
Mathematical analysis of strain localization

Milan Jirásek

Department of Mechanics
Faculty of Civil Engineering
Czech Technical University in Prague
166 29 Prague, Czech Republic

Milan.Jirasek@epfl.ch

ABSTRACT. First it is shown by a simple one-dimensional example that stress-strain laws with
softening cannot provide an objective description of response on the structural level. The phe-
nomenon of discontinuous bifurcation from a uniform state is then analyzed in a general three-
dimensional setting. Localization conditions for isotropic damage models are derived in the
general form and then specialized for models with damage driven by equivalent strain depen-
dent on the stored elastic energy, on the maximum principal effective stress, or on the positive
part of the strain tensor.

RÉSUMÉ. D’abord on montre à l’aide d’un exemple unidimensionnel que les lois constitutives
avec adoucissement ne peuvent pas décrire la réponse au niveau de la structure dans une ma-
nière objective. Ensuite, le phénomène de la bifurcation discontinue à partir d’un état uniforme
est analysé dans le context général tridimensionnel. Les conditions de localisation pour les
modèles d’endommagement isotrope sont déduites dans leur forme générale, qui est ensuite
spécialisée pour les modèles avec endommagement dépendant de l’énergie élastique, de la
valeur principale maximale de la contrainte effective, ou de la partie positive du tenseur de
déformation.
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1. Inobjectivity of standard strain-softening continuum

The idea of modeling cracking concrete and other quasibrittle materials as strain-
softening continua, which emerged in the seventies, was not immediately accepted by
the entire scientific community. It was necessary to overcome a number of objections
regarding the ill-posedness and lack of objectivity of such formulations. Indeed, most
of the early analyses were not truly objective and, upon mesh refinement, their results
would not have converged to a meaningful solution. Instead of going into theoretical
details, let us explain the nature of the problem by a simple example.

Consider a straight bar of a constant cross section A and of total length L under
uniaxial tension; see Figure 1a. The material is assumed to obey a simple stress-strain
law with linear elasticity up to the peak stress, ft, followed by linear softening (Fig-
ure 2a). The strain at which the transmitted stress completely disappears is denoted
by εf . The peak stress is developed at strain ε0 = ft/E where E is Young’s modulus.

If the bar is loaded in tension by an applied displacement u of the right support,
the response remains linear elastic up to u0 = Lε0. At this state, the force transmitted
by the bar (reaction at the support) attains its maximum value, F0 = Aft. After that,
the resistance of the bar starts decreasing. At each cross section, stress can decrease
either at increasing strain (softening) or at decreasing strain (elastic unloading). The
static equilibrium equation implies that the stress profile must remain uniform along
the bar. However, at any given stress level σ̄ between zero and ft, there exist two
values of strain for which the constitutive equation is satisfied (Figure 2a), and so
the strain profile does not have to remain uniform. In fact, any piecewise constant
strain distribution that jumps between the two strain values εs and εu (respectively
corresponding to softening and unloading) represents a valid solution; see Figure 1b.
Let us denote byLs the cumulative length of the softening regions and byLu = L−Ls

the cumulative length of the unloading regions. When stress decreases to zero, the
strain in the softening region is εs = εf and the strain in the unloading region is
εu = 0; the total elongation of the bar is therefore uf = Lsεs + Luεu = Lsεf .
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Figure 1. (a) Bar under uniaxial tension, (b) piecewise constant strain profile
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Figure 2. (a) Stress-strain diagram with linear softening, (b) fan of possible post-peak
branches of the load-displacement diagram

Now the tricky point is that the length Ls is undetermined, and it can be anything
between zero and L. This means that the problem has infinitely many solutions, and
the corresponding post-peak branches of the load-displacement diagram fill the fan
shown in Figure 2b. This fan is bounded on one side by the solution with uniform
softening (Ls = L, uf = Lεf ) and on the other side by the solution with uniform
unloading (Lu = L, uf = 0). The latter limit correctly represents the case when the
bar is unloaded just before any softening occurs. All the other solutions describe a
possible process in which a part of the bar is damaged and the bar loses its structural
integrity. It is not clear which of these solutions is “correct” in the sense that it reflects
the actual failure process.

The ambiguity is removed if imperfections are taken into account. Real material
properties and sectional dimensions cannot be perfectly uniform. Suppose that the
strength in a small region is slightly lower than in the remaining portion of the bar.
When the applied stress reaches the reduced strength, softening starts and the stress
decreases. Consequently, the material outside the weaker region must unload elasti-
cally, because its strength has not been exhausted. This leads to the conclusion that
the size of the softening region is dictated by the size of the region with minimum
strength. Such a region can be arbitrarily small, and so the corresponding soften-
ing branch is arbitrarily close to the elastic branch of the load-displacement diagram.
Thus the standard strain-softening continuum formulation leads to a solution that has
several pathological features:

1) The softening region is infinitely small.

2) The load-displacement diagram always exhibits snapback, independently of the
size of the structure and of the ductility of the material.

3) The total amount of energy dissipated during the failure process is zero.

From the mathematical point of view, these annoying features are related to the loss
of ellipticity of the governing differential equation. The boundary value problem be-
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comes ill-posed, i.e., it does not have a unique solution with continuous dependence
on the given data. From the numerical point of view, ill-posedness is manifested by
pathological sensitivity of the results to the size of finite elements. This will be illus-
trated by an example in Jirásek (2007), and various remedies that lead to objective,
mesh-insensitive results will be described. In the present paper we focus on a deeper
analysis of conditions under which we can expect such pathological behavior of clas-
sical continuum models.

2. Discontinuous bifurcations—general theory

The simple one-dimensional example presented in the previous section illustrated
the essence of the problem with localization of inelastic strain into a process zone of
an arbitrarily small width. In one dimension, localization occurs when the peak of the
stress-strain diagram is reached, independently of the specific constitutive model used.
Formulations based on damage mechanics, smeared cracks or softening plasticity all
lead to the same type of behavior as soon as the tangent material stiffness ceases to
be positive. In multiple dimensions, the analysis of the localization process is more
complicated and the derivation of criteria for potential onset of localization represents
a challenging mathematical problem.

The fundamental question is under which conditions the inelastic strain increments
can localize in one or more narrow bands separated from the remaining part of the
body by weak discontinuity surfaces. Across such surfaces, the displacement field
remains continuous but the strain field can have a jump. At the onset of localization,
the current strains are still continuous and the jump appears only in the strain rates.
Let us determine the necessary conditions for the existence of such a solution, using
the classical localization analysis inspired by the early works of Hadamard (1903) and
Hill (1958) and developed, among others, for plasticity by Rudnicky et al. (1975) and
Ottosen et al. (1991) and for damage by Rizzi et al. (1996).

Our analysis will be restricted to one point xd of the discontinuity surface Sd at
incipient loss of strain continuity. The discontinuity surface splits the body (at least
locally) into subdomains V + and V − and its direction is characterized by the unit
vector n, oriented towards V +; see Figure 3. If point xd is approached from V + or
from V −, those fields that are discontinuous across Sd tend to different limits, further
denoted by superscripts + and −, resp. So for instance σ̇+ and σ̇− respectively denote
the stress rates on the “positive” and “negative” side of the discontinuity surface just
next to point xd, and their difference [[σ̇]] = σ̇+ − σ̇− is the jump of the strain rate.

Even though the stress and strain rates can be discontinuous across Sd, the corre-
sponding jumps are not completely arbitrary. The stress rate jump [[σ̇]] is constrained
by the traction continuity condition and the strain rate jump [[ε̇]] by the displacement
continuity condition. If the tensors are decomposed into their in-plane and out-of-
plane parts (with respect to the plane tangent to the discontinuity surface), the traction
continuity condition means that the out-of-plane stress rates must be continuous and
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Figure 3. Body split by a potential discontinuity surface

the displacement continuity condition implies that the in-plane strain rates must be
continuous. The jumps can appear only in the in-plane stress rates and out-of-plane
strain rates.

The traction continuity condition is easily written as

n · σ̇+ = n · σ̇− [1]

Formal mathematical representation of the displacement continuity condition in terms
of strain rates is less obvious. We can start from the observation that the spatial gradi-
ent of a given displacement component, e.g. of u1, must have continuous projections
onto the tangent plane (to the discontinuity surface) and only the normal component
of this first-order tensor can have a jump. So we can write

(

∂u̇1

∂x

)+

=

(

∂u̇1

∂x

)−

+ cn [2]

where c is an arbitrary multiplier. Extending this relation to the entire displacement
gradient, we obtain

(

∂u̇

∂x

)+

=

(

∂u̇

∂x

)−

+ c⊗ n [3]

where c is an arbitrary first-order tensor. To give to c a more specific physical mean-
ing, we present it in the form c = ėm where ė = ‖c‖ is the magnitude of the jump
term and m = c/‖c‖ is a unit first-order tensor called the polarization vector. The
angle between unit vectorsm and n characterizes the failure mode, ranging from ten-
sile splitting (mode I) with m = n to shear slip (mode II) with m perpendicular to
n; see Figure 4b,c. In the small-strain theory, with strains defined as the symmetric
part of the displacement gradient, relation [3] is easily rewritten in terms of the strain
rates:

ε̇+ = ε̇− + 1
2
(m⊗ n+ n⊗m) ė [4]

The stress and strain rates should now be linked by the constitutive law. The rate
form of the stress-strain law is normally written as σ̇ =D : ε̇ whereD is the tangent
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stiffness tensor. The tangent stiffness depends on the current state of the material,
which is initially the same on both sides of the incipient discontinuity, but it may also
depend on the strain rate. For rate-independent models, dependence on the magnitude
of the strain rate is excluded, but the tangent stiffness may depend on the oriented
direction of the strain rate. For instance, for damage models certain strain rate direc-
tions lead to damage growth and others to elastic unloading at constant damage, and
these two cases are characterized by two different tangent stiffness tensors. Since the
strain rates on both sides of the discontinuity are different, we admit that in general
the tangent stiffness tensors can be different as well, and so the stress-strain equations
read

σ̇+ =D+ : ε̇+, σ̇− =D− : ε̇− [5]

Substituting this into the traction continuity condition [1] and exploiting relation [4]
and the minor symmetry of the stiffness tensor, we obtain

n ·D+ : ε̇− + n ·D+ : (m⊗ n) ė = n ·D− : ε̇− [6]

Finally, moving the first term to the right-hand side leads to
(

n ·D+ · n
)

·mė = n ·
(

D− −D+
)

: ε̇− [7]

This is the most general equation describing an incipient weak discontinuity. Consid-
erable simplification is achieved if the tangent stiffness tensors on both sides of the
discontinuity are the same, D+ = D− = D. In this case, the right-hand side of
[7] vanishes and, since a true discontinuity is obtained only with ė 6= 0, the equation
reduces to

(n ·D · n) ·m = 0 [8]

The second-order tensor

Q = n ·D · n [9]

is called the localization tensor.1 From [8] it is clear that, at incipient formation of
a weak discontinuity, the localization tensor is singular and the polarization vector
m is its eigenvector associated with eigenvalue zero. This brings us to the classical
localization condition

detQ = 0 [10]

From the mathematical point of view, singularity of the localization tensor indicates
the so-called loss of ellipticity.

1. The localization tensor Q is sometimes referred to as the acoustic tensor, because if the
tangent stiffness tensor D is taken as the elastic stiffness tensor De, the eigenvalues of the
corresponding acoustic tensor Q

e
= n · De · n divided by the mass density are squares of the

speeds of elastic waves propagating in the direction of n. The corresponding eigenvalues are
polarization vectors that determine the type of waves (longitudinal, transversal, mixed).
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Figure 4. a) Body with a localization band, b) tensile splitting (mode I), c) shear slip
(mode II)

The localization tensor defined in [9] depends on the tangent stiffness tensorD and
on the unit normal to the discontinuity surface, n. With certain exceptions (e.g. mod-
els with multiple loading conditions or incrementally nonlinear models), the tangent
stiffness can be considered as dependent on the current state only and thus known. The
vector n, however, is not given in advance. Therefore, localization analysis consists
in searching for a unit vector n for which the localization tensor becomes singular. If
such a vector does not exist, the strain field must remain continuous. Singularity of
the localization tensor for a certain vector n indicates that a strain jump can develop
across a surface with normal n. One should bear in mind that this condition for the
appearance of a weak discontinuity is only necessary but not sufficient because the
localization analysis presented here is purely local, restricted to the level of a material
point and its infinitely small neighborhood. Whether the discontinuity surface indeed
develops in a finite body depends on the state of the surrounding material and on the
boundary conditions. Nevertheless, analysis of the localization tensor is widely used
as a powerful indicator of potential discontinuous failure modes.

In the artificial but illustrative case of a body under uniform stress, the localization
condition detQ = 0 can be satisfied at all points simultaneously. The local discon-
tinuities potentially appearing at individual points can then easily merge into global
discontinuity planes. For instance, one can imagine solutions with a band (layer) un-
der uniform strain rate, enclosed by two parallel discontinuity planes that separate the
band from the remaining part of the body, in which the strain rate is also uniform but
different from the strain rate inside the band; see Figure 4a. If the polarization vector
m is aligned with the normal vector n, the difference between the strain rates inside
and outside the band corresponds to stretching of the band in the normal direction; see
Figure 4b. This discontinuous mode is a precursor to splitting failure and is denoted
as mode I. On the other hand, if the polarization vector m is perpendicular to vector
n, i.e., parallel with the discontinuity planes, the failure occurs by shear slip and this
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is referred to as mode II; see Figure 4c. For general vectors m, failure is of a mixed
type, and the angle between m and n indicates whether the failure mode is closer to
tensile splitting or to shear slip.

3. Localization analysis of damage models

3.1. Localization condition for isotropic damage models

As a characteristic example, we will consider a simple isotropic damage model
with one scalar damage variable ω, described by the stress-strain law

σ = (1− ω)De : ε [11]

damage law

ω = g(κ) [12]

and loading-unloading conditions

f(ε, κ) ≡ εeq(ε)− κ ≤ 0, κ̇ ≥ 0, f(ε, κ) κ̇ = 0 [13]

in which f is the damage loading function, g is the damage evolution function, εeq is
a scalar measure of the strain level called the equivalent strain, and κ is an internal
variable that corresponds to the maximum level of equivalent strain ever reached in
the previous history of the material. The choice of the specific expression for the
equivalent strain directly affects the shape of the elastic domain in the strain space
and, as will be shown in Section 3.3, also the localization properties of the model.

From the rate form of the basic equations it is easy to derive the (elastic-damaged)
tangent stiffness tensor

Ded = (1− ω)De − g′σ̄ ⊗ η [14]

Here, Du = (1 − ω)De is the unloading stiffness, g′ = dg/dκ is the derivative of
the damage function g, σ̄ = De : ε is the effective stress, and η = ∂εeq/∂ε is a
second order tensor obtained by differentiation of the expression for equivalent strain
with respect to the strain tensor.

Specific conditions for discontinuous bifurcations depend on the particular choice
of the equivalent strain definition, but their general form can be elaborated for the en-
tire class of one-parameter isotropic damage models. Recall that incipient localization
is characterized by the unit normal vector n defining the discontinuity plane, by the
unit polarization vector m characterizing the discontinuity mode, and by rates ė and
ε̇−. The solution must satisfy condition [7], in which D+ and D− are the tangent
stiffness tensors corresponding to the processes taking place at the positive and neg-
ative sides of the discontinuity plane. Only if these tensors coincide, the localization
condition can be simplified to [8] or [10]. For a damage model with a single loading
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function, the tangent stiffness at a given material state can be eitherDu = (1−ω)De

if the strain increment leads to elastic unloading, or Ded if the strain increment leads
to damage growth. In total we should consider 2× 2 = 4 combinations of stiffnesses
D+ and D−, but since we are free to chose which side is considered as positive, it is
sufficient to analyze the following three cases:

Case 1: Unloading on both sides. In this case we set D+ = D− = Du and
localization can occur only if the localization tensor

Qu = n ·Du · n = (1− ω)n ·De · n = (1− ω)Qe [15]

is singular. However, it is easy to show that the (elastic) acoustic tensor

Qe = n ·De · n = n · (λδ ⊗ δ + 2µIs) · n = (λ+ µ)n⊗ n+ µδ [16]

is positive definite (for all unit vectors n), and since Qu is its positive multiple, the
localization condition detQu = 0 cannot be satisfied. This confirms our intuitive
expectation that discontinuous bifurcation must be related to damage growth.

Case 2: Damage growth on both sides. The analysis is again based on the de-
terminant of the localization tensor, but this time we set D+ = D− = Ded and
evaluate

Qed = (1− ω)Qe − g′(n · σ̄)⊗ (η · n) = Qu − g′σ̄n ⊗ ηn [17]

where we have denoted for simplicity σ̄n = n · σ̄ and ηn = η ·n. In fact, σ̄n has a di-
rect physical meaning—it is the effective traction vector on the potential discontinuity
plane.

Singularity ofQed occurs if there exists a nonzero vectorm such thatQed·m = 0,
which is equivalent to

Qu ·m = g′σ̄n(ηn ·m) [18]

As shown before, Qu is always positive definite and therefore invertible (as long as
ω < 1). The right-hand side of [18] is a scalar multiple of vector σ̄n, and so if a vector
m satisfying [18] exists at all, it must be a scalar multiple of Q−1

u · σ̄n. Therefore,
let us set m = aQ−1

u · σ̄n where a is a scalar multiplier to be determined, and let
us verify by substituting back into [18] whether this equation can be satisfied. The
resulting condition is easily transformed into

(

1− g′ηn ·Q−1
u · σ̄n

)

aσ̄n = 0 [19]

For a = 0 or σ̄n = 0 we would get the trivial solution m = 0, which does not
correspond to a real bifurcation. A nontrivial solution exists only if the expression in
parentheses on the left-hand side of [19] vanishes, i.e., if

g′ηn ·Q−1
u · σ̄n = 1 [20]
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The product ηn · Q−1
u · σ̄n depends on the elastic constants, on the current state of

the material and on the assumed direction of discontinuity plane. For a given material
state, it is continuous as a function of the unit vector n and has a maximum with
respect to n. Variable g′ (the derivative of the damage function with respect to the
equivalent strain) indicates how “dramatically” damage evolves. If g ′ is sufficiently
small, condition [20] is not satisfied for any n and discontinuous bifurcations are
excluded. The minimum value of g′ that is needed to allow a discontinuous bifurcation
is

g′crit =
1

max
‖n‖=1

(

ηn ·Q−1
u · σ̄n

) [21]

If g′ < g′crit, the localization tensor Qed is regular for all possible directions n, and
a discontinuous bifurcation is excluded. If g′ = g′crit, the localization tensor Qed

is singular for that particular direction n which maximizes ηn · Q−1
u · σ̄n, and a

discontinuity across a plane perpendicular to that direction can start evolving. Finally,
if g′ > g′crit, there exist infinitely many directions n for which Qed is singular, and
the discontinuity can evolve even “more easily”.

Case 3: Damage growth on one side only. This is the most complicated case,
because the stiffness tensors on both sides are different and we need to start from
condition [7] instead of simply checking the determinant of the localization tensor.
Nevertheless, the analysis can follow the same idea as in the previous case, it is only
more tedious. We skip the algebraic details and proceed to the resulting condition that
must be satisfied by the rates ε̇− and ė, respectively characterizing the strain rate on
the unloading side and the magnitude of the strain jump:

g′
(

ηn ·Q−1
u · σ̄n + ‖Q−1

u · σ̄n‖
η : ε̇−

ė

)

= 1 [22]

The solution is admissible only if the equivalent strain is nondecreasing on the un-
loading side and increasing on the other side, which can be written as

η : ε̇− ≤ 0, η : ε̇− + ėm · ηn > 0 [23]

where the polarization vector is given by

m =
Q−1

u · σ̄n

‖Q−1
u · σ̄n‖

[24]

From condition [22] we can express

g′ =
ė

ηn ·Q−1
u · σ̄nė+ ‖Q−1

u · σ̄n‖η : ε̇−
=

=
1

ηn ·Q−1
u · σ̄n

× ėm · ηn

η : ε̇− + ėm · ηn

[25]
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The minimum value of the first fraction on the right-hand side of [25] is g ′crit, given by
[21]. Due to the loading-unloading conditions [23], the minimal value of the second
fraction on the right-hand side of [25] is 1, and it is attained if and only if η : ε̇− = 0.
But this characterizes the extreme case in which unloading on the negative side of
the discontinuity has the character of neutral loading. So we can conclude that the
smallest possible value of g′ for which a discontinuous bifurcation can occur is g′crit,
as revealed by analysis of the localization tensor corresponding to the tangent stiffness
for growing damage, and that in the most critical case damage grows on one side of
the discontinuity while the material on the other side experiences neutral loading.
Since neutral loading can be considered at the same time as damage growth (at zero
rate) and as elastic unloading, the analysis of cases 2 and 3 has lead to the same
conclusion regarding the most critical case. Therefore, the simplified analysis based
on the determinant of the localization tensor is fully sufficient.

3.2. Localization condition for one-dimensional model

To get more insight into the meaning of the critical value of g′, let us reduce the
results derived so far to the simplest case of a one-dimensional damage model. All
tensors become scalars, the elastic stiffness tensor De is replaced by Young’s mod-
ulus E, the equivalent strain εeq is the strain ε itself (we consider monotonic tensile
loading), and tensor η is replaced by the scalar η = dεeq/dε = 1. The unit normal
vector n is also replaced by the scalar n = 1, and so there is no difference between
the localization tensor and the tangent stiffness. Realizing that the effective stress is
σ̄ = Eε and substituting into [14] we get the tangent stiffness

Eed = Eu − g′σ̄η = (1− ω)E − g′Eε = E(1− ω − g′ε) [26]

The localization condition detQed = 0 is now written as Eed = 0, which means that
a discontinuous bifurcation occurs when the peak of the stress-strain curve is reached.
This is of course the result that we would expect intuitively, based on the example
from section 1. The value of g′ corresponding to vanishing tangent stiffness Eed is

g′crit =
1− ω

ε
[27]

This is exactly what we obtain from the general formula [21] by substituting 1 for ηn,
(1− ω)E for Qu and Eε for σ̄n.

3.3. Localization conditions for three-dimensional models

Evaluation of the critical value of g′ was in the one-dimensional case very easy
because no maximization with respect to n was needed. Let us now show how to
proceed in the three-dimensional case. First, note that all terms in the product ηn ·
Q−1

u · σ̄n depend on the unit normal vector n. Vectors ηn and σ̄n are respectively
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defined as η·n and σ̄·n, where η and σ̄ are, for a given material state, fixed symmetric
second-order tensors. The inverse of Qu is easily evaluated as

Q−1
u =

1

1− ω
Q−1

e =
1

(1− ω)G

(

δ − n⊗ n
2(1− ν)

)

[28]

where G ≡ µ is the elastic shear modulus. The function to be maximized with respect
to n is thus

f(n) = ηn ·Q−1
u · σ̄n =

1

(1− ω)G

[

n · η · σ̄ · n− (n · η · n)(n · σ̄ · n)
2(1− ν)

]

[29]

The principal directions of tensors σ̄ = De : ε and η = ∂εeq/∂ε are the same, and
if we rewrite [29] in terms of the components with respect to the principal coordinate
system, we obtain the fourth-order polynomial

f(n1, n2, n3) =
1

(1− ω)G

[

3
∑

I=1

ηI σ̄In
2
I −

1

2(1− ν)

3
∑

I=1

ηIn
2
I

3
∑

I=1

σ̄In
2
I

]

[30]

This polynomial has to be maximized, subject to the constraint n2
1 + n2

2 + n2
3 = 1.

Renaming n2
1 as N1, n2

2 as N2 and n2
3 as N3, we convert the objective function f into

a quadratic function of arguments N1, N2 and N3, and the constraint into a linear
one, but additional constraints N1 ≥ 0, N2 ≥ 0 and N3 ≥ 0 must be imposed. The
resulting optimization problem has a strictly concave objective function and a convex
admissible domain, and so the solution exists and is unique. It can be obtained by
methods of quadratic programming.

In general, the critical value of g′ depends on the current state, which enters
through the principal values of η and σ̄. To illustrate the influence of the particu-
lar definition of equivalent strain on the localization properties of the model, we re-
strict our attention to the case of uniaxial tension, characterized by σ̄2 = σ̄3 = 0 and
η2 = η3. The objective function simplifies to

f(N1, N2, N3) =
1

(1− ω)G

[

η1σ̄1N1 −
(η1N1 + η2(N2 +N3)) σ̄1N1

2(1− ν)

]

[31]

and exploiting the constraint N1+N2+N3 = 1 we can express the objective function
as function of a single variable,

f(N1) =
σ̄1N1

(1− ω)G

[

η1 −
η1N1 + η2(1−N1)

2(1− ν)

]

[32]
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This quadratic function of N1 has to be maximized on the interval [0, 1], to make sure
that the resulting components of vector n will be real. A routine procedure leads to
the conclusion that

– if 2νη1 ≤ η2, then f attains its maximum value

fmax =
σ̄1

2(1− ω)G(1− ν)
(1− 2ν)η1 [33]

at N1 = 1,

– if 2νη1 ≥ η2, then f attains its maximum value

fmax =
σ̄1

2(1− ω)G(1− ν)

[2(1− ν)η1 − η2]
2

4(η1 − η2)

at N1 = [2(1− ν)η1 − η2]/(2η1 − 2η2).

In the first case, the predicted discontinuity plane is perpendicular to the direction of
loading, which is what we would expect if a quasibrittle material is cracking under
uniaxial tension. In the second case, the discontinuity plane is inclined. The question
that naturally arises is what actually happens for typical isotropic damage models. The
answer depends on the ratio η2/η1, i.e., on the choice of the formula for equivalent
strain.

Mazars (1984) defined the equivalent strain as

εeq = ‖〈ε〉‖ =

√

√

√

√

3
∑

I=1

〈εI〉2 [34]

where εI , I = 1, 2, 3, are the principal strains, and the brackets 〈. . .〉 denote the
positive part. Tensor η is obtained as

η =
∂εeq
∂ε

=
〈η〉
εeq

[35]

Under uniaxial tension, only one principal strain ε1 = σ̄1/E is positive while the other
principal strains ε2 = ε3 = −νε1 are negative (provided that the Poisson ratio is
positive, which is always the case for usual materials). Therefore, we have η1 = 1
and η2 = η3 = 0, condition 2νη1 ≤ η2 is not satisfied and the predicted direction of
potential discontinuity plane is inclined (not perpendicular to the loading direction).
The angle θ between the normal to the discontinuity plane and the direction of loading
is evaluated from the relation cos θ = n1 =

√
N1 as

θ = arccos
√
1− ν [36]

and for instance for ν = 0.2 (a typical value for concrete), it is about 27 degrees. This
seems to be quite a suprizing result. But even more surprizing is the critical value of
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tangent modulus. For η1 = 1 and η2 = η3 = 0, the maximum value of the objective
function f is

fmax =
σ̄1(1− ν)

2(1− ω)G
=

(1− ν2)ε

1− ω
[37]

and if g′crit = 1/fmax is substituted into [26], we obtain

Eed,crit = E(1− ω − g′critε) = −
ν2Eu

1− ν2
[38]

This means that the discontinuous bifurcation is excluded not only in the hardening
regime with positive tangent modulus, but also if the material is softening but the
tangent modulus is only “slightly negative”. The absolute value of the negative tangent
modulus must attain at least ν2/(1 − ν2) times the unloading modulus to make the
discontinuous bifurcation possible. For Poisson ratio 0.2, the critical ratio Eed/Eu is
−0.04167.

Another definition of equivalent strain is based on the scaled energy norm,

εeq =

√

ε :De : ε

E
[39]

In this case we obtain η = σ̄/Eεeq and, under uniaxial tension, η1 = 1 and η2 = 0.
So the localization properties under uniaxial tension are exactly the same as for the
Mazars definition.

For the Rankine-type definition of equivalent strain

εeq =
σ̄1

E
[40]

we get

η =
∂εeq
∂ε

=
1

E

∂σ̄1

∂σ̄
:
∂σ̄

∂ε
=

1

E
(p1 ⊗ p1) : De =

=
1

1 + ν

(

ν

1− 2ν
δ + p1 ⊗ p1

)

[41]

where σ̄1 is the maximum principal effective stress and p1 is the unit vector in the cor-
responding principal direction. The ratio η2/η1 is equal to ν/(1−ν), which is smaller
than 2ν for all values of Poisson’s ratio ν from the open interval (0, 0.5). So once
again, the discontinuity plane is not perpendicular to the direction of loading. But
in contrast to the previous examples, the critical value of the tangent modulus turns
out to be positive—it is equal to Euν

2/(2 − ν)2. This means that the discontinuous
bifurcation can occur even before the peak stress is attained (of course provided that
the stress-strain curve has a nonlinear hardening part before the peak, with a gradual
decrease of the tangent modulus). For ν = 0.2, the critical value of the tangent mod-
ulus is about 1% of the unloading modulus, so it is quite small. Much larger positive
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values are found for a model based on the so-called modified von Mises definition
of equivalent strain. This model uses an additional parameter k, which sets the ratio
between compressive and tensile strength. With k = 10 and ν = 0.2, the critical ratio
Eed/Eu is as high as 0.267. So if this type of model is used with pre-peak nonlinear
behavior, strange instabilities in the hardening regime can be expected.

Localization analysis can also be performed for anisotropic damage models. For
instance, for smeared crack models the results in a good agreement with our expec-
tations: The discontinuous bifurcation condition is satisfied at the peak of the ten-
sile stress-strain curve and the discontinuity plane is perpendicular to the direction of
loading. This confirms that the model is appropriate for quasibrittle materials such as
concrete.
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