
Chapter 8

Nonlocal Damage Models

8.1 Basic Types of Nonlocal Damage Formulations

8.1.1 Formulations Motivated by Isotropic Damage

A number of nonlocal concepts giving local response in the linear elastic range have been proposed in
the literature. We will illustrate some of them using the simple isotropic damage model from Section
5.2. Certain models use a formulation in which the role of the equivalent strain is played by the damage
energy release rate1

Y =
1

2
ε : De : ε (8.1)

The internal variable κ can then be identified with the maximum value of Y ever reached in the history
of the material,

Ymax(t) = max
τ≤t

Y (τ) (8.2)

Recall that the basic stress-strain equation reads

σ = (1 − ω)De : ε (8.3)

where
ω = g(Ymax) (8.4)

is the damage parameter. Function g is usually designed such that ω = 0 for Ymax below a certain
threshold value, Y0.

Now, several nonlocal versions of the model can be constructed:

1. The model originally proposed by Pijaudier-Cabot and Bažant [242] averages the damage energy
release rate Y computed from (8.1) and evaluates the damage parameter corresponding to the
maximum previously reached nonlocal value Y max. As long as Y ≤ Y0 at every point, Y max is also
below the threshold and the response is linear elastic.

2. Bažant and Pijaudier-Cabot [30] suggested that alternatively one could average the damage param-
eter ω computed from (8.4) and substitute its nonlocal value into (8.3). As long as the material
remains (everywhere) elastic, ω is equal to zero and so its nonlocal average is also zero. Equation
(8.3) then reduces to the law of linear elasticity.

3. The smeared crack model of Bažant and Lin [25] dealt with nonlocal strain. Of course, we cannot
substitute the averaged strain into (8.3) because then the model would be nonlocal already in the
elastic range. However, if we use the nonlocal strain only in (8.1) when computing Y and keep the
strain in (8.3) as local then the local character of the initial linear elastic response is preserved.

1Of course, Y is not a rate in the sense of a derivative with respect to time. It equals minus the derivative of the free
energy ψ = (1 − ω)ε : De : ε/2 with respect to the damage parameter, and so it represents the “rate” at which energy is
released as the damage parameter increases (at constant strain and temperature).
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formulation isotropic damage model general model
ω(ε) σ = [1 − ω(ε)]De : ε σ = Ds(ε) : ε

Y σ = [1 − ω(Y (ε))]De : ε σ = Ds(Ω(Y (ε))) : ε

ω σ = [1 − ω(ε)]De : ε σ = Ds(ε) : ε

γ σ = [1 + γ(ε)]−1De : ε σ = [Ce + Ci(ε)]−1 : ε

s σ = De : ε − ω(ε)De : ε σ = De : ε − s(ε)

∆s σ̇ = (1 − ω)De : ε̇ − ω̇De : ε σ̇ = Du : ε̇ − ṡ(ε, ε̇)
s(ε) σ = De : ε − ω(ε)De : ε σ = De : ε − s(ε)

Table 8.1: Overview of nonlocal formulations

4. Pijaudier-Cabot and Bažant [242] also mentioned that a nonlocal model could be obtained by
averaging of the specific fracturing strain. Applying this idea to the isotropic damage law we
rewrite (8.3) as

ε = (1 + γ)Ce : σ (8.5)

where γ = ω/(1 − ω) is the specific fracturing strain. Replacing γ by its weighted average, γ, we
construct a nonlocal version of the isotropic damage model.

The above nonlocal formulations are summarized in the upper section of Table 8.1. For easy reference,
we will denote them by symbols Y , ω, etc.; see the first column of Table 8.1. These formulations were
motivated by the isotropic damage model but they can be extended to the class of constitutive laws
that express the stress as the product of a secant (damaged) stiffness and the strain, σ = Ds : ε. The
generalized forms are shown in the last column of Table 8.1. For example, for formulation ω(ε) we use the
nonlocal strain as input for the evaluation of the secant stiffness while for formulation ω we first evaluate
the secant stiffness locally and then compute its nonlocal average. A natural extension of formulation γ
to the anisotropic case is a model that averages the inelastic compliance, C i.

Anisotropic damage models usually work with a certain damage tensor Ω. A natural extension of
formulation Y is a model applying nonlocal averaging to the tensor Y that is work-conjugate with Ω.

8.1.2 General Formulations

In addition to nonlocal formulations motivated by the isotropic damage model it is possible to develop
nonlocal models written directly in a general format.

5. The elastic response remains local if we average a quantity that is in the elastic state equal to zero,
e.g., the inelastic strain. This concept applies to any type of constitutive law formally written as

σ = De : (ε − e) (8.6)

where e is the inelastic strain (fracturing strain, plastic strain, etc.). A nonlocal version of the law
is obtained when we replace the inelastic strain by its nonlocal counterpart. If the elastic moduli
are uniform throughout the body, this is fully equivalent to a model averaging the inelastic stress

s = De : e = De : ε − σ (8.7)

The nonlocal law then reads
σ = De : ε − s (8.8)

This is the standard version of the generalized nonlocal concept due to Bažant [20]. Note that
Bažant worked with the inelastic stress rate

ṡ = De : ε̇ − σ̇ (8.9)

which can be integrated to yield (8.7).
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Figure 8.1: Local stress-strain law with a) linear softening, b) exponential softening.

6. Alternatively, we could define the inelastic stress rate as

ṡ = Du : ε̇ − σ̇ (8.10)

This approach has been taken by Jirásek and Bažant [144]. An important difference compared to
(8.9) is that the elastic stress rate is now Du : ε̇ where Du is the stiffness matrix valid for unloading.
For models with degradation of the elastic moduli, Du varies during the loading process, and ṡ

defined by (8.10) is no longer the time derivative of the quantity s defined by (8.7). Integration of
the nonlocal constitutive law

σ̇ = Du : ε̇ − ṡ (8.11)

then yields a result different from (8.8).

7. Finally, Bažant et al. [33] postulated a general nonlocal constitutive law in the form

σ = De : ε − s(ε) (8.12)

where s(ε) is the inelastic stress calculated from the nonlocal strain, ε. This means that the actual
stress is obtained as the sum of an elastic part evaluated from local strain and an inelastic part
evaluated from nonlocal strain.

Of course, general nonlocal formulations 5–7 can be specialized to the isotropic damage model by
substituting s = ωDe : ε for the inelastic stress. The resulting stress-strain equations are listed in the
lower section of Table 8.1.

8.2 Evaluation of Nonlocal Formulations in One Dimension

8.2.1 Analytical and Numerical Solutions

Let us now test the behavior of individual nonlocal formulations in an elementary localization problem—
tensile failure of a straight uniform bar of length L; see Fig. 7.4. The bar is supposed to be divided into
a finite number of elements with a linear displacement interpolation inside each element and with one
Gauss integration point per element.

We will use simple local stress-strain relations with linear elasticity up to the peak stress and either
linear or exponential softening; see Fig. 8.1. The nonlocal formulations will pass the test if, for sufficiently
large bar elongations, the residual resistance vanishes and the strain profile keeps its localized character.

Before starting numerical simulations we will study a simple problem solvable by hand. Let us consider
a bar divided into three equally sized elements. To render the hand solution feasible we use the local
stress-strain relation with linear softening. Of course, such a crude model will not lead to realistic shapes
of the load-displacement diagram but it will help us to identify the nature of the problems occuring for
some of the formulations.
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To facilitate the calculations we fix the parameters of the local constitutive law (Fig. 8.1a) to ft = 1,
ε0 = 1, and εf = 3, and we consider a bar of cross-sectional area A = 1 and length L = 3. For
linear softening with the chosen parameters, the dependence of the damage parameter on the maximum
previously reached strain, εmax, is given by

ω =















0 if εmax ≤ 1

1.5

(

1 − 1

εmax

)

if 1 ≤ εmax ≤ 3

1 if 3 ≤ εmax

(8.13)

Furthermore, we assume that the interaction radius R from (7.60) is only slightly larger than the element
size and that the discretized nonlocal averaging formulae are

f
1

= 0.9f1 + 0.1f2 (8.14)

f
2

= 0.1f1 + 0.8f2 + 0.1f3 (8.15)

f
3

= 0.1f2 + 0.9f3 (8.16)

where fi are local values and f i are nonlocal values of an arbitrary variable f at the center of element
number i. Such an assumption corresponds to slightly different values of R for individual elements
(R1 = R3 = 1.2247, R2 = 1.2438). With this choice, the model response is qualitatively the same as for
a uniform interaction radius and the coefficients in the averaging formulae are easy to handle.

• Let us start with formulation ω(ε). At peak stress, σ = ft = 1, the load-displacement diagram
has a multiple bifurcation point. Besides the uniform solution there exist several solutions with
one or two elastically unloading elements. It is possible to show that the steepest descent of the
load-displacement diagram is obtained if damage localizes into one of the elements at the boundary
while the other two elements unload. Under displacement control, this solution corresponds to the
stable branch of the diagram (see [21], Section 10.2).

Provided that damage localizes in element number 1, the constitutive law
σ = [1 − ω(ε)]ε applied at element centers yields

σ1 =

(

1.5

0.9ε1 + 0.1ε2

− 0.5

)

ε1 (8.17)

σ2 = ε2 (8.18)

σ3 = ε3 (8.19)

From equilibrium conditions σ1 = σ2 = σ3 we obtain the solution

σ = ε2 = ε3 =
√

18.0625ε2

1
+ 15ε1 − 4.75ε1 (8.20)

expressed in terms of strain ε1, which plays the role of a parameter controling the loading process.
The solution remains valid as long as ε1 ≤ 3. At ε1 = 3.333 we have σ = ε2 = ε3 = 0 and ε1 = 3.
The load is fully relaxed and additional increments of applied displacement do not have to oppose
any residual resistance. The load-displacement diagram is represented by the dashed curve in Fig.
8.2a. The solid curve in the same graph corresponds to a numerical solution with 30 elements while
the straight dotted line is the uniform (not localized) solution, i.e., a rescaled local stress-strain
curve. The solution with a large number of elements exhibits snapback and the final elongation at
complete failure is smaller but the essential feature investigated in the present section is the same
as for the solution with 3 elements—the load is fully relaxed.

• Formulation Y leads for the present problem to a quartic equation, which cannot be easily solved
by hand. However, the numerically obtained solutions with 3 and 30 elements are very similar to
the preceding formulation; see Fig. 8.2b.

• The response is substantially different for formulation ω. Application of the nonlocal law σ =
(1 − ω)ε at element centers leads to

σ1 = 1.35− 0.35ε1 (8.21)

σ2 =

(

0.85 +
0.15

ε1

)

ε2 (8.22)

σ3 = ε3 (8.23)
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Figure 8.2: Load-displacement diagrams for formulation a) ω(ε), b) Y , c) ω, d) γ, e) ∆s, f) s and s(ε).
Dashed curves have been obtained with 3 elements, solid curves with 30 elements.
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and from equilibrium we get the solution

ε2 =
(1.35− 0.35ε1)ε1

0.85ε1 + 0.15
(8.24)

σ = ε3 = 1.35− 0.35ε1 (8.25)

These expressions remain valid until ε1 = 3. At this state, element number 1 is fully locally damaged
(ω1 = 1) but the nonlocal damage ω1 = 0.9ω1+0.1ω2 = 0.9 < 1, and so the element can still transfer
stress. Moreover, during the subsequent stage of loading no further damage is produced because ω1

cannot grow anymore and strains in elements 2 and 3 are below the elasticity limit (these elements
have been unloaded to strains ε2 = 0.333 and ε3 = 0.3). This means that the model responds
elastically (with reduced stiffness of elements 1 and 2) until ω2 starts growing at ε2 = 1. The
load-displacement curve is again rising up to a stress comparable to the tensile strength; see the
dashed line in Fig. 8.2c. The final stage, during which local damage in element 2 is growing from
0 to 1, can be described by

ε1 =
(1.2 − 0.3ε2)ε2

0.15− 0.05ε2

(8.26)

ε3 =
(1.2 − 0.3ε2)ε2

0.15 + 0.85ε2

(8.27)

σ = 1.2− 0.3ε2 (8.28)

Surprisingly, as ε2 approaches 3, ε1 tends to infinity while σ tends to 0.3. This means that the load-
displacement curve asymptotically approaches a horizontal line well above the line of zero stress
(this would become obvious if Fig. 8.2c was plotted for a larger range of elongation values). It might
be argued that such a paradoxical result is caused by the poor spatial resolution of the model and
that the behavior improves after mesh refinement. A simulation with 30 elements (which is certainly
enough to capture all essential features of the solution) gives a monotonically decreasing post-peak
curve but again ceases to provide full load relaxation; see the solid curve in Fig. 8.2c. Thus it
must be concluded that formulation ω does not meet the fundamental requirement postulated at
the beginning of this section. It exhibits a special type of stress locking.

• Formulation γ leads to full load relaxation and the load-displacement diagram is similar to those
produced by formulations ω(ε) and Y ; see Fig. 8.2d. The post-peak solution is described by

ε2 =
(2.7 − 0.7ε1)ε1

0.3 + 1.3ε1

(8.29)

σ = ε3 =
(3 − ε1)ε1

0.3 + 1.3ε1

(8.30)

An interesting difference compared to formulations ω(ε) and Y is that, at complete failure, the
strain does not localize into a single element (at ε1 = 3 we have σ = ε3 = 0 but ε2 = 0.333 6= 0).

• The initial post-peak response of the model with nonlocal inelastic stress rate is described by

ε2 = 1.5− 0.5ε1 + 0.3 ln ε1 (8.31)

σ = ε3 = 1.5− 0.5ε1 + 0.15 ln ε1 (8.32)

This corresponds to a reasonable descending branch in the load-displacement diagram; see Fig. 8.2e.
However, at ε1 = 3 the stress ceases to decrease and the diagram continues by a horizontal line.
The reason is that local inelastic stress increments in all elements are now zero (element 1 is fully
locally damaged and elements 2 and 3 are locally in the elastic range). As the unloading stiffness
of element 1 is also zero, no stress change is possible in that element. The same type of behavior,
only with a larger value of the residual stress, is exhibited by the model with 30 elements.

• Finally, for formulation s we get a diagram with alternating ascending and descending straight
segments; see Fig. 8.2f. Each descending segment corresponds to softening in one of the elements
while the other elements are locally either in the elastic range or fully damaged. This alternating
effect is indeed due to the poor spatial resolution and is not present in the simulation with 30
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Figure 8.3: Evolution of strain profile for formulation a) s, b) ∆s.

elements. However, the important point is that independently of the discretization the stress drops
down to zero only after all elements have been fully damaged! Consequently, the final strain profile
is not localized but uniform.

Even though formulations s and s(ε) are in general different, the corresponding load-displacement
diagrams (not the strain profiles) happen to be the same (for the present simple uniaxial problem).

8.2.2 Theoretical Analysis of Locking Mechanisms

The fact that formulation s must give a uniform strain profile at complete failure can be proven theoret-
ically without resorting to finite element discretization. At complete failure, the stress at every point is
zero, and so the nonlocal constitutive relation (8.8) combined with (8.7) and reduced to one dimension
gives

E

[

ε(x) −
∫ L

0

α(x, ξ)e(ξ) dξ

]

= 0 (8.33)

Young’s modulus E is positive, and so the expression in brackets must vanish. This condition can be
rewritten as

∫ L

0

α(x, ξ) [ε(x) − e(ξ)] dξ = 0 (8.34)

because the weight function is normalized,
∫ L

0
α(x, ξ) dξ = 1. Note that (8.34) must hold for any x.

Let us denote by x0 the point with the largest strain. The inelastic strain can nowhere exceed ε(x0),
i.e., ε(x0) − e(ξ) ≥ 0 for any ξ. Moreover, α(x0, ξ) is nonnegative for any ξ and is strictly positive for
ξ ∈ (x0 − R, x0 + R) where R is the interaction radius. Consequently, (8.34) can hold at x = x0 only if
ε(x0) = e(ξ) for any ξ ∈ (x0 − R, x0 + R). For a weight function with unbounded support this means
that ε(ξ) = ε(x0) = const everywhere. But even if the weight function has a bounded support, we can
recursively apply the same argument at x0 shifted by ±nR/2, n = 1, 2, . . ., and arrive at the conclusion
that the strain is constant along the entire bar. This explains why the formulation with nonlocal inelastic
stress cannot properly represent localized deformation at complete failure. The progressive expansion
of the process zone is documented in Fig. 8.3a, which shows the evolution of the strain profile obtained
numerically for the test problem analyzed in the preceding subsection.

Similarly, we can explain the stress-locking behavior of formulation s(ε). Analyzing the situation at
complete failure when σ = Eε − s(ε) = 0 and using the fact that the inelastic stress cannot exceed the
elastic stress computed for the same strain, s(ε) ≤ Eε, we can derive an inequality

∫ L

0

α(x, ξ) [ε(x) − ε(ξ)] dξ ≤ 0 (8.35)

that must be satisfied for every x ∈ 〈0, L〉. Again, it can be concluded that the strain profile must be
uniform.
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Let us now look at the behavior of formulation ω. The constitutive equation in one dimension reads

σ = (1 − ω)Eε (8.36)

where

ω(x) =

∫ L

0

α(x, ξ)ω(ξ) dξ (8.37)

At complete fracture we have σ(x) = 0 and so there must exist a point x0 at which

ω(x0) = 1 (8.38)

otherwise the strain would have to vanish identically and the total extension of the bar would be zero.
However, as ω(ξ) ≤ 1 for any ξ, (8.38) can hold only if ω(ξ) = 1 whenever α(x0, ξ) > 0. For a weight
function with unbounded support this means that every point of the bar must be completely damaged.
The rigorous proof of a similar statement for a weight function with bounded support would be more
tricky but even in this case the model is incapable of capturing localized damage at complete failure.

We can also explain the mechanism of stress locking for formulation ∆s. For a plasticity-type model,
in which unloading takes place with the initial stiffness, the formulation is identical with the approach
using nonlocal inelastic stress, and the criticism of formulation s applies. For a damage-type model with
degradation of elastic stiffness, the problem appears as soon as the point x0 with maximum strain reaches
the state of complete local damage. The current unloading modulus Eu at x0 is now zero and arbitrary
strain increments at x0 do not affect the stress state. Therefore, strain increments fully localize into this
single point while the stress remains constant (and different from zero). This behavior is documented
in Fig. 8.3b, which shows the evolution of the strain profile obtained numerically for the test problem
analyzed in the preceding subsection.

8.3 Localization Zone

8.3.1 Structure of Localization Zone

We have shown that certain nonlocal formulations are inherently incapable of reproducing the entire
material degradation process up to complete failure. Unless we are interested only in the response at
the onset of localization, models that exhibit the special type of stress locking described in the previous
section should be avoided. Theoretical analysis of the locking mechanisms revealed that the pathological
behavior must appear independently of the particular value of the internal length or interaction radius.

From now on, we will restrict our attention to the formulations that do have the potential of properly
describing localized damage up to the formation of a stress-free crack. Formulations Y and ω(ε) deal
respectively with nonlocal damage energy release rate and nonlocal strain, and so they are quite similar
because the damage energy release rate can be interpreted as the square of a generalized strain norm.
In one dimension we simply have Y = Eε2/2, which means that formulation Y averages the square of
strain while formulation ω(ε) averages the strain itself. Numerical experience with simulations of tensile
failure indicates that in general there are only minor differences between the results obtained with the
two approaches. From computational point of view it is less expensive to average the damage energy
release rate because it is a scalar quantity. Also, averaging of energy seems to be somewhat more logical
from the physical point of view.

On the other hand, the formulation with nonlocal strain is more general because it can be extended
to the class of constitutive laws written in the form σ = Ds(ε) : ε; see Table 8.1. In the nonlocal version,
we evaluate the unloading (secant) stiffness matrix from the nonlocal strain and then multiply it by the
local strain to obtain the actual stress. This concept can be applied for example to the microplane model
[29] and to the fixed or rotating crack model [25, 150, 154].

Alternatively, formulation γ could be used for the same purpose. Nonlocal averaging would be applied
to the inelastic material compliance matrix C i, which requires an even larger amount of computational
work than averaging of the strain.

It is well known that a properly formulated nonlocal version of a strain-softening constitutive model
provides solutions with damage and strain localized into bands whose width is controled by the internal
length. When describing these bands we should pay attention to the choice of the quantity that serves
as an indicator of the intensity of localization. This quantity could be local or nonlocal strain (largest
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Figure 8.4: Load-displacement diagrams for nonlocal formulations: a) with exponential local law, dashed
curve corresponds to the uniform solution, solid curves are stable paths for formulations ω(ε), γ, and Y
(from top to bottom); b) with linear and exponential local law

principal value), the damage parameter, the damage energy release rate, etc. For simplicity we will
now consider the formulation with nonlocal strain but similar arguments would apply to the formulation
with nonlocal damage energy release rate. We focus on a loading process in which the bar elongation
grows beyond any bounds. From the basic expression for stress, σ = (1 − ω)Eε, it is obvious that as
the bar approaches the state of complete failure, σ = 0, either the strain must tend to zero, or the
damage parameter must tend to one, or both. For the present purpose, it is convenient to work with the
discretized model rather than with the original one-dimensional continuum.

Let us consider a softening law with nonzero stress for any positive strain, e.g., the exponential
softening law. For such a law, the value of the damage parameter at a given element tends to one if and
only if the nonlocal strain at the integration point of that element tends to infinity. Thus we can define
localization zone Zω as the set of elements for which ω → 1 or, equivalently, as the set of elements for
which ε → ∞. Another observation that we make is that there must exist at least one element at which
the local strain tends to infinity because otherwise the total extension would have to remain finite; let us
denote the set of such elements by Zε.

It is easy to see that if the local strain in an element grows beyond any bounds then the nonlocal
strain is unbounded in all elements whose distance from the current one (measured from integration point
to integration point) is smaller than the interaction radius, R. And vice versa, the nonlocal strain in
an element is unbounded only if there exists another element with unbounded local strain within the
interaction radius. Consequently, Zω consists of elements from Zε plus all their neighbors located closer
than R. In the limit for infinitely small elements we can expect Zε to be an interval in the center of the
zone and Zω to be Zε extended on each side by an interval of length R.

8.3.2 Evolution of Localization Zone

Theoretical predictions from the preceding subsection can be confirmed by numerical simulations. As
is clear from Fig. 8.2a,b,d, the shape of diagrams obtained with a nonlocal model using a linear local
softening law are not at all realistic. More reasonable response is produced by an exponential local
softening law; see Fig. 8.4a.

Fig. 8.5 illustrates a typical evolution of the localization zone. It shows the profiles of local strain,
nonlocal strain, and damage parameter at several stages of the loading process. The simulation has been
done for formulation ω(ε) with the bell-shaped weight function and the exponential softening law from
Fig. 8.1b. Note that the zone of increasing local strain gets thinner as the loading process continues while
the zone of increasing nonlocal strain keeps an approximately constant width. In the damage profile
we observe a very fast transition between the elastically unloading regions with zero damage and the
process zone with almost complete damage. This is of course related to the fact that the points where
the nonlocal strain remains at the limit elastic value do not shift.

Fig. 8.6 shows the profiles of nonlocal strain and damage parameter for a simulation with the Gaussian
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Figure 8.5: Profiles obtained with bell function: a) local strain, b) nonlocal strain, c) damage parameter
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Figure 8.6: Profiles obtained with Gauss function: a) nonlocal strain, b) damage parameter

weight function. The initial development is very similar to the previous case but at later stages the
damaged zone starts expanding. This is consistent with our theoretical predictions because for a weight
function with unbounded support the zone Zω in which damage tends to one extends over the entire
specimen. Theoretically, for very large elongations, all elements of the model are almost completely
damaged. This seems to be merely an academic problem because there is no need for simulating the
tensile failure of a bar up to extremely large elongations. However, in two- or three-dimensional fracture
simulations we often obtain a zone of localized strain that corresponds to a macroscopic crack propagating
across the specimen. The stress-free part of the crack sometimes opens very wide while the structure
still keeps nonnegligible resistance. For example, in analyses of a crack propagating in a gravity dam
the structural resistance increases due to the stabilizing effect of the dead load and the crack opening is
quite large already before the peak load. In such situations, it may happen that the nonlocal transfer of
damage reduces the stiffness of material in an unrealistically large band around the crack. This can lead
to erroneous results if, e.g., a precracked body is unloaded and subsequently reloaded by a different type
of external forces. It is therefore recommended to use weight functions with bounded support, for which
the maximum width of the damaged zone Zω is finite.

Let us now investigate the core of the process zone, Zε, characterized by local strains growing beyond
any bounds. It can be expected that this zone is relatively small because the band of growing local
strains is shrinking during the loading process. First, consider the linear softening law (or any other law
with full stress relaxation at finite strain). In the moment when the element with the largest nonlocal
strain reaches the state of complete damage, the stress in this element must be zero. From equilibrium
we conclude that the stress in all other elements must be zero as well. However, the other elements are
not yet fully damaged (because their nonlocal strain is smaller than in the critical element), and so zero
stress can be produced only by zero local strain. In other words, local strain is fully localized in one
critical element, independently of the number of elements or type of nonlocal weight function. The only
assumption that we made was that the local softening law gives exactly zero stress at some finite value
of strain.

It might seem from the above considerations that the state at complete failure depends on the finite
element discretization. This is true only to a limited extent. The final strain is localized in one element
of size h = L/n where n is the total number of elements. Outside this element, local strain is zero. Local
strain in the failing element is determined by the condition that the nonlocal strain in that element should
be equal to a material parameter εf , which specifies the point in the local stress-strain diagram where
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the stress first vanishes. The nonlocal strain evaluated at the integration point x0 (element center) is

ε = hα(x0, x0)ε (8.39)

and the local strain can be expressed as
ε = ∆L/h (8.40)

where ∆L is the total bar elongation. Substituting into the critical condition ε = εf we get

∆L =
εf

α(x0, x0)
(8.41)

which means that the bar elongation at complete failure depends only on material parameters and not
on the finite element discretization. It is obvious that in the limit for n → ∞ the local strain distribution
tends to ∆L times the Dirac delta function. The zone Zε therefore contains only one point, Zε = {x0},
and the zone of complete damage is an interval of length 2R centered at x0,

Zω = (x0 − R, x0 + R) (8.42)

The same statement can be justified even for the exponential softening law. The proof is relatively lengthy
and is therefore omitted.

cl r

(r)α

Figure 8.7: Definition of characteristic length

Formula (8.41) can be given an interesting physical meaning. If the point x0 is sufficiently far from
the boundary we have

α(x0, x0) =
α0(0)

∫ ∞

−∞

α0(r) dr

(8.43)

We can define the characteristic length `c such that the area of the rectangle of width `c and height α0(0)
is the same as the area under the graph of the weight function; see Fig. 8.7. By definition,

`c =

∫ ∞

−∞

α0(r) dr

α0(0)
=

1

α(x0, x0)
(8.44)

and so (8.41) can be written as ∆L = εf `c. The total elongation at failure is equal to the local strain at
failure times the characteristic length.

Note that the internal length ` defined by (7.61) and the characteristic length `c defined by (8.44) are
two different quantities. For a given type of weight function their ratio is fixed but different from 1.

8.4 Energy Dissipation in Nonlocal Continuum

8.4.1 Shape of Load-Displacement Curve

As we have seen, formulations ω(ε) and Y give full stress relaxation but the shape of the load-displacement
diagrams in Fig. 8.2a,b,d is not realistic. In the previous section we explained that the value of total
bar elongation at complete failure is determined by the local strain at zero stress and the characteristic
length of the nonlocal weight function. The diagrams therefore become more ductile if we increase the
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parameter εf and/or the characteristic length (which is proportional to the internal length). Ductility of
the local stress-strain law is determined by the ratio εf/ε0 where ε0 = ft/E is the strain at peak stress.
Ductility of the structural response is also affected by the ratio of the internal length to the total length
of the bar, `/L.

The dashed line in Fig. 8.4b represents the load-displacement diagram calculated with parameters
εf/ε0 = 5 and `/L = 0.1. But even if we increase εf/ε0, the calculated response still exhibits snapback.
This happens because the local softening law is linear and the zone of increasing local strain is shrinking
as damage progresses. Better results are obtained for the exponential softening law; see the solid curve
in Fig. 8.4b. In this case, the shrinking of the zone of localized strain is less dramatic and the long tail
of the local stress-strain curve forces the global curve to develop a long tail as well. This should be kept
in mind when selecting an appropriate local law for a nonlocal simulation. Linear softening is sometimes
used as a crude approximation of the actual softening curve. In the context of the crack-band approach
this usually leads to results that do not perfectly match experimental data but are within a reasonable
tolerance. However, in nonlocal simulations linear softening laws have to be avoided because, except for
early nonlinear response, the results are totally unrealistic.

8.4.2 Dissipated Energy

Selection of suitable material parameters for a nonlocal simulation is further complicated by the fact that
the response is affected not only by the local law but also by the internal length. An important material
property that has to be properly reflected by models used in fracture simulations is the fracture energy.
Let us leave aside the problems with an objective definition of fracture energy as a true material property
that should not depend on the size of the specimen, type of loading, etc. For the present purpose we
simply look at the total energy that our model dissipates in a uniaxial tensile test. Suppose that the
desired value of this energy is prescribed (known from experiments) and we have to select the model
parameters accordingly. For the standard crack-band approach this task is very easy because strain
localizes in one element and the total energy dissipation is equal to the area under the stress-strain curve
(dissipation per unit volume) multiplied by the volume of the element. However, for a nonlocal model
the size of the zone in which dissipation takes place varies as damage progresses, and it is not clear how
to determine the dissipation volume. At first we might think that one should use the volume of the zone
Zω in which damage converges to one. But for a nonlocal model the dissipation density in this zone is
not constant. Note that for a local model the density of energy dissipated at a material point is a unique
function of the final value of the damage parameter at that point and for ω = 1 corresponds to the area
under the stress-strain curve. On the other hand, for the nonlocal model the graph of stress versus local
strain does not follow a unique curve because the damage parameter depends on the values of strain in
the neighborhood of that point. This is illustrated in Fig. 8.8 showing the local stress-strain law and the
actual stress-strain evolution for integration points of five different elements. Points that are located close
to the boundary of the damaged zone start unloading (in the sense of decreasing local strain) sooner than
points around the center of the zone. If we replot the graph in the logarithmic scale (Fig. 8.8b) it becomes
clear that only the rightmost curve tends to infinity while all the other curves return to the origin. Even
though all of the points are inside the zone where damage tends to one, the density of dissipation (area
under the stress-strain curve) varies from very large values around the center of the zone to small values
at its boundary.

The total energy dissipated by a nonlocal model can be determined by numerical integration of the
area under the load-displacement curve. Dividing the total dissipated energy by the dissipation density
that corresponds to the local model (and by the cross-sectional area, which has a unit value in our
calculations) we obtain a certain length that we suggest to call the dissipation length, `d. It represents
the width of a cracking band in an equivalent local continuum that would dissipate the same energy
as the actual band formed in the nonlocal continuum. Unlike the width of the damaged zone Zω, the
dissipation length is not proportional to the internal length imposed by the nonlocal weight function. Of
course, it increases with increasing ` but it is also affected by other factors.

Let us characterize the local constitutive law by the ductility parameter η, defined as the ratio of
the local dissipation density to the elastic energy density at peak. For the linear softening law, η =
εf/ε0 = Eεf/ft is simply the ratio of the strain at complete failure to the limit elastic strain, while for
the exponential softening law we have η = 2εf/ε0 − 1. Recall that, for the exponential law, εf is the
strain at the intersection of the horizontal axis with the tangent to the softening curve at peak stress.
Fig. 8.9 shows the relative dissipation length `d/` as a function of the ductility parameter for different
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Figure 8.8: Actual stress-strain histories compared to the local law: a) natural scale, b) logarithmic scale

types of nonlocal weight functions and local softening laws. Each curve in the plot is labeled by three
letters. The first letter denotes the type of softening law (L=linear, E=exponential), the second letter
depends on the type of nonlocal weight function (B=bell function, G=Gauss function), and the last letter
indicates the type of nonlocal formulation (Y=formulation Y , E=formulation ω(ε)). For highly ductile
local laws the dissipation length varies only slightly and is almost independent of the type of softening
law and of the type of nonlocal formulation. Its value is somewhat smaller for the Gauss weight function
than for the bell-shaped function.
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Figure 8.9: Relative dissipation length as function of the ductility parameter: a) global picture, b)
close-up

8.4.3 Parameter Identification

Substantial variation of the dissipation length is observed for ductility parameters smaller than 10. For
two important cases (exponential softening law, bell-shaped weight function, nonlocal formulations Y
and ω(ε)) the curves are replotted in the range 2 ≤ η ≤ 10 in Fig. 8.9b. The graphs can be exploited
for the selection of model parameters. Suppose that we want to set up a model with Young’s modulus
E = 25 GPa, uniaxial tensile strength ft = 3 MPa, and fracture energy (meaning here the energy per
unit area dissipated in the uniaxial tensile test) Gf = 80 N/m. Furthermore, suppose that based on
some relationship between the material microstructure and the internal length we decide to set ` = 20
mm. The nonlocal model should be based on formulation Y , and our goal is to design an appropriate
local constitutive law. In view of the recommendations resulting from the theoretical analysis in previous
sections of this report, we decide to use exponential softening and the bell-shaped weight function. The
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interaction radius, R = `
√

7 = 53 mm, is easy to determine. We also know the parameters E and ft of the
local constitutive law. The remaining parameter to be determined, εf , controls the fracture energy. It can
be evaluated in an iterative manner. We start with an initial estimate for the relative dissipation length,
e.g., we take the high-ductility limit, `d/` = 5. For the corresponding dissipation length, `d = 5` = 100
mm, the local dissipation density would have to be gf = Gf/`d = 80/0.1 N/m2 = 800 N/m2. As
the elastic energy density at peak stress is gp = f2

t /2E = 180 N/m2 we would have to select a law
with ductility parameter η = gf/gp = 800/180 = 4.44. For this ductility parameter we can find the
corresponding relative dissipation length `d/` = 3.95 from Fig. 8.9b. Now we repeat the whole procedure
and we obtain improved estimates `d = 79 mm, gf = 1010 N/m2, and η = 5.6. For this value the relative
dissipation length from Fig. 8.9b is `d/` = 4.1, and we get `d = 82 mm, gf = 975 N/m2, and η = 5.4.
The corresponding relative dissipation length would differ only a little from the previous iteration, and so
we can accept the current estimate. For the exponential law, the ductility parameter is η = 2εf/ε0 − 1,
and therefore εf = ε0(η + 1)/2 = ft(η + 1)/2E = 3× 6.4/2× 25000 = 0.384× 10−3.

8.5 Computational Issues

8.5.1 Mesh-Induced Directional Bias

Even if sensitivity to the element size is suppressed by the mesh-dependent softening modulus technique
or by a localization limiter, the results may still exhibit excessive dependence on the shape and orientation
of finite elements. This is especially true for problems with strain localization because the direction of
a simulated process zone may be biased by the structure of the mesh. In calculations using a standard
continuum (even with an adjustment of the stress-strain diagram), fracture tends to propagate along
certain preferred directions, which lead along element sides or across element diagonals (for quadrilateral
elements). This effect is documented in Fig. 8.10, which shows the fracture patterns obtained for the
three-point bending specimen from Fig. 6.4a on a skewed quadrilateral mesh. The crack should run along
the vertical axis of symmetry. The standard rotating crack model exhibits strong directional bias, and
the simulated crack band propagates along a preferred mesh direction; see Fig. 8.10a. This sensitivity is
partly due to stress locking that would be produced if the band was not aligned with the element sides.

(a) (b) (c)

Figure 8.10: Three-point bending specimen with a notch: crack patterns simulated by a) standard RC
model, b) local RC-SD model, c) nonlocal RC-SD model

The RC-SD model [154] described in Section 6.3 combines the rotating crack with a scalar damage
concept. Transition to a damage formulation alleviates stress locking and consequently leads to an
improved crack trajectory; see Fig. 8.10b. However, the effect of mesh bias is still considerable. A
nonlocal formulation leads to a fracture pattern that approximates the actual one as well as possible on
this relatively coarse mesh; see Fig. 8.10c. The directions of “local cracks” plotted as dark rectangles at
individual Gauss points oscillate and are not aligned with the overall crack trajectory. However, this is
quite natural because these local cracks, defined just for the purpose of visualization of the results, are
computed from the local inelastic strains. At very late stages of the stiffness degradation process, local
strains localize in a single layer of elements, even though the model is nonlocal. This cannot be judged as
a deficiency of the model. What matters is that the load-displacement diagram and the overall direction
of the cracking band are reproduced correctly, independently of the mesh size and orientation.
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8.5.2 Efficient Implementation of Nonlocal Averaging

Numerical implementation of the nonlocal damage model based on averaging of equivalent strain is
relatively straightforward. The evaluation of stresses from given strains remains fully explicit, and no
internal iteration loop is needed. Of course, equilibrium iteration on the structural level cannot be avoided,
same as for any other nonlinear model. An existing computer code with a certain local damage model
can be extended to a nonlocal formulation without excessive effort. All that one needs is to implement
the algorithm of weighted spatial averaging and, before damage is evaluated, replace the local equivalent
strain by its nonlocal counterpart.

The values of nonlocal equivalent strain must be traced at individual Gauss integration points of the
finite element model, because these are the points at which stresses need to be evaluated. Let us denote
the coordinates of Gauss points as xk, k = 1, 2, . . .NGP , where NGP is the total number of Gauss points
in the finite element model. In the numerical algorithm, the averaging integral (7.63) is replaced by

ε̄k =

NGP
∑

l=1

wlJlαklε̃l (8.45)

where wl is the integration weight of Gauss point number l, Jl is the Jacobian of the isoparametric
transformation evaluated at this point, and αkl is the weight of nonlocal interaction between points k
and l, determined as

αkl =
α0(‖xk − xl‖)

∑NGP

m=1
wmJmα0(‖xk − xm‖)

(8.46)

It is important to note that αkl vanishes if the distance ‖xk − xl‖ between points k and l is larger than
the nonlocal interaction radius R. So the sums in (8.45) and in the denominator of (8.46) do not need to
be taken over all Gauss points l but only over those that are located inside the sphere or circle of radius
R centered at point k. Moreover, since the factors akl ≡ wlJlαkl are needed at every iteration of every
incremental step and do not vary during the simulation, they should be evaluated only once and then
stored, rather than recomputed each time they are needed.

An efficient numerical scheme for nonlocal averaging has the following structure:
Loop over all Gauss points xk, k = 1, 2, . . .NGP .

1. Find all Gauss points xl whose distance from xk is smaller than R, and for each of them evaluate
akl = wlJlα0(‖xk − xl‖).

2. Compute the sum ak =
∑

l akl.

3. Divide each akl by ak and store it in a table along with a reference to point l. The table is associated
with point k.

This procedure is activated as a part of the initialization tasks performed before the actual incremental-
iterative solution of the nonlinear problem starts. Each Gauss point is associated with a nonlocal inter-
action table that gives access to its “neighbors” (i.e., to Gauss points at distance smaller than R) and to
the corresponding interaction coefficients akl.

The search for nonlocal neighbors can be done by checking the distance between all pairs of Gauss
points, but for larger problems this step can become a bottleneck of the computation. A much more
efficient implementation is based on the quadtree (in two dimensions) or octree (in three dimensions)
technique. The entire body is placed in a rectangle or cube that is hierarchically divided into smaller
rectangles or cubes down to the required level, and this structure is stored in a tree. Each Gauss point
is assigned to one of the leafs of the tree, depending on its position in space. The search for neighbors
can then be restricted to a limited number of leafs that are easily identified and accessed.

The stress evaluation procedure repeatedly called during the incremental-iterative solution makes use
of the nonlocal interaction tables when the nonlocal equivalent strain (or any other nonlocal variable
used by the specific nonlocal model) is computed. To obtain ε̄k, it is sufficient to get the local equivalent
strains ε̃l at all points l that are included in the table associated with point k, multiply each of them by
the coefficient akl and take a sum of these products.

Nonlocal averaging requires a certain extra effort as compared to the corresponding local model, but
the convergence of the equilibrium iteration on the global level is usually more regular for the nonlocal
model than for the local one. The reason is that the spatial distribution of strain is relatively smooth
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even after the onset of localization, and the transition from a diffuse damage pattern to a localized one
is not so abrupt. Consequently, the increased numerical effort per iteration is partially compensated
by the reduced number of iterations needed to restore equilibrium. Since the nonlocal model completely
removes the pathological sensitivity to the mesh size and also at least partially alleviates the mesh-induced
directional bias, this extra effort is indeed worthwhile.

8.5.3 Nonlocal Tangent Stiffness

In general terms, the structure of the tangent operator for nonlocal damage models was first discussed
in [243]. A consistent derivation and algorithmic implementation of the tangent stiffness matrix was
presented in [147]. The final formula can be written in the engineering notation as

K = Ku −
∑

k,l

g′kwkJkaklB
T
k σ̄kηT

l Bl (8.47)

where
Ku =

∑

k

wkJk(1 − ωk)BT
k DeBk (8.48)

In the above, subscripts k and l refer to the integration points of the finite element model, wk are the
corresponding integration weights, Jk are Jacobians reflecting the size of the contributing volume around
each integration point, B is the usual B-matrix containing the derivatives of the shape functions, g ′

denotes the derivative of the damage function g with respect to its argument κ and is set to zero if
unloading takes place at the corresponding integration point, coefficients akl that express the strength of
nonlocal interaction between integration points number k and l were defined in the preceding subsection,
De is the elastic material stiffness matrix, σ̄ = Deε is the column matrix with the effective stress
components, and η = ∂ε̃/∂ε is the column matrix with derivatives of the equivalent strain with respect
to the engineering strain components.

The first term in (8.47), Ku, represents the secant stiffness matrix valid if all the material points are in
the unloading regime (when g′

k = 0 for all k). The double sum in (8.47) provides a correction of the secant
stiffness due to additional damage growth. The individual terms in the sum represent the contributions
of nonlocal interaction between integration points xk and xl to the overall stiffness. Of course, the sum
needs to be taken only over those pairs of integration points whose distance is smaller than the interaction
radius R, because for all the other pairs akl vanishes. Each pair of interacting Gauss points contributes
to only a small block of the global stiffness matrix, with rows corresponding to internal forces at the
element that contains point xk, and with columns corresponding to nodal displacements at the element
that contains point xl. The size of this block is therefore equal to the size of the usual element stiffness
matrix. This means that the complete stiffness matrix can be assembled from much smaller matrices,
similar to the usual assembly procedure. The difference is that the code numbers associated with the
rows are in general different from the code numbers associated with the columns. This can be handled by
a minor modification of the usual assembly routine. Compared to the local case, the bandwidth increases
due to the nonlocal interaction, and the global stiffness matrix is in general not symmetric.

As follows from (8.47), the nonlocal tangent stiffness matrix has several particular properties that
have to be taken into account when selecting an economical storage scheme and an efficient solver.

First of all, the stiffness matrix is nonsymmetric, but this is often the case for local models as well. A
symmetric tangent stiffness of a local damage model is obtained only if the loading function is expressed
in terms of the thermodynamic forces conjugate to the internal variables and the evolution laws are
postulated as normality rules. Only the model relating damage to the damage energy release rate meets
these criteria. Any other definition of equivalent strain gives linearly independent bσ ≡ BT σ̄ and bη ≡
BT η, and the symmetry is lost already in the local case. Associated models with nice symmetry properties
are appealing from the theoretical point of view, they limit the number of constitutive parameters and
facilitate the numerical implementation, but they do not always capture all the essential features of the
real material behavior. Therefore, the lack of symmetry cannot be considered as a substantial drawback
specific to nonlocal formulations.

A more important complication caused by nonlocality is the evolutive character of the profile of the
stiffness matrix. For the class of material models considered here, the elastic response remains local, and
so the initial distribution of nonzero entries in the stiffness matrix is the same as in the standard local
case. When the damage threshold is exceeded and the damage zone starts evolving, new nonzero entries
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Figure 8.11: Three-point bending test simulated in three dimensions: (a) geometry and loading, (b) finite
element mesh

appear due to the activated interaction between the Gauss points belonging to different elements, and
the profile of the stiffness matrix must be dynamically adapted. Of course, one can also allocate the
storage space for all possible nonzero entries from the very beginning, but this would be a big waste of
resources because the process zone usually extends over only a small part of the structure and most of the
allocated entries would remain zero throughout the entire simulation. If the final extent of the process
zone is known in advance, one could allocate only those entries that will later become nonzero. However,
such a priori information is available only in some academic examples but not in general applications.

An efficient and versatile solution scheme must be based on dynamic memory allocation. During the
evolution of the process zone, the bandwidth of the stiffness matrix increases, but the matrix still remains
sparse. This must be taken into account when selecting the most appropriate solver.

The consistent tangential stiffness matrix can be exploited in the global equilibrium iteration proce-
dure. The resulting acceleration of the convergence rate is illustrated by the example of a three-point
bending test simulated in three dimensions using the nonlocal isotropic damage model with a Rankine-
type definition of equivalent strain (5.26) and with exponential softening; see [147] for details. The
geometry and loading are shown in Fig. 8.11a. The finite element mesh contains 6461 nodes and 33158
constant-strain tetrahedral elements; see Fig. 8.11b.

The nonlinear response is analyzed in 15 increments of applied displacements at the loaded edge.
Solution strategies based on the secant stiffness matrix (SSM) and tangent stiffness matrix (TSM) with
either direct or iterative solvers are exploited. The direct solver is based on LU decomposition using
the generalized “skyline” storage scheme and the profile optimization algorithm proposed in [293]. The
iterative solver is based on the Generalized Minimum Residual Method (GMRES) using the compressed
row (CompRow) storage scheme and preconditioning by an incomplete LU factorization (ILU) with fill-up
[272].

Fig. 8.12a shows the evolution of error (norm of the out-of-balance forces) during equilibrium iteration
with the TSM. The curves correspond to three typical steps, denoted as A, B and C. The convergence rate
is quadratic, which confirms that the tangent stiffness is indeed consistent, and convergence is achieved
within 3 to 7 iterations.

For a high required accuracy (relative tolerance of the out-of-balance forces set to 10−6), the complete
analysis with a secant stiffness and a direct solver takes 27 hours and 37 minutes (of the total user time),
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Figure 8.12: Three-point bending test simulated in three dimensions: (a) convergence characteristics for
tangent stiffness, (b) load-displacement diagram

the analysis with a tangent stiffness and a direct solver takes 136 hours and 41 minutes, but the analysis
with a tangent stiffness and an iterative solver takes only 15 hours and 23 minutes. The simulations have
been run on a Pentium III workstation with 1 GB of memory, running at 933 MHz.

8.6 Mesh-Adaptive Techniques

8.6.1 General Structure of the Adaptive Procedure

Nonlocal models lead to smooth solutions with a continuous variation of strain. However, to resolve
narrow bands of highly localized strains, it is necessary to use sufficiently fine computational grids.
Fortunately, the mesh must be fine only in the process zone, while the remaining part of the structure
can be reasonably represented by a coarser mesh. The localization pattern is in general not known in
advance, and it is extremely tedious to construct suitably refined meshes “by hand”. Efficiency of the
analysis can be greatly increased by an adaptive technique, which automates the whole process.

The basic components of the adaptive procedure include

• an error estimator or indicator,

• a remeshing criterion,

• transfer algorithms for primary unknowns and internal variables, and

• a mesh generator interface.

The general algorithm of nonlinear adaptive analysis can be described as follows: After reaching
the equilibrium state (corresponding to a given load increment) and updating the solution state, an a

posteriori error estimation is performed, in order to evaluate the error distribution. Then, a remeshing
criterion uses the information about the error distribution and determines the subsequent activity. If the
obtained error level is still acceptable, the analysis continues with the next load increment on the current
mesh. If the evaluated error exceeds a limit defined by the user, the required mesh density is determined
from the error distribution and a new spatial discretization is generated.

In a truly adaptive approach, after generating a new discretization, the data structures corresponding
to the newly generated mesh are created, and the transfer of displacements and internal variables from the
old mesh to the new one is performed. After the mapping, the internal variables are used together with
the strain computed from the mapped displacements to update the internal state of each integration point
on the new mesh (to achieve local consistency). Once the transfer has been finished, the old discretization
is deleted and the mapped configuration is brought into global equilibrium by iteration at constant value
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of the loading parameter (e.g., of the applied displacement). Afterwards, the solution continues with the
next load increment.

Another possibility is to restart the analysis from the initial state after the new discretization has
been generated [150, 261]. This approach does not require the transfer of the current state from the old
discretization to the new one, but from the computational point of view is less efficient compared to the
truly adaptive approach, especially if the remeshing is done frequently.

8.6.2 Error Estimators and Indicators

For linear problems, error analysis of the finite element solution can be developed in a mathematically
rigorous way [11, 337]. In the nonlinear range, however, rigorous error estimates can be constructed only
for a restricted class of problems. A general theory is not available since there are various sources and
forms of nonlinearities. In the linear elastic case the error arises essentially from the discretization of
the domain (so-called spatial error). In the nonlinear case, the error depends on the time discretiza-
tion for history-dependent solids, and a part of the error is always induced by the incremental-iterative
technique. The path dependency renders the problem more complex and, consequently, a reliable error
estimation becomes more difficult, especially for nonconventional theories of enriched continua. Never-
theless, considerable progress has been made in recent years. For instance, in [261] the authors proposed
a sophisticated error estimator for nonlocal damage models. Ladevèze and coworkers [175, 105] developed
a posteriori estimators based on the error in the constitutive relation, and Comi and Perego [60] adapted
this technique to their nonlocal damage theory [59]. However, the implementation of these complicated
estimators requires a considerable effort.

A simple and convenient alternative to rigorous error estimators is provided by heuristic error indica-
tors. They are often based on physical intuition and insight into the problem at hand. Error indicators
are typically based on variables that characterize the nonlinear dissipative process, e.g., on the inelastic
strain. In the present work we use directly the damage variable ω for isotropic damage models, and the
maximum principal value of the damage tensor for anisotropic damage models. Therefore, we will use
the expression “damage indicator” instead of “error indicator”.

8.6.3 Remeshing Criterion

A high value of the damage indicator allows to identify the process zone and to determine the required
mesh size. The maximum allowable mesh size inside the process zone is related to the nonlocal interaction
radius R. It should be a fraction of R, to make sure that the nonlocal interactions between individual
integration points are properly activated. The minimum requirement needed for nonlocal averaging to
work reasonably well is to have at least four remote integration points influencing the given point in
an equivalent one-dimensional situation. Extending this simple one-dimensional rule, the corresponding
maximum element size can be estimated. For example, for quadratic elements with 3×3 integration points
the maximum size allowed in the process zone is h1 = 3×2R/4 = 1.5R. The optimal recommended value
that allows to accurately represent the localized character of the solution and is still feasible from the
computational point of view is about 10 integration points per width of the process zone. The proposed
remeshing criterion, based on the damage indicator ω, uses element size h0 for ω ≤ ω0 and element size
h1 for ω ≥ ω1, with linear interpolation in between. Here, ω0 is typically selected as damage at peak
stress in a uniaxial test (i.e., zero for models that remain linear elastic up to the peak), ω1 is taken, e.g.,
as the damage level corresponding to softening to 50 % of the peak stress, h0 is a typical element size in
a coarse mesh, and h1 is the element size that enables good nonlocal interaction.

As an additional improvement, the remeshing criterion based on the damage indicator is combined
with an error estimator for elastic problems, e.g., with the Zienkiewicz-Zhu estimator [337]. This allows
to optimize the mesh in the elastic or slightly damage part of the domain. The transition of the mesh size
between the linear elastic part and the nonlinear damaged part can be handled by the mesh generator or
by a suitable smoothing technique.

8.6.4 Transfer Operators

The truly adaptive approach requires the mapping of displacements and internal history variables (in the
present case of the damage variable or damage tensor), allowing to continue the analysis from the current
state, instead of restarting the analysis from scratch after each mesh refinement. Mapping of the primary
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Figure 8.13: Mapping techniques: (a) closest point transfer, (b) shape function projection, (c) least
square projection

unknowns (nodal displacements) is usually done using the shape function projections. Mapping of the
damage variables is more intricate. It can be done using one of the following techniques:

• CPT – closest point transfer (Fig. 8.13a)

• SFT – shape function projection transfer (Fig. 8.13b)

• LST – least-square projection transfer (Fig. 8.13c)

A comparative study [148] revealed that SFT leads to an artificial damage diffusion, i.e., to an ex-
pansion of the damaged zone after the mapping, while CPT and LST preserve the size of the damaged
zone. CPT results into lower stress oscillations after mapping, but when these oscillations are removed
by equilibrium iterations (at constant loading parameter), the original shape of the damage profile is best
reproduced by LST. It can be concluded that SFT is not a suitable mapping technique for the damage
variable, and that LST is probably the most accurate technique but computationally more expensive
than CPT, which provides acceptable results at low cost.

Spurious damage diffusion produced by SFT is confirmed in a two-dimensional example of a four-point
shear test on a single-edge-notched specimen; see the damage patterns in Fig. 8.14.

8.6.5 Examples

The proposed adaptive methodology has been successfully implemented by the first author into his object-
oriented finite element system OOFEM [236]. To illustrate its performance, we present two examples of
failure simulations.
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Figure 8.14: Four-point shear test — comparison of damage patterns for different transfer operators:
(a) CPT, (b) SFT, (c) LST

Figure 8.15: Adaptive analysis of damage evolution in a three-point bending test
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Figure 8.16: Load-displacement curve for three-point bending test

Three-Point Bending Beam

The first example illustrates the analysis of a three-point bending test. The nonlocal formulation of
the isotropic damage model with the Rankine-like equivalent strain measure (5.26) and the exponential
damage law (5.29) has been used. The constitutive properties have been set to: Young’s modulus
of elasticity E = 30 GPa, Poisson’s ratio ν = 0.3, limit elastic strain ε0 = 0.0001, equivalent strain
corresponding to the fully damaged state εf = 0.012. The bell-shaped nonlocal average function (7.60)
has been used with nonlocal averaging radius R = 10 mm. The damage-based error indicator has been
used together with the remeshing criterion based on a linear interpolation scheme. The mesh size has
been set to h0 = 40 mm in the elastic regions and to h1 = 10 mm in the damaged regions.

The initial coarse mesh contained only 24 nodes and 28 constant strain elements. Only four remeshing
steps were necessary to obtain the final mesh, containing 703 nodes and 1328 elements. The initial
damage pattern is rather diffuse because there is no initial notch, but later it gets localized, see Fig. 8.15.
The loading has been controlled by a prescribed displacement under the applied force. The resulting
load-displacement diagram is shown in Fig. 8.16. In this plot, the parts of diagram are distinguished
as corresponding to different adaptive steps. The load-displacement diagram obtained by a standard
(non-adaptive) analysis on the final mesh is also shown. A very good agreement has been obtained,
demonstrating the quality of the transfer operators. The differences in the initial part of the load-
displacement diagram are mainly due to the fact that the initial meshes are too coarse and thus naturally
lead to a much stiffer response than the final fine mesh.

DEN Specimen with Curved Cracks

As another example of damage propagation along a curved trajectory, we present the adaptive simulation
of the double-edge-notched (DEN) specimen that was tested by Nooru-Mohamed [217] using the exper-
imental setup in Fig. 8.17a. The specimen can be subjected to a combination of shear and tension (or
compression). Nooru-Mohamed performed his experiments for a number of loading paths, some of them
even nonproportional. Among the most interesting loading scenarios were paths 4a, 4b and 4c. During
the first stage, the specimen was loaded by an increasing “shear” force, Ps, while keeping the “normal”
force, P , at zero. After reaching a certain load level, the type of loading was changed. During the second
stage, the force Ps was kept constant and the test was controled by increasing the “normal” displacement
δ. For path 4a the change of loading occured at Ps = 5 kN, for path 4b at Ps = 10 kN, and for path 4c
at the maximum shear force that the specimen could sustain, Ps = P max

s = 27.5 kN. In all the cases, the
failure pattern consisted of two macroscopic cracks propagating from the notches in an inclined direction.
For path 4a, these cracks were almost horizontal and close to each other (Fig. 8.17b top), while for path
4c they were highly curved and farther apart (Fig. 8.17b bottom).

Failure of the DEN specimen under loading paths 4a and 4c has been simulated using the nonlocal
version of the anisotropic damage model proposed in [141]. The material parameters have been deduced
from the data provided by [217]: compressive strength measured on cubes fc = 46.24 MPa for path 4a
and fc = 46.19 MPa for path 4c, and splitting tensile strength fs = 3.67 MPa for path 4a and fs = 3.78
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Figure 8.17: Curved crack propagation in a DEN specimen: (a) experimental setup and (b) observed
crack patterns (reproduced from Nooru-Mohamed 1992)
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Figure 8.18: Measured and simulated load-displacement curves in terms of (a) shear force Ps and dis-
placement δs, (b) normal force P and displacement δ

MPa for path 4c. The compressive strength is slightly above the value that corresponds to concrete C-30
according to the CEB-FIP Model Code (1991). Interpolation between the values of tensile strength and
Young’s modulus corresponding to concretes C-30 and C-40 gives ft = 3 MPa and E = 29 GPa. The
value of tensile strength is in agreement with the empirical formula ft = 0.8fs. The fracture energy is
considered by the same value as in [80], i.e., Gf = 110 J/m2, and the interaction radius is set to R = 5
mm.

The adaptive analysis with parameters ω0 = 0.6, h0 = 8 mm, ω1 = 0.8 and h1 = 2.8 mm required 13
remeshings for path 4a and 23 remeshings for path 4c. The evolving meshes with the isolines of damage
and strain are shown in Figs. 8.19 and 8.20. It is clear that for both loading paths the numerical prediction
is in an excellent agreement with the experimental results. Even the highly curved cracks generated by
path 4c are reproduced very accurately.

The load-displacement curves, plotted in Fig. 8.18, reveal certain discrepancies. For low and moderate
levels of the shear force Ps, the response is linear, but the measured displacements δs exceed the computed
displacements by as much as 50%. To get a perfect agreement in this range, the elastic modulus used in
the simulation would need to be reduced to about 20 GPa. It is not very likely that the actual elastic
modulus was really that low. The measured displacement was probably not only due to the elastic
deformation of the specimen. The fact that the displacements are underpredicted is a general problem
observed in other simulations of this test published in the literature; see e.g. [80].

Leaving aside the difference between the experimental and numerical compliances, one can say that
the agreement between the test and the simulation is very satisfactory. For loading path 4a, the response
to the shear loading is linear and the normal loading generates a tensile reaction force increasing up to 15
kN in the test and 14 kN in the simulation. For loading path 4c, the first clearly visible deviation from
linearity during the shear loading appears at Ps = 20 kN in both test and simulation, and the peak shear
force is 27.5 kN in the test and 26.2 kN in the simulation. The simulation correctly predicts that the
reaction force generated by increasing the normal displacement at constant shear force is compressive.
The maximum magnitude of the normal force is 1.5 kN in the test and below 4 kN in the simulation,
which should not be considered as a huge relative error because these forces are very small compared
to the previous loading case. The compressive force generated by an extension of the specimen can be
explained by the fact that the resistance of the specimen was already exhausted by the shear force, and
adding a tensile force under load control would lead to an unstable crack propagation.
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Figure 8.19: Loading path 4a: evolving meshes with isolines of (a) damage and (b) strain
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Figure 8.20: Loading path 4c: evolving meshes with isolines of (a) damage and (b) strain
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