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ABSTRACT. This paper starts with an overview of models that can provide an objective descrip-
tion of highly localized inelastic deformation. Basic ideas behind the integral and differential
formulations of nonlocal models are explained using a simple isotropic damage model as a typ-
ical example. Regularizing effect of nonlocal enhancements is documented by one-dimensional
localization analysis. The paper then focuses in detail on integral-type nonlocal damage mod-
els. The main issues addressed here include the choice of the internal variable to be averaged,
the influence of boundaries, and various computational aspects ranging from efficient imple-
mentation of nonlocal averaging to adaptive techniques.

RÉSUMÉ. Cet article commence par un résumé des modèles avec une description objective des
déformations inélastiques fortement localisées. Les principes de bases des modèles non locaux,
intégral et gradient, sont illustrés dans le cas simple du modèle d’endommagement isotrope.
Les effets de la régularisation des modèles enrichis sont illustrés sur la localisation dans le cas
unidimensionnel. Dans la suite, nous présentons en détail l’approche intégrale des modèles non
locaux. Un intérêt particulier est apporté sur le choix de la variable interne à régulariser, sur
l’influence de la prise en compte des conditions aux limites et sur divers aspects du calcul nu-
mérique comme l’implantation efficace des modèles régularisés ou les techniques adaptatives.

KEYWORDS: strain localization, softening, localization limiters, nonlocal damage, failure simu-
lations.
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1. Classification of models for localized inelastic deformation

In many structures subjected to extreme loading conditions, the initially smooth
distribution of strain changes into a highly localized one. Typically, the strain incre-
ments are concentrated in narrow bands while the major part of the structure experi-
ences unloading. The size of the localized band and its evolution depend on details
of the material microstructure, in particular on the size and spacing of major het-
erogeneities and on the specific failure mechanism that develops for a given type of
loading. Propagation and coalescence of microdefects in the localization band can
eventually lead to the formation of a displacement discontinuity, e.g., of a macro-
scopic stress-free crack or a sharp slip line.

Mathematical and numerical models of concrete failure must correctly reflect the
energy dissipated in the fracture process zone. As shown in (Jirásek, 2007), this is not
the case if the stress-strain laws with softening is used within the standard continuum
theory. Numerical results obtained with such models suffer from pathological sensi-
tivity to the spatial discretization, e.g. to the size of finite elements. Upon mesh refine-
ment, the energy dissipated by the numerical model decreases and tends to extremely
low values, sometimes even to zero. As a remedy, one of the following approaches
can be used:

1) The cohesive crack model admits the presence of a strong discontinuity (jump
in the displacement field) and describes softening by a traction-separation law, which
relates the traction transmitted by the crack to the crack opening.

2) The crack band model represents the process zone (and later a macroscopic
crack) by a band of highly localized strain, separated from the surrounding material
by two weak discontinuities (surfaces across which the strain field has a jump). Since
the width of the numerically resolved band is controlled by the size of finite elements,
the softening part of the stress-strain law must be adjusted according to the element
size.

3) Regularized models are based on generalized continuum theories that incorpo-
rate a characteristic length and prevent localization of strain into an arbitrarily small
volume. Since the enrichments enforce a certain minimum width of the numerically
resolved process zone, they are called localization limiters. Examples of such gener-
alized continua include nonlocal integral or differential (gradient-enriched) formula-
tions.

Here we focus on regularized models, and in particular on nonlocal models of the
integral type, because gradient models are covered by another paper in this journal
issue (Simone, 2007).

From the mathematical point of view, the basic classes of models mentioned above
are characterized by different levels of regularity (smoothness) of the underlying kine-
matic description; see Figure 1.

Cohesive crack models incorporate strong discontinuities, i.e., jumps in displace-
ments across a discontinuity curve (in two dimensions) or discontinuity surface (in
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Figure 1. Kinematic description with (a) strong discontinuity, (b) weak discontinu-
ities, (c) no discontinuities

three dimensions). The strain field, ε(x), then consists of a regular part, obtained
by standard differentiation of the displacement field, and a singular part, having the
character of a multiple of the Dirac delta distribution. This is schematically shown
for the one-dimensional case in Figure 1a. In physical terms, the strong discontinuity
corresponds to a sharp crack (not necessarily a stress-free one).

Another possible kinematic description, exploited by the crack band models, rep-
resents the region of localized deformation by a band of a small but finite thickness,
separated from the remaining part of the body by two weak discontinuities, i.e., curves
or surfaces across which certain strain components have a jump but the displacement
field remains continuous. This is illustrated in Figure 1b. Since the displacement is
continuous, the strain components in the plane tangential to the discontinuity surface
must remain continuous as well, and only the out-of-plane components can have a
jump. In physical terms, the band between the weak discontinuities corresponds to a
damage process zone with an almost constant density of microdefects.

Finally, regularized models usually lead to a continuously differentiable displace-
ment field, and the strain field remains continuous. Strain localization is manifested
by high strains in a narrow band, with a continuous transition to much lower strains
in the surrounding parts of the body. A typical strain profile of this type is shown
in Figure 1c. In physical terms, this corresponds to a damage process zone with a
continuously varying concentration of defects.
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2. Regularized softening continua

2.1. Overview of generalized continuum models

Fully regularized description of localized inelastic deformation can be achieved by
a proper generalization of the underlying continuum theory. Generalized continua in
the broad sense can be classified according to the following criteria:

1) Generalized kinematic relations (and the dual equilibrium equations).

a) Continua with microstructure, e.g., Cosserat-type continua or strain-
gradient theories.

b) Continua with nonlocal strain, e.g., nonlocal elasticity.

2) Generalized constitutive equations.

a) Material models with gradients of internal variables (in some cases also with
gradients of thermodynamic forces).

b) Material models with weighted spatial averages of internal variables (in
some cases also of thermodynamic forces).

Here we focus on the second class of models, with enhancements on the level of
the constitutive equations. Their advantage is that the kinematic and equilibrium equa-
tions remain standard, and the notions of stress and strain keep their usual meaning.

2.2. Typical softening continuum model

As a prototype of a softening continuum, we will consider the one-parameter
isotropic damage model described by the stress-strain law

σ = (1− ω)De : ε [1]

damage law

ω = g(κ) [2]

and loading-unloading conditions

f(ε, κ) ≡ εeq(ε)− κ ≤ 0, κ̇ ≥ 0, f(ε, κ) κ̇ = 0 [3]

in whichσ is the stress tensor, ε is the strain tensor,De is the elastic material stiffness
tensor, ω is the damage variable, f is the damage loading function, g is the damage
evolution function, εeq is a scalar measure of the strain level called the equivalent
strain, and κ is an internal variable that corresponds to the maximum level of equiva-
lent strain ever reached in the previous history of the material.
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The choice of a specific expression for the equivalent strain directly affects the
shape of the elastic domain in the strain space. For instance, one could define the
equivalent strain as the scaled energy norm,

εeq =

√

ε :De : ε

E
[4]

Square root and scaling by Young’s modulus E are used in order to transform the
energy into a strain-like quantity, in the special case of uniaxial loading equal to the
longitudinal strain.

Since damage in many materials propagates much more easily under tension than
under compression, the specific expression for equivalent strain εeq is usually designed
such that the influence of tension is emphasized. As a first approximation, one may
assume that compressive strains do not lead to any damage, and relate εeq to positive
strains only. For instance, Mazars (Mazars, 1984) defined the equivalent strain as

εeq = ‖〈ε〉‖ =

√

√

√

√

3
∑

I=1

〈εI〉2 [5]

where εI , I = 1, 2, 3, are the principal strains, and the brackets 〈. . .〉 denote the
positive part operator, defined by the relations 〈ε〉 = ε for ε > 0 and 〈ε〉 = 0 for
ε ≤ 0.

As shown in (Jirásek, 2007), for sufficiently “fast” damage evolution (sufficiently
high value of the derivative of damage function g) the localization tensor is singular
for certain directions, the differential equations governing the mechanical problem
lose ellipticity, and the damage model in the foregoing local form does not provide an
objective description of the failure process.

2.3. Integral-type nonlocal formulation

Integral-type nonlocal models abandon the classical assumption of locality and
admit that stress at a certain point depends not only on the state variables at that point
but in general on the distribution of state variables over the whole body, or at least
on their distribution in a finite neighborhood of the point under consideration. The
first models of this type, proposed in the 1960s, aimed at improving the description
of elastic wave dispersion in crystals. Nonlocal elasticity was further developed by
Eringen, who extended it to nonlocal elastoplasticity (Eringen, 1981; Eringen, 1983)
in the early 1980s. Subsequently it was found that certain nonlocal formulations can
act as efficient localization limiters with a regularizing effect on problems with strain
localization (Pijaudier-Cabot et al., 1987). Nonlocal formulations were elaborated
for a wide spectrum of models, including softening plasticity (Bažant et al., 1988b;
Strömberg et al., 1996), smeared crack models (Bažant et al., 1988a; Jirásek et al.,
1997), or microplane models (Bažant et al., 1990; Ožbolt et al., 1996; Bažant et al.,
2004). For a detailed account, the reader is referred to (Bažant et al., 2002).
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Generally speaking, the nonlocal approach consists in replacing a certain variable
by its nonlocal counterpart obtained by weighted averaging over a spatial neighbor-
hood of each point under consideration. If f(x) is some “local” field in a domain V ,
the corresponding nonlocal field is defined as

f(x) =

∫

V

α(x, ξ)f(ξ) dξ [6]

where α(x, ξ) is a given nonlocal weight function. In an infinite body, the weight
function depends only on the distance between the “source” point, ξ, and the “target”
point, x. In the vicinity of a boundary, the weight function is usually rescaled such
that the nonlocal operator does not alter a uniform field. This can be achieved by
setting

α(x, ξ) =
α0(‖x− ξ‖)

∫

V
α0(‖x− ζ‖) dζ

[7]

where α0(r) is a monotonically decreasing nonnegative function of the distance
r = ‖x − ξ‖. In the one-dimensional setting, x and ξ are scalars and the domain
of integration V reduces to an interval.

The weight function is often taken as the Gauss distribution function (solid curve
in Figure 2a)

α0(r) = exp

(

− r2

2`2

)

[8]

where ` is a parameter reflecting the internal length of the nonlocal continuum. An-
other possible choice is the truncated quartic polynomial function (dashed curve in
Figure 2a)

α0(r) =

〈

1− r2

R2

〉2

[9]

where R is a parameter related to the internal length. Since R corresponds to the
largest distance of point ξ that affects the nonlocal average at point x, it is called
the interaction radius. The Gauss function [8] has an unbounded support, i.e., its
interaction radius is R =∞.

A suitable nonlocal damage formulation that restores well-posedness of the bound-
ary value problem is obtained if damage is computed from the nonlocal equivalent
strain. In the loading-unloading conditions [3], the local value εeq is replaced by its
weighted spatial average

εeq(x) =

∫

V

α(x, ξ)εeq(ξ) dξ [10]

According to the modified loading-unloading conditions

εeq − κ ≤ 0, κ̇ ≥ 0, (εeq − κ) κ̇ = 0 [11]
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Figure 2. (a) Nonlocal weight functions α0, (b) convergence of load-displacement
diagram, (c) convergence of strain profile, (d) convergence of damage profile; Nel =
number of elements

the internal variable κ has the meaning of the largest previously reached value of
nonlocal equivalent strain εeq. The corresponding damage variable evaluated from [2]
is then substituted into the stress-strain equations [1]. It is important to note that the
damage variable is evaluated from the nonlocal equivalent strain εeq, but the strain ε
that appears in [1] explicitly is kept local. In the elastic range, the damage variable
remains equal to zero, and the stress-strain relation is local.

Figure 2b shows the load-displacement diagram for strain localization in a bar
under uniaxial tension, calculated using a nonlocal damage model with the weight
function [9] and with the exponential damage law

ω = g(κ) = 1− ε0
κ

exp

(

−〈κ− ε0〉
εf − ε0

)

[12]

where ε0 is the limit elastic strain and εf is a parameter that controls softening. As the
number of finite elements increases, the load-displacement curve rapidly converges to
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the exact solution. Convergence of strain and damage profiles generated by an applied
displacement u = 2u0 is documented in Figure 2c,d. In contrast to the local model,
the process zone does not shrink to a single point as the mesh is refined. Its size is
controled by the interaction radius R, considered as a material parameter.

2.4. Explicit gradient formulation

Gradient models can be considered as the differential counterpart of integral non-
local formulations. Instead of dealing with integrals that represent spatial interactions,
we can take the microstructure into account by incorporating the influence of gradi-
ents (of the first or higher order) of internal variables into the constitutive relations.
The most popular example is the gradient-dependent plasticity theory that evolved
from the original ideas of Aifantis (Aifantis, 1984). If a similar approach is used in
damage mechanics, damage is assumed to be driven not only by the (local) equivalent
strain εeq but also by its Laplacean, ∇2εeq, which represents in a generalized sense
the “curvature” of the strain distribution. In the simplest case, εeq is replaced in the
loading-unloading conditions [3] by the quantity

εeq = εeq + `2∇2εeq [13]

where ` is a material parameter with the dimension of length. The damage-driving
quantity εeq can be considered as a specific type of nonlocal equivalent strain, which
is now constructed by applying a differential operator on the local equivalent strain,
rather than by applying the integral operator according to [10]. Therefore, the gradient
damage model based on [13] is considered as weakly nonlocal.1

As long as the strain distribution remains uniform (such as in a uniaxial tensile test
before localization), the equivalent strain is also uniform, its Laplacean vanishes, and
the model response is exactly the same as for the local formulation. After the onset of
localization, the higher-order term is activated and prevents localization of damage in
a set of zero measure.

It is instructive to discuss how the gradient term limits localization. Around the
point that experiences the largest strain, the curvature of the strain profile is negative,
and due to the Laplacean term in [13] the nonlocal equivalent strain is smaller than the
local one. If the softening zone were too narrow, the negative curvature of the strain
profile around its peak would have a large magnitude, and the damage evolution would
be very slow. This would slow down the strain growth in the central part of the local-
ized zone and accelerate the growth in the adjacent regions, so the localization zone
would expand. The minimum size of this zone is controled by the length parameter `,
as will be shown in Section 3.3.

1. For strongly nonlocal models, the value of the nonlocal quantity at a certain point depends
on the distribution of the corresponding local quantity in the entire body or at least in a finite
neighborhood of that point, while for weakly nonlocal models it can be computed from the
distribution of the local quantity in an arbitrarily small neighborhood.
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2.5. Implicit gradient formulation

Due to the presence of second derivatives of internal variables, the numerical im-
plementation of explicit gradient models is not easy. The simplest version of the ex-
plicit gradient damage model suffers by certain deficiencies, which will be described
in more detail in (Simone, 2007). These problems can be overcome by the implicit
gradient damage formulation (Peerlings et al., 1996), which defines the nonlocal vari-
able indirectly as the solution of a Helmholtz-type differential equation

εeq − `2∇2εeq = εeq [14]

with the homogeneous Neumann boundary condition n ·∇εeq = 0 imposed on the
entire physical boundary S of the body V .

The solution ε̄ of the above boundary value problem can be expressed in the form
of an averaging formula similar to [10] with the weight function α(x, ξ) replaced
by the Green function of the boundary value problem. For instance, for an infinite
one-dimensional domain, the Green function of the Helmholtz equation [14] is given
by

G(x, ξ) =
1

2`
exp

(

−|x− ξ|
`

)

[15]

So the implicit gradient models are equivalent to integral-type nonlocal models with
special nonlocal weight functions. Despite this formal equivalence, their numerical
implementation is quite different (Peerlings et al., 1996).

3. One-dimensional localization analysis

To shed more light on the regularizing effect of various nonlocal damage formu-
lations, we will perform a simple one-dimensional analysis of bifurcations from a
uniform state under uniaxial tension. This is just an academic example, but it is
instructive because it can be solved analytically or semi-analytically and the results
indicate which parameters influence the size of the localized zone.

3.1. General considerations

We consider a perfectly homogeneous bar with constant cross section, subjected
to increasing total elongation. No body or inertia forces are taken into account, and
so the stress state is uniform. The problem always admits a solution with uniform
strain. The main questions to be addressed here are under which conditions the strain
distribution can become nonuniform and how such nonuniform solutions look like.
We analyze the state at incipient loss of strain uniformity, when the current strain is
still uniform but the strain rate is not.
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The rate form of the stress-strain law [1] reduced to one spatial dimension and
combined with the rate form of the damage law [2] reads

σ̇ = (1− ω)Eε̇−Eεω̇ = Euε̇−Eεg′κ̇ [16]

where Eu = (1 − ω)E is the unloading (secant) modulus and g′ = dg/dκ is the
derivative of the damage function g.

Consider first the local damage model. Up to the current state, the material has
experienced no unloading and there is no difference between the damage-driving vari-
able κ and the longitudinal strain ε. But the rate κ̇ is equal to the strain rate ε̇ only
if the strain is growing, otherwise we have κ̇ = 0. Both cases are covered by the
relation κ̇ = 〈ε̇〉. In the damage zone, characterized by ε̇ > 0, expression [16] for the
stress rate can be written as σ̇ = Eedε̇ where Eed = Eu − Eεg′ is the elasto-damage
(tangent) modulus. Replacing−Eεg′ by Eed −Eu, we can rewrite [16] as

σ̇ = Euε̇+ (Eed −Eu)κ̇ [17]

Let us now turn attention to nonlocal models. For all nonlocal damage formula-
tions presented in the preceding section, damage is driven by the nonlocal equivalent
strain ε̄, and the rate of the internal variable κ at the onset of localization can be ex-
pressed as κ̇ = 〈 ˙̄ε〉. Relation [17] written for the entire bar provides an equation that
governs the distribution of the strain rate. This equation, in general written as

Euε̇(x) + (Eed −Eu)〈 ˙̄ε(x)〉 = σ̇ [18]

has an integral or differential character, depending on the specific definition of the
nonlocal operator. Note that the current values of the moduli Eu and Eed are taken as
constants because at the onset of localization the current state is still uniform, and that
the stress rate σ̇ is also independent of the spatial coordinate—its uniformity follows
from the equilibrium equation. Depending on the sign of the stress rate and of the
tangent modulus, equation [18] has uniform solutions ε̇(x) = σ̇/Eed > 0 or ε̇(x) =
σ̇/Eu < 0 that correspond to uniform damage growth or to uniform elastic unloading,
respectively. We will now look for nonuniform solutions admitted by various nonlocal
formulations.

For a given ratio Eed/Eu, the exact width and shape of the strain rate profile can
be found numerically. This could be done by the finite element method, but the bifur-
cation would have to be triggered by an initial imperfection and the results (especially
the shape of the profile around the imperfection) might be sensitive to the magnitude
and extent of that imperfection. It is therefore preferable to solve equation [18] di-
rectly, with σ̇ considered as a given (negative) constant. The most interesting solution
is that for which the growth of damage localizes into an interval Id of finite length Ld,
surrounded by elastically unloading material with constant damage. The origin of the
coordinate system will be placed in the center of the localized damage zone, which
means that Id will be considered as the interval (−Ld/2, Ld/2).

For simplicity, we assume that the total bar length L is sufficiently large, so that
Id is contained in the interval (−L/2, L/2) representing the entire bar. Outside Id,
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the nonlocal strain rate is nonpositive and [18] reduces to Euε̇(x) = σ̇, from which
ε̇(x) = σ̇/Eu for x /∈ Id. It is convenient to introduce a new unknown function
ė(x) = ε̇(x) − σ̇/Eu (which is nonvanishing only in Id) and rewrite [18] as

Eu

Eu −Eed

ė(x)− ˙̄e(x) =
σ̇

Eu

for x ∈ Id [19]

The nonstandard feature is that the interval Id on which [19] is to be solved is not
known in advance—it must be found from the loading-unloading conditions, which
require that Id = {x | ˙̄ε(x) > 0}, i.e., in terms of the new unknown function, that
Id = {x | ˙̄e(x) > −σ̇/Eu}. Physically, ė can be considered as the damage strain rate
or inelastic strain rate, because the rate form of the stress-strain law can be presented
as σ̇ = Eu(ε̇− ė).

3.2. Integral formulation

For the integral-type nonlocal damage model with averaging of equivalent strain,
[19] reads

Eu

Eu −Eed

ė(x)−
∫ Ld/2

−Ld/2

α(x, ξ)ė(ξ)dξ =
σ̇

Eu

for x ∈ Id [20]

This is a Fredholm integral equation of the second kind with a constant right-hand
side. Due to its integral definition, the nonlocal strain rate ˙̄ε is continuous even if the
local strain rate ε̇ is not. Since ˙̄ε is positive inside the damage zone Id and nonpositive
outside, it must vanish on the boundary of Id, i.e., at points x = −Ld/2 and x =
Ld/2. Consequently, the value of ˙̄e at these points must be −σ̇/Eu. This is the
condition from which the actual size of the damage zone Ld can be determined. The
problem is formally identical with that arising in localization analysis of the Vermeer-
Brinkgreve nonlocal plasticity model (Vermeer et al., 1994; Jirásek et al., 2003), and it
can be solved using the iterated collocation scheme proposed in (Planas et al., 1996).
The numerical results are represented by the isolated points in Figure 3.

For small sizes of the damage zone, an analytical approximation can be constructed
by expanding the weight function into the Taylor series around the origin. For the
truncated quartic weight function [9], asymptotic analysis leads to the formula

Ld ≈
(−3.2R3Eu

Eed

)1/3

= 1.4736R

(

− Eu

Eed

)1/3

[21]

Figure 3a shows that this approximation is accurate only for ratios −Eed/Eu larger
than about 2. An explicit formula valid for small values of this ratio was derived in
(Patzák et al., 2003) in the form

Ld ≈ πR

√

− 2Eu

7Eed

= 1.6793R

(

− Eu

Eed

)1/2

[22]
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Figure 3. Size of the localized damage zone as a function of the ratio between the
tangent and unloading modulus: (a) natural scale, (b) logaritmic scale

To get a better idea about the dependence of the damage zone size on the model param-
eters in a wide range, we plot the results in a logarithmic scale. Figure 3b shows that
the combination of formulae [21] and [22] provides a very good estimate of Ld over
the entire range of ratiosEed/Eu. Formula [21] should be applied if−Eed/Eu ≥ 2.19
and formula [22] if −Eed/Eu ≤ 2.19. So the initial width of the localized damage
zone can be directly determined from the model parameters Eed, Eu and R.

Let us emphasize that the foregoing analysis refers only to the bifurcation from
a uniform state, which occurs at the onset of softening, provided that the bar is suf-
ficiently large. For example, for the damage evolution law [12] that corresponds to
exponential softening, the peak of the local stress-strain diagram coincides with the
limit elastic state (for which the current value of damage is still equal to zero), and
so Eu should be interpreted as the elastic modulus E and Eed as the initial slope of
the softening branch of the stress-strain diagram, Eed = −Eε0/(εf − ε0). The ratio
Eed/Eu = −ε0/(εf − ε0) = −1/(εf/ε0 − 1) depends only on the ratio εf/ε0, which
is a dimensionless measure of the (local) ductility. For a given ratio εf/ε0, the initial
size of the localized damage zone is according to [21]–[22] directly proportional to
the nonlocal interaction radius R.

3.3. Explicit gradient formulation

For the explicit gradient damage model, the nonlocal strain that drives damage is
given by [13], and its rate is ˙̄ε = ε̇+`2ε̇′′. The rate of nonlocal inelastic strain is given
by a similar expression ˙̄e = ė+`2ė′′, because ε̇ and ė differ only by a constant, σ̇/Eu.
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Substituting this expression into [19], we find that the inelastic strain rate inside the
localized damage zone Id must satisfy the differential equation

Eed

Eu −Eed

ė(x)− `2ė′′(x) =
σ̇

Eu

for x ∈ Id [23]

and outside the damage zone we have ė(x) = 0. Rigorous mathematical description
of the continuity conditions on the boundary of the damage zone is in general not
trivial, but in the present simple case of perfectly uniform bar it can be shown that the
inelastic strain rate must be continuously differentiable in the entire domain, and since
it vanishes outside Id, its value and derivative on the boundary of Id must also vanish.
Therefore, we solve equation [23] with conditions ė(±Ld/2) = 0 and ė′(±Ld/2) = 0
applied at points x = −Ld/2 and x = Ld/2, which represent the boundary of the
damage zone. Straightforward analysis leads to the conclusion that for Eed ≥ 0 this
boundary value problem admits only the trivial solution ė(x) = 0, while for Eed < 0
there exist other solutions. The most interesting one is that which localizes into the
shortest possible interval of length

Ld = 2π`

√

1− Eu

Eed

[24]

and has the form

ė(x) =
σ̇(Eu −Eed)

EuEed

(

1 + cos
2πx

Ld

)

[25]

The distribution of the strain rate ε̇ = ė+ σ̇/Eu for such localized solution is plotted
in Figure 4a, along with the nonlocal strain rate. These distributions have been con-
structed for the specific case Eed = −Eu, in which the size of the damage zone is
Ld = 2

√
2π` = 8.886`. The values on the vertical axis are normalized by −σ̇/Eu.

Note that the nonlocal strain rate has a jump at the boundary of the damage zone,
because the second derivative of the local strain rate is not continuous.

According to [24], the size Ld of the localized zone is directly proportional to
the characteristic length `, but it also depends on the ratio between the tangent and
unloading moduli. For “mild softening” with small negative values of the tangent
modulusEed, the size of the damage zone is much larger than the characteristic length,
while for “abrupt softening” with high negativeEed it is close to the minimum possible
value 2π`. So it can be expected that for damage laws that lead to a sharp peak of the
local stress-strain diagram, such as the exponential law [12], localization will occur
right at peak stress, provided that the total length of the bar is larger than the size
of the localized zone predicted by [24]. For damage laws that lead to a continuous
evolution of the tangent modulus, the localized zone will develop gradually and its
size is expected to shrink as the negative ratio Eed/Eu increases in magnitude.
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Figure 4. Distribution of local and nonlocal strain rate according to the (a) explicit,
(b) implicit gradient damage model

3.4. Implicit gradient damage formulation

For the implicit gradient damage model, the nonlocal strain ε̄ driving damage is
defined implicitly by the differential equation [14], and so we cannot easily eliminate
it from [18]. Therefore, we consider the nonlocal strain rate ˙̄ε as the primary unknown
and eliminate the rate of local strain ε̇. Combining [14] with [18] we find out that
the nonlocal strain rate is governed by a differential equation that has a different form
inside and outside the damage zone:

Eed ˙̄ε(x)−Eu`
2 ˙̄ε′′(x) = σ̇ for x ∈ Id [26]

Eu ˙̄ε(x)−Eu`
2 ˙̄ε′′(x) = σ̇ for x /∈ Id [27]

To satisfy the loading-unloading conditions, the solution ˙̄ε should be nonnegative in
the damage zone and nonpositive outside and thus, due to continuity requirements,
it must vanish on the boundary of the damage zone. So we solve equations [26]–
[27] with conditions ˙̄ε(±Ld/2) = 0 and with imposed continuous differentiability at
points x = −Ld/2 and x = Ld/2. After straightforward mathematical analysis, we
come to the conclusion that a nonuniform solution exists only for Eed < 0 and that it
has the form

˙̄ε(x) =























σ̇

Eed

(

1− cos
√

−Eed/Eu x/`

cos
√

−Eed/Eu Ld/2`

)

for |x| ≤ Ld/2

σ̇

Eu

[

1− exp

(

Ld − 2|x|
2`

)]

for |x| > Ld/2

[28]
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where the size of the damage zone is

Ld = 2`

√

− Eu

Eed

(

π − arctan

√

−Eed

Eu

)

[29]

The corresponding local strain rate is then easily evaluated as ε̇ = ˙̄ε − `2 ˙̄ε′′. The
resulting profiles of local and nonlocal strain rate are plotted in Figure 4b, again for
the specific case with Eed = −Eu. The size of the damage zone according to [29]
is Ld = 1.5π` = 4.712`. Note that, in contrast to the explicit gradient formulation
with strain rates plotted in Figure 4a, the nonlocal strain rate is now continuously
differentiable but the local strain rate is only continuous and its derivative has a jump
on the boundary of the damage zone.

For simplicity, we have presented here a solution valid on an infinite domain. For
a bar of a finite length L, the homogeneous Neumann boundary conditions ˙̄ε′ = 0
must be imposed at x = −L/2 and x = L/2. The result is then more algebraically
involved and depends on the bar length L, but the main characteristics are the same.
The size of the localized damage zone Ld can be arbitrarily large for sufficiently small
magnitude of the tangent modulus Eed (and sufficiently large bar length L), and it can
be arbitrarily small for sufficiently large magnitude of Eed. In contrast to the explicit
gradient formulation, there is no lower limit on Ld, and it can be expected that the
active part of the damage zone shrinks during the softening process. This is indeed
confirmed by numerical simulations.

In this section, we have investigated the bifurcations from a uniform state for three
nonlocal damage formulations. We have found certain similarities but also some dif-
ferences. The results are compared in Figure 5, which shows the dependence of the
damage zone size on the tangent modulus. Each of the nonlocal enhancements intro-
duces a new parameter that sets the internal length scale of the material—the integral
formulation uses the nonlocal interaction radius R, and the gradient formulations mul-
tiply the second gradient of local or nonlocal strain by the square of an internal length
parameter `. For small magnitudes of the negative tangent modulus Eed, i.e., for very
ductile local behavior, the size of the localized damage zone tends to infinity for all
three formulations, proportionally to

√

−Eu/Eed. If we set R = `
√
14, the depen-

dence of the damage zone size on the tangent modulus tends to the same asymptotic
limit Ld ≈ 2π`

√

−Eu/Eed for all three formulations; see Figure 5. On the other
hand, for very brittle local behavior with a high magnitude of the negative tangent
modulus, the size of the damage zone tends to zero for the integral formulation and
for the implicit gradient formulation, while for the explicit gradient formulation it
tends to a finite limit 2π`. This indicates that we can expect differences in the evo-
lution of the active part of the damage zone during the softening process. For the
weakly nonlocal explicit gradient damage model, spurious expansion of the damage
zone at late stages of softening is sometimes observed, and so the strongly nonlocal
formulations (integral or implicit gradient) should be preferred.
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Figure 5. Dependence of the dimensionless size of the damage zone, Ld/`, on the
ratio between the tangent and unloading modulus, −Eed/Eu, for different nonlocal
formulations

4. Comparison of various integral-type nonlocal formulations

4.1. Choice of nonlocal variable

From a purely phenomenological point of view, the choice of the variable to be
averaged remains to some extent arbitrary, provided that a few basic requirements are
satisfied. First of all, we usually want the enriched model to exactly agree with the
standard local elastic continuum as long as the material behavior remains in the elastic
range. For this reason, it is not possible to simply replace the local strain by nonlocal
strain and apply the usual constitutive law. Except for the case of homogeneous strain,
nonlocal strain differs from the local one and the model behavior would be altered al-
ready in the elastic range. Second, the model should give a realistic response in simple
loading situations such as uniaxial tension. This aspect was studied in (Jirásek, 1998),
where it was shown that e.g. averaging of the damage parameter leads to spurious
locking effects at later stages of softening.

Figure 6 shows the load-displacement diagrams computed for a uniform bar un-
der uniaxial tension using nonlocal formulations with different choices of the aver-
aged variable. The curves in Figure 6a correspond to models which apply the nonlo-
cal operator on the equivalent strain (ω(ε̄)), on the damage energy release rate (Ȳ ),
or on the compliance variable (γ̄). The damage energy release rate is defined as
Y = ε : De : ε/2 and it is proportional to the square of the energy-based equivalent
strain [4]. The compliance variable γ = ω/(1− ω) is directly related to the damage
variable ω and it grows from zero to infinity as the damage evolves. For all these
nonlocal formulations, the stress transmitted by the bar tends to zero as the applied
displacement tends to infinity, and so the softening process is properly described until
complete failure. In contrast to that, the load-displacement curves in Figure 6b exhibit
a pathological behavior—the stress transmitted by the bar at later stages of loading is
too high and for some formulations even tends to a finite limit as the applied displace-
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Figure 6. Comparison of postpeak load-displacement curves of a tensioned bar cal-
culated for nonlocal damage with averaging applied to different variables: (a) non-
locking formulations ω(ε̄), Ȳ and γ̄; (b) locking formulations ω̄, s̄, ∆̄s and s(ε̄)

ment tends to infinity. This non-physical stress locking is typically accompanied by
spurious expansion of the damage zone at late stages of loading and its source is in
an inappropriate choice of the averaged variable. Formulations ω̄, s̄ and ∆̄s are based
on nonlocal averaging of the damage variable, inelastic stress and inelastic stress in-
crement, respectively, while formulation s(ε̄) computes the inelastic stress from the
nonlocal strain. For more details, the reader is referred to (Jirásek, 1998).

4.2. Treatment of boundaries

One of the drawbacks of gradient formulations is that they require special bound-
ary conditions, which usually do not have a direct physical meaning and their choice is
somewhat ambiguous. Integral formulation do not require boundary conditions in the
traditional sense, but the influence of the physical boundaries still needs to be consid-
ered. If the nonlocal weight function were defined simply as α(x, ξ) = α0(‖x− ξ‖)
at all points x, even at those that are close to the boundary of the body V under con-
sideration, spurious boundary effects would arise. The reason is that the domain of
influence that contributes to the nonlocal average evaluated at a point near the bound-
ary is smaller than for “regular” points that are sufficiently far from the boundary. For
instance, in a finite body under uniform strain, the local equivalent strain is every-
where the same but, if the weight function depends only on the distance, the nonlocal
equivalent strain has lower values in boundary layers of thickness R than in the in-
terior part of the body. Consequently, damage evolution in the boundary layers is
delayed and these layers appear as stronger than the interior part of the body. To avoid
such an artificial strengthening of the boundary layer, a suitable modification of the
averaging operator is necessary. However, the exact form of this modification is not
known, and one needs to be guided by intuition, or perhaps by some micromechanical
considerations.
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A standard requirement imposed on the nonlocal averaging operator is the so-
called reproducibility of order zero, which means that a constant field (polynomial of
order zero) should not be modified by nonlocal averaging. This requirement leads to
the normalizing condition

∫

V

α(x, ξ)dξ = 1 [30]

and ensures that, under uniform strain, the damage threshold is reached by all points
of the body simultaneously.

Condition [30] is easily satisfied if the distance-dependent weight function is
rescaled according to [7]. This is the most frequently used modification of the av-
eraging operator near the boundary. Its drawback is that symmetry with respect to the
arguments x and ξ of the weight function α is lost.

In certain types of nonlocal theories it is desirable to work with a symmetric weight
function. (Polizzotto, 2002) and (Borino et al., 2002) proposed a nonlocal averaging
formula

f̄(x) =
1

A∞

∫

V

α0(‖x− ξ‖)f(ξ) dξ +

(

1− A(x)

A∞

)

f(x) [31]

in which

A(x) =

∫

V

α0(‖x− ξ‖) dξ [32]

and A∞ is the value of A(x) in an unbounded medium (or at points x sufficiently far
from the boundary). This modification preserves symmetry and satisfies the condi-
tion of reproducibility of degree zero. It also has an attractive physical interpretation,
because formula [31] can be rewritten as

f̄(x) = f(x) +
1

A∞

∫

V

α0(‖x− ξ‖) [f(ξ)− f(x)] dξ [33]

which means that the spatial averaging with a distance-dependent weight function is
in fact applied to the difference between the local values at the source point and the
receiver point.

It is interesting to note that another averaging formula satisfying symmetry and
reproducibility of order zero can be derived from the implicit gradient formulation. It
has already been explained that the implicit gradient definition of the nonlocal field
can be rewritten in the integral format, with the Green function of the Helmholtz-
type boundary value problem used as the weight function in the nonlocal averaging
operator. Since the original differential operator is self-adjoint, the Green function is
symmetric. For instance, consider the one-dimensional problem

f̄(x)− `2f̄ ′′(x) = f(x) [34]
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Figure 7. Modified shapes of nonlocal weight functions near the boundaries: (a)
rescaling, (b) implicit gradient approach

solved on the finite interval (0, L) with boundary conditions

f̄ ′(0) = 0, f̄ ′(L) = 0 [35]

The corresponding Green function

G(x, ξ) =











































cosh
L− ξ

`

` sinh
L

`

cosh
x

`
for 0 ≤ x ≤ ξ

cosh
ξ

`

` sinh
L

`

cosh
L− x

`
for ξ ≤ x ≤ L

[36]

is symmetric with respect to x and ξ and satisfies the normalizing condition [30].

The influence of boundaries is illustrated in Figure 7, which shows the weight
functions corresponding to a one-dimensional problem solved on the interval (0, L)
where L = 20 `. The weight functions α(x, ξ) derived by rescaling (Figure 7a)
and G(x, ξ) obtained as the Green function of the Helmholtz-type boundary value
problem (Figure 7b) are plotted as functions of ξ/` for several fixed values of
x/` = 0, 1, 5, 10, 15, 19, 20. For the weight function derived by rescaling [7] of the
truncated quartic spline [9], the radius of influence is set to R = `

√
14.
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(a) (b)

Figure 8. Notched beam under three-point bending: (a) coarsest finite element mesh
with supports and load, (b) deformed mesh at complete failure (displacements exag-
gerated)

5. Examples of failure simulations

5.1. Mesh-sensitive results with local damage model

To demonstrate that a local damage model with softening leads to numerical results
that suffer by pathological sensitivity to the discretization, we simulate the three-point
bending test of a concrete beam with and without a notch. The beam has a square cross
section 100 × 100 mm and span 450 mm, and the notch is 5 mm thick and extends
over one half of the beam depth. These dimensions correspond to the experiments
performed by Kormeling and Reinhardt (Kormeling et al., 1983).

Failure of the notched beam is first simulated using the finite element mesh in
Figure 8a, with minimum element size 5 mm. The elements are standard bilinear
quadrilaterals with 2 × 2 integration points, and the elastic constants are set to E =
20 GPa and ν = 0.2. The adopted damage law [12] corresponds to linear elasticity
up to peak stress, followed by exponential softening. If the parameters of the damage
law are set to ε0 = 120 × 10−6 and εf = 7 × 10−3, the simulated peak load is
within the experimental bounds and the load-displacement curve favorably compares
with experimental data; see Figure 9a. The deformed mesh at the end of the simulation
(with exaggerated displacements) is plotted in Figure 8b. It is clear that strain localizes
into one vertical layer of elements starting at the notch.

If the material parameters ε0 and εf are kept fixed but the mesh is refined, the re-
sults change dramatically. Figure 9b shows the numerical load-displacement curves
obtained on meshes with minimum element sizes respectively 5 mm, 1.67 mm and
0.556 mm. These element sizes are used in a narrow zone around the axis of symme-
try, where the strains are expected to localize, while the other parts of the specimen
are discretized by larger elements, to keep the number of unknowns and equations
limited. The load-displacement diagram clearly shows that both the peak load and the
total dissipated energy (area under the curve) decrease as the mesh is refined. Such a
spurious dependence of the results on the discretization is unacceptable.
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curves obtained on three different meshes

The same material parameters have been used to simulate the three-point bending
test of an unnotched beam with the same dimensions. In this case, damage is initially
distributed over a wide region at the bottom face, and so the minimum element size
is used in the central third of the beam; see Figure 10a. The test has been run on
three meshes with minimum element sizes 15 mm, 5 mm and 1.67 mm, respectively.
The load-displacement curves corresponding to the coarse and medium meshes differ
substantially, as shown in Figure 10b. Again, mesh refinement from 15 mm to 5 mm
leads to peak load reduction and to a more brittle response. Upon further refinement
to 1.67 mm, the peak load does not decrease any more, but the equilibrium iteration
fails to converge at peak. The loss of convergence is due to the abrupt change of the
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Figure 11. Load-displacement diagrams obtained with the nonlocal damage model:
(a) notched beam, (b) unnotched beam

strain increment distribution from a smoothly distributed to a highly localized one. As
the mesh gets finer, the number of possible combinations of loading and unloading
at individual Gauss points increases and the numerical algorithm has difficulties in
finding the actual one.

5.2. Objective results with nonlocal damage model

Analysis of the notched beam from Section 5.1 on three different meshes has been
rerun using the nonlocal formulation of the isotropic damage model based on nonlocal
equivalent strain according to formula [10]. The damage law has again the exponen-
tial form [12] with parameters ε0 = 90 × 10−6 and εf = 7 × 10−3. The nonlocal
interaction radius that appears in the definition of the quartic nonlocal weight function
[9] has been set to R = 4 mm. The resulting load-displacement curves are plotted
in Figure 11a. The curves corresponding to the medium and fine meshes are almost
coincident, which indicates that the solution converges upon mesh refinement and con-
firms that the nonlocal model does not suffer by pathological sensitivity to the mesh
size. The load-displacement curve obtained with the coarse mesh is in the post-peak
range somewhat above the converged solution. This is normal, because the element
size (5 mm) is larger than the interaction radius (4 mm) and the localized process zone
cannot be resolved with sufficient accuracy.

Analysis of the unnotched beam has been rerun using parameters ε0 = 90× 10−6,
εf = 5 × 10−3 and R = 8 mm. Note that in this case the element sizes are 15 mm,
5 mm, 2.9 mm and 1.67 mm, and so for R = 4 mm the medium meshes would
still be too coarse and convergence upon mesh refinement could not be convincingly
demonstrated. Of course, parameter R should be considered as a material property
reflecting the internal length scale of the microstructure (e.g., the size and spacing
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(a) (b)

Figure 12. Evolution of the process zone in nonlocal damage simulation of unnotched
beam: (a) damage, (b) strain εxx

of major heterogeneities such as largest aggregates in concrete), but in this academic
example we do not try to link it to the actual material. Our aim is to show that the
results are almost mesh-independent if the mesh is sufficiently fine. Indeed, the load-
displacement curves plotted in Figure 11b indicate that two finest meshes give very
similar results. The element sizes in the two coarsest meshes are too big compared to
parameter R and the nonlocal interaction is not captured accurately. This is why the
corresponding load-displacement curves differ from the other two, but the difference
is not very dramatic.

The evolution of the process zone simulated on the fine mesh is shown in Figure 12
in terms of damage and strain distribution at five stages of loading. Light shades of
gray indicate high levels of the damage parameter ω and normal strain εxx (parallel to
the beam axis). Black color marks regions with no damage in the left part of the figure
and regions with compressive strain (εxx < 0) in the right part. The images in the
second row correspond to a state shortly before the peak load and those in the third row
to a state shortly after the peak load. Damage is irreversible and it cannot decrease,
but in the post-peak range it remains constant in the predamaged region around the
bottom face of the beam, except for a narrow band around the axis of symmetry that
propagates to the top. The damage band keeps a certain minimum thickness while the
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band of increasing strains becomes progressively thinner. This is quite natural, given
that the state at complete failure should represent a macroscopic stress-free crack.

6. Computational aspects of nonlocal models

6.1. Efficient implementation of nonlocal averaging

Numerical implementation of the nonlocal damage model based on averaging of
equivalent strain is relatively straightforward. The evaluation of stresses from given
strains remains fully explicit, and no internal iteration loop is needed. Of course,
equilibrium iteration on the structural level cannot be avoided, same as for any other
nonlinear model. An existing computer code with a certain local damage model can
be extended to a nonlocal formulation without excessive effort. All that one needs
is to implement the algorithm of weighted spatial averaging and, before damage is
evaluated, replace the local equivalent strain by its nonlocal counterpart.

The values of nonlocal equivalent strain must be traced at individual Gauss in-
tegration points of the finite element model, because these are the points at which
stresses need to be evaluated. Let us denote the coordinates of Gauss points as xk,
k = 1, 2, . . .NGP , where NGP is the total number of Gauss points in the finite ele-
ment model. In the numerical algorithm, the averaging integral [10] is replaced by

ε̄eq,k =

NGP
∑

l=1

wlJlαklεeq,l [37]

where wl is the integration weight of Gauss point number l, Jl is the Jacobian of the
isoparametric transformation evaluated at this point, and αkl is the weight of nonlocal
interaction between points k and l, determined as

αkl =
α0(‖xk − xl‖)

∑NGP

m=1 wmJmα0(‖xk − xm‖)
[38]

It is important to note that αkl vanishes if the distance ‖xk − xl‖ between points k
and l is larger than the nonlocal interaction radius R. So the sums in [37] and in the
denominator of [38] do not need to be taken over all Gauss points l but only over those
that are located inside the sphere or circle of radius R centered at point k. Moreover,
since the factors akl ≡ wlJlαkl are needed at every iteration of every incremental step
and do not vary during the simulation, they should be evaluated only once and then
stored, rather than recomputed each time they are needed.

An efficient numerical scheme for nonlocal averaging has the following structure:

Loop over all Gauss points xk, k = 1, 2, . . .NGP .

1) Find all Gauss pointsxl whose distance fromxk is smaller than R, and for each
of them evaluate akl = wlJlα0(‖xk − xl‖).
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2) Compute the sum ak =
∑

l akl.

3) Divide each akl by ak and store it in a table along with a reference to point l.
The table is associated with point k.

This procedure is activated as a part of the initialization tasks performed before
the actual incremental-iterative solution of the nonlinear problem starts. Each Gauss
point is associated with a nonlocal interaction table that gives access to its “neighbors”
(i.e., to Gauss points at distance smaller than R) and to the corresponding interaction
coefficients akl.

The search for nonlocal neighbors can be done by checking the distance between
all pairs of Gauss points, but for larger problems this step can become a bottleneck of
the computation. A much more efficient implementation is based on the quadtree (in
two dimensions) or octree (in three dimensions) technique. The entire body is placed
in a rectangle or cube that is hierarchically divided into smaller rectangles or cubes
down to the required level, and this structure is stored in a tree. Each Gauss point
is assigned to one of the leafs of the tree, depending on its position in space. The
search for neighbors can then be restricted to a limited number of leafs that are easily
identified and accessed.

The stress evaluation procedure repeatedly called during the incremental-iterative
solution makes use of the nonlocal interaction tables when the nonlocal equivalent
strain (or any other nonlocal variable used by the specific nonlocal model) is com-
puted. To obtain ε̄eq,k, it is sufficient to get the local equivalent strains εeq,l at all
points l that are included in the table associated with point k, multiply each of them
by the coefficient akl and take a sum of these products.

Nonlocal averaging requires a certain extra effort as compared to the correspond-
ing local model, but the convergence of the equilibrium iteration on the global level
is usually more regular for the nonlocal model than for the local one. The reason is
that the spatial distribution of strain is relatively smooth even after the onset of lo-
calization, and the transition from a diffuse damage pattern to a localized one is not
so abrupt. Consequently, the increased numerical effort per iteration is partially com-
pensated by the reduced number of iterations needed to restore equilibrium. Since the
nonlocal model completely removes the pathological sensitivity to the mesh size and
also at least partially alleviates the mesh-induced directional bias, this extra effort is
indeed worthwhile.

6.2. Simulations on adaptive meshes

Nonlocal models lead to smooth solutions with a continuous distribution of strain.
However, to resolve narrow bands of highly localized strains, it is necessary to use
sufficiently fine computational grids. Fortunately, the mesh needs to be fine only in
the damage process zone, while the remaining part of the structure can be reason-
ably represented by a coarser discretization. The localization pattern is in general not
known in advance, and it is extremely tedious to construct suitably refined meshes “by
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Figure 13. Adaptive analysis of a four-point shear test using a nonlocal anisotropic
damage model: specimen geometry and loading, initial mesh, final mesh, and final
damage zone

hand”. Efficiency of the analysis can be greatly increased by an adaptive technique
that automates the whole process.

Details of the mesh-adaptive strategy applied to nonlocal damage models are dis-
cussed in (Patzák et al., 2004). As an example, we present the results of an adaptive
simulation of the four-point shear specimen in Figure 13a tested by Arrea and Ingraf-
fea (Arrea et al., 1982). The test is simulated using the nonlocal version of a certain
anisotropic damage model denoted as MDM, which combines the microplane theory
with the principle of energy equivalence; see (Jirásek, 1999). During the adaptive sim-
ulation, the initial mesh with 145 nodes and 234 elements (Figure 13b) is gradually
transformed into the final mesh with 4174 nodes and 8120 elements (Figure 13c). The
damage distribution at complete failure, depicted in Figure 13d, nicely corresponds to
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mesh damage strain

Figure 14. Adaptive analysis of a four-point shear test using the nonlocal anisotropic
damage model: evolution of the mesh, damage indicator and maximum principal
strain in the central part of the beam

the experimental results. The evolution of the mesh and of the damaged zone is shown
in Figure 14.
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