Short Course LID, Prague, 13-17 September 2004

Modeling of Localized Inelastic Deformation

Milan Jirásek

General outline:

- A. Introduction
- **B.** Elastoplasticity
- C. Damage mechanics
- D. Strain localization
- E. Regularized continuum models
- F. Strong discontinuity models

F. Strong discontinuity models

- **F.1 Introduction**
- F.2 Embedded discontinuities (EED-EAS)
- F.3 Extended finite elements (XFEM-PUM)
- F.4 Comparative evaluation
- F.5 Regularized continua with strong discont.

Classification of models: kinematic aspects

Classification of models: kinematic aspects

Classification of models: material laws

- 1) Formulated directly in the traction-separation space
 - a) with nonzero elastic compliance (elasto-plastic, ...)
 - b) with zero elastic compliance (rigid-plastic, ...)

- 1) Formulated directly in the traction-separation space
 - a) with nonzero elastic compliance (elasto-plastic, ...)
 - b) with zero elastic compliance (rigid-plastic, ...)

2) "Derived" from a stress-strain law (softening continuum) using the strong discontinuity approach

Finite element representation of strong discontinuities

- 1) Discontinuities at element interfaces:
 - a) Remeshing
 - b) Interspersed potential discontinuities

Finite element representation of strong discontinuities

- 2) Arbitrary discontinuities across elements:
 - a) Elements with embedded discontinuities using the enhanced assumed strain formulation (EED-EAS)
 - b) Extended finite elements based on the partition-of-unity concept (XFEM-PUM)

Embedded discontinuity (enhanced assumed strain)

Embedded discontinuity (enhanced assumed strain)

Approximation on two overlapping meshes (XFEM)

Approximation on two overlapping meshes (XFEM)

Enrichment of interpolation functions in one dimension

Enrichment of interpolation functions in one dimension

Enrichment of interpolation functions in one dimension

F.2 Elements with Embedded Discontinuities (EAS)

Elements with embedded discontinuities

f

d

? kinematics ?

 $\begin{array}{c|c} \mathbf{c} & \mathbf{c} \\ & \\ \mathbf{c} \\ \mathbf{c$

? equilibrium ?

f

Three types of formulations:

- KOS ... kinematically optimal symmetric
- SOS ... statically optimal symmetric
- SKON ... kinematically and statically optimal nonsymmetric

Elements with embedded discontinuities

Elements with embedded discontinuities

- Misalignment between crack and element
- Distorted principal directions
- Stress locking

EED-EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

F.3 Extended Finite Elements (XFEM) Based on Partition of Unity

XFEM-PUM

XFEM-PUM

XFEM-PUM

Enrichment by Heaviside function:

$$u(x) = \sum_{I=1}^{N} N_{I}(x) d_{I} + \sum_{I \in \mathcal{E}} H(x) N_{I}(x) e_{I}$$

Enrichment by arbitrary functions:

$$u(x) = \sum_{I=1}^{N} N_{I}(x) \left[d_{I} + \sum_{J=1}^{M} e_{IJ} H_{J}(x) \right]$$

All enrichment functions can be exactly reproduced, since for $d_I = 0$ and $e_{II} = \delta_{JK}$ we have

$$u(x) = \sum_{I=1}^{N} N_{I}(x) H_{K}(x) = H_{K}(x)$$

F.4 Comparison: EED-EAS versus XFEM-PUM

Embedded discontinuity

Extended finite elements

	Embedded discontinuity	Extended finite elements
DOF's added	locally	globally
and related to	elements	nodes

	Embedded discontinuity	Extended finite elements
DOF's added	locally	globally
and related to	elements	nodes
Approximation of crack opening	discontinuous	continuous
Enrichment	incompatible	compatible

Separation test

Separation test

Separation test

EED-EAS approach: partial coupling

EED- EAS approach: partial coupling

Embedded discontinuity

Extended finite elements

	Embedded discontinuity	Extended finite elements
DOF's added	locally	globally
and related to	elements	nodes
Approximation of crack opening	discontinuous	continuous
Enrichment	incompatible	compatible
Separated parts	partially coupled	fully decoupled

Journal bearing: Physical process

Journal bearing: Physical process

Journal bearing: Mesh respecting material boundaries

Journal bearing: Structured mesh with enrichment

One element crossed by pre-existing discontinuity

One element crossed by pre-existing discontinuity

Uniqueness of the element response (EED-EAS)

The solution is unique for infinitesimal displacement increments of an arbitrary direction if

$$\lambda_{\min}(\mathbf{Q}_{sym}) > -H_{\min}$$

where \mathbf{Q}_{sym} is the symmetric part of $\mathbf{Q} = \mathbf{P}^T \mathbf{D}_e \mathbf{B} \mathbf{H}$ and $H_{min} < 0$ is the minimum value of discrete softening modulus.

Physical meaning of **Q** ...

$$\lambda_{\min}(\mathbf{Q}_{sym}) > -H_{\min}$$

is proportional to the elastic modulus and inversely proportional to the element size

$$\lambda_{\min}(\mathbf{Q}_{sym}) > -H_{\min}$$

 $\mathbf{Q} = \mathbf{P}^T \mathbf{D}_e \mathbf{B} \mathbf{H}$ is proportional to the elastic modulus and inversely proportional to the element size

$$\mathbf{e}^T \mathbf{Q}_{sym} \, \mathbf{e} = \mathbf{e}^T \mathbf{Q} \, \mathbf{e} = \mathbf{e}^T \mathbf{t}^e < 0$$
 can happen

discontinuity segments placed at element centers

discontinuity segments placed at element centers

maximum deviation α between element side and discontinuity is limited (e.g., 30 degrees for an equilateral triangle)

discontinuity segments form a continuous path

discontinuity segments form a continuous path

maximum deviation α between element side and discontinuity is given by the largest angle of the triangle (e.g., 60 degrees for an equilateral triangle) Condition under which uniqueness can be guaranteed if the element is sufficiently small:

plane stress ...
$$\cos \alpha > \frac{1+\nu}{3-\nu}$$

true only if $\nu < 1/3$ and the element is close to equilateral

Condition under which uniqueness can be guaranteed if the element is sufficiently small:

plane stress ...
$$\cos \alpha > \frac{1+\nu}{3-\nu}$$

true only if $\nu < 1/3$ and the element is close to equilateral

plane strain ...
$$\cos \alpha > \frac{1}{3 - 4\nu}$$

true only if $\nu < 1/4$ and the element is close to equilateral

Condition under which uniqueness can be guaranteed if the element is sufficiently small:

plane stress ...
$$\cos \alpha > \frac{1+\nu}{3-\nu}$$

true only if $\nu < 1/3$ and the element is close to equilateral

plane strain ...
$$\cos \alpha > \frac{1}{3 - 4\nu}$$

true only if $\nu < 1/4$ and the element is close to equilateral

three dimensions ...
$$\cos \alpha > \frac{1}{3 - 4\nu}$$

impossible even if the tetrahedral element is regular

Embedded discontinuity

Extended finite elements

	Embedded discontinuity	Extended finite elements
DOF's added	locally	globally
and related to	elements	nodes
Approximation of crack opening Enrichment	discontinuous incompatible	continuous compatible
Separated parts Numerical behavior	partially interacting rather fragile	independent more robust

	Embedded discontinuity	Extended finite elements
Stiffness matrix	always nonsymmetric	can be symmetric
Integration scheme for continuous part	remains standard	must be modified
Global degrees of freedom	do not change	added during simulation
Implementation effort	smaller	larger

	Embedded discontinuity	Extended finite elements
Stiffness matrix	always nonsymmetric	can be symmetric
Integration scheme for continuous part	remains standard	must be modified
Global degrees of freedom	do not change	added during simulation
Implementation effort	smaller	larger but it pays off