Short Course LID, Prague, 18-22 September 2009

Modeling of Localized Inelastic Deformation

Milan Jirásek

General outline:

- A. Introduction
- B. Elastoplasticity
- C. Damage mechanics
- D. Strain localization
- E. Regularized continuum models
- F. Strong discontinuity models

F. Strong discontinuity models

F.1 Fundamentals of fracture mechanics

F.2 Finite elements with discontinuities - introduction

F.3 Embedded discontinuities (EED-EAS)

F.4 Extended finite elements (XFEM-PUM)

Failure of Liberty (and other) ships during WW II

reason: brittle fracture

19 ships broke in half without warning

panel weakened by an eliptical hole

$$\sigma_{y}(x,0) = \frac{Fa}{t\pi x \sqrt{x^{2} - a^{2}}} \approx \frac{F}{t\pi \sqrt{2ar}} = \frac{F}{t\pi \sqrt{2a}} \cdot \frac{1}{\sqrt{r}}$$

y

at distances $r \ll a$

F

a r

x

x

a r

x

general expression for the singular part of stress field that dominates near the crack tip

$$\sigma_{y}(x,0) \approx \frac{K_{I}}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{r}} \qquad K_{I} \dots \text{ stress intensity factor}$$

$$\overset{\widehat{\sigma}}{=} \qquad \sigma_{y}(x,0) \approx \widehat{\sigma}\sqrt{\frac{a}{2}} \cdot \frac{1}{\sqrt{r}} \qquad \dots \qquad K_{I} = \widehat{\sigma}\sqrt{\pi a}$$

$$\overset{F_{1}}{\xrightarrow{F_{1}}} \qquad \sigma_{y}(x,0) \approx \frac{F}{t\pi\sqrt{2a}} \cdot \frac{1}{\sqrt{r}} \qquad \dots \qquad K_{I} = \frac{F}{t\sqrt{\pi a}}$$

same stress concentration near the tip

 $a_2 = 15 \text{ mm}, F / t = 385 \text{ kN/m}$

$$\sigma_{y}(r,\theta) \approx \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)$$

$$y \qquad \sigma_{x}(r,\theta) \approx \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)$$

$$\sigma_{x}(r,\theta) \approx \frac{\sigma_{y}}{\sigma_{x}} + \sigma_{x}}{\sigma_{y}}$$

Basic fracture modes

crack loaded in a mixed mode (combination of modes I and II):

$$\sigma_{y}(r,\theta) \approx \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right) - \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2}\right)$$

$$\sigma_x(r,\theta) \approx \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right) + \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2}$$

$$\tau_{xy}(r,\theta) \approx \frac{K_{I}}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \sin\frac{\theta}{2} \cos\frac{3\theta}{2} + \frac{K_{II}}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2} \sin\frac{3\theta}{2}\right)$$

A crack loaded in mode I propagates

if the stress intensity factor at its tip attains a critical value:

 $K_I = K_c$ stress intensity factor (depends on loading, shape and dimensions of the body and on the crack size) $K_I = K_c$ fracture toughness (material property) $[Nm^{-3/2}]$ **Crack propagation – Griffith (global) criterion**

A crack loaded in mode I propagates

if its propagation releases a critical amount of energy:

Crack propagation criteria

crack propagates if

$$K_I = K_c$$
 $\mathcal{G} = G_f$

local (Irwin) criterion

global (Griffith) criterion

for plane stress and mode I loading it can be shown that

$$\mathcal{G} = \frac{K_I^2}{E}$$

the above criteria are then equivalent and the fracture tougness

and fracture energy are linked by

$$G_{\rm f} = \frac{K_{\rm c}^2}{E} \qquad K_{\rm c} = \sqrt{EG_{\rm f}}$$

Direction of crack propagation

for mode I loading, the crack can be expected to propagate straight ahead, but for general mixed-mode loading we need a criterion for the crack direction

the direction of propagation is given by the angle $\theta_{\rm c}$ for which

maximum circumferential stress criterion (maximum hoop stress criterion): crack propagates in the direction perpendicular to the maximum circumferential stress (evaluated on a circle of a small diameter centered at the tip)

$$\sigma_{\theta}(r,\theta_{c}) = \max_{-\pi < \theta < \pi} \sigma_{\theta}(r,\theta)$$

F.2

Finite elements with discontinuities: Introduction

Classification of models: kinematic aspects

Classification of models: kinematic aspects

Classification of models: material laws

Stress-strain law

Stress-strain law (pre-localization part)

Stress-strain law

Traction-separation law

σ

Stress-strain law (post-localization part)

 σ $\varepsilon_{i} = [[u]] / h$

Enrichment acting as localization limiter:

- nonlocal
- gradient
- Cosserat
- viscosity

- 1) Formulated directly in the traction-separation space
 - a) with nonzero elastic compliance (elasto-plastic, ...)
 - b) with zero elastic compliance (rigid-plastic, ...)

For general applications, we need a link between the separation **vector** (displacement jump vector) and the traction **vector**:

2) "Derived" from a stress-strain law (softening continuum) using the strong discontinuity approach

Finite element representation of strong discontinuities

- 1) Discontinuities at element interfaces:
 - a) Remeshing
 - b) Interspersed potential discontinuities

Finite element representation of strong discontinuities

- 2) Arbitrary discontinuities across elements:
 - a) Elements with embedded discontinuities using the enhanced assumed strain formulation (EED-EAS) aka EFEM, SDA, GSDA, ...
 - b) Extended finite elements based on the partition-of-unity concept (XFEM-PUM) aka GFEM, ...

Embedded discontinuity (enhanced assumed strain)

Embedded discontinuity (enhanced assumed strain)

Approximation on two overlapping meshes (XFEM)

Approximation on two overlapping meshes (XFEM)

Enrichment of interpolation functions in one dimension

Enrichment of interpolation functions in one dimension

Enrichment of interpolation functions in one dimension

F.3

Elements with Embedded Discontinuities (EAS)
$$\mathbf{d} | \mathbf{\varepsilon} = \mathbf{B}\mathbf{d}$$

$$\mathbf{\varepsilon} = \mathbf{B}\mathbf{d}$$

$$\mathbf{\varepsilon} = \mathbf{\sigma}(\mathbf{\varepsilon},...)$$

$$\mathbf{\sigma} = \mathbf{\sigma}(\mathbf{\varepsilon},...)$$

$$\mathbf{\sigma} = \mathbf{f}_{int} = \int_{V} \mathbf{B}^{T}\mathbf{\sigma} \, \mathrm{d}V$$

$$\mathbf{f}_{int} = \int_{V} \mathbf{B}^{T}\mathbf{\sigma} \, \mathrm{d}V$$

 \mathbf{f}_{int}

d ε e ... new degrees of freedom characterizing separation (displacement jump) σ t ... traction

d

? kinematics ?

€ e ↓ material ↓ σ t ? equilibrium ?

Three types of formulations:

- KOS ... kinematically optimal symmetric
- SOS ... statically optimal symmetric
- SKON ... kinematically and statically optimal nonsymmetric

- Misalignment between crack and element
- Distorted principal directions
- Stress locking

EED-EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

F.4 Extended Finite Elements (XFEM) Based on Partition of Unity

Standard finite element approximation:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I$$

The shape functions are a partition of unity:

$$\sum_{I=1}^{Nnod} N_I(\mathbf{x}) = 1$$

Standard finite element approximation:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I$$

The shape functions are a partition of unity:

$$\sum_{I=1}^{Nnod} N_I(\mathbf{x}) = 1$$

Enriched approximation:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \left[\mathbf{d}_I + \sum_{i \in L_I} G_i(\mathbf{x}) \mathbf{e}_{iI} \right]$$

selected enrichment functions

Enrichment by Heaviside function:

Enrichment by Heaviside function:

If the support of N_I is contained in Ω^+ , then $N_I H_{\Gamma} = N_I$

If the support of N_I is contained in Ω^- , then $N_I H_{\Gamma} = 0$

If the support of N_I is contained in Ω^+ , then $N_I H_{\Gamma} = N_I$

If the support of N_I is contained in Ω^- , then $N_I H_{\Gamma} = 0$

Only if the support of N_I is cut by Γ , then the function $N_I H_\Gamma$ really enriches the basis.

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I + \sum_{I \in S_H} N_I(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_I$$

set of nodes with Heaviside enrichment

nodes with Heaviside enrichment

The enriched approximation can be rearranged to give better physical meaning to the degrees of freedom:

XFEM – enrichment by step function

XFEM – tip enrichment

Additional enrichment improving the approximation around the crack tip:

Functions that appear in the analytical near-tip solution:

$$B_{1}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \qquad B_{3}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \sin \theta$$
$$B_{2}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \qquad B_{4}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \sin \theta$$

Additional enrichment improving the approximation around the crack tip:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I + \sum_{I \in S_H} N_I(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_{0I} + \sum_{I \in S_B} \sum_{i=1}^{4} N_I(\mathbf{x}) \frac{B_i(r(\mathbf{x}), \theta(\mathbf{x}))}{B_i(r(\mathbf{x}), \theta(\mathbf{x}))} \mathbf{e}_{iI}$$

Functions that appear in the analytical near-tip solution:

$$B_{1}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \qquad B_{3}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \sin \theta$$
$$B_{2}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \qquad B_{4}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \sin \theta$$

nodes with enrichment by near-tip functions

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions

But if the crack is curved, we cannot define functions B_i in terms of the standard polar coordinates because B_1 would not be discontinuous across the crack but across the dotted line.

XFEM – level set functions

Remedy:

Construct curvilinear coordinates φ and ψ such that the crack is characterized by $\varphi = 0$ and $\psi \leq 0$

XFEM – level set functions

Remedy:

Construct curvilinear coordinates φ and ψ such that the crack is characterized by $\varphi = 0$ and $\psi \leq 0$

and define B_i in terms of the pseudo-polar coordinates

$$r(\psi,\varphi) = \sqrt{\psi^2 + \varphi^2}$$

$$\theta(\psi, \varphi) = \operatorname{sgn}(\varphi) \operatorname{arccos} \frac{\psi}{\sqrt{\psi^2 + \varphi^2}}$$

Functions φ and ψ are the so-called **level set functions**.

They are defined by their values at nodes around the crack and interpolated using the standard shape functions:

$$\varphi(\mathbf{x}) = \sum_{I} N_{I}(\mathbf{x}) \varphi_{I}, \quad \psi(\mathbf{x}) = \sum_{I} N_{I}(\mathbf{x}) \psi_{I}$$

For an existing crack, function φ can be constructed as the signed distance function:

 $\varphi(\mathbf{x}) = \|\mathbf{x} - P_{\Gamma}(\mathbf{x})\| \operatorname{sgn}[(\mathbf{x} - P_{\Gamma}(\mathbf{x})) \cdot \mathbf{n}(P_{\Gamma}(\mathbf{x}))]$

Criteria for Direction of Crack Propagation

Crack direction = normal to the maximum principal stress direction

Crack direction = normal to the direction of maximum principal **nonlocal** stress (or strain)

Stress distribution at constant distance from the tip of a stress-free crack

Crack direction = normal to the direction of maximum circumferential stress

Crack direction = normal to the direction of maximum circumferential stress

Crack direction = normal to the direction of maximum circumferential stress

