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F. Strong discontinuity models

F.1 Fundamentals of fracture mechanics

F.2 Finite elements with discontinuities - introduction

F.3 Embedded discontinuities (EED-EAS)

F.4 Extended finite elements (XFEM-PUM)



19 ships broke in half without warning

reason: 

brittle fracture 

Failure of Liberty (and other) ships during WW II



panel weakened by a spherical hole
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Stress concentration near defects
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Stress concentration near defects
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panel weakened by a crack

stress singularity 

at the crack tip

Stress concentration near defects
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Stress concentration near defects
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at distances r a�

exact approximation near the tip

Singular stress field near the crack tip
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Singular stress field near the crack tip
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Singular stress field near the crack tip



general expression for the singular part of stress field

that dominates near the crack tip
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Singular stress field near the crack tip



F
2 30 mm

5 mm

1.9238 kN

a

t

F

=

=

=F

σ̂

σ̂

2a
2 20 mm

ˆ 10 MPa

a

σ

=

=

same stress intensity factor

same stress concentration near the tip

6 3/ 2ˆ 1,772 10 NmIK aσ π −= = ⋅
6 3/ 21,772 10 NmI

F
K

t aπ

−= = ⋅

Singular stress field near the crack tip



[ ]MPayσ

[ ]mmr

( )

( )

1

2 2

1 1

ˆ a r

a r a

σ ⋅ +

+ −

( ) ( )

2

2 2

2 2 2

Fa

t a r a r aπ + + −

2

IK

rπ

asymptotic

stress field

1
ˆ10 mm, 10 MPaa σ= =

2 15 mm, / 385 kN/ma F t= =

3/ 21.772 MNmIK
−=

 0

 20

 40

 60

 80

 100

 0  0.05  0.1  0.15  0.2

Singular stress field near the crack tip
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Singular stress field near the crack tip



mode II

(sliding)

mode III

(tearing)

xy

z

yσ

yxτ

yzτ

mode I

(opening)

Basic fracture modes



crack loaded in a mixed mode (combination of modes I and II):
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A crack loaded in mode I propagates 

if the stress intensity factor at its tip attains a critical value:

cIK K=

stress intensity factor

(depends on loading,

shape and dimensions

of the body 

and on the crack size)

fracture toughness

(material property)

3/ 2Nm−  

Crack propagation – Irwin (local) criterion



fG=G

2J/m N / m ≡ 

A crack loaded in mode I propagates 

if its propagation releases a critical amount of energy:

energy release rate 

(depends on loading,

shape and dimensions

of the body 

and on the crack size)

fracture energy

(material property)

Crack propagation – Griffith (global) criterion
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θσ

for mode I loading, the crack can be expected to propagate straight ahead,

but for general mixed-mode loading we need a criterion for the crack direction

maximum circumferential stress criterion

(maximum hoop stress criterion):

crack propagates in the direction 

perpendicular to the 

maximum circumferential stress

(evaluated on a circle of a small diameter

centered at the tip)
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Direction of crack propagation



F.2

Finite elements with discontinuities: 

Introduction



Classification of models: kinematic aspects

Strong 
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Regularized 
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Classification of models: kinematic aspects

Strong 

discontinuity

Weak 

discontinuity

Regularized 

localization zone



Classification of models: material laws

Stress-strain law Stress-strain law

(pre-localization part)

Stress-strain law

Traction-separation law Stress-strain law

(post-localization part)

Enrichment acting 

as localization limiter:

• nonlocal

• gradient

• Cosserat

• viscosity



Traction-separation laws
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1) Formulated directly in the traction-separation space
a) with nonzero elastic compliance (elasto-plastic, …)

b) with zero elastic compliance (rigid-plastic, …)

[ ][ ]u t

For general applications, we need a link between the separation vector
(displacement jump vector) and the traction vector:



Traction-separation laws

2) “Derived“ from a stress-strain law (softening continuum) 
using the strong discontinuity approach
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Finite element representation of strong discontinuities

1) Discontinuities at element interfaces:

a) Remeshing
b) Interspersed potential discontinuities



Finite element representation of strong discontinuities

2) Arbitrary discontinuities across elements:

a) Elements with embedded discontinuities using the
enhanced assumed strain formulation (EED-EAS)

b) Extended finite elements based on the

partition-of-unity concept (XFEM-PUM)

aka EFEM, SDA, GSDA, …

aka GFEM, …



Embedded discontinuity (enhanced assumed strain)



Embedded discontinuity (enhanced assumed strain)



Approximation on two overlapping meshes (XFEM)



Approximation on two overlapping meshes (XFEM)



Enrichment of interpolation functions in one dimension

EED-EAS



Enrichment of interpolation functions in one dimension

EED-EAS XFEM-PUM



Enrichment of interpolation functions in one dimension

EED-EAS XFEM-PUM XFEM-PUM



F.3

Elements with Embedded

Discontinuities (EAS)



Elements with embedded discontinuities
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Elements with embedded discontinuities

d
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… new degrees of freedom
characterizing separation (displacement jump)

… traction
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Elements with embedded discontinuities

d
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σ t

material
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Elements with embedded discontinuities

d

eε

σ t

material

? kinematics ?

? equilibrium ?

intf



Elements with embedded discontinuities

d

eε

σ t

material

kinematics

equilibrium

Three types of formulations:

• KOS … kinematically optimal symmetric

• SOS … statically optimal symmetric

• SKON … kinematically and statically
optimal nonsymmetric

intf



Elements with embedded discontinuities



Elements with embedded discontinuities



Elements with embedded discontinuities



Elements with embedded discontinuities
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Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack

• Misalignment between crack and element
• Distorted principal directions
• Stress locking



Embedded crack (EAS approach)



Embedded crack (EAS approach)



Embedded crack (EAS approach)



Embedded crack (EAS approach)



Embedded crack (EAS approach)



EED-EAS approach: discontinuous interpolation



EED- EAS approach: discontinuous interpolation



EED- EAS approach: discontinuous interpolation



EED- EAS approach: discontinuous interpolation



F.4

Extended Finite Elements (XFEM)

Based on Partition of Unity



Partition of Unity Method

Standard finite element approximation:
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Partition of Unity Method

Standard finite element approximation:

selected enrichment functions
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Partition of Unity Method – eXtended Finite Elements

Enrichment by Heaviside function:

Ω

Γ

+

_Ω ( )




Ω∈

Ω∈
=

−

+

Γ
x

x
H

for0

for1
x



Partition of Unity Method – eXtended Finite Elements

Enrichment by Heaviside function:
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Partition of Unity Method – eXtended Finite Elements

If the support of        is contained in        , then
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If the support of        is contained in        , then
IN −Ω 0=ΓHN I



Only if the support of        is cut by , 

then the function really enriches the basis. 

Partition of Unity Method – eXtended Finite Elements

If the support of        is contained in        , then
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set of nodes with Heaviside enrichment



Partition of Unity Method – eXtended Finite Elements



Partition of Unity Method – eXtended Finite Elements

nodes with Heaviside enrichment



Partition of Unity Method – eXtended Finite Elements

XFEM-PUM XFEM-PUM
The enriched

approximation can be
rearranged

to give better physical
meaning to the degrees

of freedom:



XFEM – enrichment by step function



XFEM – enrichment by step function



XFEM – enrichment by step function



XFEM – tip enrichment
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Additional enrichment improving the approximation

around the crack tip:
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XFEM – tip enrichment

Additional enrichment improving the approximation

around the crack tip:

Functions that appear in the analytical near-tip solution:
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XFEM – tip enrichment



XFEM – tip enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

But if the crack is curved, we cannot define functions

in terms of the standard polar coordinates because would
not be discontinuous across the crack but across the dotted line.

iB

1B



XFEM – level set functions

Remedy:

Construct curvilinear coordinates and       such that
the crack is characterized by

ϕ ψ
0and0 ≤= ψϕ

ψ=0

ψ<0

ψ>0φ=0

crack tip

crack



and define in terms of the pseudo-polar coordinates

XFEM – level set functions

Remedy:

Construct curvilinear coordinates and       such that
the crack is characterized by
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XFEM – level set functions

Functions and      are the so-called level set functions.ϕ ψ

ψ=0

ψ<0

ψ>0φ=0

crack tip

crack

They are defined by their values at nodes around the crack
and interpolated using the standard shape functions:
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XFEM – level set functions

For an existing crack, function can be constructed
as the signed distance function:
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Criteria for Direction
of Crack Propagation



Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack

1σ
2σ



Tracking of a propagating crack



Tracking of a propagating crack

Crack direction = normal to the maximum principal stress direction



Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack

Crack direction = normal to the direction of 
maximum principal nonlocal stress (or strain)



Tracking of a propagating crack

Stress state around the tip of a cohesive crack
is very close to equibiaxial tension

yσ
xσ



Tracking of a propagating crack

Stress distribution at constant distance from the tip of a stress-free crack
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Tracking of a propagating crack



Tracking of a propagating crack



Tracking of a propagating crack

Crack direction = normal to the direction of 
maximum circumferential stress



Tracking of a propagating crack

Crack direction = normal to the direction of 
maximum circumferential stress



Tracking of a propagating crack

Crack direction = normal to the direction of 
maximum circumferential stress


