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ABSTRACT

The determination of input parameters for any model is crucial for its use. However, the

nowadays used models are very complex and their parameters do not have an easily in-

terpreted relation to the modelled material or experiment; therefore, this task can be very

difficult. The parameter estimation task is a special type of inverse analysis, i.e. the task

of obtaining unknown inputs (values of model input parameters in this case) from known

outputs (experimental or model data). This thesis deals with a possible solution of such a

problem, particularly with a multi-objective approach based on evolutionary algorithms.

The thesis briefly introduces methods for the parameter estimation. Particularly: a hand

fitting method and a trial and error method, which represent easy but still very often used

methods. Next, an inverse mode is presented; this method assumes the existence of an in-

verse relation between outputs and inputs and searches for this relation or its approximation.

The last method is a forward mode based on the minimization of a function determining

the difference between desired and estimated outputs. This method can be used universally,

but the optimization process must be repeated for each experiment; therefore, the applied

algorithm should be efficient. Traditional gradient based methods cannot usually be used,

because the mathematical description is unknown, moreover, the defined error function is

very often multi-modal. Therefore, artificial intelligence methods, e.g. evolutionary algo-

rithms, which do not require the knowledge of mathematical formulae or the differentiability

of the error function, are used instead. However, these algorithms tend to converge to the

local optima. One possibility to tackle this obstacle is determining additional error functions

and transforming the originally single-objective optimization to the multi-objective one.



iii

The next part of the thesis presents the basic principles of multi-objective optimization and

algorithms used for its solution. NSGA-II, SPEA2 algorithms, the Weighted Sum Method

and the Average Ranking method are introduced in details; these algorithms are later used

for testing the proposed methodology. The properties of these algorithms are demonstrated

on a set of test problems commonly used in multi-objective literature. The performance of

individual algorithms is studied regarding the number of iterations as well as the population

size. These two indicators are important, because the models which are to be estimated can

be very time consuming; therefore, the algorithm capable of finding a good solution with

a low number of function evaluations is preferred.

In the last part of the thesis, these algorithms are used for the parameter estimation of

three real engineering applications. The first one is a model of cement paste hydration, the

next is a model of an infiltration experiment in an environment with preferential flow and the

last case is a finite element model of a nanoindentation experiment.



ABSTRAKT

Určenı́ hodnot vstupnı́ch parametrů jakéhokoliv modelu je zásadnı́m úkolem pro jeho použitı́.

Ovšem vzhledem k tomu, že v současnosti použı́vané modely jsou velmi komplexnı́ a navı́c

jejich vstupnı́ parametry často nemajı́ snadno interpretovatelný vztah ke skutečnému ma-

teriálu či experimentu (což je dáno obtı́žným fyzickým popisem experimentu), nenı́ tato

úloha nikterak jednoduchá. Identifikace hodnot parametrů modelu je úlohou inverznı́ analýzy,

tedy úlohou, kde ze známých výstupů (z experimentu či z numerického modelu) chceme

zı́skat neznámé vstupy (v tomto přı́padě hodnoty vstupnı́ch parametrů pro model). Diser-

tačnı́ práce se zabývá jednı́m z možných řešenı́ takto definovaného problému, konkrétně

vı́cekriteriálnı́m postupem identifikace s využitı́m evolučnı́ch algoritmů.

V práci jsou stručně představeny možné způsoby určovánı́ hodnot vstupnı́ch parametrů:

určenı́ parametrů ”od oka“ a metoda pokus - omyl, které zastupujı́ jednoduché, ale stále

velmi často použı́vané metody. Dále pak zpětný postup, který předpokládá existenci in-

verznı́ho vztahu mezi výstupy a vstupy a snažı́ se takovýto vztah najı́t, resp. aproximovat.

Poslednı́m způsobem je přı́mý postup, který je založen na minimalizaci cı́lové funkce určujı́cı́

rozdı́l mezi výstupem z modelu a experimentem (přı́padně známou simulacı́ modelu). Hlavnı́

výhodou tohoto postupu je jeho univerzálnost. Naopak nevýhodou je nutnost provádět opti-

malizaci znova pro každý nový experiment, což je samozřejmě výpočetně velmi náročné a je

proto důležité nalézt velmi efektivnı́ optimalizačnı́ algoritmus. Tradičnı́ gradientnı́ metody

v tomto přı́padně většinou nelze aplikovat, protože matematický předpis cı́lové funkce je

neznámý, a funkce jsou velmi často multimodálnı́. Proto se pro takto definovanou úlohu

často využı́vajı́ metody umělé inteligence, např. evolučnı́ algoritmy, které nevyžadujı́ znalost

matematického předpisu, diferencovatelnost ani spojitost funkcı́. Nicméně evolučnı́ algo-
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ritmy majı́ tendenci konvergovat do lokálnı́ho optima. Jednı́m z možných řešenı́ k odstraněnı́

tohoto problému je definovánı́ doplňkových chybových funkcı́ a převedenı́ jednokriteriálnı́

optimalizace na vı́cekriteriálnı́.

Dalšı́ část disertačnı́ práce představuje základnı́ principy vı́cekriteriálnı́ optimalizace a

některé algoritmy použı́vané pro jejı́ řešenı́. Podrobně jsou představeny algoritmy NSGA-II,

SPEA2, Weighted Sum Method a metoda Average Ranking, které jsou později použity pro

testovánı́ navrhovaného přı́stupu k identifikaci parametrů. Vlastnosti těchto algoritmů jsou

prezentovány na sadě testovacı́ch funkcı́ použı́vaných v literatuře zabývajı́cı́ se vı́cekriteriálnı́

optimalizacı́. Úspěšnost algoritmů je sledována jak v závislosti na velikosti populace tak v

závislosti na počtu proběhlých iteracı́. Tyto dva ukazatele jsou sledovány proto, že modely,

jejichž parametry je třeba identifikovat, bývajı́ časově velmi náročné a je proto nutné nalézt

algoritmus, který k dosaženı́ dostatečně přesného výsledku nepotřebuje mnoho ohodnocenı́

cı́lových funkcı́.

Na závěr jsou pak tyto algoritmy použity k odhadu parametrů třı́ skutečných materiálových

modelů. Prvnı́m z nich je model hydratace cementové pasty, dále pak model infiltračnı́ho ex-

perimentu v prostředı́ s preferenčnı́m prouděnı́m a poslednı́m přı́padem je konečně-prvkový

model nanoindentace cementu.



TABLE OF CONTENTS

List of Figures iv

List of Tables vii

List of Abbreviations vii

Chapter 1: Introduction 1

1.1 Parameter estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Hand Fitting Method . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Trial and Error Method . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Inverse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Forward Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Algorithms 9

Chapter 2: GRADE + CERAF Algorithm 10

2.1 Introduction to Evolutionary algorithms . . . . . . . . . . . . . . . . . . . 10

2.2 GRADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 CERAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3: Multi-objective evolutionary algorithms 18



Table of Contents ii

3.1 Basic Concepts of Multi-Objective Optimization . . . . . . . . . . . . . . 18

3.2 Multi-objective algorithms review . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Weighted Sum Method . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Average Ranking Method . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Nondominated Sorting Genetic Algorithm II (NSGA-II) . . . . . . 31

3.3.4 Strength Pareto Evolutionary Algorithm 2 (SPEA2) . . . . . . . . . 33

3.4 Multi-objectivization and Helper-objectives . . . . . . . . . . . . . . . . . 36

Chapter 4: Performance assessment 38

4.1 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Results on test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II Real world applications 52

Chapter 5: Multi-objective Parameter Estimation 53

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Existing Applications of Multi-Objective Parameter Estimation . . . . . . . 54

Chapter 6: Affinity model of cement paste hydration 56

6.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 7: Dual porosity model of Richards’ equation 65

7.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Table of Contents iii

7.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 8: Cement paste nanoindentation 72

8.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 9: Conclusions 78

Appendix A: Test problems results 88

A.1 Effect of populations size . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2 Performance of algorithms in time . . . . . . . . . . . . . . . . . . . . . . 92

Appendix B: Affinity model parameters estimation 93



LIST OF FIGURES

1.1 Illustration of forward mode of parameter estimation. . . . . . . . . . . . . 7

2.1 GRADE’s flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 [Geometrical meaning of simplified differential operator in GRADE. . . . . 15

3.1 Simple multi-objective optimization problem. . . . . . . . . . . . . . . . . 20

3.2 Principle of Pareto Optimality (general minimization problem). . . . . . . . 20

3.3 Main loop of used MOEA. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Principle of the weighted sum method . . . . . . . . . . . . . . . . . . . . 30

3.5 Principle of average ranking method. . . . . . . . . . . . . . . . . . . . . . 31

3.6 NSGA-II operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Environmental selection of NSGA II. . . . . . . . . . . . . . . . . . . . . . 33

3.8 SPEA2 operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Environmental selection of SPEA2. . . . . . . . . . . . . . . . . . . . . . 35

4.1 Unary indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Influence of population size for NSGA-II algorithm I . . . . . . . . . . . . 45

4.3 Influence of population size for NSGA-II algorithm II . . . . . . . . . . . . 46

4.4 Time needed by each algorithm for 100 generations of dtlz7a optimization. 47

4.5 Graphical comparison of MOEAs performance in time. . . . . . . . . . . . 49

4.6 Evolution of epsilon and hypervolume indicator for dtlz2a function. . . . . 49



List of Figures v

4.7 Attainment surface for ZDT1 function. . . . . . . . . . . . . . . . . . . . . 50

4.8 Attainment surface for ZDT6 function. . . . . . . . . . . . . . . . . . . . . 50

6.1 Objectives for affinity model. . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 PE for affinity model - verification I. . . . . . . . . . . . . . . . . . . . . . 59

6.3 PE for affinity model - verification II. . . . . . . . . . . . . . . . . . . . . 60

6.4 Target curves for affinity model estimation. . . . . . . . . . . . . . . . . . 61

6.5 Relative winning score for affinity model. . . . . . . . . . . . . . . . . . . 62

6.6 Pareto fronts for C1 - original objective vs. error at the beginning. . . . . . 63

6.7 Pareto fronts for C3 - original objective vs. error at the beginning. . . . . . 63

6.8 Pareto fronts for C5 - original objective vs. error at the beginning. . . . . . 63

6.9 Resulting best and worst curves for C1. . . . . . . . . . . . . . . . . . . . 64

6.10 Pareto curves for C3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Objectives for DRUtES model. . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Sensitivity analysis of DRUtES objectives. . . . . . . . . . . . . . . . . . . 67

7.3 DRUtES model verification. . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4 RWS for DRUtES model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 Resulting best and worst curves for DRUtES model. . . . . . . . . . . . . . 70

8.1 Nanoindentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Objectives proposed for nanoindentation parameter estimation. . . . . . . . 74

8.3 Sensitivity of objectives for nanoindentation parameter estimation. . . . . . 75

8.4 Loading curves for C1 and C2 verification and experimental curve. . . . . . 76

8.5 Verification on nanoindentation model: time vs. depth curves. . . . . . . . 76



List of Figures vi

8.6 Verification on nanoindentation model: parameters in parallel coordinates. . 77

8.7 Parameter estimation for nanoindentation experiment - curves. . . . . . . . 77

A.1 Influence of population size for AR algorithm I . . . . . . . . . . . . . . . 88

A.2 Influence of population size for AR algorithm II . . . . . . . . . . . . . . . 89

A.3 Influence of population size for SPEA2 algorithm I . . . . . . . . . . . . . 89

A.4 Influence of population size for SPEA2 algorithm II . . . . . . . . . . . . . 90

A.5 Influence of population size for WSM algorithm I . . . . . . . . . . . . . . 90

A.6 Influence of population size for WSM algorithm II . . . . . . . . . . . . . 91

A.7 Evolution of epsilon and hypervolume indicator for ZDT1 function. . . . . 92

A.8 Evolution of epsilon and hypervolume indicator for ZDT6 function. . . . . 92

A.9 Evolution of epsilon and hypervolume indicator for dtlz7a function. . . . . 92

B.1 Average values for the original square error function in time. . . . . . . . . 93

B.2 Resulting best and worst curves for C3. . . . . . . . . . . . . . . . . . . . 93

B.3 Resulting best and worst curves for C5. . . . . . . . . . . . . . . . . . . . 94



LIST OF TABLES

2.1 Parameter setting for GRADE+CERAF algorithm. . . . . . . . . . . . . . 16

3.1 Pareto optimality for minimization problem . . . . . . . . . . . . . . . . . 19

3.2 Algorithm parameters summary. . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Test problems summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Time consumption for test problems, average time for 100 generations. . . . 47

4.3 Kruskal-Wallis test for dtlz7a function in 100th generation. . . . . . . . . . 48

6.1 Limits for affinity model parameters. . . . . . . . . . . . . . . . . . . . . . 58

6.2 Comparison of execution time for affinity model estimation. . . . . . . . . 60

7.1 Limits for DRUtES model parameters. . . . . . . . . . . . . . . . . . . . . 68

7.2 Comparison of the main objective values after 1000 generations. . . . . . . 68

7.3 Comparison among parameters identified in [Kuraz et al., 2010] and result-
ing parameters in 1000th generation. . . . . . . . . . . . . . . . . . . . . . 71

8.1 Bounds for nanoindentation model parameters. . . . . . . . . . . . . . . . 74



Chapter 1

INTRODUCTION

Motivation and objectives

Model parameter estimation is a frequent engineering task that occurs every time an input

of a model is required and this input cannot be measured or does not have a clear relation

with the modelled situation. Many scientific areas deal with parameter estimation, besides

the civil engineering field it can be found in electronic engineering, astrophysics or con-

trol systems tasks. Also, different names can be found in literature for the same task, e.g.

parameter identification, model calibration, model fitting, etc.

Parameter estimation (PE) can be understood as a special type of an inverse analysis

problem. Generally, the aim of inverse analysis is to rediscover unknown inputs from known

outputs, particularly the aim of PE is to find a set of parameters for a numerical model

describing the experiment. A PE problem can be solved by many distinct methods. This

thesis concerns one of these methods, a not so common approach based on multi-objective

optimization. Although multi-objective optimization is very popular nowadays, it is not fre-

quently used for parameter estimation. However, based on some publications and results,

which are presented later, one can assume that the multi-objective approach can be worth-

while for parameter estimation as well.

Despite the existence of some papers dealing with multi-objective parameter estimation

and some papers about re-formulating the single-objective optimization problem (SOP) as

a multi-objective one, to the best author’s knowledge, there is no publication about ”multi-

objectivized“ parameter estimation. In other words, no one have analysed the specifics of

the following phenomena:
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• the selection of proper objectives;

• the probable existence of a so-called ideal point1 and therefore, the situation of non-

conflicting objectives2 (sometimes called correlated objectives);

• the fact that we are not interested in the whole Pareto front, whereas the commonly

used multi-objective optimization algorithms are designed to approximate the front as

wide as possible;

• the selection of a final solution; it seems to be appropriate to choose the one with

the best value of original objective function, but is it really true?

Therefore, the most important output of this thesis is a general recommendation when and

how to use the multi-objective approach for parameter estimation. Particularly, the detailed

objectives of the thesis are:

1. test the proposed estimation methods in the framework of several constitutive models;

2. provide a guide for the best choice of:

(a) the type of algorithm most suitable for a particular application;

(b) additional objectives;

(c) final solutions.

The thesis is organized as follows: This chapter presents an introduction to the param-

eter estimation theory. The remaining text is divided into two parts. The first one is more

theoretical and contains the description of algorithms and their performance in standard test

problems. Chapter 2, describing in detail an GRADE algorithm, presents the standard ap-

proach to which the proposed methodology will be compared. Chapter 3 deals with a multi-

objective approach to parameter estimation. At first, the idea of multi-objectivization and

1 the point where all objectives have the minimal values
2 at least not in the entire feasible space
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objective helpers, i.e. the idea of adding more objective functions to a single-optimization

problem, is presented. Then, basic concepts of the multi-objective optimization and a brief

review of existing algorithms, with an emphasis on multi-objective evolutionary algorithms

(MOEAs), are presented. The algorithms tested in this thesis, i.e. Weighted Sum Method

(WSM), Average Ranking (AR), Nondominated Sorting Genetic Algorithm II (NSGA-II)

and Strength Pareto Evolutionary Algorithm 2 (SPEA2) are introduced. Chapter 4 provides

a brief introduction to performance assessment for multi-objective problems, and results of

chosen algorithms in standard multi-objective test problems are presented to show the ad-

vantages and disadvantages of individual methods.

The second part deals with applications of presented methodology in real engineering

tasks. At the beginning, some existing applications of multi-objective parameter estimation

are presented. Because of the absence of test problems for this type of tasks, the next chapters

serve as benchmarks for the proposed methodology. Chapter 6 discusses parameter estima-

tion for the affinity model of cement paste hydration. Chapter 7 shows results for PE for the

numerical solver of a dual porosity model of Richard’s equation. In the next chapter, param-

eters for the finite element model of cement paste nanoindentation are estimated. Chapter 9

discusses all results and gives general recommendations for multi-objective parameter esti-

mation.

1.1 Parameter estimation theory

For the introductory part, we follow the description presented in [Mahnken, 2004] and

notation used in [Lepš, 2008], later extended in [Kučerová, 2007]. Here, the inverse ana-

lysis is based on the existence of an experiment E, which, physically or virtually, connects

the known inputs (parameters) xE to the desired outputs (measurements) yE . Formally, this

can be written as

yE = E(xE). (1.1)

The problem of inverse analysis is defined as a search for unknown inputs xE from the known

outputs yE , i.e. inversely to the experiment E. In engineering applications, the experiment

E can be simulated by some virtual model M . Usually, the model is a program based on

numerical methods, for example the finite element method. Such a model M usually does
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not describe a real experiment E exactly, but it is considered as a ”good“ approximation:

M ≈ E. (1.2)

The use of the model instead of the real experiment is important in terms of economy, where

the cost of the evaluation of the model M is assumed to be by an order of magnitude smaller

than the cost of the physical experiment E.

Theoretical models are constructed to describe real experiments in order to obtain equiv-

alent outputs (measurements). Therefore, the output parameters yM of a theoretical model

should correspond to those from the experiment yE . On the other hand, this type of models

often uses parameters without physical interpretation. It means, that in general, input param-

eters xM of a theoretical model can be different from physical parameters xE . It is caused by

difficulty in the determination of physical parameters or description of physical phenomena.

Therefore, in the case of a perfect fit, we can write

yE = yM = M(xM). (1.3)

Hence, the goal of a parameter estimation problem is to find the input model parameters

using the response of the model. This process is necessary in two phases of the model life-

cycle. At first, when a new model is created, its validation has to be done to prove the model

is able to describe the physical experiment with sufficient accuracy. Second, another use

of the estimation method is on demand when new values of model parameters should be

found to fit experimental measurements on a new material. Because the estimation process

is supposed to be used repeatedly for any new measurement, not only the accuracy but also

the efficiency of the estimation method is essential for its choice.

In general, four main possible solutions of the estimation problem can be described:

a hand fitting, a trial and error, an inverse and a forward method.
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1.2 Methods

1.2.1 Hand Fitting Method

In the case, that the input parameters are directly related to experimental results or the user

is experienced enough the fitting procedure can be performed ”by hand“ this method is also

called the guru method. In complex cases hand fitting can be divided into more steps: the ef-

fects from single parameters are separated, certain parameters are estimated from one test or

a part of an experimental curve and then, the already obtained parameter is used along with

other data for the estimation of next parameters.

The advantage of this method is clear, it is fast and easy. However, it can be difficult to

distinguish the effect of input parameters for modern complex models (as mentioned above,

input parameters are very often without any physical relationship to the real experiment).

Moreover, even when the relationship is direct, experimental measurements are always af-

fected by some noise; therefore, the accuracy of the obtained results is usually very low.

1.2.2 Trial and Error Method

Trial and error is another simple estimation method. The only requirement is an algo-

rithm that solves Equation (1.3) for any x. The iteration steps of the method are as follows:

1. estimate starting values of x;

2. calculate y;

3. compare y with yE;

4. if the result is satisfactory, finish;

5. else estimate new x, go to 2.

This method can be used for any inverse problem and no development of a special esti-

mation procedure is needed. On the other hand, its use is very computationally demanding

and there is no objective criterion which specifies the accuracy, only the subjective feeling

of ”satisfaction“.
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1.2.3 Inverse Mode

The inverse mode assumes the existence of an inverse relationship between outputs and

inputs, i.e. the existence of an inverse model M INV connecting outputs y from the model M

with its inputs x:

x = M INV (y) (1.4)

for all possible y. If such a relationship exists and is established, then the desired inputs xM

are obtained easily by simply inserting yE into Equation (1.4). In engineering applications,

it is not essential to find the exact description of this relationship, but an approximation is

sufficient. The quality of this approximation is easy to measure since a pair x, y obtained

using Equation (1.4) should also fulfil Equation (1.3).

The main advantage is obvious, if an inverse relationship is found, then the retrieval of

the desired inputs is very fast even if executed repeatedly. This can be utilized for frequent

identifications of one model.

On the other hand, the main disadvantage is an exhausting (and often unsuccessful) search

for the inverse relationship. This is probably the main reason why this approach is not so

popular as the others. A further obstacle is the inability to solve the problem of the same

value of outputs y for different inputs x, i.e. the existence of several global optima. The op-

posite, i.e. the existence of different outputs y related to one input x introduced by stochastic

and probability calculations or by experiments polluted with a noise or an experimental error,

can be tackled e.g. by the introduction of stochastic parameters for outputs [Fairbairn et al.,

2000; Lehký and Novák, 2005]. Another case, when there is more than one experiment for

one material, can be handled by sequential, cascade or iterative processes.

As a solution, different approximation tools are applied. Nowadays, artificial neural net-

works have become the most frequently used methods, see e.g. [Kučerová, 2007] for more

references and applications.
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Figure 1.1: Illustration of forward mode of parameter estimation.

1.2.4 Forward Mode

With the above-mentioned statements, the forward mode is based on the definition of

an error function F (x) of the difference between outputs of the model yM and experimental

measurements yE , see Figure 1.1. To find a solution this error function is to be minimized,

i.e.

minimize F (x) = ‖yE − yM)‖ = ‖yE −M(x)‖. (1.5)

The forward mode can be understood as a sophisticated version of the trial and error method,

where the subjective “satisfaction” is replaced by minimizing the error function and the new

x is created in some defined way. The problem (1.5) has been classically solved by gradient-

based optimization methods. Nowadays, the model M is often created in a program where

the code visibility is limited by license conditions, etc. and, therefore, the knowledge of

derivatives is missing even if the function is differentiable. Hence, soft-computing meth-

ods can successfully be applied here. Evolutionary algorithms (EAs) [Goldberg, 1989]

or [Michalewicz, 1999] with a “population” of solutions or the simulated annealing method

[Ingber, 1993; Vidal, 1993] with one solution in time are popular.

The forward mode is general in all possible aspects and (with enough time and a good

algorithm) is able to find an appropriate solution if such exists. The method is successful
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even in special cases like:

a) There are different outputs (y) for one input (x). This is the already mentioned case of

stochastic and probabilistic calculations as well as experiments polluted with a noise.

This obstacle can be solved by the introduction of stochastic parameters for outputs or

by the regularization of the objective function, see [Mahnken and Stein, 1996; Maier

et al., 2006].

b) A problem of the same value of outputs (y) for different inputs (x), i.e. the existence

of several global optima. This case leads to a multi-modal optimization [Mahfoud,

1995] but it can be solved by an appropriate modification of the optimization algo-

rithm or by a modification of the error function. Both approaches are discussed in

more detail in the next chapters. One example of an algorithm created to overcome

the multi-modality is presented in Chapter 2. The multi-objective approach proposed

in this thesis can be understood as an example of the error function modification, see

Chapter 3.

c) There is more than one experiment for one material. This can be solved by a multi-

objective formulation of a problem, see e.g. [Lepš, 2007].

One disadvantage of the forward mode, following the definition, is the fact that the com-

putationally expensive search should be repeated for any change in data, e.g. even for a small

change in the experimental setup. This feature handicaps the forward mode from an auto-

matic and frequent usage. Moreover, the forward mode usually requires a huge number of

error function evaluations. This problem can be managed by two approaches which are based

on: (i) parallel decomposition and parallel implementation or (ii) computationally inexpen-

sive approximation or interpolation method, see again [Kučerová, 2007] for an extensive

review.
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Chapter 2

GRADE + CERAF ALGORITHM

2.1 Introduction to Evolutionary algorithms

Before the description of individual algorithms is presented, evolutionary algorithms

(EAs) are briefly introduced.

EAs do not usually use gradient information in their search process, therefore they can

be applied in many optimization problems, although, in some optimization problems such

as linear or quadratic programming, they will be inevitably beaten by traditional gradient-

based optimization procedures. In contrary to most classical optimization methods, EAs use

stochastic operators instead of deterministic ones.

EAs belong to the group of bio-inspired algorithms, in this particular case the algorithms

are inspired by the Darwinian survival-of-the-fittest evolutionary theory to iteratively create

new and better solutions. The algorithm uses more than one solution in an iteration (so called

population), unlike most classical optimization algorithms that update one solution in each

iteration. This feature provides a number of advantages such as:

• a parallel searching power for exploring a bigger area of a search space,

• a possibility of finding multiple optimal solutions, therefore EAs are known to be able

to deal with multi-modal or multi-objective optimization problems.

The initial population of EA’s search is created randomly in limits specified for each

variable, but in the case of any knowledge about the problem optima, it is wise to utilize
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this information in the initial population. Then, the iterative search process starts: a new

(and hopefully better) population (called offspring population) is created from the current

population (parent population) by the use of evolutionary operators, until one or more pre-

specified termination criteria are met. As the termination criterion, a predetermined number

of generations is mostly used.

The main evolutionary operators are: mating selection, crossover, mutation and environ-

mental selection. Their particular implementation can differ in individual EAs, but their

main purpose is described further [Deb, 2008].

Mating selection

The mating selection operator ensures the improvement of the solutions quality by choos-

ing better individuals with a larger probability to be involved in the creation of a new popula-

tion. For this purpose, several stochastic selection operators exist in the EA literature [Baker,

1987]. The simplest form is a tournament selection: two solutions are picked at random from

the evaluated population and the better one is copied in an intermediate population (so called

mating pool).

Crossover

Crossover, along with mutation, belongs to variation operators, which are used to create

an offspring population. The purpose is to pick two (or more) solutions (parents) from the

mating pool and create one (or more) solutions (offsprings) by exchanging their informa-

tion. The crossover operator is applied with the user’s defined probability, called crossover

probability pc ∈ [0, 1]. The probability determines the proportion of population members

participating in the crossover operation. The remaining members are simply copied to the

offspring population.

Mutation

Each solution, created by the crossover operator, can be then changed by a mutation

operator with a mutation probability pm. The purpose of mutation is to make small changes
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in the population to search locally around already found solutions. Therefore, pm is usually

set to be much smaller than pc and the operator creates new solutions very close to the

original ones. In real-coded EAs a simple Gaussian probability distribution can be used with

its mean at the original variable value.

Environmental selection

After the offspring population is created, it must be evaluated, i.e. objective function(s)

value(s) for each population member is/are computed. Then, the offspring population is

merged with the parent population. Finally, the size of the merged population is reduced

to the original size n. Moreover, in this step, so called elitism should be applied. Elitism

ensures that the already found best solutions are not lost from the population, and therefore,

the algorithm does not have degrading performance. Therefore, the simplest way to provide

this step is to keep n best individuals.

Nowadays, there are many types of evolutionary algorithms. Although original genetic

algorithms (GAs) proposed in [Holland, 1975] were based on binary coding, many engi-

neering problems deal with real-valued representations, and therefore, real-coded algorithms

were proposed and will be used in this thesis.

To conclude this section some terms used in the thesis should be stated:

• Gene - a particular variable value. EA’s individuals are composed of genes.

• Fitness - a function derived from the values of objective function(s) and constraints.

The value is used in selection steps to determine a better solution.

• Individual = Solution = Chromosome - all these terms are used mostly interchangeably.

It is a population member, a set of particular variable values (genes), with or without

assigned objectives and fitness values (depends on the algorithm’s stage).

• Generation - one iteration of an EA.
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Figure 2.1: GRADE’s flowchart.

2.2 GRADE

The GRADE genetic algorithm was introduced in [Hrstka and Kučerová, 2004]. The au-

thors proposed the method for the optimization of high dimensional (up to 200 variables)

real-valued problems. The algorithm combines the properties of differential evolution (the

differential operator instead of the crossover operator) [Storn and Price, 1995] with the stan-

dard genetic algorithm, see the flowchart of GRADE in Figure 2. This algorithm differs from

the general EA presented above in the selection steps. The difference and the implementation



GRADE + CERAF Algorithm 14

of variation operators are described further.

Selection

The authors use the modified tournament strategy: two chromosomes are randomly cho-

sen, compared and the worse (regarding its fitness value) is expelled from the population.

Therefore, the population size is decreased by one. This step is repeated until the popula-

tion reaches its original size. Contrary to the traditional tournament strategy, this approach

includes elitism implicitly, i.e. the best solution cannot be lost even if it is not chosen to any

tournament.

Mutation

In the mutation, all individuals in the parent population can be used to create an offspring

with a probability - radioactivity. Let xi(g) be the i-th chromosome in a generation g,

xi(g) = (xi1(g), xi2(g), . . . , xiDim(g)), (2.1)

where Dim is the number of variables of the objective function. If the individual xi(g) is

chosen, then the offspring xk(g + 1) is computed as:

xk(g + 1) = xi(g) +MR(xRP − xi(g)), (2.2)

where xRP is a random individual from the feasible space and MR is a parameter called mu-

tation rate, which determines the size of mutation and is chosen randomly from the interval

[0,1] for each chromosome.

Simplified differential operator

After M new individuals are created by mutation, this operator is applied to create (N −

M) individuals. Here, two parents (xq(g) and xr(g)) are randomly chosen from the current

population and one offspring xk(g + 1) is created:

xk(g + 1) = xbetter(g) + CR(xq(g)− xr(g)), (2.3)

where CR is a parameter reducing the vector of the parents’ difference and is randomly cho-

sen from the interval [0,CL], where CL is a configurable parameter. The reduced difference
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is then added to the better one of the parent chromosome xbetter(g). The better chromosome

is the individual, which gives a better value of the fitness function (i.e. lower for minimiza-

tion problems). Figure 2.2 presents possible geometrical meanings of this operator.

Figure 2.2: Geometrical meaning of simplified differential operator in GRADE algorithm.

Left: chromosome xq(g) is better than xr(g), right: the opposite situation. Figure reproduced

from [Kučerová, 2007].

The GRADE algorithm has only three configurable parameters: Except radioactivity

and the CL parameter described above, there is a pool rate parameter determining the size

of population.

2.2.1 CERAF

The GRADE algorithm itself tends to create a cluster of individuals and move it through

the available domain. If such a cluster is trapped in a local extreme, the only chance to

escape is the individual with a better fitness value created by mutation outside this cluster.

Unfortunately, the probability of this effect is very low. This behaviour is very common

within GA, therefore there are many ways to deal with this. It is possible to “restart” the

algorithm whenever it is trapped, or a solution created in the neighbourhood of already found

local optima can be “punished” with some penalization [Mahfoud, 1995].

The authors of GRADE proposed an improvement called CERAF (from French CEn-
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Parameter Value

pop rate 10

CL 1.0

radioactivity 0.2

ceraf radioactivity 1.0

RAD 0.25

deact rate 0.995

quiet 100

Table 2.1: Parameter setting for GRADE+CERAF algorithm [Kučerová, 2007]

tre RAdioactiF) based on the niching strategy [Hrstka and Kučerová, 2004]. The CERAF

method creates areas with a higher level of “radioactivity” in the neighbourhood of all previ-

ously found local extremes. The mutation probability is increased many times in these areas

(the probability is determined by a tunable parameter ceraf radioactivity), i.e. the chance to

create new solutions outside this area and escape from a local extreme is much higher than in

GRADE itself. The radioactivity area is an n-dimensional ellipsoid, whose size is defined as

a percentage of the domain - RAD. The next parameter of the method - quiet - determines

the number of generations, during which the best fitness value has not changed, necessary to

mark a new radioactive zone. The radioactivity area is reduced by a small value each time

some individual is created there (the radius is multiplied by the parameter called deact rate).

However, the radioactive area never disappears completely, so the chromosomes can never

find the marked local extreme again. The steps of the CERAF method are performed between

the differential operator and the selection in the original GRADE algorithmic scheme:

1. If any radioactive zone already exists, each chromosome caught there is mutated with

high probability a ceraf radioactivity.

2. If the best fitness value stagnates more than quiet generations, it declares a new ra-

dioactivity area.

3. Depending on the number of chromosomes created by the cross-over operator and
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simultaneously determined in the previous step, the ranges of radioactive zones are

decreased.

The results presented by the authors show that the CERAF method can be considered as

a universal technique capable of solving any multi-modal optimization problem if the method

that is running underneath (i.e. the algorithm that generates new chromosomes) has a suf-

ficient ability to find new possible solutions. Also, based on these tests, the recommended

values for parameters for both GRADE and CERAF are presented in Table 2.1. These val-

ues are used in all computations in this thesis. The interested reader can obtain the source

code for GRADE and CERAF at http://klobouk.fsv.cvut.cz/˜anicka (C++

and MATLAB R© version). Note that whenever GRADE is mentioned in the following text,

in fact, GRADE+CERAF is meant.



Chapter 3

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

3.1 Basic Concepts of Multi-Objective Optimization

Problems where more than one goal should be satisfied simultaneously are as old as

mankind itself. The decision between going out of the cave for food or staying safe in-

side, or decide whether to hunt animals which is more nutritious but also more dangerous or

just pick roots and berries. From nowadays problems, the choice of a new car or a computer

can be mentioned. There are more conflicting objectives in all these cases, i.e. to appease

hunger on the one hand and stay safe on the other hand in caveman’s case and to buy the

best thing and to save money in the modern man’s case. Of course, to solve these problems

we do not need any special algorithm, but they illustrate well enough the basic obstacle of

multi-objective (also called multi-criteria) problems: there is no solution which satisfies all

our demands, all possible solutions are somehow compromised.

Multi-objective problems have been studied since the 19th century. The problems can

be divided into two groups. In the first case, there is a list of single solutions and the task

is to choose the “best“ ones; such problems are called multi-criteria decision making. All

problems mentioned above belong to this group.

In this thesis, the second group of multi-objective problems are solved, so called multi-

objective optimization problems (MOPs), where the objectives are given by functions and the

set of solutions is not listed in advance. As an example, the design of a cantilever beam can

be mentioned: the minimum end deflection and the minimum weight of the beam is required.

The formal development of mathematical programming techniques capable of dealing with

MOPs dates back to the late 1950s. Assuming, without a loss of generality, the minimization
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For any two decision vectors a and b,

a ≺≺ b (a strictly dominates b) iff ∀i : fi(a) < fi(b),

a ≺ b (a dominates b) iff ∀i : fi(a) ≤ fi(b) ∧ ∃i : fi(a) < fi(b),

a � b (a weakly dominates b) iff ∀i : fi(a) ≤ fi(b),

a ‖ b (a is incomparable with b) iff ∃i : fi(a) < fi(b) ∧ ∃j : fj(a) > fj(b)

a ∼ b (a is indifferent to b) iff ∀i : fi(a) = fi(b).

Table 3.1: Pareto optimality for minimization problem [Knowles et al., 2006]

problem, the (unconstrained) MOP can be defined as:

minimize f(x) = [(f1(x), f2(x), . . . , fk(x))] (3.1)

subject to x ∈ X

where x is the decision vector (i.e. the set of input parameters in our case), X is a finite set

of feasible solutions and the objective function vector f(x) maps X into Rk, where k ≥ 2

is the number of objectives. Note that the minimization problem is assumed in all further

presented figures, unless stated otherwise.

The main difference between single and multi-objective optimization is in the concept of

optimality. Whereas in the single-objective problem the solution comes with the minimum of

one objective function, the objectives in a multi-objective problem are conflicting; therefore,

a single point with minimal values for all objective function does not usually exist. The

notion of optimality used in MOPs was proposed by Francis Ysisdro Edgeworth in 1881

and was generalized later by Vilfredo Pareto [Pareto, 1896]. The principle is called Pareto

optimality after its second author (see Table 3.1).

According to the Pareto optimality definition, instead of a single solution, we seek for

a set of solutions Xp ⊆ X which are incomparable with each other and no solution from X
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Figure 3.1: Two objectives problem (min f1 = x2, f2 = (x− 2)2) with only one variable.

Figure 3.2: Principle of Pareto Optimality (general minimization problem).

dominates them. Such a set is called the Pareto optimal set:

∀xp ∈ Xp : @x ∈ X : x ≺ xp . (3.2)

In other words, solutions from Xp cannot be improved in any of k objectives unless other

objective(s) deteriorate. Also note that the image of Xp in the objective space Yp = f(Xp)

is called the Pareto optimal front.

The principle of multi-objective optimization and Pareto optimality is presented in Figu-

res 3.1 and 3.2.
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3.2 Multi-objective algorithms review

Multi-objective optimization methods can be divided into three main groups according to

the information available before the optimization process [Collette and Siarry, 2004]:

• A priori methods require knowledge of the problem, e.g. the preferences or the mag-

nitude of objectives, the result is only one Pareto optimal solution usually.

• A posteriori methods do not need any special information about the problem, their goal

is to approximate the Pareto optimal front with the finite number of solutions.

• In progressive methods (also called interactive) the preferences are specified during

the optimization process thanks to the interaction with the user. These methods are

beyond the scope of this thesis.

A priori methods

Many mathematical techniques have been developed in order to deal with multi-objective

optimization problems [Miettinen, 1999], mostly in the field of Operational Research, during

the last five decades. However, these ”classical” algorithms have a number of limitations. For

example, some of them require differentiability and continuity of objective functions. Some

of them are sensitive to the shape of the Pareto optimal front. Moreover, these techniques find

only one solution; therefore, the algorithm needs to be executed several times from different

starting points (or with different settings) in order to obtain more Pareto optimal solutions.

These methods are usually based on some transformation of MOP into SOP and this can

be solved by any method available for SOP. The transformation can be done in two basic

ways:

• Transformation using constraints: All objectives but (the most important) one are

transferred into constraints and the constrained SOP is solved. Of course, the wrong

choice of the optimized objective or an unrealistic setting of constraints can lead to

bad results.
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• Transformation without constraint: All objectives are aggregated into one function.

From these methods the most popular one is probably the weighted sum method (WSM),

see 3.3.1. Another well known method is the utility function method, where the user

must provide a function relating all objectives and this function is to be maximized.

Also, goal programming should be mentioned; in this method the weighted sum of

differences of objectives from desired values is minimized.

The method called lexicographic ordering does not really transform objectives, but

solves them consecutively according to their importance. At first, the most important

objective is optimized without considering any of the others; then, the second objective

is optimized, but without decreasing the quality obtained for the first objective. This

process is repeated for all remaining objectives. This method is easy to implement but

has many drawbacks: to determine the importance of objectives can be a very difficult

task and, again, with one setting only one Pareto optimal point is achieved.

A posteriori methods

The goal of these methods is to find a good approximation of the true Pareto optimal front.

The good approximation involves two (conflicting) properties: the solutions must be as close

to the Pareto optimal front as possible and well spread in the objective (or parameter) space

to represent the entire range of the Pareto optimal front.

To reach this goal, a priori methods can be employed repeatedly, i.e. more runs with

different settings provide more Pareto optimal solutions.

Also, the evolutionary algorithms mentioned above are capable to solve this problem.

EAs work with populations, therefore, with a single run more Pareto optimal solutions can

be obtained. Moreover, they do not need differentiable or continuous objective functions.

The possible use of EAs for MOP was proposed at first by Rosenberg in 1967 [Rosenberg,

1967], but actually no MOP optimizer was developed. As the first multi-objective evolu-

tionary algorithm (MOEA), the Vector Evaluated Genetic Algorithm (VEGA) designed in

mid-1980s by David Schaffer [Schaffer, 1984] is considered.
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With VEGA the so called “first generation of MOEAs” [Coello, 2006] started. In this

period, the above mentioned (weighted sum method and lexicographic ordering) and other

“simple” methods were adopted to work with EAs. Also, more sophisticated algorithms,

based on a direct implementation of the Pareto optimality concept were developed. The most

known algorithms from this period are the Multi-Objective Genetic Algorithm (MOGA)

[Fonseca and Fleming, 1993], the Nondominated Sorting Genetic Algorithm (NSGA) [Srini-

vas and Deb, 1994] and the Niched-Pareto Genetic Algorithm (NPGA) [Horn et al., 1994].

The second generation of MOEAs started in the late 1990s and is characterized by the im-

plementation of elitism. Elitism is a method, known from single-objective EAs, which guar-

antees the best individuals from the current generation to pass into the next generation with-

out being affected by a crossover or a mutation. Thanks to elitism, the convergence is en-

sured. In SOP, elitism is easy to implement, because there is always just one best solution.

In MOP, it is not so straightforward, because all Pareto optimal solutions in a population are

equally good.

The most known algorithms from this generation are NSGA-II and SPEA2, which are

often used as benchmarks which new algorithms are compared to. Plenty of EAs were

developed and new ones are still arising, e.g. the Pareto archived evolutionary strategy

PAES [Knowles and Corne, 2000] or multi-objective micro-GA [Coello and Pulido, 2001].

The interested reader is referred to [Coello et al., 2006] for a very extensive review of

MOEAs. Recently, also other bio-inspired algorithms such as Simulated Annealing [Ulungu

et al., 1999], Particle Swarm [Coello and Lechuga, 2002] or Ant Colony [Mariano and

Morales, 1999] optimizations are employed for multi-objective optimization problems.

To conclude this section, it must be emphasized that the difference between a priori and

a posteriori methods is not only in the information available before the optimization proce-

dure, but also in the output from the process. While in the case of a priori methods (which

are in fact SOP), the user receives one solution found by any algorithm, in the second case

there is a set of different, equally good solutions and the user must decide and choose the one

most suitable for his/her purpose (i.e. after MOP a multi-criteria decision making problem

must be solved). For a small review on decision making concerning evolutionary multi-
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objective optimization, see e.g. [Coello, 2000]. Recently, research on incorporating user

preferences in the search process of MOEA has started, see [Rachmawati and Srinivasan,

2006] or [Jaszkiewicz and Branke, 2008].

For testing the proposed approach to parameter estimation, two already mentioned evolu-

tionary algorithms, NSGA-II and SPEA2, were chosen. To these algorithms, the traditional

weighted sum method and the genetic algorithm based on objectives’ ranking are added.

Their main features and particular implementation are discussed in the next sections.

3.3 Implementation

Before the multi-objective algorithms used for computations are presented in detail, the

framework for their implementation will be described. The source code in C++ is available

at http://mech.fsv.cvut.cz/˜zuzanka/COMA.html.

The main loop of optimizers is based on a standard real coded genetic algorithm (see

Figure 3.3). The scheme is common for all optimizers, only the environmental selection and

the fitness assignment necessary for the mating selection differs for individual algorithms.

Note that elitism is ensured in the environmental selection step for all algorithms, because

the best solutions are always copied to the next generation. As the stopping criterion, the

maximum number of generations is used. The steps are described in detail in the following

paragraphs.

Initial population

At first the (Pop+Off ) individuals are created randomly with a uniform distribution in de-

sired limits and their objective function values are calculated. Pop and Off are configurable

parameters of the algorithm. Pop is the number of solutions which are chosen in the environ-

mental selection step, and then Off individuals from the survivors are chosen for the variation.

As the last step of the whole optimization process is the environmental selection, Pop is also

the number of solutions presented as a result.



Multi-objective evolutionary algorithms 25

Figure 3.3: Main loop of used MOEA.

In most studies of genetic algorithms, both parameters have the same value. This thesis

is focused on a small population size (i.e. Pop = 20 - 40 individuals) to simplify the final

decision making step and to shorten the runtime of the optimization process. However, for

these cases, i.e. Pop = Off, the population tends to converge very fast into a single point. It is

preferable to have fewer offsprings than parents, and therefore, Off was set at 0.5 ∗ Pop for

all computations. The setting of the Pop parameter should also take into account the number

of design variables, to create the initial population spread in the whole search space.
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Mating selection

For the mating selection, the bi-tournament selection with replacement is used, i.e. two

solutions are chosen randomly and the winner of the tournament is copied to the mating pool.

The solution can be chosen for a tournament repeatedly, therefore, at the end of the mating

selection, there can be more than one copy of good solutions in the mating pool. The winner

of a tournament is determined by the so called fitness function, which differs for individual

algorithms and is presented later. Note that in SOP the fitness function and the objective

function are usually the same, whereas in MOP, the fitness function has to be calculated

separately because of the existence of more objective functions.

Crossover

After the mating pool is generated, the crossover is performed in two steps. Genetic

algorithms were originally binary coded, which brings many problems with precision and

coding. Therefore, real coded GAs were proposed. They overcome the problem with coding

(i.e. the variable value of a real problem can be directly a gene of GA), but, on the other hand,

the implementation of variation operators is not so straightforward. However, many types

of crossover and mutation were developed for real coded GAs. Two types of crossover are

used in this thesis: a naive uniform crossover [Deb, 2001] and a simulated binary crossover

presented in [Deb and Agrawal, 1995].

The first type of crossover creates the offspring by the change of the parents’ genes be-

tween each other. The probability of a swap for each gene is pswap.

Then, the second type of crossover is used with the probability pSBX . The operator (called

the simulated binary crossover or SBX) was designed to have the same properties and search

power as the one-point crossover used in binary-coded GAs:

• The average of the parents’ genes values is the same as the children’s ones.

• The difference between the offspring’s genes (xo1
i , xo2

i ) is in proportion (so called
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spread factor) to the parent solution (xp1
i , xp2

i ):

β =

∣∣∣∣xp1
i − xp2

i

xo1
i − xo2

i

∣∣∣∣ . (3.3)

• Solutions near parents are more likely to be chosen as offspring’s than distant solutions.

The probability distribution used to create children solutions is given by:

P (β) =

 0.5(nSBX + 1)βn
SBX , if β ≤ 1

0.5(nSBX + 1) 1
βnSBX+2 , otherwise

, (3.4)

where nSBX is any non-negative real number. The higher value of nSBX gives a higher

probability of creating children near parents. Note that whereas in single objective

evolutionary algorithms nSBX is usually set at 2, in MOEAs this parameter is usually

set higher nSBX ∈ [5, 20].

The SBX procedure step by step:

1. Random number u ∈ [0, 1) is chosen.

2. β̄ is calculated by equating the area under the probability function 3.4 equal to u:

β̄ =

 (2u)
1

nSBX+1 , if u ≤ 0.5(
1

2(1−u)

) 1
nSBX+1

, otherwise
(3.5)

3. Children solutions are calculated:

xo1
i = 0.5

[
(1 + β̄)xp1

i + (1− β̄xp2
i )

]
,

xo2
i = 0.5

[
(1− β̄)xp1

i + (1 + β̄xp2
i )

]
. (3.6)

Mutation

After the crossover step, a mutation is applied with the probability pmut. The mutation

with a polynomial distribution proposed in [Deb and Goyal, 1996] is implemented. The
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current value of the variable is changed to a nearby value using a polynomial probability

distribution with the mean at the current value:

P (δ) = 0.5(nm + 1)(1− |δ|)nm , (3.7)

where nm is a parameter of the mutation. A higher value of nm creates a steeper probability

distribution, i.e. the probability of a big mutation is lower.

The steps of the mutation operator are similar to SBX:

1. Random number u ∈ [0, 1) is chosen.

2. δ̄ is calculated by equating the area under the probability function 3.3 equal to u:

δ̄ =

 (2u)
1

nm+1 − 1, if u < 0.5

1− [2(1− um)]
1/(nm+1), if u ≥ 0.5

(3.8)

3. The new value of the gene i is calculated:

xi = xi + (xmax
i − xmin

i )δ̄. (3.9)

After the mutation step is finished, the values of objective functions calculated for new

individuals.

Optimizer’s parameters

To conclude this section, the summary of parameters necessary to be set, their meaning

and feasible values are resumed in Table 3.2. Also, the parameter values used for all compu-

tations presented further are stated. Note that for selection steps of individual algorithms no

special parameters are needed.

3.3.1 Weighted Sum Method

As was already mentioned, this is the most popular classical method. Each objective is

multiplied by a user defined weight and their sum is optimized, instead of solving equa-
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Parameter Meaning Possible values Used

Pop parent population size > 0 -

Off offspring population size > 0 0.5*Pop

pswap probability of uniform crossover [0,1] 0.2

pSBX probability of SBX [0,1] 0.9

nSBX SBX distribution parameter [1,∞) 15

pmut probability of mutation [0,1] 1/Dim

nmut mutation distribution parameter [0,∞) 20

generationlimit stopping criterion > 0 -

Table 3.2: Algorithm parameters summary. Dim is the number of decision variables. Note

that contrary to GRADE algorithm the probability of variation operators is applied for each

gene.

tion 3.2. The problem is converted into:

minimize F (x) =
k∑

i=1

wifi(x), (3.10)

where wi is the weight of the i-th objective function. Usually, the weights are chosen such

that their sum is equal to one.

Although this method is really easy and intuitive, the biggest obstacle is obvious: setting

the weights. The weights express the relative importance of individual objectives, which,

in real world applications, is difficult to determine. The success of WSM also depends on

the scaling of objectives; all of them should have more or less the same order of magnitude

to affect the value of F (x) similarly. Therefore, not only the weight vector must be set, but

also the normalization of objectives must be performed. Similarly to the weight vector, it is

difficult to determine in advance which objectives’ values can be reached and, accordingly,

to properly set the normalization vector.

It is shown in [Miettinen, 1999] that for a convex problem WSM is able to find solutions

on the entire Pareto optimal front. Unfortunately, nonconvex problems are unbeatable for

WSM [Deb, 2001], see Figure 3.4.
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Figure 3.4: The principle of weighted sum method. The weight vector determines the slope

(−w1/w2) of lines with the same value of F (x). With moving the line from right to left the

F (x) value is decreasing; the minimum comes with a line which is tangential to the feasible

space, see the left picture. With different weight vectors, all Pareto optimal solutions in

left picture can be found. On the contrary, in the right picture, with a nonconvex shape of

the Pareto optimal front, no weight vector can produce a tangent point within the region

BC. [Deb, 2001]

Implementation

The implementation of this method is very straightforward: in the environmental selection

step, Pop individuals with the lowest value of F(x) survive. And it is again the F (x) value,

which determines the winner in the tournaments during mating selection. The result of one

optimization run is only one solution- the one with the lowest F(x) value.

3.3.2 Average Ranking Method

The Average ranking method (AR) [Bentley and Wakefield, 1998] is another algorithm

which merges all objectives into one function. But, contrary to WSM, this method is range-

independent, does not require any a priori information and can find more Pareto optimal

solutions in one optimization run. Another difference is the ability of AR to find the Pareto

optimal solution even for nonconvex functions. On the other hand, this method does not

ensure the identification of nondominated solutions; moreover, such solutions can be lost in
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Figure 3.5: Principle of average ranking method. One can see that the method can fail in

determining nondominated solutions, i.e. the dominated solution B has a lower average rank

than nondominated solutions A and C.

the next generations.

Solutions are sorted according to individual objectives and the value corresponding to its

order is assigned to the particular solution, see Figure 3.5. Then, the fitness value for each

solution is calculated as an average of all its ranks. The method prefers solutions which

dominate more solutions than others do.

Implementation

The implementation of AR is not complicated either: The value of the average rank de-

termines which solution survives the environmental selection and wins the tournament. The

result of the optimization process are Pop solutions with the lowest average rank.

3.3.3 Nondominated Sorting Genetic Algorithm II (NSGA-II)

This method was proposed in [Deb et al., 2000] as an improved version of the earlier

NSGA algorithm. The main problems of NSGA were: a computationally demanding algo-

rithm for the sorting of solutions, no elitism and the necessity of determining the sharing

parameter. The improved version eliminates all these obstacles. The quality of a single in-

dividual p is determined by two attributes: the nondominated rank prank and the crowding
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Figure 3.6: Nondominated rank and crowding distance calculation for NSGA II.

distance pdistance.

The nondominated rank determines the order of the Pareto optimal front to which the

individual belongs; it expresses the position of the individual in the objective space regard-

ing the Pareto optimality and guides the convergence to the true Pareto optimal front, see

Figure 3.6. As the sorting procedure the authors proposed so called “fast nondominated sort-

ing”: At first, for each solution p the domination count np is determined, i.e. the number of

solutions which dominate the solution p and a set Sp of solutions which are dominated by

the solution p. Obviously, nondominated solutions have a domination count equal to zero.

Thereafter, prank = 1 is assigned for all solutions with np = 0, their Sp is visited and the

domination count of all its members q is reduced by one. If any nq = 0 after the reduction, it

is placed in a separate list Q. This step is repeated with the members of Q and the next front

is identified. Although this sorting procedure is fast, i.e. it has a lower time complexity than

the naive approach t sorting, it has higher memory demands.

The crowding distance attribute determines the density of solutions in the neighbourhood

of an individual, see Figure 3.6, and it maintains the diversity within the Pareto optimal front.

Before the computation, the population is sorted in an ascending order according to each ob-

jective. Then, for each objective, the infinite distance is assigned to the boundary solutions

(i.e. solutions with the lowest and the highest values). Thanks to this assignment, the bound-

ary points are always selected. For all other solutions, the distance value is computed as
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Figure 3.7: Environmental selection of NSGA II.

an absolute normalized difference between two adjacent solutions. At the end, the crowding

distance is a sum of distance values for all objectives.

Implementation

The environmental selection is shown in Figure 3.7. For the mating selection, there is

not one fitness function value, but both the above mentioned attributes are used. At first,

the nondomination rank of individuals chosen for the tournament is compared. If the rank

is different, the one with the lower rank is copied to the mating pool. In the case that both

individuals belong to the same Pareto optimal front, the one with a higher crowding distance

(i.e. the one from a less crowded region) will be part of the recombination.

3.3.4 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

Similarly to NSGA-II, SPEA2 was proposed in [Zitzler et al., 2001] as an improved ver-

sion of an earlier SPEA algorithm. In SPEA2, each individual i is assigned a fitness value

F (i), composed of two parts. The first one, so called raw fitness R(i), is determined by the

strength of individuals with regard to the Pareto dominance, while the second part, density
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Figure 3.8: Left: Strength (S) and raw fitness (R) calculation. Right: The truncation proce-

dure, numbers determine the order in which solutions will be rejected.

D(i), expresses the quality of the individual regarding the proximity of the other solutions.

To calculate R(i), the strength S(j) is determined for all individuals in the population P

as a number of solutions which dominates j. Then, raw fitness is computed as:

R(i) =
∑

j∈P,j�i

S(j), (3.11)

i.e. the strength of the individual is given by the sum of the strength of its dominators.

Therefore, nondominated solutions have R(i) = 0, see Figure 3.8.

For density, the second part of F (i), the k-th nearest neighbour method is adopted in

SPEA2. The distances to all individuals j (in the objective space) are quantified for each

individual i. Then, these distances are sorted in increasing order. The k-th element of this

sorted list (σk
i ) is used for the density calculation:

D(i) =
1

σk
i + 2

(3.12)

The constant 2 is added to the denominator to ensure that D(i) ∈ (0, 1). The value of k is

determined by the square root of the population size: k =
√
Pop.

Finally, the fitness F (i) can be calculated:

F (i) = R(i) +D(i). (3.13)
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Figure 3.9: Environmental selection of SPEA2.

In the environmental selection step, nondominated solutions (individuals with F (i) lower

than one) are copied to the new population. If their number nnondom is equal to the population

size Pop, the step is completed. But this is very rare; usually the new population is too

small (Pop > nnondom) or too big (Pop < nnondom). In the first case, the population is

filled up to Pop individuals with dominated solutions. The original population is sorted

in increasing order according to theindividual’s fitness value and the first (Pop − nnondom)

individuals with F (i) > 1 are added to the new population. In the second case, the non-

dominated set must be truncated: Solutions are removed iteratively from the nondominated

set until (nnondom = Pop). In each iteration, the solution with the minimum distance to

the other solutions is removed. If there are two solutions with the same minimum distance,

the solution with the second smallest distance is rejected and so forth, see Figure 3.8 for a

better understanding of the truncation procedure.

Implementation

The environmental selection is shown in Figure 3.9 and all steps are described above. In
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the mating selection, the winner of a tournament is the solution with a lower fitness value.

3.4 Multi-objectivization and Helper-objectives

The popularity of multi-objective optimization has been increasing during the last decades.

Thanks to it, publications are appearing in the last years pointing out that reformulating

a single-objective optimization problem (SOP) in terms of more objective functions can re-

duce the runtime or increase the efficiency of the optimization process.

This idea has firstly appeared for solving constrained SOP, which is transformed into

an unconstrained multi-objective optimization problem. Two main approaches to the trans-

formation can be distinguished [Mezura-Montes and Coello, 2006]: Another function de-

termined by the sum of constraint violations is added to the original objective function, or

individual constraints are transformed into additional objectives.

The approach to the parameter estimation proposed in the thesis is inspired by an idea

presented in [Knowles et al., 2001]. Here, the authors introduced a way how to deal with

the multi-modality of a single-objective problem. The authors suppose that expanding the

SOP problem to the multi-objective space gives an algorithm more freedom to explore

and decreases the probability to be trapped in local minima. They call the method multi-

objectivization: the original objective is replaced with a set of new objectives or new objec-

tives are added to the original one. In either case, it is necessary to ensure the global optimum

of the original problem is one of the Pareto optimal points of the new problem. As a solution

to the original problem, the one with the lowest original objective from the Pareto optimal

front is chosen.

Two examples are solved in the referenced article: the hierarchical-if-and-only-if func-

tion and the travelling salesman problem. As optimizers a simple hill-climbing algorithm

and simulated annealing for the original single-objective problem and the Pareto archived

evolutionary strategy (PAES) [Knowles and Corne, 2000] for the new, reformulated, prob-

lem are used. The results show improvements with respect to the single-objective strategy.

The theoretical runtime analysis of the multi-objectivization method on a plateau-function is

presented in [Brockhoff et al., 2007]. The authors conclude that adding objectives can both
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speed up or slow down the optimization process. In extreme cases, the effect can make a

difference between a polynomial and exponential runtime.

A similar method was proposed by Jensen [Jensen, 2004]. The author uses additional

helper-objectives to guide the search of evolutionary algorithms in high-dimensional spaces.

In the cited paper, it is shown how the solving of the problem as a multi-objective one can

lead to the decrease or even the disappearance of difficulties known from the single-objective

optimization, such as falling into local minima or decreasing diversity. The main difference

from the multi-objectivization theory is the emphasis on the conflict between the original

objective and helper-objectives, which is, according to the author, necessary to maintain the

diversity. In the referenced paper, the proposed concept is tested on the job shop schedul-

ing problem and the travelling salesman problem. Presented results show an improvement

compared to the single objective optimization. The author recommends to use one dynamic

helper-objective as the most promising approach, since using too many helper-objectives at

the same time decreases the selection pressure of the algorithm.

The helper-objective approach was later used by Greiner et al. [Greiner et al., 2007]

in a real design optimization problem belonging to the field of computational mechanics.

Particularly, the bar frame optimum design problem of constrained mass minimization was

solved. The authors compare single objective optimization with three multi-objective algo-

rithms. The best overall average results were achieved with the multi-objective approach.
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PERFORMANCE ASSESSMENT

4.1 Test problems

To identify the algorithm suitable for the multi-objective parameter estimation, the be-

haviour of algorithms was studied on a set of known multi-objective test problems; ZDT1

- ZDT6 functions are from [Zitzler et al., 2000] and dtlz2a - dtlz4a from [Knowles, 2006].

They are designed to test the MOEAs’ ability to deal with particular difficulties, which can

occur in real world problems. All presented problems are to be minimized. Note that con-

strained problems are not tested, because parameter estimation problems are not constrained

either.

The ZDT1 test function has a convex Pareto optimal front:

f1(x1) = x1

f2(x) = g
(
1−

√
f1/g

)
g(x2, ..., xn) = 1 + 9

n∑
i=2

xi

n− 1
, (4.1)

where n = 30 and xi ∈ [0, 1]. The Pareto optimal front is formed with g(x) = 1.

The ZDT2 test function is the nonconvex counterpart to ZDT1:

f1(x1) = x1

f2(x) = g
(
1− (f1/g)

2)
g(x2, ..., xn) = 1 + 9

n∑
i=2

xi

n− 1
, (4.2)

where n = 30 and xi ∈ [0, 1]. The Pareto optimal front is formed with g(x) = 1.



Performance assessment 39

The ZDT3 test function examines the ability of MOEAs to tackle discontinuity in the

Pareto front; it consists of several non-contiguous convex parts:

f1(x1) = x1

f2(x) = g
(
1−

√
f1/g − (f1/g) sin (10πf1)

)
g(x2, ..., xn) = 1 + 9

n∑
i=2

xi

n− 1
, (4.3)

where n = 30 and xi ∈ [0, 1]. The Pareto optimal front is formed again with g(x) = 1.

The ZDT4 test function contains 219 local Pareto optimal fronts and, therefore, tests the

MOEAs’ ability to deal with multi-modality:

f1(x1) = x1

f2(x) = g
(
1−

√
f1/g

)
g(x2, ..., xn) = 1 + 10 (n− 1) +

n∑
i=2

(
x2
i − 10 cos (4πxi)

)
, (4.4)

where n = 10 and x1 ∈ [0, 1], and x2, ..., xmn ∈ [−5, 5]]. The global Pareto optimal front is

formed with g(x) = 1; the best local Pareto optimal front with g(x) = 1.25.

The ZDT6 test function includes two difficulties caused by the nonuniformity of the

search space: first, the Pareto optimal solutions are nonuniformly distributed along the global

Pareto front (the front is biased for solutions for which f1(x) is near one); second, the density

of solutions is the lowest near the Pareto optimal front and the highest away from the front:

f1(x1) = 1− exp (−4x1) sin
6 (6πx1)

f2(x) = g
(
1− (f1/g)

2)
g(x2, ..., xn) = 1 + 9

(∑n
i=2 xi

n− 1

)0.25

, (4.5)

where n = 10 and xi ∈ [0, 1]. The Pareto optimal front is formed with g(x) = 1 and is

nonconvex.
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DTLZ2a and DTLZ4a:

f1 = (1 + g) cos(xα
1π/2) cos(x

α
2π/2)

f2 = (1 + g) cos(xα
1π/2) sin(x

α
2π/2)

f3 = (1 + g) sin(xα
1π/2)

g =
n∑

i=3

(xi − 0.5)2

α =

 1, in DTLZ2a

10, in DTLZ4a
(4.6)

where xi ∈ [0, 1], n = 8. The Pareto front is one eighth of a sphere of radius 1, centred on

0,0,0. The Pareto optimal set consist of all solutions where all but the first decision variables

are equal to 0.5, and the first decision variable may take any values in [0,1]. The effect of

setting α = 100 is to severely bias the density distribution of solutions toward the f3 − f1

and f2 − f1 planes.

DTLZ7a

f1 = x1

f2 = x2

f3 = (1 + g)h

g = 1 + 9/6
n∑

i=3

xi

h = 3−
2∑

i=1

[
fi

1 + g
(1 + sin(3πfi))

]
, (4.7)

where xi ∈ [0, 1], n = 8. This problem has four disconnected regions of the Pareto front.

4.2 Performance assessment

The goal of performance assessment is to determine whether an algorithm A gives overall

better results than an algorithm B. Unlike in single-objective optimization problems, where

the solution is only one individual, in MOP the solution is a set of individuals, a so called

approximation set. Therefore, the decision whether one approximation set is better than an-

other is not so easy. In the MOEA literature, many approaches are proposed to measure and
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Problem Dimension Objectives Properties

ZDT1 30 2 convex

ZDT2 30 2 nonconvex

ZDT3 30 2 convex, disconnected

ZDT4 10 2 nonconvex, multimodal

ZDT6 10 2 nonconvex, nonuniformly spaced

DTLZ2a 8 3 nonuniformly spaced

DTLZ4a 8 3 nonuniformly spaced

DTLZ7a 8 3 disconnected

Table 4.1: Test problems summary.

compare the MOEA’s performance. They usually measure both the above mentioned goals

of MOP, i.e. the proximity to the true Pareto front and the area covered by the approximation

set. Anyway, different assessment methods can give different results for the same approxi-

mation set. Therefore, it is necessary to mention which method was used for the assessment;

or more quality indicators can be used for the same approximation set and only if they give

the same result, the result is assumed to be reliable.

The methods for performance assessment proposed in [Knowles et al., 2006] are used in

the thesis. From presented indicators, two unary indicators1 - the hypervolume and the ep-

silon indicator - and an empirical attainment function were chosen for comparison. All

methods require the normalized approximation set which contains only nondominated solu-

tions. For this preprocessing as well as for the computation of indicators PISA software tool,

available at http://www.tik.ee.ethz.ch/pisa/, was employed.

Epsilon indicator

A binary indicator Iε(A,B) determines the minimum factor ε by which each point of

the approximation set B needs to be modified such that the transformed approximation set

is weakly dominated by A. There are two versions of the epsilon indicator - additive and

1 Unary indicators are defined as the mapping of the approximation set to the real number.
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Figure 4.1: Unary indicators. Left: epsilon indicator. Right: hypervolume indicator.

multiplicative. The modification for an additive version of this indicator is adding the factor

ε to the set B, for a multiplicative version the set B is multiplied by Iε(A,B). To compare

the optimizers among each other it is better to use a modified, unary, version of this operator:

Iε(A) = Iε(A,R), (4.8)

where R is a reference set, which is the same for all optimizers. The lower value of the addi-

tive indicator Iε(A) means a better performance. Iε+(A) is used in this thesis, see Figure 4.1.

Hypervolume indicator

The hypervolume indicator IH measures the hyperspace enclosed by the Pareto set ap-

proximation and is to be maximized. Note that the objective space must be bounded or

a bounding point, which is at least weakly dominated by all points from the approxima-

tion set, must be chosen. Again, an unary version of the indicator exists to compare more

optimizers:

I−H(A) = IH(R)− IH(A), (4.9)

i.e. the modified version is defined as a difference between the hypervolume indicator for

a reference set R and an approximation set A, see Figure 4.1. On the contrary to the original

indicator, a lower value identifies a better approximation set. A value lower than zero means

that the set A dominates the reference set R.
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Empirical attainment function

Unlike unary indicators, the output of this performance measure is a function, so called

attainment surface function. This indicator was chosen because its results can be plotted in

the objective space and it provides better understanding of the obtained nondominated front

and optimizers can be compared visually (of course only up to 3 objectives).

Because MOEAs are stochastic, the results of the optimizer from r runs can be described

by a distribution. The empirical attainment function calculates a relative frequency that some

objective vector was attained. Using this frequency distribution, a k% attainment surface can

be derived and plotted. It divides the objective space into two parts: the goals that have been

attained and the goals that have not been attained with a frequency of at least k% from r

runs.

Statistics

As mentioned above, MOEAs are stochastic algorithms; therefore, the output can differ in

each run. To evaluate the performance of individual optimizers, it is necessary to make more

runs, calculate the above proposed indicators and then perform statistical analysis to make

a conclusion. In [Knowles et al., 2006], a statistical analysis approach is proposed and the

mentioned PISA software tool includes particular statistical tests. As the normal distribution

of the resulting indicators cannot be assumed and more than two algorithms are compared,

the Kruskal-Wallis rank test is used. The values of indicators are transformed into ranks and

the hypothesis that the samples are not identical is tested. If this test is passed, the samples

are pair-wise compared and one tailed p-value is computed.

4.3 Results on test problems

Population size

Studies which can be found in multi-objective literature usually deal with big populations

(i.e about 100 individuals), but the task of multi-objective parameter estimation is not the

same as a classical MOP. We are not interested in the whole Pareto front; in fact, we expect
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only one optimal solution, but, on the other hand, if this optimal solution is not found, the

Pareto optimal solutions can give interesting information about the model and the user can

choose the least poor solution. Therefore, the tests presented here are focused on smaller

populations to simplify the final decision making phase and to decrease the computational

time. With the number of solutions up to 40, the user can choose the best solution visually.

Note that the term population size used here refers to the parameter Pop. All presented

statistics are for 100 optimizer’s runs.

As the WSM algorithm provides only one Pareto optimal solution in one run, for the

performance and behaviour study, the algorithm was started Pop-times with a random weight

vector for each run, to get the same size of the approximation set as with other algorithms. Of

course, this approach is very time consuming and therefore, not applicable in real engineering

applications.

At first, to decide whether and how much a small population deteriorates the MOEAs

behaviour, the comparison of hypervolume and epsilon indicators for all test problems was

provided for population sizes: 12, 20, 40 and 100. Figure 4.2 shows boxplots for indicators

after 100 generations of NSGA2. As the number of objective function evaluations (and

consumed time) is different for individual methods in this case, comparison is also shown

for the same number of evaluations, see Figure 4.3. The results for other algorithms are

presented in Appendix A, Figures A.1 - A.6. Note that a lower value of an indicator indicates

a better performance regarding to this indicator. To mark any population size performance

significantly better both indicators should be lower.

The population size 100 outperforms smaller population sizes for ZDT4, dtlz2a and dtlz4a

problems for all algorithms. For the remaining test problems, a smaller population gives

better or comparable results. Only the WSM algorithm shows higher sensitivity to the pop-

ulation size.

Another important parameter for the estimation of the population size effect is the time

needed for optimization. Values for three different population sizes are stated in Table 4.2.

Only three test problems representing all test problems are listed: ZDT1 has 30 variables
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Figure 4.2: Influence of population size for NSGA-II algorithm - after 100th generation.

Population size: black = 12, red = 20, blue = 40, green = 100

and 2 objectives, ZDT6 10 variables and 2 objectives and dtlz7a 8 variables and 3 objec-

tives. Therefore, not only the effect of a population size but also the influence of variable

or objective numbers can be studied. Figure 4.4 shows the time needed for dtlz7a function.

Obviously, except the WSM algorithm times are not linear (in the case of SPEA2 algorithm

even far from being linear).

Based on indicators and time analysis, it was decided that a higher precision which can

be obtained with a bigger population is not so advantageous due to the necessary time re-

quired for the optimization and the decision making process. Therefore, all the following

computations work with population sizes up to 40.
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Figure 4.3: Influence of population size for NSGA-II algorithm - after 1000 function evalu-

ations. Population size: black = 12, red = 20, blue = 40, green = 100

Performance of algorithms in time

The behaviour of individual algorithms during the optimization process and their compari-

son was studied, to get an idea which optimizer(s) can be useful for the parameter estimation.

From above presented test problems, only four were chosen as representatives of the difficul-

ties one can meet in a real engineering parameter estimation problem. One possible obstacle

can be a relatively high number of decision variables; ZDT1 was chosen as a representative

of this problem. Another probable situation in parameter estimation is a nonuniform density

in the objective space - therefore, ZDT6 is the next function for detailed study. The next

two functions represent three objectives problems - dtlz2a and dtlz7a - they again test the

ability of MOEAs to deal with nonuniformly distributed solutions in the decision space. For
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Algorithm Problem

ZDT1 ZDT6 dtlz7a

Population size 20 50 100 20 50 100 20 50 100

AR 0.039 0.162 0.512 0.020 0.111 0.354 0.020 0.121 0.548

NSGA-II 0.044 0.163 0.447 0.020 0.097 0.308 0.022 0.116 0.362

SPEA2 0.107 1.096 6.569 0.081 0.923 6.431 0.098 1.007 6.767

WSM 0.045 0.115 0.247 0.016 0.043 0.103 0.012 0.034 0.083

Table 4.2: Time consumption for test problems, average time for 100 generations.

0 10 20 50 100
population size

0

1

2

3

4

5

6

7

tim
e 

[s
]

AR
NSGA-II
SPEA2
WSM

Figure 4.4: Time needed by each algorithm for 100 generations of dtlz7a optimization.

this testing, the population size was set at 40; all the other algorithm’s parameters have val-

ues presented in Table 3.2. 100 runs were performed, for WSM 40 * 100 runs for reasons

mentioned above.

As the first step of this comparison, epsilon and hypervolume indicators for the chosen

generation were computed and the Kruskal-Wallis test was performed. In Table 4.3 a sample

output for this test is shown. In the table are p-values for each pair of algorithms with respect
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to the alternative hypothesis that the indicator values for algorithms in rows are significantly

better than those for algorithms in columns (significance level α = 0.05). From the first part

of the table one can see that all algorithms perform better than AR, moreover, NSGA-II and

WSM perform better than SPEA2. The same conclusion can be made from the second part

of the table for the hypervolume indicator.

dtlz7a/Iε+ dtlz7a/I−H

AR NSGAII SPEA2 WSM AR NSGAII SPEA2 WSM

AR - >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05

NSGAII 2.6e−84 - 4.2e−30 >0.05 2.2e−99 - 3.0e−54 >0.05

SPEA2 6.2e−32 >0.05 - >0.05 1.1e−23 >0.05 - >0.05

WSM 1.02e−84 >0.05 2.7e−30 - 3.1e−104 >0.05 2.3e−59 -

Table 4.3: Kruskal-Wallis test for dtlz7a function in 100th generation.

The analysis from these tables is not very convenient, therefore, a graphical representation

of this test is presented. It is counted how many times each algorithm is better than the other

algorithm with regard to both indicators, i.e. for results in Table 4.3 it is 2 for NSGA-II and

WSM and 1 for SPEA2. These numbers are then plotted in the stacked bar graph. This is

done for each watched generation and algorithm, see Figure 4.5 for the resulting graphs.

Another possibility for displaying and comparing the evolution of indicator values in time

are boxplots, see Figure 4.6 for dtlz2a function, for other functions see Appendix A Fig-

ures A.7 - A.9. For better readability, the boxes are without outliers.

The results of NSGA-II, SPEA2 and WSM are comparable. WSM converge faster at the

beginning, but, keep in mind, multiple runs are needed for these results. The performance

of AR is very poor. The variance in the obtained results is high for the SPEA2 algorithm.

Moreover, it seems SPEA2 has problems with the three objectives problem dtlz7a.

Next, the empirical attainment function for ZDT1 and for the ZDT6 function were com-

puted, to observe the evolution of the Pareto front, see Figure 4.7 and 4.8 for 50% and 75%

attainment surfaces. Note that for both problems the original function values are transformed
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Figure 4.5: Graphical comparison of MOEAs performance in time.

Figure 4.6: Evolution of epsilon (left) and hypervolume (right) indicator for dtlz2a function.

Black: AR, red: NSGA-II, blue: SPEA2, green: WSM.

into the interval [1, 2] required by the PISA algorithm. Therefore, the values do not corre-

spond with the Pareto optimal front described in equations 4.1 and 4.5. These plots confirm

the conclusions obtained from the indicator comparison, i.e. WSM and NSGA2 seem to be

the most promising methods. For the ZDT1 problem, all algorithms except AR perform well;

WSM converges faster than other algorithms but in the 100th generation their performance
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Figure 4.7: Attainment surface for ZDT1 function in 50 (top left), 100 (top right), 200 (bot-

tom left) and 500 (bottom right) generations.
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is almost the same. The AR method is able to find only solutions where f1 has its optima,

which is quite an easy task because f1 is a function of only one variable.

In the ZDT6 problem, there are two important phenomena. At first, the inability of WSM

to find a solution of nonconvex problems is clearly demonstrated. Only extreme solutions

for single objectives were found (to show this, the WSM attainment surface is plotted only

as marks). Second, the behaviour of AR must be mentioned; the algorithm performs really

well at the beginning but then converges to extreme solutions leaving intermediate parts.
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Real world applications
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Chapter 5

MULTI-OBJECTIVE PARAMETER ESTIMATION

5.1 Methodology

As was stated in Chapter 1, the forward mode of the parameter estimation problem can be

expressed by this equation:

minimize F (x) = ‖yE − yM)‖ = ‖yE −M(x)‖. (5.1)

where yE are experimental data and yM the output of the model. The goal is to find x with

which the minimum comes. As was noted earlier, this error function is often multi-modal.

Based on the multi-objectivization theory [Knowles et al., 2001], we propose to add ad-

ditional objectives to the original error function. As the output of the model or experiment

is usually some curve, the original function is usually represented by the Root Mean Square

error (RMS). The easiest way for new objectives is adding error functions based on prob-

lematic or more important parts of the curve. If this knowledge is not available, a few runs

of a traditional single-objective parameter estimation can be processed to determine these

parts. Additional objectives can be the differences between the desired and simulated curve

not only in the terms of the functions’ values but also the difference in the x-axis values. The

difference between the slopes of curves (i.e. numerical derivatives) can be used as well.

In the next two chapters, the proposed methodology will be tested. Therefore, all four

algorithms are still taken into account. The testing algorithms phase will consist of:

1. Verification: The process of determination whether the estimation method is able to re-

find the model parameters xM from the outputs yref of a reference simulation done for

any choice of xref from the domain. Here, two steps can be distinguished:
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(a) comparing reference model inputs xref with the identified ones xM ;

(b) comparing reference model outputs yref with the identified ones yM ;

2. Validation: The process of determining whether the identification method is able to

find the model parameters xM corresponding to the experimental outputs yE . Here,

only the experimental outputs yE with the identified ones yM can be compared.1

Note that in engineering practice, the parameter estimation process cannot be completely

separated from the model verification and validation. Therefore, it is really difficult to judge

if the obtained errors are caused by inaccuracy in the mathematical model or by inaccuracy

of the estimation method. As the models used in this work are proposed by other authors, all

of them will be a priori supposed to be already verified and validated.

Applications are focused on small populations to simplify the decision making process

and on a small number of generations (or functions evaluations) to speed up the optimization

process.

A graphical comparison for stochastic methods proposed in [Nosek and Lepš, 2009] is

used for presenting the results. This method proposes a metric called Relative Winning

Score (RWS) that counts only winners in some discrete steps of the optimization run. The

winner is a method outperforming all the others in the particular run, i.e. for the method i:

RWSi =
number of runs where i is the winner

number of runs
. (5.2)

As the sum of RWS for all compared methods is equal to one, the results can be plotted in

the stacked bar graph, where the winner is clearly visible. On the other hand, this method

does not give any information about the average or the worst values of objectives.

5.2 Existing Applications of Multi-Objective Parameter Estimation

Although multi-objective parameter estimation is not very common, there are some pub-

lications dealing with this approach. The presented problems are multi-objective by their

1 Recall that physical experimental inputs xE are practically always unknown.
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nature, i.e. there are more experiments or measurements. Most of these papers do not solve

the problem as multi-objective but use the weighted sum method or the min-max solution

(i.e. the maximum of all objectives is to be minimized).

Mertens et al. [Mertens et al., 2006] present the multi-objective parameter estimation for

a soil model. The authors use two different measurements to define objective functions

based on the difference between the output from the model and the experiment. They use

a weighted sum approach to merge both objectives and a specialized hydrology optimization

algorithm is used for optimization.

Gendy and Saheb [Gendy and Saleeb, 2000] developed constitutive material estimation

software COMPARE which enables determining material parameters for a hyper elastic large

strain model. The objectives are based on a differential form of constitutive models and

sensitivity analysis. The optimization objectives are merged using the weighted objective

methodology and then optimized by a sequential quadratic nonlinear programming tech-

nique.

Reardon [Reardon, 1998] used a fuzzy logic based multi-objective algorithm to optimize

micromechanical model parameters of copper powder. This algorithm incorporates all ob-

jectives into one using a fuzzy rule, but works with a population and selection based on the

Pareto optimality concept.

The multi-objective parameter estimation of microbiological and biological models is pre-

sented in [Wang and Sheu, 2000] and in [Liu and Wang, 2008], respectively. In both papers,

the MOP problem is solved as a min-max problem by the differential evolution.

A new schema, so called multi-objective evolutionary annealing-simplex, is presented

in [Efstratiadis and Koutsoyiannis, 2008], where the method is able to deal with the cali-

bration of complex hydrological models. Their model has 18 parameters to estimate and

7 objectives to be optimized. Wohling et al. [Wöhling et al., 2008] compare three multi-

objective optimization algorithms for inverse modelling of a vadose zone. Last but not least,

Shi et al. [Shi et al., 2006] used NSGA II for dynamic differential equations parameters

estimation.



Chapter 6

AFFINITY MODEL OF CEMENT PASTE HYDRATION

The first presented problem is the parameter estimation for the affinity model of cement

paste hydration. Modelling cement paste is very important in civil engineering, because con-

crete inherits the majority of its properties from the cement paste. Also, the final reliability

and durability of construction strongly depends on the heat released during the hydration

process of cement paste. The modelling of concrete hydration represents a challenging task

especially due to its multi-scale nature and the missing mathematical formulation of sev-

eral underlying phenomena. The missing description can be replaced by a cellular automata

model [Šmilauer, 2006]. Recently, a combination of the CEMHYD3D model [Bentz, 2005]

with homogenization processes was employed as a basis for the optimization of the cement

paste composition [Šmilauer et al., 2008].

The CEMHYD3D model requires inputs which are not easily accessible in engineering

practice, such as the proportion of clinker minerals or the gypsum volume (other parameters

are the water to cement ratio and fineness) and the computation is time demanding. This ex-

cludes the CEMHYD3D model from its common use for the prediction of hydration heat. On

the other hand, a phenomenological model derived from isothermal calorimetry ([Šmilauer,

2010]) has only four parameters and its time demands are very low. This model is called

affinity model and is based on the product of the potential heat Qpot given by the chemical

composition and the curve of the degree of hydration (DoH).

The affinity model provides a simple framework describing all stages of cement hydration.

The rate of hydration can be expressed by the temperature-independent normalized chemical
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affinity Ã(α) ([Gawin et al., 2006])

dα

dt
= Ã(α) exp

(
− Ea

RT

)
, (6.1)

where α stands for DoH , T is an arbitrary constant temperature of hydration, R is the uni-

versal gas constant (8.314 Jmol−1K−1) and Ea is the apparent activation energy.

For the hydration heat prediction, an analytical form presented in [Šmilauer, 2010] is

used:

Ã(α) = B1

(
B2

α∞
+ α

)
(α∞ − α) exp

(
−η̄

α

α∞

)
, (6.2)

where B1, B2 are coefficients related to chemical composition, α∞ is the ultimate hydration

degree and η̄ represents microdiffusion of free water through formed hydrates. Then, a curve

of the DoH development can be obtained by t numerical integration of Equation 6.2.

The task of the parameter estimation was to estimate parameters B1, B2 and η̄ for mea-

sured hydration curves. Instead of experimental curves, the outputs from the CEMHYD3D

model were used since this model had already been verified to be capable of the hydration

heat prediction with a good agreement with experiments. A potential hydration heat Qpot

can be obtained from the Portland cement mineral composition, however, for presented cal-

culations Qpot was set at 500 J/g. The value of α∞ is derived from the water to cement

ratio:

α∞ =

 0.9, if w/c
0.42

> 0.9,

w/c
0.42

otherwise.
(6.3)

The probable values of parameters were estimated in limits shown in Table 6.1, but only

the initial population was created inside these limits. Then, the searching process was not

bounded. Only if a parameter lower than zero was created, its value was set at zero.

The main objective function was defined as a sum of differences between the desired curve

and the affinity model simulation in discrete time steps (ERR). The differences between the

curves in 2 hours (BEGIN) and 100 days (END) were added as additional objectives, see

Figure 6.1 left. For WSM, all objectives were set to have the same importance. The influence

of adding more objectives was studied. Therefore, the results for only two objectives (ERR
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min max

B1 1.0 · 106 1.0 · 108

B2 1.0 · 10−5 1.0 · 10−3

η̄ 6 9

Table 6.1: Limits for affinity model parameters.

and BEGIN) optimization and for the case of all three objectives are presented further. All

errors were introduced in a square form. In order to obtain some idea about the importance

of the proposed objectives for individual parameters, the sensitivity analysis was performed.

100 samples were generated in limits presented above using Latin Hypercube Sampling,

hydration curves were created by the affinity model and errors computed. Then, the Pearson

correlation coefficient was calculated for all errors and parameters:

cor =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
, (6.4)

where x̄ and ȳ are the means of x (parameters) and y (errors). A higher absolute value of

the correlation coefficient indicates a stronger relation between a particular parameter and

an error, which means a higher probability of success in the estimation of that parameter, see

Figure 6.1 (right) for resulting coefficients. From this, B1 seems to be the most important

parameter.
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Figure 6.1: Proposed objectives (left) and their correlation with individual parameters (right).
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Figure 6.2: Normalized parameters values of two randomly selected curves. Black line:

desired values. Yellow: GRADE, black: AR, red: NSGA-II, blue: SPEA2, green: WSM.

6.1 Verification

Following the methodology from the previous chapter, the ability of the proposed algo-

rithms to re-find the known parameters was tested first. Five curves created by the affinity

model were chosen and their parameters searched. The population size was 20; each algo-

rithm was started 50 times.

Figure 6.2 presents the estimated parameters’ values in the boxplot form and the desired

values as a line normalized on the interval (0, 1) for two curves. In the first case, all al-

gorithms found almost the same (wrong) solution. In the second case, GRADE was more

successful than all multi-objective algorithms, see also Figure 6.3 for curves generated with

randomly chosen final parameters. Here, the difference between the two and three objectives

version is almost unnoticeable, therefore, only one result for each algorithm is presented.

As the time demands of GRADE have not been compared with MOEAs yet, this compar-

ison is presented here. Average times needed for the presented task are stated in Table 6.2.

The time needed for GRADE is the second highest after SPEA, however, all algorithms are

very fast, therefore, taking time demands into account while choosing the algorithm makes

sense only if the model simulation is very fast as well, let us say up to 30 seconds.
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Figure 6.3: Hydration heat curves for verification. Note that in the left figure all resulting

curves are almost identical and in the right figure all MOEAs’ resulting curves are identical.

GRADE AR NSGA-II SPEA2 WSM

time [s] 00.94 00.75 00.72 01.00 00.63

Table 6.2: Comparison of execution time for affinity model estimation.

6.2 Validation

In the next step, five curves created by the CEMHYD3D model were chosen as “experi-

mental“ data which are to be approximated by the affinity model, see Figure 6.4. The setting

was the same as in the previous section, i.e. Pop = 20, generation limit = 1000. Per-

formance according to RWS is shown in Figure 6.5. Comparison was based on the lowest

ERR values taken from the obtained Pareto fronts. Three extreme cases are studied in de-

tail further: C1, where WSM outperforms the other methods in all generations; C3, where

GRADE is the winner and C5, where GRADE, NSGA-II and WSM seem to have similar

success ratio. The influence of an increasing number of objectives is a subject of a study as

well. However, the number of objectives does not significantly change the winning score for

individual algorithms.

To understand the differences among the mentioned cases, the evolution of average val-

ues of the main objective ERR was calculated (see Figure B.1 in Appendix B) and all final
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Figure 6.4: Target curves for affinity model estimation.

solutions for the two objectives case are plotted in the objective space, see Figures 6.6 - 6.7.

The second objective for GRADE results was also calculated. From these pictures, the main

difference between multi-objective, single-objective and multi-objective by WSM parameter

estimation is clear. WSM finds only one solution (or very similar solutions for the curve

C5), because of constant weight vector. Multi-objective algorithms (namely NSGA-II and

SPEA2) are ”distracted” by searching in more dimensions, which can lead to finding the

same solutions as WSM and GRADE, see Figure 6.6, or even better than GRADE (Fig-

ure 6.8). For the curve C3 (Figure 6.7), all multi-objective algorithms are probably trapped

in the local minimum (the average value of ERR does not change from the 20th genera-

tion), from which GRADE was able to escape thanks to CERAF methodology. (Note that

crossover and mutation operators are different for GRADE and MOEAs which can be the

cause as well.)

Figure 6.9 shows the best and the worst obtained results for the curve C1, the other curves

are presented in Appendix B, Figures B.2 - B.3. Here, the difference between the 100th and

the 1000th generation is visible as well as the influence of more objectives. Except the C3

case, the best found curves are almost identical for all algorithms.

The main advantage of multi-objective parameter estimation is presented in Figure 6.10,
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Figure 6.5: Relative winning score for affinity model, upper row: 2 objectives, lower row: 3

objectives.

where all final Pareto solutions from a randomly chosen run of NSGA-II for the three objec-

tives case are plotted and compared with the best curve found by GRADE. Neither GRADE

nor NSGA-II found the desired curve, but the NSGA-II results give the user a possibility

of choosing a solution suitable for his/her purposes (with the same computational effort as

GRADE).
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Figure 6.6: Pareto fronts for C1 - original objective vs. error at the beginning.
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Figure 6.8: Pareto fronts for C5 - original objective vs. error at the beginning.
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Figure 6.9: Resulting best and worst curves for C1. Upper figures: 2 objectives, lower: 3

objectives. Left: 100th generation, right: 1000th generation.
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Figure 6.10: Pareto curves for C3.



Chapter 7

DUAL POROSITY MODEL OF RICHARDS’ EQUATION

This chapter is inspired by a paper presenting a numerical solution for Richards’ equation

with a dual porosity conceptual model [Kuraz et al., 2010]. The mathematical and hydrol-

ogy details are not discussed here, the interested reader is referred to the original paper.

The classical Richards’ equation describes fluid movement in an unsaturated/saturated zone.

The techniques for an accurate solution are available for isotropic material, however, many

practical engineering problems deal with a flow in an environment with fractures or fissures,

which cannot be accurately homogenized. Therefore, thedual porosity model has been estab-

lished. The medium is separated into two parts, each of them is homogenized and assigned

hydraulic properties. Then, the solution is given by the superposition of these parts over the

same volume.

The numerical solver, called DRUtES, presented in [Kuraz et al., 2010] is calibrated on

the approximation of a one-dimensional vertical infiltration experiment on a rock sample

with discrete fractures1. The parameters to be calibrated are the volume ratio of the part with

fractures and unsaturated hydraulic parameters for this part - such as porosity or saturated

hydraulic conductivity; a total of seven parameters, hereafter denoted as X1−X72.

The authors presented a multi-objective parameter estimation procedure based on the

SADE genetic algorithm (previous version of GRADE [Hrstka and Kučerová, 2004]) with

the Average Ranking selection. Therefore, their result (see Table 7.3 or Figure 7.5) will be

compared with the tested algorithms.

1 The model should be used in future to evaluate the contaminant transport from the nuclear waste repository.
2 In Table 7.1 the ranges for individual parameters are stated.
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Figure 7.1: Objectives for DRUtES model proposed in [Kuraz et al., 2010].

Four objectives were proposed by the authors (see Figure 7.1 for description and Figu-

re 7.2 for their sensitivity analysis): The first objective determines the beginning of the flow

through the bottom boundary. It is a squared difference between the start of flows from the

experiment and the simulation. The second function is the horizontal RMS error in terms

of the ascending part of the graph. The third function is the RMS error of the whole curve.

This is important for obtaining macroscopic velocities, which is crucial for contaminant

transport modelling. The last objective is the vertical RMS error on the curve of cumulative

fluxes (Figure 7.1 (right)), in order to place the emphasis of the optimization algorithm on

the mass. For the GRADE algorithm and the comparison presented further, the third error

function was chosen as the main one.

7.1 Verification

Again, the ability of an algorithm to re-find known parameters was tested at first. Three

previously generated curves were to be found again. The optimization process was stopped

after 1000 generations; the population contained 40 individuals and the computation was per-

formed 20 times. Figure 7.3 shows the final boxplots of the found parameters and the desired
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Figure 7.2: Correlation of proposed objectives with individual parameters.
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Figure 7.3: Normalized parameters values for three randomly chosen curves. Black line:

desired values. Yellow: GRADE, black: AR, red: NSGA-II, blue: SPEA2, green: WSM.

values. Here, the searching process was more successful than for the affinity model from the

previous chapter. It can be said that the parameters with high correlation coefficients, i.e. X5

and X7, are identified accurately enough. Moreover, parameters X1 and X3 are identified by

multi-objective algorithms and not by GRADE. Although it is not noticeable from sensitivity

analysis, these parameters probably affect other parts of the curve than the steady state flux.

7.2 Validation

As this problem has a relatively high number of objectives and variables as well, the

difference between population sizes 20 and 40 was studied. Figure 7.4 shows the perfor-
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parameter min max

X1 10−2 10−3

X2 6.0 1.5

X3 0.7 0.1

X4 1.0 10−4

X5 2.785 · 10−4 1.0

X6 10.0 0.0

X7 0.75 10−4

Table 7.1: Limits for DRUtES model parameters.

mance of algorithms regarding RWS. This is first case of already presented results, where

AR has some remarkable success, and, it is also the first case where WSM lost completely.

Note that the RWS method takes into account only winners, therefore the average, best and

worst values of the main objective after 1000 generations are stated in Table 7.2. From these

measurements, the performance of NSGA-II seems to be comparable with GRADE.

algorithm mean min max

GRADE 0.0792 0.0111 0.1576

AR 0.1919 0.0289 0.3017

NSGA-II 0.0669 0.0326 0.1496

SPEA2 0.2763 0.1580 0.3440

WSM 0.3717 0.2899 0.6180

Table 7.2: Comparison of the main objective values after 1000 generations.

Next, the curves for the best and worst found parameters are plotted in Figure 7.5. The

comparison with the curve identified in [Kuraz et al., 2010] is also provided. From the two

types of curves presented above as a target, only the flux over the bottom boundary is shown,

because it is more interesting. The algorithms for the population size of 40 succeeded in

identifying the most important part of the curve, i.e. the maximal flux. Besides that, the



Dual porosity model of Richards’ equation 69

30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

population size 20

generation

 

grade AR NSGA−II SPEA2 WSM

30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

population size 40

generation

 

Figure 7.4: RWS for DRUtES model and two population sizes.

graphs offer some interesting ideas:

• The problem is probably multi-modal (see e.g. the worst curves in Figure 7.5 A or B)

and numerically unstable (see the worst curves in Figure 7.5 C or D).

• The population size of 40 performs significantly better, the results for this population

size are better in the 100th generation than those for the population size of 20 in the

1000th generation. This confirms the general recommendation to set the population

size according to the dimension of the problem.

• Only GRADE was able to find a solution almost identical with the desired one not

only in the steady state part but also in the steeply ascending part (see Figure 7.5 D),

although it did not have special “information” about this part like the multi-objective
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Figure 7.5: Resulting best and worst curves for DRUtES model compared with the exper-

imental curve and the curve found in the paper. Upper figures: population size 20, lower:

population size 40. Left: 100th generation, right: 1000th generation.

algorithms. On the other hand, reaching an equivalently good solution is not reliable,

see the worst curve in the same graph.

• The best fit found in the cited paper is comparable with the presented results in the

maximal flux, but lost in the ascending part of the curve.

As the last comparison, the parameters identified in [Kuraz et al., 2010] and found para-

meters are stated in Table 7.3.
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X1 X2 X3 X4 X5 X6 X7

Kuraz 0.0068 5.4829 0.4337 0.9109 15.9464 8.8991 0.0293

population size 20

GRADE 0.0100 5.9993 0.51553 0.2410 9.2703 0.8186 0.0578

AR 0.0100 5.4735 0.69735 0.6887 26.650 9.9913 0.0194

NSGA-II 0.0067 5.8514 0.6674 0.9595 24.2304 2.7508 0.02043

SPEA2 0.0068 5.4613 0.5931 0.6799 15.632 9.9418 0.0308

WSM 0.0080 5.3217 0.3424 0.1350 3.4712 1.2399 0.1974

population size 40

GRADE 0.0076 4.5484 0.4642 0.0462 1.6549 0.0080 0.5510

AR 0.0063 5.8838 0.6994 0.4144 9.5833 2.9022 0.05143

NSGA-II 0.0061 5.9741 0.6980 0.9832 20.5257 5.5109 0.02305

SPEA2 0.0083 5.4116 0.2874 0.7026 13.6379 9.2199 0.0375

WSM 0.0091 5.7455 0.6420 0.9999 33.6089 8.5364 0.0135

Table 7.3: Comparison among parameters identified in [Kuraz et al., 2010] and resulting

parameters in 1000th generation.



Chapter 8

CEMENT PASTE NANOINDENTATION

An experimental method called nanoindentation allows testing physical properties of he-

terogeneous materials in the scale of individual components [Němeček et al., 2006]. It is

based on loading the testing material by a very sharp and rigid point, see Figure 8.1. As the

loading imposed by the indenter introduces highly heterogeneous stress and strain fields, the

extraction of the material parameters from the experiment is far from being straightforward.

In particular, closed-form relations are available only for the simplest material models (lin-

ear elasticity); a more realistic constitutive description leads to a large-scale computational

simulation based on, e.g., the Finite Element Method.

In this case, the physical properties of cement paste are tested. Specimens are character-

ized by a 30 mm diameter and a 4 mm height. The water to cement ratio (w/c) is equal to 0.5;

CEM I 52.5 N Portland cement is used. For indentation, the Berkovich indenter with a pyra-

midal shape is applied. The loading is cyclic and is exerted by a force acting in a short period

of time (only several minutes). The whole experiment consists of five loading and unloading

periods with a small constant force period aimed at creep development, see Figure 8.4.

The numerical analysis was implemented using the ADINA software [ADINA, 2005].

The spatial problem could be solved as a planar problem thanks to axisymmetry [Jůn, 2005].

A finite element mesh is decomposed into 1800 isoparametric four-node elements and is

refined around the tip. The indenter is ideally rigid and the contact between the indenter

and the paste is updated in every iteration. To properly describe the cement paste non-linear

behaviour, a combined visco-plastic model was chosen.
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The tensor of the total strain is composed of three parts:

εij = εEij + εCij + εPij, (8.1)

where εEij is the time independent elastic part,

εCij is the time dependent creep strain and

εPij is the time independent plastic part.

The effective creep strain is described by the power creep law:

ε̄C = a0 σ
a1 a2, (8.2)

where a0, a1 and a2 and Young’s modulus E and the yield stress σy are parameters to be

estimated. The limits of all parameters are stated in Table 8.1.

Because of the computationally demanding run of the model (approximately 1.5 hour

per simulation of the whole cyclic loading), only the first cycle of the loading was simulated

Figure 8.1: Left: Indent from atomic force microscope. Right: Nanoindenter.
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Parameters Units Minimum Maximum

E GPa 15 45

σy MPa 20 600

a0 - 1.32 · 10−19 1.32 · 10−14

a1 - 0.49 2.50

a2 - 0.05 0.55

Table 8.1: Bounds for nanoindentation model parameters.

Figure 8.2: Objectives proposed for nanoindentation parameter estimation.

(about 20 minutes for one simulation). It can be assumed that a good fit of the first cycle leads

to sufficient accuracy in the other cycles. Moreover, after the best and the fastest algorithm

will be found, the accuracy can be increased by adding more cycles.

There are four objective functions, see Figure 8.2. The first and the main one is the RMS

error between the desired curve and the simulation. Additional objective functions are: the

difference between the “shapes” of two curves by minimizing the errors among the slopes of

the given curves, the difference between the curves at the beginning of a constant force part

and the difference between the curves at the end of the unloading part.
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Figure 8.3: Sensitivity of objectives for nanoindentation parameter estimation.

8.1 Verification

The SPEA2 algorithm was not considered in this case anymore, its performance is compa-

rable with NSGA-II in general, but for a low number of generations SPEA2 is outperformed.

As was mentioned above, this model is very time consuming. Therefore, only one opti-

mization run was performed. The population size of 20 was chosen (the number of variables

is relatively low) and the optimization process was stopped after 50 generations. Although

the number of function evaluations was set so low (Off ∗generation limit = 500), the op-

timization process takes about 5 days for one curve. The weight vector for WSM was set to

assign the same importance to all objectives, but, based on previous experience, additional

objectives were multiplied by 105 to have the order of magnitude about twice smaller than

the RMS objective.

For the verification of the nanoindentation model two curves were chosen, curves C1 and
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Figure 8.4: Loading curves for C1 and C2 verification and experimental curve.

C2 in Figure 8.4. The found parameters normalized to the (0,1) interval and the resulting

curves are shown in Figures 8.6 and 8.5, respectively. In the C1 case, WSM found a signif-

icantly better solution than the other algorithms. Moreover, the parameters were found very

accurately. For the C2 case, all algorithms found solutions almost identical to the desired

one, and in the parameter space, NSGA-II is more successful than the others. However, no

conclusion can be made based on these results, because there is only one optimization run.
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Figure 8.5: Verification on nanoindentation model: time vs. depth curves. Left: C1, right:

C2.
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Figure 8.6: Verification on nanoindentation model: parameters in parallel coordinates. Left:

C1, right: C2.

8.2 Validation

The experimental curve plotted in Figure 8.4 was to be approximated by the model. The

optimizers settings are the same as for the verification, and again, only one optimization run

was performed. The curve determined by the resulting parameters is plotted for the first

cycle, which was the subject of the estimation procedure, and for the whole cyclic loading

as well (Figure 8.7). It is clear from the latter that the idea of fitting only one cycle whose

results can be later extended to the other cycles is not correct for the experimental curve.

This can be caused by the estimation results as well as by the model itself. However, for the

first cycle, the WSM algorithm again gives the best results.
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Figure 8.7: Parameter estimation for nanoindentation experiment. Left: first loading cycle,

right: all cycles.



Chapter 9

CONCLUSIONS

The presented thesis introduces a relatively new approach to parameter estimation - a multi-

objective method. The parameter estimation problem is a process of finding the input model

parameters using the response of the model. As the estimation process is supposed to be used

repeatedly, not only the accuracy but also the efficiency of the estimation method is essential

for its choice. In some aspects, multi-objective optimization seems to fulfil these criteria.

The thesis is divided into two parts. The first one contains the basic notation for pa-

rameter estimation together with the introduction of methods. Then, the tested algorithms

are described: Chapter 2 presents in detail the GRADE algorithm, as a standard approach

to which the proposed methodology is compared. Chapter 3 deals with the multi-objective

approach to parameter estimation. At first, basic concepts of multi-objective optimization

and a brief review of existing algorithms, with an emphasis on multi-objective evolutionary

algorithms are presented. The algorithms tested in this thesis, i.e. Weighted Sum Method,

Average Ranking method, Nondominated Sorting Genetic Algorithm II and Strength Pareto

Evolutionary Algorithm 2, are introduced. Then, the idea of multi-objectivization and ob-

jective helpers, i.e. the idea of adding more objective functions to the single-objective op-

timization problem, is presented. Chapter 4 provides a brief introduction to performance

assessment for multi-objective problems and results of chosen algorithms in standard multi-

objective test problems are presented to show the advantages and disadvantages of individ-

ual methods. From this comparison, NSGA-II and WSM algorithms seem to be suitable for

multi-objectivized parameter estimation.

In the second part of this thesis, the proposed methodology is tested on three real en-

gineering tasks. Parameter estimation for the affinity model of cement paste hydration is
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discussed at first. The next problem is the identification of parameters for a numerical solver

of the dual porosity model of Richard’s equation. As the third example, parameters for the

finite element model of cement paste nanoindentation are estimated.

The main goal of this thesis was to decide whether the multi-objectivization of parameter

estimation could help. From presented results no unambiguous answer can be given. It may

help in some cases and worsen the problem in others. However, determining these cases is

a difficult task, part of future work.

From the presented algorithms, NSGA-II and WSM reach results comparable with the

classical approach represented here by the GRADE algorithm.

The advantage of NSGA-II is the result in the form of a set of equally good solutions, from

which a user can choose the best based on his/her purposes. The time demands are compara-

ble with GRADE, therefore, the only disadvantage is not such an easy implementation. This

method can be recommended to be used, when the time available for the estimation process

is not long enough to ensure the a good convergence of the standard approach.

On the contrary, WSM provides only one solution with one weight vector setting. The

time demands are also comparable with the standard method, and the implementation is very

easy in this case. Moreover, the known disadvantage of WSM is the inability to find a so-

lution for nonconvex problems. Another obstacle with WSM is the necessity of setting the

weight and scale vector. In the presented examples, all weight vectors had the same values

for all objectives. The reason, why WSM failed in some cases, can probably be associated

with the scale vector. In my opinion, the WSM method is advantageous when the main ob-

jective is dominant and the additional ones are just supportive, i.e. the searching process

is guided mostly by the first objective and the others help only in some small limits. This

works when the supportive objectives are by about two orders of magnitude smaller than the

main one. This was fulfilled in the cases where WSM succeeded, i.e. the parameter estima-

tion for the nanoindentation model and curves C1 and C5 for the affinity model parameter

estimation. In other cases, one or more of the additional objectives were higher than this

limit.
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Of course, without a good knowledge aof the model, this setting cannot be made. If

this information is not known, a few iterations with the traditional single-objective method

can be performed in advance. These iterations can be used not only to determine the order

of magnitude of additional objectives, but also the problematic parts for identifying these

objectives.
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Šmilauer, V. (To appear, 2010). Multiscale Modeling of Hydrating Concrete. Saxe-Coburg

Publications, Stirling.
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Appendix A

TEST PROBLEMS RESULTS

A.1 Effect of populations size

Figure A.1: Influence of population size for AR algorithm - after 100th generation. Popula-

tion size: black = 12, red = 20, blue = 40, green = 100
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Figure A.2: Influence of population size for AR algorithm - after 1000 function evaluation.

Figure A.3: Influence of population size for SPEA2 - after 100th generation. Population

size: black = 12, red = 20, blue = 40, green = 100
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Figure A.4: Influence of population size for SPEA2 - after 1000 function evaluation.

Figure A.5: Influence of population size for WSM algorithm - after 100th generation. Popu-

lation size: black = 12, red = 20, blue = 40, green = 100
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Figure A.6: Influence of population size for WSM algorithm - after 1000 function evaluation.

Population size: black = 12, red = 20, blue = 40, green = 100
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A.2 Performance of algorithms in time

Figure A.7: Evolution of epsilon (left) and hypervolume (right) indicator for ZDT1 function.

Figure A.8: Evolution of epsilon (left) and hypervolume (right) indicator for ZDT6 function.

Figure A.9: Evolution of epsilon (left) and hypervolume (right) indicator for dtlz7a function.

Black: AR, red: NSGA-II, blue: SPEA2, green: WSM.



Appendix B

AFFINITY MODEL PARAMETERS ESTIMATION
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Figure B.1: Average values for the original square error function in time.
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Figure B.2: Resulting best and worst curves for C3.



Affinity model parameters estimation 94

0.01 0.1 1 10 100 1000
time [days]

0

100

200

300

400

500

hy
dr

at
io

n 
he

at
 [

J/
g]

target curve
GRADE best
GRADE worst
AR best
AR worst
NSGA-II best
NSGA-II worst
SPEA2 best
SPEA2 worst
WSM best
WSM worst

0.01 0.1 1 10 100 1000
time [days]

0

100

200

300

400

500

hy
dr

at
io

n 
he

at
 [

J/
g]

target curve
GRADE best
GRADE worst
AR best
AR worst
NSGA-II best
NSGA-II worst
SPEA2 best
SPEA2 worst
WSM best
WSM worst

0.01 0.1 1 10 100 1000
time [days]

0

100

200

300

400

500

hy
dr

at
io

n 
he

at
 [

J/
g]

target curve
GRADE best
GRADE worst
AR best
AR worst
NSGA-II best
NSGA-II worst
SPEA2 best
SPEA2 worst
WSM best
WSM worst

0.01 0.1 1 10 100 1000
time [days]

0

100

200

300

400

500

hy
dr

at
io

n 
he

at
 [

J/
g]

target curve
GRADE best
GRADE worst
AR best
AR worst
NSGA-II best
NSGA-II worst
SPEA2 best
SPEA2 worst
WSM best
WSM worst

Figure B.3: Resulting best and worst curves for C5.


