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Abstract. The recently emerged idea of incorporating strain or displacement discontinu-
ities into standard finite element interpolations has triggered the development of powerful
techniques that allow efficient modeling of regions with highly localized strains, e.g. of
fracture process zones in concrete or shear bands in metals or soils. The present paper
addresses the fundamental issue of uniqueness of such enriched formulations, which has
important implications for the robustness of the corresponding numerical algorithms. For
a linear triangular element with an embedded strong discontinuity described by traction-
separation law formulated within the framework of damage or plasticity, explicit conditions
that guarantee uniqueness on the element level are derived, and the resulting restrictions
limiting the size of the element are discussed.
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1 INTRODUCTION

Standard finite element approximations cannot properly capture the discontinuous
character of the displacement field corresponding to localized fracture. In the context
of smeared-crack models, this deficiency can lead to a spurious stress transfer across a
widely open crack [1]. Discrete-crack models with special interfaces between conventional
elements [2, 3, 4] do not suffer by this pathology, but they require frequent remeshing in
order to allow for crack propagation in the correct direction. An elegant technique that
combines the advantages of both approaches inserts a discontinuity into the interior of a
finite element. The discontinuity can have an arbitrary orientation, which makes it much
easier to capture a propagating crack or softening band without remeshing. This class of
methods, collectively called elements with embedded discontinuities, has been inspired by
the pioneering work of Ortiz et al. [5] and Belytschko et al. [6]. The early works dealt with
weak (strain) discontinuities, but later the idea was extended to strong (displacement)
discontinuities [7, 8, 9, 10].

A systematic classification and critical evaluation of such models within a unified frame-
work has been presented in [11, 12, 13], with the conclusion that there exist three main
groups of approaches, called statically optimal symmetric (SOS), kinematically optimal
symmetric (KOS), and statically and kinematically optimal nonsymmetric (SKON). The
SOS formulation works with a natural stress continuity condition, but it does not properly
reflect the kinematics of a completely open crack. On the other hand, the KOS formula-
tion describes the kinematic aspects satisfactorily, but it leads to an awkward relationship
between the stress in the bulk of the element and the tractions across the discontinuity
line.

The present study focuses on the nonsymmetric SKON formulation, which uses a very
natural stress continuity condition and is capable of properly representing complete sepa-
ration at late stages of the fracturing process. The aim is to derive criteria that guarantee
uniqueness of the response on the element level, which is a necessary condition for ro-
bustness of the numerical algorithm. Section 2 gives a brief review of the basic kinematic
and static equations for a constant-strain triangle with an embedded strong discontinu-
ity. Section 3 presents a traction-separation law for the discontinuity (fictitious crack),
postulated in the damage format. Uniqueness of the solution is analyzed in Section 3.2,
and the resulting restrictions on the element size are derived in Section 3.3. The analysis
is repeated in Section 4 for a traction-separation law in the format of plasticity.

2 ELEMENT WITH EMBEDDED DISPLACEMENT DISCONTINUITY

The first publication on elements with embedded discontinuities that combined the
optimal static and kinematic equations is due to Dvorkin et al. [7], even though this aspect
was not particularly emphasized in that paper. A very similar quadrilateral element was
constructed by Klisinski et al. [8], based on simple and instructive physical considerations.
In a later paper [9], the same technique was applied to a constant-strain triangle. A general
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Figure 1: CST element with an embedded displacement discontinuity

version of the SKON formulation for an arbitrary type of parent element was outlined in
a short paper by Simo and Oliver [10] and fully described by Oliver [14].

In the present study, we look at the triangular element first proposed by Olofsson et
al. [9]; see Fig. 1a. The basic idea is that the displacement field is decomposed into a
continuous part and a discontinuous part due to the opening and sliding of a crack (Fig.
1b). The same decomposition applies to the nodal displacements of a finite element.
Instead of smearing the displacement jump over the area of the element and replacing
it by an equivalent inelastic strain, as is done by standard smeared crack models (Fig.
1c), we represent the discontinuity by additional degrees of freedom, collected in a column
matrix e. The contribution of crack opening and sliding is then subtracted from the nodal
displacement vector, d, and only the part of the nodal displacements produced by the
continuous deformation serves as input for the evaluation of strains in the bulk material,
ε; see Fig. 1d. This leads to kinematic equations in the form

ε = B(d − He) (1)

where ε = {εx, εy, γxy}T is the column matrix of engineering strain components, B is
the standard strain-displacement matrix, and H is a matrix reflecting the effect of the
displacement jump e (crack opening and sliding) on the nodal displacements.
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In general, the displacement jump is approximated by a suitable function, for example
a polynomial one. It is easy to show that the approximation need not be continuous on
inter-element boundaries. For triangular elements with a linear displacement interpola-
tion, the strains and stresses in the bulk are constant in each element, and so it is natural
to approximate the displacement jump also by a piecewise constant function. In each
element, the jump is described by its normal (opening) component, en, and tangential
(sliding) component, es. These additional degrees of freedom have an internal character
and can be eliminated on the element level, which means that the global equilibrium equa-
tions are written exclusively in terms of the standard unknowns—nodal displacements.
From Fig. 1d it is clear that the crack-effect matrix is given by

H =




0 0
0 0
0 0
0 0
c −s
s c




(2)

provided that the discontinuity line separates node 3 from nodes 1 and 2 (in local num-
bering). In (2), c = cos α and s = sin α, where α is the angle between the normal to the
crack (discontinuity line) and the global x-axis; see Fig. 1a.

Strains in the bulk material generate certain stresses, σ = {σx, σy, τxy}T , which are
here computed from the equations of linear elasticity,

σ = Deε (3)

where De is the elastic stiffness matrix (for plane stress or plane strain). Note that,
in general, the constitutive law for the bulk material could be nonlinear. The tractions
transmitted by the crack, t, are linked to the separation vector (displacement jump) by
another constitutive law that describes the gradual development of a stress-free crack.
Specific forms of this law will be given in Sections 3 and 4.

The stresses in the bulk and the tractions across the crack must satisfy certain condi-
tions that express internal equilibrium and serve as static equations corresponding to the
internal degrees of freedom, e. The most natural requirement is that the traction vector
be equal to the stress tensor contracted with the crack normal, similar to static boundary
conditions. This internal equilibrium (traction continuity) condition can be derived from
equilibrium of an elementary triangle with one side on the discontinuity line; see Fig. 1e.
In the engineering notation it reads

P T σ = t (4)

where

P =




c2 −cs
s2 cs
2cs c2 − s2


 (5)
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Figure 2: Structure of the equations describing the CST element with an embedded displacement discon-
tinuity (SKON formulation)

is a stress rotation matrix. For linear triangles with a constant displacement jump, both
t and σ are constant in each element, and so condition (4) can be satisfied exactly.
In general it would have to be enforced in a weak sense. Finally, the nodal forces are
evaluated from the standard relation

f int = AeB
T σ (6)

where Ae is the area of the element.
The structure of the basic equations describing a CST element with an embedded

displacement discontinuity is schematically depicted in Fig. 2. Dashed arrows indicate
that the source is added to the target, while solid arrows mean that the source must be
equal to the target.

Substituting into the traction continuity condition (4) from (3) and (1), we obtain a
useful expression for the traction vector in terms of the kinematic variables,

t = P T DeB(d − He) = A(d − He) (7)

where we have denoted
A = P T DeB (8)
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3 DAMAGE-TYPE TRACTION-SEPARATION LAW

3.1 Model Formulation

The basic equations presented in the preceding section must be completed by a law
that links the traction transmitted by the discontinuity to the displacement jump. One
possible type of such a law has been proposed in [15] in the form

γt = D̂e (9)

where γ is a dimensionless scalar compliance parameter evolving from zero to infinity and

D̂ =

[
Dnn 0
0 Dss

]
(10)

is a stiffness matrix corresponding to a reference intermediate stage of the degradation
process. Before crack initiation, the value of γ is zero. For simplicity, it is assumed
here that crack initiation is controlled by the Rankine criterion of maximum principal
stress. This means that the discontinuity line is inserted perpendicular to the direction
of maximum principal stress, and the shear traction at the instant of crack initiation is
zero.

The evolution of γ is described by the loading/unloading conditions in the Kuhn-Tucker
form,

γ̇ ≥ 0, f ≤ 0, γ̇f = 0 (11)

The loading function f characterizing the elastic domain is defined as

f(e, γ) ≡ F (ẽ(e)) − γ (12)

where F is a suitable function of the equivalent separation, ẽ, which itself is a scalar
measure of the separation vector e. In [15] it has been proposed to set

ẽ =

√√√√eT D̂e

Dnn
(13)

and

F (ẽ) =
Dnnẽ

g(ẽ)
(14)

where g is a scalar function describing the traction-separation curve for Mode-I cracking.

3.2 Uniqueness of Element Response

Let us now explore under which conditions the element gives a unique response in the
sense that, for any given evolution of the nodal displacements, the basic equations have
a unique solution. Combining (7) with (9), we obtain after simple manipulations

(D̂ + γAH)e − γAd = 0 (15)
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and differentiation with respect to time leads to

(D̂ + γAH)ė + γ̇A(He − d) = γAḋ (16)

The central problem to be studied here is whether, for a given current state and for an
arbitrary displacement rate, ḋ, the rate equation (16) along with the loading/unloading
conditions (11) has a unique solution for the separation rate, ė, and for the rate of the
compliance parameter, γ̇.

1. If the current value of the loading function f(e, γ) is negative, it follows from the
last loading/unloading condition (11) that the compliance parameter γ must remain
constant. Equations (16) then lead to a unique solution for the rate of separation
vector,

ė = γ(D̂ + γAH)−1Aḋ (17)

provided that the matrix D̂ + γAH is regular. The rates of all other variables (ε̇,
σ̇, ṫ, and ḟ int) can be evaluated by simple substitution into the rate forms of (1),
(3), (4), and (6).

2. Consider the more complicated situation when the current value of f is zero. In this
case, the element can either unload elastically, or suffer additional damage. The
former sub-case is characterized by γ̇ = 0 and ḟ ≤ 0, the latter by γ̇ ≥ 0 and ḟ = 0.

(a) If damage does not grow, the rate of separation vector is again given by (17).
The solution is admissible only if

ḟ ≡
(

∂F

∂e

)T

ė − γ̇ ≡ γfT (D̂ + γAH)−1Aḋ ≤ 0 (18)

where f ≡ ∂F/∂e.

(b) If damage grows, we have to consider γ̇ as an unknown and impose the consis-
tency condition,

ḟ = fT ė − γ̇ = 0 (19)

Substituting γ̇ = fT ė into (16) we obtain a set of equations

[
D̂ + γAH + A(He − d)fT

]
ė = γAḋ (20)

The solution
ė = γ

[
D̂ + γAH + A(He − d)fT

]−1
Aḋ (21)

is admissible only if

γ̇ ≡ fT ė ≡ γfT
[
D̂ + γAH + A(He − d)fT

]−1
Aḋ ≥ 0 (22)
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To prove uniqueness, we have to show that conditions (18) and (22) are complementary
in the sense that, for an arbitrary displacement rate ḋ, either one of the conditions holds
as a strict inequality while the other one is violated, or both conditions hold as an equality
(which is the neutral case). As γ cannot be negative, it is sufficient to demonstrate the
complementarity of conditions

fT (D̂ + γAH)−1Aḋ ≤ 0 (23)

fT
[
D̂ + γAH + A(He − d)fT

]−1
Aḋ ≥ 0 (24)

The proof is based on the Sherman-Morrison-Woodbury formula, which in general states
that

(X + Y Z)−1 = X−1 − X−1Y (I + ZX−1Y )−1ZX−1 (25)

provided that the matrices X, Y , and Z are such that all operations make sense. In our
case, we substitute X = D̂ + γAH , Y = A(He−d), and Z = fT , and we multiply the
identity from the left by fT and from the right by Aḋ. After some algebra we arrive at

fT
[
D̂ + γAH + A(He − d)fT

]−1
Aḋ =

fT
(
D̂ + γAH

)−1
Aḋ

1 + fT
(
D̂ + γAH

)−1
A(He − d)

(26)

Consequently, the left-hand sides of (23) and (24) have the same sign, provided that the
denominator in the fraction on the right-hand side of (26) is positive. If this is the case,
conditions (23) and (24) are indeed complementary, because the inequality signs have the
opposite sense. So it remains to check whether

fT
(
D̂ + γAH

)−1
A(d − He) < 1 (27)

It follows from (15) that the term A(d−He) can be replaced by D̂e/γ. During continued
loading the loading function f remains equal to zero and, consequently, γ = Dnnẽ/g(ẽ);
cf. equations (12) and (14). In addition, differentiating (14) and (13) we get

f =
∂F

∂e
=

dF

dẽ

∂ẽ

∂e
= Dnn

g(ẽ) − ẽg′(ẽ)
g2(ẽ)

∂

∂e

√√√√eT D̂e

Dnn
=

g(ẽ) − ẽg′(ẽ)
ẽg2(ẽ)

D̂e (28)

Condition (27) can be rewritten as

g(ẽ) − ẽg′(ẽ)
ẽg2(ẽ)

eT D̂

(
D̂ +

Dnnẽ

g(ẽ)
AH

)−1

D̂e
g(ẽ)

Dnnẽ
< 1 (29)

Recall that ẽ is a function of the separation vector e. So the left-hand side of (29) depends
on e in a complicated manner and it is difficult to find its maximum value, representing
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the most dangerous case. However, denoting Î = (D̂/Dnn)
−1/2 and ν = Î

−1
e/ẽ and

replacing D̂ by DnnÎ
−2

and e by ẽÎν, condition (29) can be converted into

χ(ẽ, ν) ≡
(
1 − ẽg′(ẽ)

g(ẽ)

)
νT

(
I +

ẽ

g(ẽ)
ÎAHÎ

)−1

ν < 1 (30)

where I is a unit matrix. The advantage here is that the dependence on e is now replaced
by the dependence on ν, which is a unit vector indirectly characterizing the direction of e,
and on ẽ, which is a scalar related to the magnitude of e (measured in the metric induced

by Î
−2

). When looking for an upper bound on χ(ẽ, ν), we first maximize the quadratic
form

q(ν) ≡ νT

(
I +

ẽ

g(ẽ)
ÎAHÎ

)−1

ν = νT (I + ηQ)−1 ν (31)

over all unit vectors ν, with η = ẽ/g(ẽ) playing the role of a positive parameter. For
brevity we have introduced a matrix Q = ÎAHÎ. Note that this matrix is in general not
symmetric. However, we will assume that Q is positive in the sense that

xT Qx ≥ 0 (32)

for any column matrix x. For 2×2 matrices it is possible to derive the following estimate
(see Appendix A):

max
‖ν‖=1

q(ν) =
1 + η(trQ − qmin)

1 + ηtrQ + η2 detQ
≤ 1

1 + ηλmin(Qs)
(33)

where
qmin = min

‖ν‖=1
νT Qν (34)

and λmin(Qs) is the smallest eigenvalue of the symmetric part of Q. We thus have, for
any positive ẽ and any unit vector ν,

χ(ẽ, ν) ≤
1 − ẽg′(ẽ)

g(ẽ)

1 +
ẽ

g(ẽ)
λmin(Qs)

(35)

Due to the positiveness of Q, its symmetric part is at least positive semidefinite, and
λmin(Qs) ≥ 0. The denominator in (35) is therefore always positive, and a sufficient
condition for χ(ẽ, ν) < 1 is

1 − ẽg′(ẽ)
g(ẽ)

< 1 +
ẽ

g(ẽ)
λmin(Qs) (36)
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Condition (36) is equivalent to

λmin(Qs) > −Hmin (37)

where
Hmin = min

ẽ≥0
g′(ẽ) (38)

is the steepest slope of the traction-separation curve (Hmin < 0 for softening). Recall
that Q = ÎAHÎ. The columns of matrix AH = P T DeBH have the physical meaning
of tractions on the crack line produced in an elastically responding element by unit dis-
placements of the solitary node, and so this matrix reflects in a specific sense the stiffness
of the element. Matrix Î is either a unit matrix (if the opening and sliding stiffnesses are
equal), or a dimensionless diagonal matrix reflecting the ratio of the opening and sliding
stiffness. The smallest eigenvalue of the symmetric part of Q,

λmin(Qs) = min
‖ν‖=1

νT Qsν = min
‖ν‖=1

νT Qν (39)

is a scalar measure of the elastic element stiffness relative to the given crack orientation.
As Hmin is negative, condition (37) is stronger than the condition that Q must be positive
(which is equivalent to λmin(Qs) ≥ 0). This means that by making assumption (32) we
did not restrict the range of admissible matrices Q more than is needed for uniqueness. It

is also easy to show that if Q is positive then the matrix D̂+γAH = Î
−1

(DnnI+γQ)Î
−1

cannot be singular (for γ ≥ 0), which justifies its inversion appearing in (17).

3.3 Restriction on Element Size

It follows from dimensional analysis that

λmin(Qs) = θ
E

h
(40)

where E is Young’s modulus of the bulk material, h is some suitable measure of the
element size, and θ is a dimensionless factor depending on the shape of the element,
orientation of the discontinuity line and Poisson’s ratio, but independent of the element
size and Young’s modulus. For example, for a one-dimensional element we obtain θ = 1 if
h is defined as the length of the element. Let us analyze the case of a triangular element
under plane stress or plane strain. It is convenient to work in local coordinates aligned
with the element side opposite to the solitary node; see Fig. 3. Matrices H and P are
given by (2) and (5), resp. In order to cover both plane stress and plane strain, we write
the elastic stiffness matrix in the form

De =




D11 D12 0
D12 D11 0
0 0 G


 (41)
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in which G = E/2(1 + ν) is the shear modulus, D11 = 2G/(1 − ν) for plane stress,
D11 = 2G(1 − ν)/(1 − 2ν) for plane strain, and D12 = D11 − 2G.

The strain-displacement matrix of a CST element is in general given by

B =
1

2A


 y2 − y3 0 y3 − y1 0 y1 − y2 0

0 x3 − x2 0 x1 − x3 0 x2 − x1

x3 − x2 y2 − y3 x1 − x3 y3 − y1 x2 − x1 y1 − y2


 (42)

where A is the area of the element and xi, yi, i = 1, 2, 3, are the nodal coordinates. In
our special case, we set x1 = x2 = 0, y2 = 0, and A = y1x3/2, after which (42) simplifies
to

B =
1

y1x3


 −y3 0 y3 − y1 0 y1 0

0 x3 0 −x3 0 0
x3 −y3 −x3 y3 − y1 0 y1


 (43)

Combining (2), (5), and (41) with (43) we can evaluate the product

AH = P T DeBH =
1

x3

[
cD11 −sD12

−sG cG

]
(44)

Note that the only geometric characteristic of the element that appears here is the distance
of the solitary node from the element side connecting the other two nodes, x3.

For the sake of simplicity, let us assume that the diagonal stiffnesses in D̂ are the same,
and so Î is a unit matrix. In this case, (44) is equal to the matrix Q, and by eigenvalue
analysis of its symmetric part we obtain

λmin(Qs) =
1

2x3

[c(D11 + G) − (D11 − G)] (45)

As the elastic constants are proportional to Young’s modulus, E, formula (45) indeed has
the form (40), with the size of the element characterized by h = x3 = element height.
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Factor θ is given by

θ(α, ν) =
c(3 − ν) − (1 + ν)

4(1 − ν2)
(46)

for plane stress and

θ(α, ν) =
c(3 − 4ν) − 1

4(1 − 2ν)(1 + ν)
(47)

for plane strain. Obviously, θ decreases with increasing deviation of the crack line from
the direction parallel to an element side. Depending on the element shape and on the
type of criterion used for positioning the discontinuity, it is possible to find the fan of
crack directions that can separate the given node, and thus determine the minimum value
of c = cos αmax that can appear in the above formulae for θ. The corresponding value
of θ(αmax, ν) will be denoted as θ̄(ν). For example, for an equilateral triangle and a
criterion placing the crack into the element center we have αmax = 30◦ (see Fig. 4a), and
θ̄(ν) = (0.3995 − 0.4665ν)/(1 − ν2) for plane stress. This is obviously positive for any
thermodynamically admissible value of Poisson’s ratio, −1 ≤ ν ≤ 0.5. However, if the
crack path is enforced to be continuous [16], angles up to αmax = 60◦ can appear (see Fig.
4b), and θ̄(ν) = (0.125 − 0.375ν)/(1 − ν2) for plane stress. For materials with Poisson’s
ratio larger than 1/3, Qs could have a negative eigenvalue (for certain unfavorable crack
orientations), which would result into the loss of uniqueness, no matter how small the
element is. For concrete, ν is usually between 0.1 and 0.2, and so θ̄(ν) remains positive.
It may of course become negative if the element is severely distorted. Based on Fig. 4c it
can be shown that, for triangles with all angles acute and with the ratio of the longest to
the shortest side not exceeding a certain number β, the value of cos αmax is not smaller
than 1/β, provided that the discontinuity is placed into the element center.

Inequality (37), which represents a sufficient condition of uniqueness on the element
level, can now be reformulated in terms of the element size. It is assumed that the stress-

(a) (b) (c)

30
o

o
60 a β

maxα
a

Figure 4: Fans of possible crack directions
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Figure 5: Maximum element size (relative to the characteristic length) as a function of the shape factor
for a) plane stress, b) plane strain

separation curve is descending (softening), i.e., Hmin < 0. The ratio lc ≡ −E/Hmin =
E/|Hmin| > 0 has the dimension of length and sets a certain characteristic length of
the material model. Physically, lc is the length of a bar for which the load-displacement
diagram (under uniaxial tension) would have a vertical tangent at the steepest part of its
softening branch. For example, for concrete C30 (according to the CEB code [17]) with
Young’s modulus Ec = 29 GPa, uniaxial tensile strength fctm = 2.9 MPa and fracture
energy GF = 75 Nm/m2, the characteristic length is lc = EcGF /f 2

ctm = 259 mm, assuming
that the softening curve is exponential. Using (40), condition (37) can be rewritten as

h < θ̄(ν)lc (48)

If the element is sufficiently small (compared to the characteristic length of the material),
its response is unique in the sense that for any prescribed evolution of nodal displacements
the corresponding evolution of stresses and internal variables (such as the separation
vector or the compliance parameter) is uniquely determined by the governing equations.
Existence and uniqueness of the “exact” solution are necessary for a reliable performance
of the numerical algorithm that evaluates the stresses and nodal forces. Fig. 5 shows
the dependence of the factor θ̄(ν) on the shape factor β for selected values of Poisson’s
ratio, ν. Note that, due to (48), θ̄(ν) = hmax/lc has the meaning of the maximum
allowable element size normalized by the characteristic length. Obviously, the restriction
on the element size becomes more severe with increasing values of Poisson’s ratio and with
increasing deviation of the element shape from the ideal case of an equilateral triangle.
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4 PLASTICITY-TYPE TRACTION-SEPARATION LAW

4.1 Model Formulation

Consider now a different type of traction-separation law, this time formulated in the
framework of plasticity. We introduce a yield function f(t, κ) where κ is a scalar softening
variable, defined by the rate equation

κ̇ = tT ė (49)

or
κ̇ = ‖ė‖ (50)

respectively corresponding to work softening and strain softening. For f < 0, the current
state is elastic and the crack opening remains constant. For f = 0, the state is plastic
and the evolution of the crack opening is dictated by the flow rule

ė = λ̇g(t, κ) (51)

where λ̇ is the rate of the plastic multiplier and g is a suitable function specifying the
direction of plastic flow. In the associated case we set g ≡ ∂f/∂t. The loading/unloading
conditions again assume the Kuhn-Tucker form,

f ≤ 0, λ̇ ≥ 0, f λ̇ = 0 (52)

This type of traction-separation law was used e.g. in [9], with

f(tn, ts, κ) = t2n + αst
2
s − σ2

e(κ) (53)

and an associated flow rule. The softening variable κ was defined according to (50). In
(53), αs is a constant parameter weighting the relative influence of shear and normal
traction, and σe(κ) is a function describing the softening curve for pure Mode I, identical
to function g(ẽ) used by the damage-type model.

4.2 Uniqueness of Element Response

On the element level, the traction-separation law is exploited for the elimination of the
separation e from the rate form of (7),

ṫ = A(ḋ − Hė) (54)

Similar to the analysis in Section 3.2, we can distinguish the following cases:

1. Elastic state, characterized by f < 0.
Both the plastic multiplier λ and the separation vector e remain constant, and the
incremental behavior of the element is the same as if the element did not contain
any discontinuity.
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2. Plastic state, characterized by f = 0.
The separation vector e either grows, in which case ḟ = 0 and λ̇ ≥ 0, or becomes
“frozen” due to unloading, in which case ḟ ≤ 0 and λ̇ = 0.

(a) In the former case, the rate of the plastic multiplier is computed from the
consistency condition

ḟ = fT
t ṫ + fκκ̇ = 0 (55)

where f t = ∂f/∂t and fκ = ∂f/∂κ. Substituting from (54), (50) and (51), we
obtain

fT
t A(ḋ − Hgλ̇) + fκ‖g‖λ̇ = 0 (56)

from which

λ̇ =
fT

t Aḋ

fT
t AHg − fκ‖g‖

(57)

The solution is admissible if λ̇ ≥ 0.

(b) In the case of unloading from a plastic state, the incremental behavior corre-
sponds to a standard element, which means that ṫ = Aḋ and κ̇ = 0. The
solution is admissible if

ḟ = fT
t ṫ + fκκ̇ = fT

t Aḋ ≤ 0 (58)

The incremental behavior is uniquely determined by the nodal displacement rates ḋ if
cases a) and b) are complementary, i.e., if the denominator in (57) is positive. Thus, the
condition of uniqueness reads

fT
t AHg − fκ‖g‖ > 0 (59)

As an example, consider the quadratic yield condition (53). Introducing the matrix

Î =

[
1 0
0

√
αs

]
(60)

we can write the yield function as

f(t, κ) = tT Î
2
t − σ2

e(κ) (61)

and evaluate its derivatives

f t =
∂f

∂t
= 2Î

2
t (62)

fκ =
∂f

∂κ
= −2σe(κ)σ′

e(κ) (63)
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where σ′
e = dσe/dκ is the derivative of the softening function, representing the softening

modulus. For an associated flow rule we obtain

g = f t = 2Î
2
t (64)

The uniqueness condition (59) then assumes the form

χ(t, κ) ≡ tT Î
2
AHÎ

2
t + σe(κ)σ′

e(κ)‖Î2
t‖ > 0 (65)

Since uniqueness is being checked for case 2., e.g., for a plastic state satisfying the yield
condition f(t, κ) = 0, we can replace σe(κ) by ‖Ît‖ and rewrite (65) as

tT Î
2
AHÎ

2
t

‖Ît‖ ‖Î2
t‖

> −σ′
e(κ) (66)

The left-hand side depends only on the direction of t and the right-hand side depends
only on the softening variable κ, so condition (66) can be replaced by

min
‖ν‖=1

νT Qν

‖Îν‖ > −Hmin (67)

where Q = ÎAHÎ and Hmin is the minimum value of the softening modulus, correspond-
ing to the steepest slope of the softening curve. To find the minimum of the expression
on the left-hand side, we write the unit vector ν as ν = (cos φ, sin φ) and then minimize
the resulting function with respect to the traction direction angle φ. In the special case
when the parameter αs from (53) is equal to 1, the minimum is equal to the smallest
eigenvalue of the symmetric part of Q, and we obtain exactly the same condition (37) as
for the damage-type law with Dnn = Dss.

Again, one can express the results in terms of the maximum element size as a function
of the element shape factor. This is shown in Fig. 6 for several values of parameter αs and
for Poisson’s ratio ν = 0.2. The limit case αs = 0 should correspond to a Rankine-type
model with only the normal traction taken into account. Surprisingly, for αs → 0 the
maximum element size tends to zero, independently of the element shape. This would
mean that, for a Rankine-type model, there always exist states at which uniqueness of
the element response is lost. However, this conclusion is not correct. It is important to
take into account that as αs → 0 the matrix Î tends to a singular matrix. For αs = 0,
the left-hand side of (66) is equal to tnQnntn/|tn|2 = Qnn where Qnn = cD11/h is the
first diagonal element of matrix Q. In other words, vector Ît does not have an arbitrary
direction because its shear component vanishes, and the expression on the left-hand side
of (67) should not be minimized over all unit vectors ν but only evaluated for ν = (1, 0).
The resulting restriction on the element size is thus h < hmin = −cD11/Hmin, and for
plane stress we obtain hmin/lc = 1/[(1 − ν2)β]. This restriction is much weaker than for
any positive value of αs, which indicates that the pure Rankine model is more robust
than a penalty-like formulation of the general model with a quadratic yield condition and
small value of αs.
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Figure 6: Maximum element size (relative to the characteristic length) as a function of the shape factor
for a) plane stress, b) plane strain

5 CONCLUSION

This paper has presented a detailed analysis of the basic equations describing linear tri-
angular finite elements with embedded displacement discontinuities that represent highly
localized cracks. It has been shown that these equations have a unique solution only if the
element size does not exceed a critical value that is affected by the characteristic length
of the material, shape of the element, Poisson’s ratio, and type of problem (plane stress
or plane strain). If uniqueness is lost on the level of a single finite element, numerical
problems resulting into the loss of convergence can be expected on the global level. The
derived conditions permit the design of finite element meshes for which such problems do
not occur.

Due to a limited size of this paper, the extensions of the present results to quadri-
lateral elements, smeared crack models, and multiple cracks are left for the conference
presentation and for a future journal publication.
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ed. by H. Mang, N. Bićanić and R. de Borst, Pineridge Press, 1994, pp. 373–382.

[10] J.C. Simo and J. Oliver, ’A new approach to the analysis and simulation of strain
softening in solids’, in Fracture and Damage in Quasibrittle Structures, ed. by Z.P.
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APPENDIX A: UPPER BOUNDS ON A SPECIAL QUADRATIC FORM

The purpose of this Appendix is to derive an upper bound estimate for the quadratic
form

q(ν) = νT (I + Q)−1 ν (68)

where Q is a positive matrix. If Q is also symmetric then I + Q is symmetric positive
definite, and we can write

max
‖ν‖=1

q(ν) = λmax

(
[I + Q]−1

)
=

1

λmin(I + Q)
=

1

1 + λmin(Q)
(69)

where λmax(.) and λmin(.) denotes the largest and the smallest eigenvalue of a matrix.
However, for nonsymmetric matrices we have to be more careful. If Q is a 2 × 2 matrix,
it can be shown (based on the Caley-Hamilton theorem) that

(I + Q)−1 =
1

1 + trQ + detQ
[(1 + trQ)I − Q] (70)

and so

νT (I + Q)−1 ν =
1

1 + trQ + detQ
νT [(1 + trQ)I − Q]ν =

1 + trQ − νT Qν

1 + trQ + detQ
(71)

Thus, denoting
qmin = min

‖ν‖=1
νT Qν (72)

we obtain

max
‖ν‖=1

q(ν) =
1 + trQ − qmin

1 + trQ + det Q
(73)

Now let us replace matrix Q by its symmetric part, Qs. As νT Qν = νT Qsν for any ν,
the value of qmin will not change. The trace of the symmetrized matrix is also the same
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as the original one. So the only term in (73) that changes is the determinant. It is easy
to prove that, for 2 × 2 matrices, det Qs ≤ det Q. Consequently, the expression on the
right-hand side of (73) cannot decrease if the matrix is replaced by its symmetric part,
and we obtain

max
‖ν‖=1

νT (I + Q)−1 ν ≤ max
‖ν‖=1

νT (I + Qs)
−1 ν =

1

1 + λmin(Qs)
(74)

The extension to 3 × 3 matrices is more difficult. Application of Caley-Hamilton the-
orem leads to

(I + Q)−1 =
1

1 + trQ + I2(Q) + detQ

[
(1 + trQ + I2(Q))I − (1 + trQ)Q + Q2

]
(75)

where I2(Q) is the second invariant (sum of principal minors) of Q. The maximum of the
quadratic form can now be expressed as

max
‖ν‖=1

νT (I + Q)−1 ν =
(1 + trQ + I2(Q))I − qmin

1 + trQ + I2(Q) + detQ
(76)

where
qmin = min

‖ν‖=1

[
(1 + trQ)νT Qν − νT Q2ν

]
(77)

This quantity is not easy to evaluate. It is also not clear whether symmetrization provides
an upper bound similar to (74).

An alternative estimate, valid for any size of the problem, is based on the polar de-
composition

I + Q = RU (78)

where R is an orthogonal matrix and U is symmetric. We obtain

νT (I + Q)−1ν = νT U−1RT ν ≤ λmax(U
−1) =

1

λmin(U)
=

1√
λmin(U

2)
= (79)

=
1√

λmin(I + Q + QT + QT Q)
≤ 1√

1 + 2λmin(Qs) + λmin(Q
T Q)
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