:

$$R_0 \approx \alpha E_0^p,\tag{2.1}$$

kde faktor úměrnosti α a exponent p jsou materiálové charakteristiky vypočtené z naměřených hodnot. Jak je patrné z rovnice (2.1), platí, že čím větší je počáteční energie, tím větší je i dosah a poloha Braggova vrcholu $z_{\rm max}$. Tato závislost je zobrazena také na obrázku 2.2. Z obrázku 2.3 potom vyplývá, že největší poměr dávky záření v Braggově vrcholu k dávce v záření u zdroje záření nastává u nejmenších dosahů. Znamená to, že pro co nejmenší zasažení okolní tkáně je nejvýhodnější ozařovat co nejkratší cestou.

Obrázek 2.2: Vliv rozdílné počáteční energie E_0 na výslednou dávku záření ve vodě.

Obrázek 2.3: Vliv rozdílné počáteční energie E_0 na poměrnou dávku záření ve vodě.

Jak již bylo řečeno, hodnota dosahu R_0 je získána pro určitou počáteční energii statisticky a dosah každého jednotlivého protonu se liší, jelikož srážky s okolními částicemi jsou taktéž náhodné. Proto ani protony se stejnou počáteční energií E_0 neodevzdávají ve stejné hloubce z stejnou dávku záření. Bortfeld (Bortfeld, 1997) z toho důvodu zavádí směrodatnou odchylku σ , která zahrnuje hloubkovou

nejistotu ztráty energie protonů a nejistotu přesného dosažení hodnoty počáteční energie při výstupu částic z urychlovače.

$$\sigma = \sqrt{\left(\alpha' \frac{p^3 \alpha^{2/p}}{3p - 2} R_0^{3-2p}\right)^2 + \left(0.01 E_0\right)^2 \alpha^2 p^2 E_0^{2p-2}},$$
(2.2)

Konstanta α' je materiálová charakteristika závisející na elektronové hustotě (Bortfeld, 1997).

Výsledná křivka dávky záření² D je sumou všech Gaussových rozděleních dávek záření po ose z. Po výsledné úpravě dostal Bortfeld tvar:

$$D(z, E_0) = \Phi_0 \frac{e^{\frac{-\zeta(z, E_0)^2}{4}} \sigma(E_0)^{1/p} \Gamma(1/p)}{\sqrt{2\pi} \rho \alpha^{1/p} [1 + \beta(R_0(E_0))]} \times \left[\frac{1}{\sigma(E_0)} \mathcal{P}_{-1/p}(-\zeta(z, E_0)) + \left(\frac{\beta}{p} + \gamma\beta + \frac{\epsilon}{R_0(E_0)}\right) \mathcal{P}_{-1/p-1}(-\zeta(z, E_0))\right].$$
(2.3)

V rovnici (2.3) se vyskytuje hned několik veličin. První jsou konstanty závislé na materiálu, kam kromě již zmíněných veličin α a p patří také hustota materiálu ρ , podíl primární fluence přispívající k počáteční části energetického spektra ϵ , parametr sklonu ve vztahu redukce fluence β a podíl lokálně absorbované energie uvolněné v neelastických nukleárních interakcích γ . Konkrétní hodnoty materiálových konstant platných pro vodu jsou uvedeny v práci T. Bortfelda (Bortfeld, 1997). Dále se zde vyskytují veličiny závislé na hodnotě počáteční energie E_0 , konkrétně zmíněná směrodatná odchylka σ a také ζ , která je definována dle vztahu

$$\zeta(z, E_0) = \frac{R_0(E_0) - z}{\sigma}.$$
(2.4)

Symbol \mathcal{P} označuje funkci parabolického válce (Weisstein, 2005). Tvar Braggovy křivky s popisem základních veličin je patrný na obrázku 2.1.

Pro samotnou optimalizaci je nejdůležitější veličinou Φ_0 , primární fluence³. Fluence popisuje počet kvant záření procházejících za 1 s jednotkovou plochou postavenou kolmo v daném místě ke směru šíření kvant, v tomto případě v místě zdroje záření z = 0 cm. Zde je důležité zdůraznit, že dávka záření D(z) je na primární fluenci lineárně závislá.

Při sestavování léčebného plánu je vhodné umístit Braggovy křivky podle polohy vrcholu z_{max} . Z toho důvodu jsem sestavil závislost počáteční energie E_0 na poloze vrcholu, jak je vidět na obrázku 2.4. Byly vypočteny Braggovy křivky s přesností 0,1 mm v rozmezí 1 MeV až 300 MeV, což je větší rozsah, než se běžně užívá v protonové terapii (Paganetti, 2012). Poloha maximální hodnoty dávky záření byla uvažována jako poloha Braggova vrcholu, tzn. hodnota vzdálenosti z_{max} byla rovněž stanovena s přesností 0,1 mm.

Vyjdeme-li z rovnice (2.1) a zjištěného zjednodušeného vztahu, můžeme napsat rovnici

$$R_0 - z = a_1 E_0^4 + a_2 E_0^3 + a_3 E_0^2 + a_4 E_0 + a_5, (2.5)$$

kde a_1 až a_5 jsou číselné konstanty. Vztah pro z_{max} lze vyjádřit jako

 $^{^2}$ Jednotkou dávky záření je Gray (Gy). Jeden Gray odpovídá absorpci energie 1 J v 1 kg látky.

 $^{^3 {\}rm Jednotkou}$ fluence je (počet částic/s)/m²

Obrázek 2.4: Závislost $R_0 - z_{\text{max}}$ na počáteční energii E_0 pro záření ve vodě.

$$z_{\max} = \alpha E_0^p - a_1 E_0^4 - a_2 E_0^3 - a_3 E_0^2 - a_4 E_0 - a_5.$$
(2.6)

Porovnají-li se takto spočtené hodnoty polohy Braggova vrcholu z_{max} s hodnotami výše zjištěnými s přesností 0,1 mm, je opět v rozsahu 1 MeV až 300 MeV maximální hodnota chyby 0,065 mm a její směrodatná odchylka 0,029 mm. Výsledky tedy odpovídají zvolené přesnosti.

2.2 Vliv nehomogenit na tvar Braggovy křivky

Nyní je již možné rozmístit jednodimenzionální Braggovy křivky ve vodním prostředí tak, aby měly v konkrétní hloubce z extrém. V této části kapitoly je předešlá formulace upravena tak, aby umožňovala spočítat změnu dávky záření při změně materiálů označovaných jako nehomogenity.

Fyzici zde využili podobnosti šíření protonového záření ve vodě a v tkáni. Díky tomu je možné zavést tzv. vodní ekvivalent WET. Vodní ekvivalent udává takovou tloušťku vodní vrstvy, ve které je shodná ztráta energie jako v konkrétní tloušťce určité tkáně, viz obrázek 2.5.

Jak již bylo řečeno dříve, protony ztrácejí svoji energii směrem po hloubce z. Proto není ani hodnota vodního ekvivalentu konstantní, ale po hloubce se mění. Dále závisí na konkrétní tkáni (nebo jiném materiálu) a jeho tloušťce.

Vyjde-li se opět z Braggova-Kleemanova pravidla (2.1), lze z něj vyjádřit přibližný vztah pro funkci kinetické energie jednotlivých protonů:

$$R_0 - z = \alpha E(z)^p \quad \Leftrightarrow \quad E(z) = \left(\frac{R_0 - z}{\alpha}\right)^{1/p}.$$
 (2.7)

Tento vztah je značně zjednodušený. Zanedbává zejména hloubkovou nejistotu danou dle rovnice (2.2). Není tedy platný v oblasti vrcholu, ale pro většinu hodnot hloubky z je dostatečný. V případě větší požadované přesnosti je možné vypočítat energii integrováním přímo Bethe-Blochovy rovnice (Olive et al., 2014):

Obrázek 2.5: Vliv změny prostředí na Braggovu křivku. První Braggova křivka má vrchol ve vzdálenosti 25 cm a popisuje šíření záření ve vodě. Druhá křivka znázorňuje opět vrchol ve vzdálenosti 25 cm, ale mezi 5 a 15 cm je umístěna kost. Třetí křivka má stejnou počáteční energii E_0 jako křivka druhá, ale není zde vliv změny prostředí. Na pravé i levé straně od šedých oblastí jsou druhá a třetí křivka stejné.

$$-\left\langle \frac{dE}{dz} \right\rangle = \frac{4\pi N_{\rm A} r_{\rm e}^2 m_{\rm e} c^2 Z}{A} \frac{1}{\beta(E)^2} \left[\frac{1}{2} \ln \frac{2m_{\rm e} c^2 \beta(E)^2 \gamma(E)^2 T_{\rm max}}{I^2} - \beta(E)^2 \right], \tag{2.8}$$

kde $N_{\rm A}$ je Avogadrova konstanta – počet částic v jednotkovém látkovém množství, $r_{\rm e}$ je klasický poloměr elektronu, $m_{\rm e}$ je hmotnost elektronu, c je rychlost světla. Veličina A značí nukleonové číslo, Z značí atomové (protonové) číslo. I označuje excitační energii. Maximální kinetickou energii $T_{\rm max}$, kterou může proton předat volnému elektronu při jedné kolizi je možné dopočítat (Olive et al., 2014) jako

$$T_{\rm max} = \frac{2m_{\rm e}c^2\beta(E)^2\gamma(E)^2}{1+2\gamma(E)m_{\rm e}/m_{\rm p} + (m_{\rm e}/m_{\rm p})^2},\tag{2.9}$$

kde $m_{\rm p}$ je hmotnost protonu. Zbylé veličiny závisejí na energii, což způsobí, že je nutné řešit integraci iterativně, resp. po částech.

Pomocí speciální teorie relativity lze získat hodnotu rychlosti protonu (Evans, 2008):

$$\beta(E(z)) = \frac{v}{c} = \sqrt{1 - \frac{1}{\left(1 + \frac{E(z)}{m_{\rm p}c^2}\right)^2}},$$
(2.10)

a také hodnotu Lorentzova faktoru γ :

$$\gamma = \sqrt{\frac{1}{1 - \frac{v^2}{c^2}}} = \sqrt{\frac{1}{1 - \beta(E)^2}}.$$
(2.11)

Hodnotu vodního ekvivalentu WET je možné vyjádřit úpravou zde uvedené Bethe-Blochovy rovnice (2.8) na tvar (Zhang – Newhauser, 2009):

$$WET(E) \approx t_{\rm w} = t_{\rm m} \left(\rho \frac{Z}{A} \left[\ln \frac{2m_{\rm e}c^2 \gamma(E)^2 \beta(E)^2}{I} - \beta(E)^2 \right] \right) \Big|_{\rm w}^{\rm m},$$
(2.12)

kde $t_{\rm w}$ označuje ekvivalentní tloušťku vody, $t_{\rm m}$ reálnou tloušťku dané tkáně a ρ hustotu.

Jelikož se ale tkáň neskládá pouze z jednoho chemického prvku, uvažuje se vliv všech atomů směsi do výpočtu tzv. "efektivního atomu" a zavádí se efektivní nukleonové a protonové číslo a efektivní excitační energie směsi. Efektivní nukleonové číslo lze určit ze vztahu (Hussein, 2003):

$$A_{\text{eff}} = \frac{\sum_{i=1}^{n} N_i A_i^2}{\sum_{i=1}^{n} N_i A_i},$$
(2.13)

kde n je počet prvků, ze kterých se směs skládá, N_i je počet atomů *i*-tého prvku a A_i je nukleonové číslo *i*-tého prvku. Efektivní protonové číslo se spočítá jako (Hussein, 2003):

$$Z_{\rm eff} = A_{\rm eff} \sum_{i=1}^{n} \frac{N_i Z_i}{N_i A_i},$$
(2.14)

kde Z_i je protonové číslo *i*-tého prvku.

Hodnota excitační energie I konkrétního prvku je poměrně nejistá, jelikož ji nelze přesně stanovit. V článku (Zhang – Newhauser, 2009) je uveden vztah:

$$I = kZ, (2.15)$$

$$k = \begin{cases} 14, 5, & \text{pro } Z \le 8\\ 13, & \text{pro } 8 < Z \le 13 \\ 11, & \text{pro } Z > 13 \end{cases}$$
(2.16)

kdeZ je protonové číslo daného prvku
ak je konstanta závislá na protonovém čísle.

Pro směsi je uváděn vztah (Coderre, 2004):

$$\ln I_{\text{eff}} = \frac{\sum_{i=1}^{n} N_i Z_i \ln I_i}{\sum_{i=1}^{n} N_i Z_i},$$
(2.17)

kde I_i je excitační energie *i*-tého prvku.

Vzhledem k lineární závislosti vodního ekvivalentu na tloušťce materiálu $t_{\rm m}$ v rovnici (2.12) a předpokladu, že se po hloubce z energie částic mění, je zřejmé, že Bethe-Blochova rovnice je validní pouze pro infinitezimální tloušťky. Ve zde popsané implementaci bylo větší přesnosti dosaženo rozdělením intervalu dle zadané přesnosti. Numerické porovnání viz tabulka 2.1.

Materiál	E	$t_{\rm m}$	WET_{exp}	$WET_{\rm BK}$	Chyba _{exp-BK}	WET	Chyba _{exp-WET}
	[MeV]	[mm]	[mm]	[mm]	[%]	[mm]	[%]
Al	200	19,73	42,30	41,7	-1,42	41,861	-1,038
	200	$14,\!90$	32,20	31,5	-2,17	$31,\!614$	-1,820
	200	4,83	10,04	10,2	+1,59	$10,\!249$	+2,082
	100	$14,\!90$	$31,\!50$	31,1	-1,27	$31,\!357$	-0,454
	100	4,83	$10,\!30$	10,1	-1,94	10,166	-1,301

Tabulka 2.1: Porovnání přesnosti výpočtu vodního ekvivalentu. WET_{exp} udává experimentálně změřenou hodnotu vodního ekvivalentu pro zadané materiálové charakteristiky (Zhang et al., 2010), WET_{BK} je hodnota vypočtená podle (Zhang et al., 2010), hodnota WET je vypočtena podle implementace popsané v této práci. Chyba_{exp-BK} udává rozdíl mezi WET_{exp} a WET_{BK} , Chyba_{exp-WET} udává rozdíl mezi WET_{exp} a WET.

2.3 Teorie mnohonásobného rozptylu

V letech 1947 a 1948 napsal Molière teorii, která popisuje vliv srážek s okolními částicemi na změnu směru šíření záření. Jednalo se nejprve o teorii jednoduchého (Molière, 1947) a později mnohonásobného rozptylu (Molière, 1948). Tato teorie vyšla ale pouze německy. V angličtině se posléze problémem zabýval H. A. Bethe (Bethe, 1953), který v roce 1952 vydal článek *Molière's Theory of Multiple Scattering*, kde zanedbal některá zobecnění platná pro směsi (Paganetti, 2012). Molièrova teorie je obecně brána jako nejpřesnější a také nejsložitější. Nastala proto potřeba ji zjednodušit.

Tohoto kroku se ujal v roce 1975 Virgil L. Highland ve své práci *Some practical Remarks on Multiple Scattering* (Highland, 1975), kde zavedl jednoduchou Gaussovskou aproximaci, jejíž pomocí výpočet značně zjednodušil a zachoval dostatečnou přesnost. Nicméně toto zjednodušení platilo pouze pro malé tloušťky, a tak bylo v roce 1993 zobecněno B. Gottschalkem (Gottschalk et al., 1993). Výsledný tvar je tento:

$$\theta_0 = 14, 1q \left(1 + \frac{1}{9} \log_{10} \frac{t}{L_{\rm R}} \right) \times \left[\int_0^t \left(\frac{1}{p(E)v(E)} \right)^2 \frac{dt'}{L_{\rm R}} \right]^{1/2}, \tag{2.18}$$

kde θ_0 je charakteristický úhel mnohonásobného rozptylu. Veličina q označuje náboj částice, v případě protonů je to 1 eV, t značí tloušťku materiálu a $L_{\rm R}$ radiační délku, p je hybnost částice a v její rychlost. Rychlost se vypočítá z kinetické energie podle rovnice (2.10). Hybnost částice se podle speciální teorie relativity spočítá jako (Evans, 2008):

$$p(E) = \gamma(E)m_{\rm p}v(E), \qquad (2.19)$$

kde γ je Lorentzův faktor spočtený dle rovnice (2.11) a $m_{\rm p}$ je hmotnost protonu. Poslední neznámou veličinou je radiační délka $L_{\rm R}$. Tu lze podle (Gupta, 2010) vyjádřit takto:

$$L_{\rm R} = \frac{716, 4}{Z(Z+1)\ln\frac{287}{\sqrt{Z}}}.$$
(2.20)

Pro výpočet radiační délky pro deskovou skladbu se používá vztah:

$$\frac{t_0\rho_0}{L_{\rm R}} = \sum_{i=1}^n \frac{t_i\rho_i}{L_{{\rm R},i}},$$
(2.21)

kde ρ_i je hustota *i*-té desky, $L_{\mathrm{R},i}$ je radiační délka *i*-tého prvku, ρ_0 je celková hustota výsledné skladby a t_0 celková tloušťka skladby. Zároveň platí vztah:

$$t_0 \rho_0 = \sum_{i=1}^n t_i \rho_i.$$
 (2.22)

Pro směsi se udává vztah:

$$\frac{A_{\text{eff}}N}{L_{\text{R}}} = \sum_{i=1}^{n} \frac{A_i N_i}{L_{\text{R},i}},\tag{2.23}$$

kde n je počet prvků, ze kterých se směs skládá a N je molární množství.

Poté je již možné přistoupit k výpočtu integrálu v rovnici (2.18) pomocí Newtonovy metody $^{3}/_{8}$, viz Příloha B. V literatuře (Gottschalk et al., 1993) se uvádí použití Simpsonova pravidla a rozdělení tloušťky t pravidelně podle dosahu R_{0} . Numerické porovnání viz tabulka 2.2.

Ve 2D případě je tvar Gaussovského rozdělení dán vztahem:

$$f(\theta) = \frac{1}{\sqrt{2\pi}\theta_0} e^{\left[-\frac{1}{2}\left(\frac{\theta}{\theta_0}\right)^2\right]},$$
(2.24)

kde θ je úhel mnohonásobného rozp
tylu dle obrázku 2.6. Integrací funkce $f(\theta)$ v interval
u $(-\infty;\infty)$ samozřejmě obdržíme 1. Úpravou vztahu do troj
rozměrného prostoru získáme vztah

$$f(\theta) = \frac{1}{2\pi\theta_0^2} e^{\left[-\frac{1}{2}\left(\frac{\theta}{\theta_0}\right)^2\right]}.$$
(2.25)

Obrázek 2.6: Závislost úhlu θ , hloubky z a y.

Předpokládejme, že v prostoru se protonový paprsek šíří tedy kromě směru z také do směrů kolmých, konkrétně ve směrech ortogonálních os x a y. Poté můžeme jednoduše vyjádřit geometrickou závislost mezi oběma směry a úhlem mnohonásobného rozptylu:

$$\tan \theta = \frac{\sqrt{x^2 + y^2}}{z}.$$
(2.26)

Výslednou dávku záření pro libovolné místo v prostoru dopočítáme jako:

$$D(x, y, z) = D(z) \times \frac{1}{2\pi\theta_0^2} e^{\left[-\frac{1}{2}\left(\frac{\arctan \sqrt{x^2 + y^2}}{\theta_0}\right)^2\right]}.$$
(2.27)

Materiál	${ m Tlou}$ šťka 4	$ heta_{ m M}$	$ heta_{ m H}$	$\mathrm{Chyba}_{\mathrm{M-H}}$	$ heta_0$	Chyba _{M-0}	
	$[{ m g/cm}^2]$	[mrad]	[mrad]	[%]	[mrad]	[%]	
Al	0,2160	3,701	$3,\!534$	-4,512	$3,\!500$	-5,431	
	$0,\!8170$	8,051	$7,\!670$	-4,732	$7,\!428$	-7,738	
	$2,\!1729$	$13,\!880$	$13,\!104$	-5,591	$13,\!024$	-6,167	
	$3,\!3500$	$16,\!920$	$16,\!258$	-3,913	$16,\!823$	-0,573	
	7,0960	$28,\!357$	$26,\!931$	-5,029	$26,\!976$	-4,870	
	$11,\!9570$	$42,\!065$	$39,\!986$	-4,942	$39,\!607$	-5,843	
	$13,\!5690$	42,422	$40,\!534$	-4,451	$44,\!231$	$+4,\!271$	
	17,7230	$61,\!129$	$58,\!230$	-4,742	$59,\!329$	-3,092	
	$21,\!2450$	$91,\!129$	87,103	-4,418	$87,\!279$	-4,225	
	$21,\!9150$	$92,\!504$	$88,\!657$	-4,159	$104,\!860$	$+16,\!600$	
	$22,\!1100$	98,021	$93,\!645$	-4,464	$117,\!185$	+19,551	

Tabulka 2.2: Hodnoty mnohonásobného rozptylu. $\theta_{\rm M}$ je nejpřesněji stanovená hodnota dle Moliérovy teorie mnohonásobného rozptylu. Hodnota úhlu $\theta_{\rm H}$ je uváděna v (Gottschalk et al., 1993) jako výsledek Highlandovy aproximace. Úhel θ_0 je počítaný dle popsané implementace v této práci. Chyba_{M-H} udává procentuální rozdíl hodnot $\theta_{\rm M}$ a $\theta_{\rm H}$, Chyba_{M-0} udává procentuální rozdíl hodnot $\theta_{\rm M}$ a θ_0 .

 $^{^4}$ Tloušťka se v tomto případě udává v jednotkách g/cm², jedná se o hodnotu tloušťky vynásobenou hustotou média.

Kapitola 3

Vícekriteriální programování

3.1 Formulace vícekriteriálního programování

Vícekriteriální programování je úloha matematického programování, ve které je předepsáno několik navzájem si odporujících účelových funkcí. Tyto úlohy jsou ve skutečnosti velmi běžné. Jako příklad lze uvést nákup osobního automobilu – je snaha maximalizovat technický stav a příslušenství automobilu, ale zároveň minimalizovat náklady. Pokud by bylo uvažováno jen první kritérium, mohlo by být výsledkem například nové Lamborghini v ceně několika milionů. V případě pouze minimalizace nákladů by výsledkem mohla být stará nepojízdná Škoda 120. Nicméně ani jedno řešení není ve skutečnosti vyhovující. Následující stránky se zabývají tím, jak vybrat řešení, které bude co nejvhodnější vzhledem ke všem účelovým funkcím.

Obecně může být problém formulován jako

$$\min [f_1(x), \dots, f_q(x)],$$

$$x \in \chi,$$
(3.1)

kde x jsou návrhové proměnné náležející prostoru proměnných $\chi \subseteq \mathbb{R}^n$, n je počet návrhových proměnných; q účelových funkcí tvoří prostor účelových funkcí $\Upsilon \subseteq \mathbb{R}^q$. Tvar prostoru proměnných je nejčastěji předepsán formou implicitně zadaných omezujících podmínek

$$\chi := \{ x \in \mathbb{R}^n : g(x) \le 0, \\ h(x) = 0 \}.$$
(3.2)

3.1.1 Dominované a nedominované řešení

Řešením uvedených omezujících podmínek lze získat dva druhy řešení (Jablonský, 2002). Nechť existují přípustná řešení $x^{(0)}, x^{(1)} \in \chi$.

• Přípustné řešení $x^{(1)}$ dominuje přípustnému řešení $x^{(0)}$, jestliže pro všechny účelové funkce $f_j(x), j \in \{1, \ldots, q\}$ platí $f_j(x^{(1)}) \leq f_j(x^{(0)})$ a pro alespoň jednu účelovou funkci $f_k(x)$ je $f_k(x^{(1)}) < f_k(x^{(0)})$.

• Pokud neexistuje přípustné $x^{(1)}$ takové, že $x^{(1)}$ dominuje $x^{(0)}$, potom se $x^{(0)}$ nazývá nedominované nebo Paretovské řešení.

Konkrétně to znamená, že neexistují žádná řešení, pro která by byly hodnoty všech účelových funkcí lepší než pro řešení nedominovaná.

3.1.2 Paretova množina a Paretův povrch

Množina všech přípustných nedominovaných řešení v prostoru proměnných se nazývá Paretova množina (*Pareto set*). Obdobně se zavádí termín Paretův povrch (*Pareto front*), což je množina všech nedominovaných řešení v prostoru účelových funkcí.

Dle tvaru rozlišujeme Paretovu množinu a Paretův povrch konvexní nebo nekonvexní, viz srovnání na obrázku 3.1.

Obrázek 3.1: Tvar Paretova povrchu. Vlevo je konvexní Paretův povrch; vpravo je Paretův povrch nekonvexní. Prostor účelových funkcí Υ je znázorněn šedou barvou. Paretovské řešení je vyznačeno červeně.

3.2 Vícekriteriální lineární programování

Pokud jsou všechny omezující podmínky, tj. funkce g(x) a h(x) z rovnice (3.2), a zároveň všechny účelové funkce f(x) z rovnice (3.1) lineární, lze tuto úlohu řešit pomocí vícekriteriálního lineárního programování (VLP).

Gale, Kuhn, Tucker (1951) uvažovali obecný lineární program s lineární maticovou účelovou funkcí a zavedli teorémy existence a duality. Jelikož jsou problémy vektorových nebo skalárních účelových funkcí speciálním případem, je tato teorie považována za základ lineárního programování (Luptácik, 2009).

Úlohu VLP lze zapsat v následujícím tvaru:

$$\min Cx: \qquad Ax \le b,$$

$$l_{\rm b} \le x \le u_{\rm b}.$$
(3.3)

Matice C je matice účelových funkcí o rozměrech $n \times q$, každý její řádek představuje jednu účelovou funkci. Omezující podmínky jsou určeny maticí A o rozměrech $m \times n$ a sloupcovým vektorem b o délce m. Hodnota m určuje počet omezujících podmínek. Návrhové proměnné x mohou být omezeny dolní mezí $l_{\rm b}$ nebo horní mezí $u_{\rm b}$.

Cílem řešení úlohy VLP je zpravidla získání určitého kompromisního nedominovaného řešení (případně celé Paretovy množiny), jelikož běžně nenastává situace, kdy jsou v jednom bodě zároveň minimalizovány (nebo maximalizovány) všechny účelové funkce. K řešení VLP lze využít několik různých přístupů. Některé z nich zde uvádím.

3.2.1 Metoda agregace účelových funkcí

Metoda agregace účelových funkcí je založena na ohodnocení jednotlivých účelových funkcí váhami w a následném sestavení agregované účelové funkce. Jednotlivé váhy musí být nezáporné a obvykle je též připojována podmínka, že je jejich součet roven 1 (Jablonský, 2002).

Aby bylo možné jednotlivé účelové funkce mezi sebou agregovat (sečíst), je třeba sjednotit jednotky na všech účelových funkcích – normalizovat je.

Příklad

K úloze v rovnici (3.3) jsou dány následující matice:

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} -3 & -3 \end{pmatrix}, \qquad b = \begin{pmatrix} -5 \end{pmatrix}, \qquad l_{\rm b} = 0, \qquad u_{\rm b} = 3.$$
(3.4)

Úlohu rozdělíme na dvě úlohy podle účelových funkcí:

$$\min z_{1} = x_{1} \qquad \min z_{2} = x_{2}$$

$$-3x_{1} - 3x_{2} \le -5 \qquad -3x_{1} - 3x_{2} \le -5$$

$$0 \le x_{1} \le 3 \qquad 0 \le x_{1} \le 3$$

$$0 \le x_{2} \le 3 \qquad 0 \le x_{2} \le 3$$
(3.5)

Řešením prvního problému dostaneme bod $[0; \frac{5}{3}]^T$, řešením druhého bod $[\frac{5}{3}; 0]^T$. Dle tohoto řešení je možné určit, že obor hodnot Paretovských řešení obou účelových funkcí je shodně $\langle 0; \frac{5}{3} \rangle$. Normalizaci účelových funkcí proto provedeme tak, že každou účelovou funkci vydělíme délkou intervalu oboru hodnot Paretovských řešení dané účelové funkce. V tomto případě pak mají účelové funkce podobu:

$$z_1 = \frac{x_1}{\frac{5}{3}} = \frac{3}{5}x_1 \qquad \qquad z_2 = \frac{x_2}{\frac{5}{3}} = \frac{3}{5}x_2. \tag{3.6}$$

Pokud bychom neměli o úloze předem žádné informace, je volba vah w_1 a w_2 čistě náhodná. Zde zvolíme $w_1 = 0,3$ a $w_2 = 0,7$. Je tedy zachována podmínka, že je součet vah roven 1. Následně sestavíme agregovanou účelovou funkci:

$$C_{\text{agg}} = w_1 \times \left(\frac{3}{5}x_1 + 0x_2\right) + w_2 \times \left(0x_1 + \frac{3}{5}x_2\right) = 0,18x_1 + 0,42x_2.$$
(3.7)

Řešením této úlohy s uvažováním agregované účelové funkce C_{agg} je bod $[\frac{5}{3}; 0]^T$.

S přihlédnutím k tvaru polytopu, viz obrázek 3.2, bychom snadno mohli určit, že pro $w_1 \in \langle 0; 0, 5 \rangle$ a $w_2 \in (0,5;1)$ je optimálním řešením vždy vypočtený bod $[\frac{5}{3};0]^T$. V opačném případě, tj. $w_1 \in (0,5;1)$ a $w_2 \in \langle 0;0,5 \rangle$, je řešením bod $[0;\frac{5}{3}]^T$. Pokud je $w_1 = w_2 = 0, 5$, je řešením celá hrana mezi výše uvedenými body. Nicméně ve většině případů, v závislosti na použitém algoritmu, je i přesto získána hodnota některého vrcholu polytopu¹.

Výhodou tohoto přístupu je hlavně jeho jednoduchost. V případě, že je nutné získat větší počet nedominovaných řešení, je již tato metoda méně vhodná, jelikož je obtížné určit relevantní hodnoty vah w tak, aby byla získana vzájemně různá nedominovaná řešení. To hraje roli hlavně ve složitějších případech.

Obrázek 3.2: Tvar Paretova povrchu. Prostor účelových funkcí (zde zároveň i prostor návrhových proměnných) je znázorněn šedě. Paretovská nedominovaná řešení jsou vyznačena červeně.

3.2.2 Kompromisní řešení podle maximální komponenty

Při kompromisním řešení podle maximální komponenty δ se hledá takové kompromisní řešení, které minimalizuje maximální, tj. nejhorší hodnotu, ze všech cílových funkcí. V případě maximalizace účelových funkcí se maximalizuje minimální hodnota účelových funkcí (Jablonský, 2002).

Příklad

Budeme opět uvažovat stejný příklad, dle rovnice (3.4). Normalizovaná matice účelových funkcí je:

$$C_{\text{norm}} = \begin{pmatrix} \frac{3}{5} & 0\\ 0 & \frac{3}{5} \end{pmatrix}.$$
(3.8)

Úlohu přeformulujeme a zavedeme maximální komponentu δ :

¹Při řešení lineárního programu simplexovou nebo duálně-simplexovou metodou je optimálním řešením vždy vrchol polytopu. V případě řešení zadané úlohy metodou vnitřního bodu může výsledné řešení ležet i na hraně, případně stěně polytopu.

$$\min \delta : \{C_{\text{norm}} x \le \delta, \\ Ax \le b, \\ x \ge 0, \\ \delta \ge 0\}.$$
(3.9)

Řešením této úlohy při vahách $w_1 = 0,5$ a $w_2 = 0,5$ můžeme dostat maximální komponentu $\delta = \frac{5}{6}$ a bod $[\frac{5}{6}; \frac{5}{6}]^T$, na obrázku 3.3 vyznačeného modrým čtvercovým symbolem. Maximální odchylka hodnot normalizovaných účelových funkcí je

$$(1 - \delta) \times 100 = 16,7\%. \tag{3.10}$$

Při změně vah dochází k natočení polytopu zobrazeného na pravé části obrázku 3.3 podle proměnné, jíž byla zvýšena hodnota váhy. Stejně jako v předchozím případě je dosaženo při vahách $w_1 \in (0; 0, 5)$ a $w_2 \in (0, 5; 1)$ bodu $[0; \frac{5}{3}]^T$; při vahách $w_1 \in (0, 5; 1)$ a $w_2 \in (0; 0, 5)$ bodu $[\frac{5}{3}; 0]^T$. Při $w_1 = w_2 = 0, 5$ je řešením opět celá hrana. Ovšem při extrémních hodnotách, kdy je jedna váha rovna 1 a druhá nulová, může být dosaženo řešení, které není součástí Paretova povrchu původní úlohy, viz obrázek 3.4.

Obrázek 3.3: Kompromisní řešení podle maximální komponenty. Paretovská řešení jsou vyznačena tlustou červenou čarou.

Obrázek 3.4: Kompromisní řešení podle maximální komponenty – nedominované řešení.

3.2.3 Minimalizace vzdálenosti od ideálních hodnot

Při použití metody minimalizace vzdálenosti od ideálních hodnot se hledá takové kompromisní řešení, které minimalizuje vážený součet odchylek od ideálních hodnot účelových funkcí.

Ideální hodnoty účelových funkcí $z_1^{\text{opt}}, z_2^{\text{opt}}, \ldots, z_q^{\text{opt}}$ jsou řešením úlohy VLP, viz rovnice (3.3), pro každou účelovou funkci zvlášť (Jablonský, 2002).

Příklad

Uvažujme opět lineární program zadaného rovnicí (3.4). Váhy jednotlivých účelových funkcí jsou $w_1 = 0, 6$ a $w_2 = 0, 4$.

Řešením pro samostatné účelové funkce získáme postupně body $z_1^{\text{opt}} = [0; \frac{5}{3}]^T$ a $z_2^{\text{opt}} = [\frac{5}{3}; 0]^T$. Řešení je stejné v prostoru návrhových proměnných i účelových funkcí.

Nejprve upravíme účelovou funkci za použití normalizace a vah:

$$C_{\text{kom}} = \sum_{i=1}^{q} w_i (c_i x - z_i^{\text{opt}}) = 0, 6 \times (\frac{x_1}{\frac{5}{3}} - \frac{0}{\frac{5}{3}}) + 0, 4 \times (\frac{x_2}{\frac{5}{3}} - \frac{0}{\frac{5}{3}}) = 0, 36x_1 + 0, 24x_2.$$
(3.11)

Poté řešíme lineární program:

$$\min C_{\text{kom}} : \{ Ax \le b, \\ x_1, x_2 > 0 \},$$
(3.12)

jehož řešením je bod $[0; \frac{5}{3}]^T$ se shodnými hodnotami účelových funkcí; na obrázku 3.5 je zobrazen čtvercovým symbolem.

Výhodou této metody je získání vyváženějších řešení v případech, kdy je Paretův povrch členitější, ovšem pro získání více řešení stále zůstává závislost na vhodně zvolených vahách. Další nevýhodou je, že z důvodu zachování lineárních vztahů je minimalizován jen vážený součet jednotlivých směrových složek vzdáleností a ne skutečná vzdálenost.

Obrázek 3.5: Tvar prostoru účelových funkcí příkladu minimalizace vzdálenosti od ideálních hodnot. Červeně jsou vyznačena Paretovská řešení.

3.2.4 Cílové programování

V cílovém programování je kompromisní řešení získáno na základě předem definovaných cílů. Dle (Jablonský, 2002) je lze rozdělit do následujících druhů:

• **Pevné cíle** vyjadřují omezení, která musí být nutně splněna. V případě nemožnosti jejich splnění je lineární program neřešitelný. Pevné cíle mají podobu omezujících podmínek:

$$Ax \le b. \tag{3.13}$$

Volné cíle jsou omezení, která umožňují určité bilanční změny mezi levou a pravou stranou omezujících (ne)rovnic. Jsou proto zavedeny kladné odchylkové proměnné δ⁺ a δ⁻. Proměnná δ⁺ uvádí míru překročení hodnoty pravé strany rovnice, proměnná δ⁻ uvádí míru nedosažení hodnoty pravé strany rovnice. Potom je možné napsat:

$$Ax = b + \delta^+ - \delta^-. \tag{3.14}$$

V cílovém programování se jako účelová funkce užívá většinou minimalizace odchylkových proměnných, konkrétně minimalizace maximální odchylkové proměnné nebo minimalizace váženého součtu všech odchylkových proměnných.

Odchylkové proměnné mohou být také seřazeny podle důležitosti, kterou lze vyjádřit např. pomocí vah.

Příklad

Uvažujme úlohu vícekriteriálního lineárního programu ve tvaru:

$$\max Cx: \quad Ax \le 0. \tag{3.15}$$

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \qquad x_1 \ge 0, \qquad x_2 \ge 0.$$
(3.16)

Za ideální, tj. cílové, hodnoty bude uvažována optimální hodnota jednotlivých účelových funkcí. Pro první účelovou funkci je optimálním řešením bod $[2, 5; 0]^T$. V případě druhé účelové funkce je jím bod $[0; \frac{4}{3}]^T$. Nedosažitelné ideální řešení je proto bod $[2, 5; \frac{4}{3}]^T$.

Následně zavedeme odchylkové proměnné a upravíme úlohu lineárního programu:

$$\min(\delta_1^- + \delta_2^-): \quad \{Ax \le b, \\ x_1 = 2, 5 - \delta_1^-, \\ x_2 = \frac{4}{3} - \delta_2^-\}.$$
(3.17)

Řešením uvedeného lineárního programu získáme kompromisní řešení v bodě $[2, 2; 0, 6]^T$; hodnoty odchylkových proměnných jsou $\delta_1^- = 0, 3$ a $\delta_2^- = 0, 733$, viz obrázek 3.6.

Obrázek 3.6: Tvar prostoru návrhových proměnných a prostoru odchylkových proměnných cílového programování. Červeně jsou vyznačena Paretovská řešení.

3.2.5 Bensonův algoritmus

Bensonův algoritmus vychází z předpokladu, že je počet cílových funkcí výrazně nižší než počet návrhových proměnných, tj. $q = \dim(\Upsilon) \ll n = \dim(\chi)$. V takovém případě lze očekávat, že se více různých bodů na Paretově množině $\chi_{\rm E}$ promítne do jednoho bodu na Paretově povrchu $\Upsilon_{\rm E}$. Z toho důvodu Benson předpokládal, že je získání celého Paretova povrchu výrazně méně výpočetně náročné než získání celé Paretovy množiny (Benson, 1998).

Zároveň se lze domnívat, že výběr konkrétního kompromisního Paretovského řešení bude probíhat v závislosti právě na hodnotách účelových funkcí, není proto důležité získat všechna řešení Paretovy množiny. Z těchto důvodů navrhl Benson způsob řešení vícekriteriálního lineárního programování v prostoru účelových funkcí.

Uvažujme, že je dána množina všech nedominovaných řešení účelových funkcí $\Upsilon_{\rm E}$ a množina všech přípustných řešení účelových funkcí $\Upsilon \subseteq \mathbb{R}^q$. Potom lze vhodně zvolit Υ' tak, aby $\Upsilon_{\rm E} \subseteq \Upsilon' \subset \mathbb{R}^q$. Polytop Υ' musí být omezený².

Dále zadáme vnitřní bod p, přípustné řešení v prostoru účelových funkcí, a bod y_{AI} , tzv. antiideální bod, pro který platí:

$$y_{\rm AI} = \min\{y : y \in \Upsilon'\}.\tag{3.18}$$

Antiideální bod není součástí množiny řešení účelových funkcí, má nižší hodnotu než všechna přípustná řešení: $y_{\rm AI} < y \in \Upsilon$. Dále sestrojíme vektor $\overrightarrow{py_{\rm AI}}$ a nalezneme minimální skalár $\rho \in \langle 0, 1 \rangle$, aby platila podmínka

$$p + \rho \times \overrightarrow{py_{\mathrm{AI}}} \ge Cx. \tag{3.19}$$

Vzhledem k tomu, že je Paretův povrch v úlohách lineárního programování vždy konvexní³, získáme řešením této rovnice jediné a zároveň nedominované řešení původní úlohy. Výjimku tvoří případ, kdy některá z účelových funkcí nabývá pro všechna řešení konstantní hodnoty.

Základem k dalšímu kroku je dvojice duálních lineárních programů:

 $^{^{2}}$ Pokud není prostor účelových funkcí omezený, je nutné toto omezení vytvořit uměle tak, aby neovlivnilo výsledek optimalizace.

 $^{^{3}}$ Vzhledem k lineárním omezujícím podmínkám jsou tvořeny množiny přípustných řešení v prostoru návrhových proměnných i v prostoru účelových funkcí tvořeny vždy konvexním polytopem.

$$P(y) = \min(z): \quad Ax \le b, \quad Cx - z \le y, \tag{3.20}$$

$$D(y) = \min(b^T u + y^T w): \quad A^T u + C^T w \le 0, \quad \sum w \ge 1, \quad u \ge 0, \quad w \ge 0.$$
(3.21)

Získáním duálních proměnných k primárnímu programu (3.20) nebo přímo řešením duálního programu (3.21) dostaneme hodnoty duálních proměnných u a w, které slouží k sestrojení (nad)roviny:

$$\mathcal{H}(u,w) = \{ y \in \mathbb{R}^q : \langle w, y \rangle = \langle b, u \rangle \}.$$
(3.22)

Následně je možné "oříznout" polytop Υ' (nad)rovinou \mathcal{H} o oblast, která není součástí přípustného řešení Υ . Polytop Υ' je vhodné zachovávat ve formě lineárních nerovnic. Při uvažování počátečního tvaru Υ' zadaného nerovnicemi $A'y \leq b'$ je "oříznutý" prostor dán podmínkami ve tvaru:

$$\begin{bmatrix} A'\\ -w \end{bmatrix} y \le \begin{bmatrix} b'\\ b^T u \end{bmatrix}.$$
(3.23)

U takto zadaného polytopu je nutné určit všechny jeho vrcholové body s, které je možné získat např. podle postupu uvedeného v (Chen et al., 1991). Pro tuto konkrétní implementaci v MATLABu byla použita volně dostupná funkce **con2vert** od Michaela Kledera (Kleder, 2005).

Získané vrcholy s se rozdělí do dvou skupin: na ty, které jsou součástí množiny řešení Υ , tj. zároveň nedominovaná řešení ležící v $\Upsilon_{\rm E}$, a na zbylé, které slouží jako opětovný vstup pro (3.19) místo antiideálního bodu $y_{\rm AI}$. Takto se postupuje až do té doby, než všechny vrcholy polytopu s leží v Υ . Řešením je získání celého Paretova povrchu.

Lze dokázat, že počet iterací Bensonova algoritmu je konečný. Dle práce (Shao et al., 2008) je možné zavést řešení dle zadané přesnosti – Paretův povrch je poté získán pouze přibližně, ale úloha je vyřešena i v několikanásobně kratším čase. Tuto úpravu zde nezavádím.

Paralelní verze Bensonova algoritmu

Vzhledem k velké rozšířenosti vícejádrových procesorů je možné jejich využití pro paralelizaci výpočtů. V ideálně paralelizovatelném programu se časová úspora rovná hodnotě $\frac{n_c-1}{n_c}$, kde n_c je dostupný počet jader procesoru.

V Bensonově algoritmu se nachází několik cyklů. Hlavním je while cyklus, který je spuštěn na začátku algoritmu a jeho obsah se opakuje každou iteraci. Uvnitř while cyklu se nachází dva for cykly:

- Cyklus 1: Získání kompromisních řešení ve směrech vektorů sp, viz rovnice (3.19), a nalezení (nad)rovin definujících ořez polytopu, viz rovnice (3.20) nebo (3.21).
- Cyklus 2: Ověření, zda vypočtené vrcholy polytopu s leží v množině Υ .

Důležitým předpokladem pro paralelizaci algoritmu je nezávislost jednotlivých operací, které mají být paralelizovány, mezi sebou. Jelikož je u výše uvedených cyklů tato podmínka splněna a zároveň je předem známý počet a velikost výsledných veličin, jedná se o ideální část algoritmu pro paralelizaci.

V prostředí MATLAB byla paralelní verze algoritmu implementována cyklem parfor.

Příklad

Je dána úloha se dvěma účelovými funkcemi ve tvaru rovnice (3.3):

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} -2 & -1 \\ -1 & -3 \\ -3 & -3 \end{pmatrix}, \qquad b = \begin{pmatrix} -2 \\ -2 \\ -4 \end{pmatrix}, \qquad x_1, x_2 \ge 0.$$
(3.24)

Jako antiideální bod v prostoru účelových funkcí je možné zvolit bod $y_0^{\text{AI}} = (-1; -1)^T$, jelikož jistě nemůže být součástí řešení, viz podmínka nezápornosti návrhových proměnných. Jako vnitřní bod přípustných řešení v prostoru účelových funkcí může posloužit bod $p = (2; 2)^T$.

V tomto konkrétním případě také platí, že prostor účelových funkcí není shora omezený, tj. $f_1(x) \in \langle 0; \infty \rangle$ a $f_2(x) \in \langle 0; \infty \rangle$. Jelikož je vyžadováno, aby byl polytop Υ' omezený, je nezbytné přidat takovou omezující podmínku, která neovlivní tvar Paretova povrchu, ale prostor účelových funkcí shora omezí. Zde zvolíme:

$$\forall f(x) \le 1000. \tag{3.25}$$

Následně se sestaví polytop $\Upsilon',$ jehož součástí je též nedominované řešení $\Upsilon_{\rm E}$:

$$\Upsilon': \left\{ \begin{array}{l} 0 \le f_1(x) \le 1000, \\ 0 \le f_2(x) \le 1000 \end{array} \right\}.$$
(3.26)

V první iteraci dojde k nalezení skaláru $\rho = 0,444$, který splňuje podmínku uvedenou v rovnici (3.19). Dále je dopočítán bod $y_1 = (\frac{2}{3}; \frac{2}{3})^T$:

$$y_1 = s_1 + \rho \overrightarrow{s_1 p}, \tag{3.27}$$

kde $s_1 = y_0^{\text{AI}}$. Podle rovnice (3.21) získáme duální proměnné $u = (\frac{1}{3}; 0; 0; 0; 0; 0)^T$ a $w = (\frac{2}{3}; \frac{1}{3})^T$ a dle rovnice (3.23) aktualizujeme omezující podmínky popisující tvar polytopu Υ' :

$$\Upsilon': \begin{cases} \forall f(x): 0 \le f(x) \le 1000\\ -\frac{2}{3}f_1(x) - \frac{1}{3}f_2(x) \le -\frac{2}{3} \end{cases}.$$
(3.28)

Aktualizovaný tvar polytopu je vidět na obrázku 3.7 ve 2. iteraci. Poté se z uvedených omezujících podmínek dopočítají vrcholy polytopu s a odstraní ty, které byly přidány z důvodu omezení prostoru účelových funkcí. Pro zbylé vrcholy se ověří, zda jsou součástí množiny přípustných řešení účelových funkcí Υ , což lze ověřit jednoduchým lineárním programem:

$$\min[0;0]: \{Ax \le b, C = s\}.$$
(3.29)

Pokud řešení programu existuje, potom bod leží na Paretově povrchu (zde konkrétně bod $[0; 2]^T$). V opačném případě, kdy řešení neexistuje, se tento vrchol uloží do proměnné s a je opět počítán skalár ρ atd.

Dalším řešením postupně dojdeme k těmto vrcholům, které tvoří Paretův povrch: $[0; 2]^T$, $[1; \frac{1}{3}]^T$, $[\frac{2}{3}; \frac{2}{3}]^T$ a $[2; 0]^T$.

Algoritmus je ukončen v případě, kdy všechny vrcholy leží v prostoru účelových funkcí Υ , a je tím získán celý tvar Paretova povrchu (viz stav po 3. iteraci na obrázku 3.7).

Obrázek 3.7: Schéma iteračního postupu Bensonova algoritmu na jednoduchém příkladu.

3.2.6 Nedominovaná řešení rovnoměrně rozmístěná na Paretově povrchu

Z důvodu správného rozhodnutí by měl mít rozhodovatel přístup k takovým nedominovaným řešením, která jsou na daném Paretově povrchu co nejrovnoměrněji rozmístěna. Z tohoto předpokladu vychází následující algoritmus, který právě tento požadavek zohledňuje.

Vyjdeme-li z Bensonova algoritmu, viz sekce 3.2.5, lze pomocí rovnice (3.19) získat nedominované řešení ležící na Paretově povrchu ve směru určeného vektorem $\overrightarrow{py_{A1}}$. Pro různé směry jsou vypočtena rozdílná nedominovaná řešení. Tato řešení se nacházejí jak na hranách, tak i na stěnách polytopu, což může být výhodou, jelikož tak lze dosahnout vyvážených řešení.

V prvním kroku algoritmu je důležité získat extrémní (tzn. maximální v případě minimalizace účelových funkcí) hodnoty všech účelových funkcí, tj. hraniční body Paretova povrchu. Těmito body se následně proloží nadrovina⁴, která je charakterizována svým normálovým vektorem. Tato nadrovina

 $^{^4\}mathrm{Ve}$ 2D případě se jedná o přímku, ve 3D o rovinu.

je poté omezena konvexním obalem okolo extrémních hodnot účelových funkcí.

Na vzniklém facetu jsou pomocí generátoru náhodných bodů, viz (Devroye, 1986) a (Myšáková, 2013), náhodně rozmístěny body. Poloha bodů je následně upravena pomocí vhodného nástroje pro návrh experimentů; v této práci je použita modifikovaná verze algoritmu distmesh (Tyburec, 2014a), viz Příloha A. Tím je dosaženo rovnoměrného návrhu.

V dalším kroku jsou sestaveny směrové vektory určené spojením antiideálního bodu a rozmístěných bodů. Jejich pomocí jsou dle rovnice (3.19) získány přibližně rovnoměrně rozmístěné body na Paretově povrchu.

Příklad

Je dána úloha lineárního programování o třech proměnných ve tvaru rovnice (3.3). Omezující podmínky jsou zadané maticemi:

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} -3 & -2 & -5 \\ -2 & -1 & -1 \\ -1 & -1 & -3 \\ -5 & -2 & -4 \end{pmatrix}, \qquad b = \begin{pmatrix} -55 \\ -26 \\ -30 \\ -57 \end{pmatrix}, \qquad \forall x \ge 0.$$
(3.30)

Vyřešením zadané úlohy pro účelové funkce $C_1 = (10^{-6}; 1; 1)^T$, $C_2 = (1; 10^{-6}; 1)^T$ a $C_3 = (1; 1; 10^{-6})$ dostaneme maximální hodnoty nedominovaných návrhových proměnných (v tomto případě se jedná zároveň o účelové funkce): $[30; 0; 0]^T$, $[0; 30; 0]^T$ a $[0; 0; 26]^T$. V Kroku 1 na obrázku 3.8 jsou tyto body zobrazeny černě.

Těmito body se proloží rovina (viz Krok 1 obrázku 3.8) a získá se její analytický předpis:

$$x + y + \frac{15}{13}z - 30 = 0. ag{3.31}$$

Na této rovině se za aktivních omezujících podmínek $\forall x \geq 0$ náhodně vygenerují body (Krok 2 obrázku 3.8). Rozmístění těchto bodů se upraví některým z algoritmů pro návrh experimentů (zde byla použita již zmíněná modifikovaná verze algoritmu **distmesh**) a vytvoří se směrové vektory. Jako antiideální bod byl použit $y_{\rm AI} = (0; 0; 0)^T$, viz Krok 3 na obrázku 3.8.

Závěrem je pro každý směrový vektor vyřešena rovnice (3.19) a nalezen bod na Paretově povrchu (Krok 4 na obrázku 3.8).

Obrázek 3.8: Postup řešení pro získání rovnoměrně rozmístěných nedominovaných řešení.

Kapitola 4

Optimalizace léčebného plánu

Léčebný plán protonové terapie je jistý předpis, který určuje, v jakém směru a jakou intenzitou bude konkrétní pacient ozařován. Pro jeho sestavení je nutné získat 3D model tkáně v okolí nádoru, zpravidla pomocí počítačové tomografie nebo magnetické rezonance.

Do každého řezu prostorového modelu jsou radiačním onkologem vyznačeny významné struktury – kritické orgány (OAR) a nádor (TAR). Cílem ozařování je zasáhnout oblast nádoru takovou dávkou záření $D_{\text{TAR,min}}$, aby byl zničen, případně bylo znemožněno dalšímu dělení nádorových buněk (Hynková, Doleželová, Šlampa). Při ozařování nádoru se nelze vyhnout zasažení okolních běžných tkání¹. Aby pro ně nebylo nutné zapisovat velké množství omezujících podmínek, zavádí se obvykle maximální dávka záření v nádoru $D_{\text{TAR,max}}$ (Petit, Seco, Kooy, 2013).

V případě, že se v blízkosti nádoru nachází nějaká anatomická kriticky důležitá struktura OAR, jejíž ozáření by mělo nevratné důsledky, je zde stanovena určitá maximální dávka záření $D_{\text{OAR,max}}$ tak, aby jim bylo zabráněno.

4.1 Formulace problému

Dávku záření lze ve směru šíření, hloubce z, charakterizovat rovnicí (2.3), z níž vyplývá, že je dávka záření D lineárně závislá na primární fluenci Φ_0 . Úlohu lze poté pomocí omezujících podmínek zadanými omezeními $D_{\text{TAR,min}}$, $D_{\text{TAR,max}}$ a $D_{\text{OAR,max}}$ formulovat jako lineární program, kde se minimalizuje celkové množství vyzařovaných protonů:

$$\min \sum_{i=1}^{n} \Phi_{0,i}: \qquad \sum_{i=1}^{n} D_{ij}(\Phi_{0,i}) \leq D_{\text{OAR,max}},$$

$$\sum_{i=1}^{n} D_{ij}(\Phi_{0,i}) \geq D_{\text{TAR,min}},$$

$$\sum_{i=1}^{n} D_{ij}(\Phi_{0,i}) \leq D_{\text{TAR,max}},$$

$$\forall \Phi_{0,i} \geq 0,$$

$$(4.1)$$

¹Jedná se např. o kůži, kosti a obecně o tkáň, skrz kterou musí záření projít.

kde index n označuje počet Braggových křivek. Ověřuje se splnění všech relevantních omezujících podmínek v každém voxelu j zvlášť.

V případě, že je množina řešení takto formulované úlohy neprázdná, je výsledkem lineárního programu jedno globálně optimální řešení, které je ale zpravidla extrémní – některého z požadovaných omezení je dosaženo přesně a v případě jakékoliv nepřesnosti při ozařování již není předepsané dávky záření dosaženo.

Aby se bylo možné vyhnout případu, kdy u programu (4.1) neexistuje řešení, je úloha přeformulována na úlohu cílového lineárního programu s jednostrannými volnými cíli, viz kapitola 3.2.4. Pro oblast nádoru je zavedena odchylková proměnná $\delta_{\text{TAR,min}}$, která udává, kolik Grayů zbývá k dosažení předepsané minimální dávky záření v nádoru $D_{\text{TAR,min}}$, a odchylková proměnná $\delta_{\text{TAR,max}}$, uvádějící míru překročení dávky záření přes hodnotu $D_{\text{TAR,max}}$. Pro oblast kritického orgánu OAR je zavedena odchylková proměnná $\delta_{\text{OAR,max}}$, udávající množství dávky záření, o kterou byla překročena hodnota $D_{\text{OAR,max}}$. Význam jednotlivých veličin je zobrazen také na obrázku 4.1. Minimalizuje se "penalizační funkce" odchylkových proměnných. Uvedený lineární program má poté tvar:

$$\min \sum \delta : \qquad \sum_{i=1}^{n} D_{ij}(\Phi_{0,i}) \leq D_{\text{OAR,max}} + \delta_{\text{OAR,max}},$$

$$\sum_{i=1}^{n} D_{ij}(\Phi_{0,i}) \geq D_{\text{TAR,min}} - \delta_{\text{TAR,min}},$$

$$\sum_{i=1}^{n} D_{ij}(\Phi_{0,i}) \leq D_{\text{TAR,max}} + \delta_{\text{TAR,max}},$$

$$\forall \Phi_{0,i} \geq 0,$$

$$\forall \delta \geq 0.$$
(4.2)

Obrázek 4.1: Volné cíle v úloze optimalizace léčebného plánu protonové terapie. Světle šedou barvou je vyznačen OAR, tmavě šedou oblast nádoru TAR.

Řešením uvedeného lineárního programu je možné získat opět jedno konkrétní extrémní řešení.

Nicméně úloha je již vždy řešitelná.

4.2 Volba vhodného řešení

Pro získání více kompromisních řešení, která by umožnila rozhodovateli volbu, lze použít vícekriteriální lineární programování (VLP). Teoreticky je možné aplikovat jakoukoliv metodu z kapitoly 3.2. Získaná kompromisní řešení lineárního programu je možné rozdělit na:

- Vrchol polytopu. Tato řešení jsou při některé nulové odchylkové proměnné extrémní v některých případech se může jednat i o všechny vrcholy.
- Bod na hraně polytopu. Řešení jsou extrémní pouze tehdy, pokud hrana polytopu spojuje dva vrcholy polytopu a oba tvoří extrémní řešení se stejnou nulovou odchylkovou proměnnou.
- Bod na stěně polytopu. Řešení není extrémní, pokud zároveň neleží na hraně polytopu.

Vyjdeme-li z výše uvedeného dělení kompromisních řešení, je patrné, že nejvýhodnější je získat taková řešení, která leží na stěnách polytopu a jsou na nich rovnoměrně rozmístěná, což zaručí rozhodovateli dostatečnou možnost volby. K tomu bylo užito postupu uvedeného v kapitole 3.2.6. V případě, že je požadovaný počet řešení příliš vysoký, je úloha časově náročná². Poté se již může vyplatit získat všechny body³ ležící na Paretově povrchu využitím Bensonova algoritmu, který byl pro tuto práci také implementován, viz kapitola 3.2.5.

4.3 Příklady optimalizace

V této části jsou prezentovány některé optimalizační úlohy, které reprezentují výše popsanou teorii. Postupně je nejprve uvažována formulace dle lineárního programu (4.1), dle lineárního cílového programu (4.2) a v poslední části je uvažováno vícekriteriální řešení.

4.3.1 Minimalizace primárních fluencí

U následujících dvou příkladů optimalizace 1D léčebného plánu je uvažován lineární program (4.1). Úlohy jsou řešitelné jen díky vhodnému zadání. Lze si též povšimnout, že limitních dávek je v některých hloubkách dosaženo přesně.

1D případ s ozařováním z jedné strany

Jako nejjednodušší příklad optimalizace poslouží úloha o dvou proměnných Φ_1 a Φ_2 , viz obrázek 4.3. Umisťují se pouze dvě Braggovy křivky s vrcholy ve vzdálenostech 24 a 28 cm. Ve vzdálenosti 10-15 cm je OAR s maximální dávkou záření $D_{\text{OAR,max}} = 5$ Gy. Nádor se nachází mezi 20 a 28 cm. Omezení jsou zadaná jako $D_{\text{TAR,max}} = 10$ Gy a $D_{\text{TAR,min}} = 5$ Gy. Ověřovat splnění podmínek budeme po 1 cm.

 $^{^2\}mathrm{Pro}$ získání každého jednotlivého kompromisního řešení je nutné vyřešit jeden lineární program.

 $^{^{3}}$ Výstupem Bensonova algoritmu jsou vrcholy polytopu a omezující podmínky definující jejich propojení facetami.

Nejprve se získají hodnoty dávek záření jednotlivých Braggových křivek v bodech, kde se ověřuje splnění podmínek:

Křivka	OAR(15)	T(20)	T(21)	T(22)	T(23)	T(24)	T(25)	T(26)	T(27)	T(28)
1	1,089	1,330	$1,\!447$	$1,\!623$	2,073	2,940	0,798	0,007	0,000	0,000
2	0,978	1,066	$1,\!098$	$1,\!139$	$1,\!195$	1,271	$1,\!383$	1,568	$1,\!978$	$2,\!657$

Tabulka 4.1: 1D případ s ozařováním z jedné strany. Vypočtené dávky záření Braggových křivek v bodech, kde se ověřují podmínky.

Poté se sestaví jednotlivé omezující podmínky:

OAR: 1	1) $1,089\Phi_1 + 0,978\Phi_2 \le 5$		
TAR: 2	2) $1,330\Phi_1 + 1,066\Phi_2 \ge 5$	11) 1,330 Φ_1 + 1,066 $\Phi_2 \le 10$	
3	3) $1,447\Phi_1+1,098\Phi_2 \ge 5$	12) 1,447 Φ_1 + 1,098 $\Phi_2 \le 10$	
4	4) $1,623\Phi_1 + 1,139\Phi_2 \ge 5$	13) 1,623 Φ_1 + 1,139 $\Phi_2 \le 10$	
5	5) $2,073\Phi_1 + 1,195\Phi_2 \ge 5$	14) 2,073 Φ_1 + 1,195 $\Phi_2 \le 10$	
6	6) $2,940\Phi_1 + 1,271\Phi_2 \ge 5$	15) 2,940 Φ_1 + 1,271 $\Phi_2 \le 10$	
7	7) $0,798\Phi_1 + 1,383\Phi_2 \ge 5$	16) $0,798\Phi_1 + 1,383\Phi_2 \le 10$	
8	3) $0,007\Phi_1 + 1,568\Phi_2 \ge 5$	17) $0,007\Phi_1 + 1,568\Phi_2 \le 10$	
9	0) $0,000\Phi_1 + 1,978\Phi_2 \ge 5$	18) $0,000\Phi_1 + 1,978\Phi_2 \le 10$	
1	$(0) \ 0,000\Phi_1 + 2,657\Phi_2 \ge 5$	19) $0,000\Phi_1 + 2,657\Phi_2 \le 10$	
Nezápornost fluencí: 1	$1,000\Phi_1 + 0,000\Phi_2 \ge 0$		
0	$0,000\Phi_1 + 1,000\Phi_2 \ge 0.$		(4.3)

Účelová funkce je:

$$f = \min\left(\Phi_1 + \Phi_2\right). \tag{4.4}$$

Takto jednoduchou úlohu je možné vyřešit graficky. Prostor návrhových proměnných vytváří rovinu v \mathbb{R}^2 . Tato rovina je následně ořezána plněním omezujících podmínek.

Obrázek 4.2: Znázornění omezujících podmínek. Šedou barvou je vyznačena oblast, která tvoří řešení dané soustavy nerovnic.

Jak je vidět z obrázku 4.2, je v tomto případě polytop ohraničen čtyřmi aktivními omezujícími podmínkami (1, 10, 11 a 17), jejichž průsečíky tvoří čtyři hraniční body uvedené v tabulce 4.2.

Bod	Φ_1	Φ_2	$f = \Phi_1 + \Phi_2$
A1	0,744	3,764	4,508
A2	1,210	$3,\!183$	4,393
A3	1,212	3,764	4,976
A4	1,735	$3,\!181$	4,916

Tabulka 4.2: Vrcholy polytopu a jejich hodnota účelové funkce.

Dle hodnot účelové funkce ve vypočtených bodech je zřejmé, že se globální optimum nachází v bodě A2 s hodnotou účelové funkce 4,393. Znamená to tedy, že globálně optimálním řešením, které splňuje všechny omezující podmínky, je Φ_1 -násobek Braggovy křivky s vrcholem ve 24 cm a Φ_2 -násobek Braggovy křivky s vrcholem v 28 cm. Výsledek optimalizace je zobrazen na obrázku 4.3. Na obrázku 4.4 je zobrazen histogram DVH⁴ znázorňující, v jakém procentuálním množství nádoru bylo dosaženo alespoň určité dávky záření.

Obrázek 4.3: Optimalizovaný jednoduchý 1D léčebný plán.

Obrázek 4.4: Optimalizovaný jednoduchý 1D léčebný plán – DVH.

 $^{^4{\}rm Z}$ anglického Dose-Volume Histogram.

1D případ s ozařováním ze dvou směrů a vlivem nehomogenit

Druhý příklad je znázorněn na obrázku 4.5. Jedná se o úlohu s uvažováním vlivu nehomogenit, kdy se ve vzdálenostech 10-15 cm a 35-40 cm nachází kost. Nádor mezi hloubkami 20-30 cm je ozařován z obou stran z hloubek $z_1 = 0$ cm a $z_2 = 50$ cm. Limitní dávky záření pro oblast nádoru jsou předepsány jako $D_{\text{TAR,max}} = 10$ Gy a $D_{\text{TAR,min}} = 5$ Gy. Kritický orgán se nachází v hloubce 10-15 cm a maximální dávka záření je $D_{\text{OAR,max}} = 1$ Gy.

Obrázek 4.5: Optimalizovaný 1D léčebný plán s vlivem nehomogenit a ozařováním z obou stran.

4.3.2 Lineární cílové programování

V této části je uveden případ, který již není pomocí lineárního programu (4.1) řešitelný. Platí zde ale stále extrémní dosažení limitních podmínek.

1D příklad s ozařováním ze dvou směrů

Uvažujme zdroje záření v hloubkách $z_1 = 0$ cm a $z_2 = 50$ cm a nádor v rozmezí 20-28 cm. Limitní dávky záření v oblasti nádoru jsou $D_{\text{TAR,min}} = 5$ Gy a $D_{\text{TAR,max}} = 10$ Gy. Kritické orgány jsou dva – v hloubce 10-15 cm a 35-40 cm a oba mají předepsanou stejnou maximální dávku záření $D_{\text{OAR,max},1} = D_{\text{OAR,max},2} = 1$ Gy.

Řešením dle lineárního programu (4.2) získáme výsledek zobrazený na obrázku 4.6. Z obrázku vyplývá, že úloha dle formulace (4.1) nemá řešení – vždy je buď překročena maximální dávka záření

Obrázek 4.6: Optimalizovaný 1D léčebný plán vyřešený pomocí cílového lineárního programování. Ozařování z obou stran.

v některém kritickém orgánu, nebo není dosaženo požadované minimální dávky záření v nádoru. Konkrétní výsledek získaný pomocí cílového lineárního programování překračuje maximální povolenou dávku záření v obou kritických orgánech, ale zároveň zachovává požadovanou dávku záření v nádoru.

4.3.3 Vícekriteriální lineární cílové programování

U vícekriteriálního lineárního programování je umožněna rozhodovateli volba výběru optimálního z možných kompromisních řešení.

Jelikož výstupem programu může být značné množství kompromisních řešení, bylo implementováno také jednoduché uživatelské rozhraní v prostředí GUIDE programu MATLAB. Volba řešení je umožněna na základě hodnot odchylkových proměnných, tzn. míře překročení nebo nedosažení zadaných limitních mezí. Tím je dána rozhodovateli jasná představa, jaké změny při vybrání jiného řešení docílí. V 1D případě je pro porovnání umožněno zobrazit několik řešení současně.

Zároveň jsou v uživatelském prostředí zobrazeny DVH histogramy pro kritické orgány a nádor, které zobrazují rovnoměrnost pokrytí dávky záření a rovněž mohou ovlivnit výběr konkrétního léčebného plánu.

V případě, že se jedná o úlohu se dvěma nebo třemi účelovými funkcemi, je možné v programu zobrazit kompletní Paretův povrch. V opačném případě lze, jelikož větší počet dimenzí není možné efektivně zobrazit, alespoň zobrazit body na Paretově povrchu ve všech kombinacích dvoudimenzionálních a trojdimenzionálních prostorů, které tvoří prostor účelových funkcí.

1D případ s ozařováním ze dvou směrů

Budeme uvažovat již uvedený případ z předchozí části, pouze je zde vypuštěno omezení $D_{\text{TAR,max}}$, jelikož v tomto případě nemělo význam (hodnota účelové funkce byla vždy nulová). Celkově jsou tedy vyhodnocovány 3 účelové funkce: $\delta_{\text{TAR,min}}$, $\delta_{\text{OAR,max,1}}$ a $\delta_{\text{OAR,max,2}}$.

Výstup vytvořeného programu je zobrazen na obrázku 4.7, konkrétně jsou zde zobrazena 4 řešení: plnou čarou je vyznačeno řešení, kdy jsou nulové hodnoty proměnných $\delta_{\text{TAR,min}}$ a $\delta_{\text{OAR,max,1}}$. Tečkovaně je zobrazeno řešení, kdy jsou nulové hodnoty proměnných $\delta_{\text{OAR,max,1}}$ a $\delta_{\text{OAR,max,2}}$. Přerušovanou

Obrázek 4.7: Implementace zobrazení výsledků řešeného 1D vícekriteriálního lineárního cílového programu.

čarou je zobrazeno řešení, kdy jsou nulové hodnoty $\delta_{\text{TAR,min}}$ a $\delta_{\text{OAR,max,2}}$. Jako poslední řešení bylo vybráno to, kdy hodnota žádné účelové funkce není nulová. Toto řešení je zobrazeno čerchovaně.

Dalším výstupem programu je zobrazení Paretova povrchu, viz obrázek 4.8. Z obrázku lze vyčíst několik informací: všechny vrcholy polytopu (na obrázku 177 černých bodů) se v tomto případě nachází na hranici Paretova povrchu; dále hrany Paretova povrchu ležící v rovinách $\delta_{OAR,max,1} = 0$ a $\delta_{OAR,max,2} = 0$ jsou přímé, jedinou nepřímou hranou je hrana v rovině $\delta_{TAR,min} = 0$.

Pro snazší možnost výběru jsou také červeně zobrazeny body, které byly na Paretově povrchu vygenerovány rovnoměrným rozmístěním modifikovanou metodou distmesh.

 $\delta_{OAR,\max,1}$ [Gy]

Obrázek 4.8: Implementace zobrazení řešení vícekriteriálního lineárního cílového programu – Paretův povrch.

3D případ s ozařováním z jednoho směru

V případě 3D ozařování je nádor ozařován z roviny zadané obecnou rovnicí roviny ax + by + cz + d = 0a směrovým vektorem $\vec{u} = (x, y, z)$. Geometrie prostředí a významných anatomických struktur (TAR a OAR) jsou popsány pomocí lineárních omezujících podmínek. V případě, že jsou tvary nekonvexní, je nutné je rozdělit na více konvexních částí.

Zde budeme uvažovat jednoduchou úlohu se zadanými limitními hodnotami $D_{\text{TAR,min}} = 20$ Gy, $D_{\text{TAR,max}} = 40$ Gy a $D_{\text{OAR,max}} = 5$ Gy a popsané geometrii v okolí nádoru:

Obrázek 4.9: Implementace zobrazení výsledků řešeného 3D vícekriteriálního lineárního cílového programu. Zobrazen řez rovinou x = 9,75 cm. Červeně je zobrazena oblast OAR a zeleně TAR.

TAR :
$$z \ge 8 \land z \le 10$$

 $x \ge 8 \land x \le 10$
 $y \ge 5 \land y \le 7$
OAR : $z \ge 6 \land z \le 8$
 $x \ge 8 \land x \le 10$
 $y \ge 5 \land y \le 7$
Cyklotron : $\vec{u} = (0; 0; 1)$
 $x + y + 0z - 8 = 0.$ (4.5)

Výsledný optimalizovaný léčebný plán je zobrazen na obrázku 4.9. Jelikož není opět nikdy hodnota $D_{\text{TAR,max}}$ překročena, redukuje se úloha pouze na 2 účelové funkce – $\delta_{\text{TAR,min}}$ a $\delta_{\text{OAR,max}}$. Tvar Paretova povrchu je zobrazen na obrázku 4.10.

Obrázek 4.10: Implementace zobrazení řešení vícekriteriálního lineárního programu s volnými cíli – 2D Paretův povrch.

3D případ s ozařováním ze dvou směrů

Jako poslední případ je zde uvedena optimalizace 3D léčebného plánu protonové terapie při ozařování ze dvou směrů. Oblast nádoru a kritického orgánu je definována stejně jako v předchozím případě, liší se pouze umístění cyklotronu:

Cyklotron :
$$\vec{u_1} = (0; -0, 2; 0, 7)$$

 $\vec{u_2} = (0; 0, 3; 0, 7)$
 $0x + 1y + 4z - 10 = 0.$ (4.6)

Výsledek optimalizace při uvažování účelových funkcí $\delta_{\text{TAR,min}}$ a $\delta_{\text{OAR,max}}$ je opět podobný jako v předchozím případě – jedná se o lineární kombinaci dvou extrémních řešení. Obě jsou zobrazena na

obrázcích 4.11 a 4.12. Řez je proveden rovinou x = 9,75 cm.

 Obrázek 4.11: 3 D léčebný plán s ozařováním ze dvou směrů. Zde je dos
aženo požadované dávky záření $D_{\rm TAR,min}.$

Obrázek 4.12: 3D léčebný plán s ozařováním ze dvou směrů. Zde je dosaženo požadované maximální dávky záření $D_{\rm OAR,max}.$

4.4 Casová náročnost výpočtu léčebného plánu

Výpočet časové náročnosti implementace popsané v této práci byl proveden na počítači s běžnými parametry⁵. Pro samotnou vícekriteriální optimalizaci byl použit pouze Bensonův algoritmus, resp. jeho paralelní i neparalelní verze. Naměřené hodnoty jsou zaznamenány v tabulce 4.3.

Z tabulky je patrné, že časová, resp. výpočetní, náročnost uvedeného postupu optimalizace $t_{\rm opt,non}$ je závislá na počtu omezujících podmínek $N_{\rm constr.}$ – tj. konkrétně na velikosti nádoru $V_{\rm TAR}$, velikosti kritického orgánu $V_{\rm OAR}$ a na vzdálenosti bodů, ve kterých dochází k ověřování platnosti omezujících podmínek. Na optimalizaci má rovněž vliv narůstající počet návrhových proměnných $N_{\rm x}$ (např. při ozařování z více směrů) a počet účelových funkcí $N_{\rm f(x)}$.

Zásadní vliv na rychlost výpočtu má členitost tvaru Paretova povrchu, která udává počet lineárních programů, které musí být vyřešeny. Jejich počet není předem znám.

$V_{\rm tot}$	$V_{\rm TAR}$	$V_{\rm OAR}$	$N_{\rm constr.}$	$N_{\rm x}$	$N_{\rm f(x)}$	$N_{\rm vert}$	$t_{\rm gen} [s]$	$t_{\rm opt,non}$ [s]	$t_{\rm opt,par} \ [s]^6$
43.560	216	252	686	218	2	2	2,613	$0,\!655$	16,632
43.560	216	588	1.239	435	3	21	3,965	6,074	$16,\!856$
66.424	392	448	2.019	787	3	57	8,143	$51,\!993$	47,237
25.872	180	330	873	363	3	455	2,775	$118,\!950$	$90,\!645$
43.560	216	588	1.239	435	3	525	3,874	$165,\!352$	128,420
43.560	216	588	1.239	435	3	649	3,894	209,533	$144,\!563$
76.800	512	512	2.563	1.027	3	201	11,337	285,529	$222,\!354$
88.200	648	576	3.176	1.299	3	182	16,102	457,189	$334{,}597$

Tabulka 4.3: Časová náročnost výpočtu léčebného plánu. V_{tot} je celkový počet voxelů, V_{TAR} je počet voxelů v kritickém orgánu. $N_{\text{constr.}}$ značí počet omezujících podmínek, N_{x} počet návrhových proměnných, $N_{\text{f(x)}}$ počet účelových funkcí a N_{vert} počet vrcholů definující Paretův povrch. t_{gen} uvádí čas potřebný k dopočítání prostorového šíření záření, $t_{\text{opt,non}}$ je čas potřebný pro optimalizaci VLP neparalelní verzí Bensonova algoritmu. Doba výpočtu paralelní verzí Bensonova algoritmu je $t_{\text{opt,par}}$.

Dle práce (Shao et al., 2008) je možné počet vrcholů Paretova povrchu snížit zavedením modelu, kdy není Paretův povrch získán přesně, ale pouze přibližně se zadanou přesností. Výpočet lze zároveň urychlit použitím paralelní verze Bensonova algoritmu.

 $^{^5 \}rm Pro$ optimalizaci byl využit MATLAB R2014b na počítači Acer Aspire V15 s procesorem Intel Core i5-4210H o frekvenci 2,90 GHz a RAM 8 GB DDR3L SDRAM. Použitý operační systém byl Ubuntu 14.04 64bit.

 $^{^6{\}rm Z}$ toho otevření a zavření paralelního výpočetního prostředí v MATLABu trvá 11,5 s. Byla použita 2 výpočetní jádra.

Kapitola 5

Závěr

V rámci této práce byl implementován zjednodušený model šíření protonového záření prostorem. Postupně byla zavedena analytická aproximace Braggovy křivky, vliv změn prostředí, ve kterém se záření šíří, a teorie mnohonásobného rozptylu pomocí Highlandovy aproximace. Dle porovnávaných hodnot bylo dosaženo dostatečně přesných výsledků.

Následně byla zavedena stěžejní část této práce – optimalizace léčebného plánu protonové terapie. Nejprve byl představen lineární program, který minimalizoval množství vyzářených částic (protonů). Slabinou tohoto přístupu je ale to, že není garantována řešitelnost lineárního programu. V případě řešitelnosti úlohy je výsledkem globálně optimální řešení, které dosahuje některých omezujících hodnot dávek záření přesně.

Poté byl představen lineární program s volnými cíli, který zaručuje řešitelnost úlohy. Výstupem programu je jedno řešení, které nabývá opět mezních hodnot a není proto pro samotný léčebný plán příliš vhodné.

Finální úpravou lineárního programu bylo proto jeho převedení na vícekriteriální model, kdy je pomocí Bensonova algoritmu získán celý Paretův povrch, tzn. celá oblast nedominovaných (kompromisních) řešení v prostoru účelových funkcí. Tím je zaručena maximální možnost volby výběru řešení rozhodovatelem. Pro zrychlení výpočtů byla také implementována paralelní verze Bensonova algoritmu.

Jelikož je bodů ležících na Paretově povrchu nekonečně mnoho, bylo přistoupeno ke generování reprezentativních vzorků řešení ve směrech danými rovnoměrně rozmístěnými body modifikovanou verzí algoritmu distmesh. V případě, že je počet potřebných kompromisních řešení malý, je tento způsob zpravidla rychlejší než Bensonův algoritmus.

Literatura

- Zdravotnická statistika Zemřelí 2012 [online]. Ústav zdravotnických informací a statistiky České republiky, 2013. [cit. 2. 4. 2015]. Dostupné z: www.uzis.cz/system/files/demozem2012.pdf.
- BENSON, H. P. An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. *Journal of Global Optimization*. 1998, 13, 1, s. 1–24.
- BERGER, M. J. et al. Stopping powers and ranges for protons and alpha particles. *ICRU Report*. 1993, 49.
- BETHE, H. Moliere's theory of multiple scattering. Physical Review. 1953, 89, 6, s. 1256.
- BORTFELD, T. An analytical approximation of the Bragg curve for therapeutic proton beams. *Medical physics*. 1997, 24, 12, s. 2024–2033.
- CHEN, P.-C. HANSEN, P. JAUMARD, B. On-line and off-line vertex enumeration by adjacency lists. Operations Research Letters. 1991, 10, 7, s. 403–409.
- CODERRE, J. Principles of Radiation Interactions [online]. 2004. [cit. 8.4.2014]. Dostupné z: http://ocw.mit.edu/courses/nuclear-engineering/ 22-55j-principles-of-radiation-interactions-fall-2004/lecture-notes/energy_depos_ hcp.pdf.
- VERA, P. ABRIL, I. GARCIA-MOLINA, R. Water equivalent properties of materials commonly used in proton dosimetry. *Applied Radiation and Isotopes*. 2014, 83, s. 122–127.
- DEMEL, J. *Operační výzkum* [online]. 2011. [cit. 8.4.2014]. Dostupné z: http://kix.fsv.cvut.cz/~demel/ped/ov/ov.pdf.
- DEVROYE, L. Sample-based non-uniform random variate generation. In *Proceedings of the 18th conference on Winter simulation*, s. 260–265. ACM, 1986.
- EVANS, N. *PHYS3016: lecture 28th February 2008* [online]. 2008. [cit. 8.4.2014]. Dostupné z: http://www.southampton.ac.uk/~evans/PHYS3017/Rel.pdf.
- FIGUEIRA, J. GRECO, S. EHRGOTT, M. Multiple criteria decision analysis: state of the art surveys.
 78. Springer Science & Business Media, 2005.

- GALE, D. KUHN, H. W. TUCKER, A. W. Linear programming and the theory of games. Activity analysis of production and allocation. 1951, 13, s. 317–335.
- GOTTSCHALK, B. et al. Multiple Coulomb scattering of 160 MeV protons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1993, 74, 4, s. 467–490.
- GOTTSCHALK, B. On the scattering power of radiotherapy protons. *Medical physics.* 2009, 37, 1, s. 352–367.
- GUPTA, M. Calculation of radiation length in materials. Technical report, 2010.
- HIGHLAND, V. L. Some practical remarks on multiple scattering. Nuclear Instruments and Methods. 1975, 129, 2, s. 497–499.
- HONG, L. et al. A pencil beam algorithm for proton dose calculations. *Physics in medicine and biology*. 1996, 41, 8, s. 1305.
- HUSSEIN, E. Handbook on Radiation Probing, Gauging, Imaging and Analysis: Volume II Applications and Design. Basics and techniques. Springer, 2003. ISBN 9781402012952.
- HYNKOVÁ, L. DOLEŽELOVÁ, H. ŠLAMPA, P. Radioterapie učební texty pro studenty 5. roč. LF MU Brno [online]. [cit. 2.4.2015]. Dostupné z: https://www.mou.cz/ radioterapie-ucebni-texty-pro-studenty-5-roc-lf-mu-brno/f16.
- JABLONSKÝ, J. Vícekriteriální a cílové programování [online]. [cit. 8.4.2014]. Dostupné z: http: //nb.vse.cz/~JABLON/doc/vkr.pdf.
- JABLONSKÝ, J. Operační výzkum: kvantitativní modely pro ekonomické rozhodování. Professional Publishing, 2002.
- JANNI, J. F. Proton Range-Energy Tables, 1 keV-10 GeV, Energy Loss, Range, Path Length, Timeof-Flight, Straggling, Multiple Scattering, and Nuclear Interaction Probability. Part II. For 92 Elements. Atomic Data and Nuclear Data Tables. 1982, 27, s. 341.
- KLEDER, M. CON2VERT constraints to vertices File Exchange MATLAB Central [online]. 2005. [cit. 1.4.2015]. Dostupné z: http://www.mathworks.com/matlabcentral/fileexchange/ 7894-con2vert-constraints-to-vertices.
- KRESS, R. Numerical Analysis. Graduate Texts in Mathematics. Springer New York, 1998. Dostupné z: http://books.google.cz/books?id=R6182rh0tKEC. ISBN 9780387984087.
- LANG, S. RIESTERER, O. Modern Techniques in Radiation Oncology [online]. 2013. [cit. 8.4.2014]. Dostupné z: http://www.sps.ch/artikel/progresses/modern_techniques_in_ radiation_oncology_36.
- LÖHNE, A. Vector optimization with infimum and supremum. Springer Science & Business Media, 2011.

- LUPTÁCIK, M. Mathematical Optimization and Economic Analysis (Springer Optimization and Its Applications). Springer, 2009. ISBN 0387895515.
- MOLIÈRE, v. G. Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld. Zeitschrift Naturforschung Teil A. 1947, 2, s. 133.
- MOLIÈRE, v. G. Theorie der Streuung schneller geladener Teilchen II. Mehrfach-und Vielfachstreuung. Zeitschrift Naturforschung Teil A. 1948, 3, s. 78.
- MYŠÁKOVÁ, E. Optimalizace uniformity počítačových návrhů pro omezené návrhovyé prostory. Master's thesis, Katedra mechaniky, Fakulta stavební, České vysoké učení technické v Praze, 2013.
- OLIVE, K. GROUP, P. D. OTHERS. Review of particle physics. *Chinese Physics C.* 2014, 38, 9, s. 090001.
- PAGANETTI, H. Proton Therapy Physics. Series in Medical Physics and Biomedical Engineering. CRC Press/Taylor & Francis, 2012. ISBN 9781439836446.
- PERSSON, P.-O. STRANG, G. A simple mesh generator in MATLAB. SIAM review. 2004, 46, 2, s. 329–345.
- PETIT, S. SECO, J. KOOY, H. Increasing maximum tumor dose to manage range uncertainties in IMPT treatment planning. *Physics in medicine and biology*. 2013, 58, 20, s. 7329.
- PFLUGFELDER, D. Risk-adapted optimization in intensity modulated proton therapy (IMPT). 2008.
- SCHLEGEL, W. BORTFELD, T. GROSU, A. New Technologies in Radiation Oncology. Medical Radiology / Radiation Oncology. Springer, 2006. ISBN 9783540003212.
- SHAO, L. OTHERS. Multiple objective linear programming in radiotherapy treatment planning. PhD thesis, ResearchSpace@ Auckland, 2008.
- TAHERI-KADKHODA, Z. et al. Intensity-modulated radiotherapy of nasopharyngeal carcinoma: a comparative treatment planning study of photons and protons. *Radiat Oncol.* 2008, 3, 4.
- TYBUREC, M. Rozšíření programu distmesh pro vícedimenzionální problémy. Sborník abstraktů Studentské konference a Rektorysovy soutěže. 2014a.
- TYBUREC, M. Optimalizace léčebného plánu protonové terapie. XV. ročník Mezinárodní konference SVOČ: sborník studentských prací 2014. 2014b.
- WCRF.ORG. Data for cancer frequency by country World Cancer Research Fund International [online]. 2015. [cit. 2.4.2015]. Dostupné z: http://www.wcrf.org/int/cancer-facts-figures/ data-cancer-frequency-country.
- WEISSTEIN, E. W. *Parabolic cylinder function* [online]. 2005. [cit. 8.4.2014]. Dostupné z: http: //mathworld.wolfram.com/ParabolicCylinderFunction.html.

- ZHANG, R. NEWHAUSER, W. D. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation. *Physics in medicine and biology.* 2009, 54, 6, s. 1383.
- ZHANG, R. et al. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions. *Physics in medicine and biology*. 2010, 55, 9, s. 2481.

Příloha A

Modifikovaný algoritmus distmesh

Algoritmus distmesh (Persson, Strang, 2004) byl napsán v programu MATLAB jako jednoduchý nástroj pro generování sítí a funguje na principu dynamické relaxace. Zde je použit pro návrh experimentů (*DoEs* – Design of Experiments). Oproti rychlejším algoritmům jako shlukování je výhodou tohoto algoritmu hlavně výsledná kvalita návrhu, viz (Myšáková, 2013).

Do algoritmu vstupuje sada návrhových bodů P, které leží uvnitř návrhového prostoru N. Jeho tvar je popsán pomocí distanční funkce $d(x_1, ..., x_n)$, která je definována jako:

$$d(x_1, ..., x_n) \le 0 \text{ pro } x \in N$$

$$d(x_1, ..., x_n) > 0 \text{ pro } x \notin N,$$
(A.1)

kde n je počet dimenzí návrhového prostoru.

Dále jsou využitím Delaunayovy triangulace jednotlivé body P navzájem propojeny trojúhelníkovou sítí. Vzniká tím analogická úloha k příhradové konstrukci, kdy jednotlivé body představují uzly konstrukce a vzniklá propojení mezi nimi pruty.

Jak u příhradové konstrukce, tak i zde musí být zachována podmínka silové rovnováhy. Je vypočtena optimální vzdálenost mezi pruty L_0 a skutečná délka prutů L. Z jejich rozdílu je určena velikost působící síly F:

$$F = L_0 - L. \tag{A.2}$$

Výsledná síla je rozložena do všech směrů (dimenzí). Důsledkem působících sil jsou posuny. V závislosti na zvoleném časovém kroku Δt lze proto provést samotné posunutí jednotlivých bodů o vzdálenost ΔP :

$$P = P + \Delta P = P + \Delta t F. \tag{A.3}$$

Pokud se některý z bodů posune mimo předepsaný návrhový prostor N, je generováno takové vnější silové zatížení, aby k posunu nedošlo. Toto vnější silové zatížení působí ve směru gradientu distanční funkce.

V případě, že se uzly posunou více, než je předepsaná tolerance, jsou aktualizované souřadnice vstu-

pem pro opětovné vytvoření Delaunayovy triangulační sítě. V opačném případě získáváme optimální rozmístění uzlů. Cyklus je ukončen také při překročení předepsaného množství iterací.

V práci (Tyburec, 2014a) byl algoritmus upraven tak, že časově a výpočetně nejnáročnější krok této metody, Dalaunayova triangulace, byla nahrazena propojením *s* sousedních bodů, tzn. každý bod vytvářel *s* vazeb a byl součástí alespoň *s* prutů konstrukce. K samotnému nalezení sousedních bodů byla použita v softwaru MATLAB funkce knnsearch.

Příklad takto řešené dvoudimenzionální úlohy je znázorněn na obrázku A.1.

Obrázek A.1: Příklad řešené 2D úlohy upraveným algoritmem distmesh. Na levém obrázku je zobrazeno 30 vstupních bodů P. Pro každý bod bylo uvažováno 5 nejbližších sousedních bodů. Na pravém obrázku je stav po 100 iteračních cyklech. Návrhovou oblastí je kruh o poloměru 1.

Dle naměřených hodnot bylo zjištěno, že použitá úprava algoritmu **distmesh** úlohu značně zrychlila a umožnila výpočet úloh o více dimenzích než v případě původního algoritmu. Kvalitativně bylo dosaženo obdobných výsledků.

Příloha B

Numerické řešení určitých integrálů

V případech, kdy se nedá řešení určitého integrálu vyjádřit symbolickým zápisem, je možné příslušnou hodnotu spočítat numericky. Jediné, co je třeba znát, jsou funkční hodnoty požadované funkce v určených bodech. Potom, dle požadované přesnosti, se tyto body proloží polynomiální funkcí, jejíž integrál se spočítá snadno.

Obecně se, dle požadované přesnosti, rozdělí interval na několik částí. V každé části intervalu se spočítá n funkčních hodnot, kde n značí stupeň polynomu, kterým se funkce aproximuje. Běžně se používají polynomy do 4. stupně, výpočet s $n \ge 8$ je už ale problematický, jelikož koeficienty c nabývají záporných hodnot (Kress, 1998).

n	Název pravidla	Koeficienty c
0	Obdélníkové	1
1	Lichoběžníkové	$\frac{1}{2}$ $\frac{1}{2}$
2	Simpsonovo	$\frac{1}{3}$ $\frac{4}{3}$ $\frac{1}{3}$
3	Newtonovo $^3/_8$	$\frac{3}{8}$ $\frac{9}{8}$ $\frac{9}{8}$ $\frac{3}{8}$
4	Milneovo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\int_{a}^{b} f(x)dx \approx \frac{b-a}{n} [c_{1}f(x_{0}) + \dots + c_{n}f(x_{n})].$ (B.1)