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Preface

This tutorial is freely distributed as the complement of the µMECH C/C++ library under following reg-
ulations:

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU LGPL for more details.

You should have received a copy of the GNU LGPL along with this program; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

We hope you enjoyed this tutorial as well as µMECH code itself and found it worth to cite our work. If
this the case, please cite either one or more of the following items:

• Novák, J. and Kaczmarczyk, Ł. and Grassl, P. and Zeman, J. and Pearce, C. J., A micromechanics-
enhanced finite element formulation for modelling heterogeneous materials. Computer Methods
in Applied Mechanics and Engineering 201:53–64, 2012, 1103.5633.



Chapter 1

Introduction

What’s the µMECH library about. . .

The library µMECH was principally designed as a subclass of a finite element package. It provides
subroutines evaluating mechanical fields (strains, stresses, displacements) inside a composite media con-
sisting of ellipsoidal-like inclusions embedded in an infinite matrix. The implemented, purely analytical,
solution of both internal and external fields (inside and outside inclusion domains, respectively) is based
on [1] and is fully accomplished in three dimensions. Moreover, the implemented algorithms extend the
classic Eshelby’s solution to take into account disturbances due to the presence of adjacent inclusions so
as to deal with non-dilute media.

So far, the code offers the solution of micromechanical fields within the heterogeneous media con-
taining inclusions of various shapes as listed below.

Inclusion shape Uniform eigenstrains Non-uniform eigenstrains
Internal fields External fields Internal fields External fields

Ellipsoid yes yes no no
Sphere yes yes no no
Elliptic cylinder yes no no no
Cylinder yes no no no
Penny yes no no no
Closed penny (crack) yes no no no
Flat ellipsoid yes no no no
Oblate spheroid yes no no no
Prolate spheroid yes no no no

Table 1.1: Available mechanical fields with respect to applied eigenstrain and particular inclusion shape

Note, that as regard the inclusion shapes yet not fully implemented, these can be treated as ellipsoidal
inclusions with one or more degenerated semiaxes. In this case, µMECH will work less efficiently in
terms of computational time.
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Chapter 2

Theory manual

What’s actually behind the scope of µMECH library. . .

2.1 Single inhomogeneity problem

The basic principle of the solution of mechanical fields in an isotropic infinite medium containing single
isotropic inhomogeneity is sketched in Fig. 2.1a. Eshelby discovered in his fundamental work [1] that
this problem can be decomposed into exactly two tasks of known solution and then assembled back by
making use of the superposition principle Fig. 2.1b, c. So that the solution of inhomogeneity problem
is given as the sum of homogeneous infinite body problem and homogeneous inclusion problem [1, 2].
In brief, the solution of the inhomogeneity problem consists from seeking the equivalent transformation
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Figure 2.1: Principle of Equivalent Inclusion Method: a) inhomogeneity problem, b) problem of infinite
homogeneous body, c) homogeneous inclusion problem

eigenstrain to be applied into homogeneous body within the inclusion domain Ω having the reference
stiffness C0 Fig. 2.1c, so as to induce identical local mechanical response as original heterogeneous
body of the total stiffness C(x). The total stiffness admits the following decomposition

C(x) = C0 + V (x)C1(x), (2.1)
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where C1(x) is the complementary stiffness tensor having the characteristic function

V (x) =

{
0 ∀ x ∈ Ω0 ⊂ R3

1 ∀ x ∈ Ω ⊂ R3 . (2.2)

Local mechanical fields are then searched according to Fig. 2.1 in the decomposed form given by

ε(x) = ε0 + ε1(x), σ(x) = σ0 + σ1(x), and u(x) = u0 + u1(x), (2.3)

where, the fields ε0, σ0, u0 stand for so called homogeneous part and ε1(x), σ1(x), u1(x) for the
perturbation (disturbation) part of the strain, stress and displacement field, respectively. Moreover, the
Eshelby’s solution of homogeneous inclusion problem

u1(x) = L(x) : ετ , (2.4)

ε1(x) = ∇su1(x) = ∇L(x)ετ = S(x) : ετ (2.5)

yields
σ1(x) = C0 :

[
ε1(x)− ετ

]
. (2.6)

Note, that L(x), S(x) denote the Eshelby’s tensors generally available even for the fields outside Ω.
Now we enforce the equivalence of the local fields in heterogeneous and homogeneous body as

σ
(
C(x), ε(x)

)
≡ σ

(
C0, ε0,S(x), ετ

)
, (2.7)

and consequently seek for equivalent eigenstrain ετ satisfying the equality between both sides of the
equation. Eq. (2.7) can be expanded by using Hook’s law as well as Eq. (2.3)2 and Eq. (2.6) into the
form

C(x) : ε(x) ≡ C0 : ε0 + C0 :
[
ε1(x)− ετ

]
, (2.8)

which further yields
C(x) : ε(x) ≡ C0 : [ε(x)− ετ ] . (2.9)

Here the stress free transformation strain ετ has identical characteristic function V (x) as the comple-
mentary stiffness tensor C1(x). Now, introducing Eq. (2.3)1 and Eq. (2.1) into Eq. (2.9) we end up, after
some algebra, with the relation[

C(x)−C0
]

: ε0 =
[
C0 : S(x)−C(x) : S(x)−C0

]
: ετ , (2.10)

which can be finally recast in a compact form as

ετ = B(x) : ε0. (2.11)

Note, that B(x) tensor in the last equation reads as

B(x) = −
[
C1(x) : S(x) + C0

]−1
: C1(x). (2.12)
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2.2 Multiple inhomogeneity problem

As regard the multiple inclusion problem, the solution is based on a single inclusion problem which
follows the strategy presented in previous section. In particular, a mechanical field within a body with N
inclusions is obtained as the sum of N single inclusion tasks scaled by a multiplier (αi) associated with
each inclusion so as to fulfill self-equilibrium. Note, that the same strategy as in the previous section
applies to derive the governing equations of multiple inclusion problem.

Let us consider a heterogeneous body consisting of clearly distinguishable inclusions in a matrix
(Fig. 2.2a) subjected to a displacement and traction field u(x), t(x), respectively. Analogically to the
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Figure 2.2: Principle of Equivalent Inclusion Method: a) multiple inhomogeneity problem, b) infinite
homogeneous body, c) multiple homogeneous inclusion problem

previous section, the stiffness of such a material is decomposed as follows [3, 2, 5]

C(x) = C0 + V (x)C∗(x), (2.13)

where C0 ∈ Ω0 is the stiffness tensor of the homogeneous infinite matrix and C∗(x) =
∑N

i [Ci(x)−C0]
is its complement to C(x) caused by the presence of N inclusions. C∗(x) is nonzero only within the
domain Ω = Ω1 ∪ · · · ∪ ΩN , so that the characteristic function V (x) yields

V (x) =

{
0 ∀ x ∈ Ω0 ⊂ R3

1 ∀ x ∈ Ω ⊂ R3 . (2.14)

The decomposed displacement, strain and stress field, respectively, admit the form

u(x) = u0(x) + u∗(x),

ε(x) = ε0(x) + ε∗(x),

σ(x) = σ0(x) + σ∗(x). (2.15)

Here, the variables with ·0 and ·∗ exponents stand for homogeneous and perturbation part of the fields
previously defined.

As already suggested, the perturbation fields are calculated employing equivalent inclusion method
extended for multiple inclusions by means of Self-balancing algorithm to satisfy their self-equilibrium.
The equivalence of perturbation stresses inside the heterogeneous and homogeneous body (Fig. 2.2a, c) is
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accounted for by applying N equivalent eigenstrain fields ετ,i(x) into Ωi. So that, written symbolically,
it holds

σ
(
C(x), ε(x)

)
≈ σ

(
C0, ε0(x),Si(x), ετ,i(x)

)
, (2.16)

which employing Eq. (2.15)3 turns into

σ
(
C(x), ε(x)

)
≈ σ0

(
C0, ε0(x)

)
+

N∑
i

αiσ
∗(C0,Si(x), ετ,i(x)

)
, (2.17)

where Si(x) is the position dependent Eshelby’s tensor of ith inclusion and ε0(x) = ε0
(
u(x), t(x)

)
stands for hypothetical remote strain field producing together with C∗(x) the required transformation
eigenstrain ετ,i(x), so as to ensure the equivalence between original, Fig. 2.2a, and equivalent, Fig. 2.2b,
body. Next, the parameter αi in Eq. (2.17) is the multiplier enforcing the self-equilibrium among all in-
clusions, here calculated by means of self-balancing algorithm. Note that for strongly non-dilute media
(extensive mutual interactions among inclusions Ωi) the accuracy of final solution is given by the choice
of the order of equivalent eigenstrain polynomials. However, the study [4] shows that even the assump-
tion of uniform eigenstrains exhibits unexpectedly good results as for both the quality of perturbation
fields’ solution as well as high computational efficiency.

2.2.1 Multiple inclusion problem via Self-balancing algorithm

The multiple inclusion perturbation fields u∗, ε∗ and σ∗ as the counterpart of single inclusion perturba-
tions introduced in Eq. (2.15) are determined for multiple inclusions from the separate Eshelby’s solu-
tions of each single inclusion Eq. (2.17). The required self-equilibrium is enforced by making use of an
iterative procedure, here referred to as the self-balancing algorithm (Tab. 2.1). A FULL self-balancing

Ω1 Ω2

ε1,2 ε2,1

x

ε
ε1

τ

ε1
1

1 1

Figure 2.3: Principle of self-balancing algorithm for double inclusion problem in 1D, ετ1 denotes the
initial transformation strain, ε11 stands for the perturbation strain after 1st step, ε11,2 represents the strain
perturbation in inclusion Ω1 caused by the presence of inclusion Ω2 and conversely ε12,1 is the strain
perturbation in inclusion Ω2 caused by the neighboring inclusion Ω1

algorithm ensures that the mechanical fields associated with inclusion i correctly reflect the influence of
the remaining N\i inclusions. A modification of the equivalent-transformation strain inside an inclu-
sion, so as to account for mechanical fields of adjacent inclusions, is performed iteratively. The initial
transformation eigenstrain ετi is applied to each inclusion within the step 2 (ετ1 in Fig. 2.3). Consequently,
the perturbation strain ε1i at all inclusion centroids is evaluated by means of the step 3 (ε11 in Fig. 2.3).
Next, the transformation strain correction due to the adjacent inclusions is calculated in step 7 by using
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the inverse of the Eshelby tensor S−1i and the perturbation strain ε1j,i at each inclusion centroid (ε11,2 and
ε12,1 in Fig. 2.3). Finally, within the framework of step 9, the transformation strain is updated by adding
the correction transformation strain, and the new perturbation strains are then re-calculated exclusively
from this correction by means of step 10. The algorithm continues until a small Euclidean norm between
last two total transformation strain fields is achieved. The computational complexity of this algorithm
is O(N2), however, this can be improved by taking into account only those inclusions which have a
non-negligible influence to a certain inclusion i. This version of the self-balancing algorithm is refereed
to as the OPTIMIZED one.

SelfBalancingAlgorithm(ετi ,Si,S
−1
i , N)

1 For (i ≤ N)
2 ετtotal,i = ετi
3 ε1i = Si : ετi
4 EndFor
5 Do
6 For (i ≤ N)

7 ετi =
∑N

j\i S
−1
i : ε1j,i

8 ετtotal,i = ετ,new
total,i

9 ετ,new
total,i = ετ,new

total,i + ετi
10 ε1i = Si : ετi
11 EndFor
12 While

(∑N
i ‖ετtotal,i − ε

τ,new
total,i‖ > ε

)
Table 2.1: Self-balancing algorithm



Chapter 3

Tutorial

How to . . .

3.1 Installation

Download and unpack muMECH.zip archive to a preffered directory and simply start using it. Do
not forget include analyticalFunctions.h and eshelbySoluTypes.h headers to allow call-
ing all the addressed functions. As the code is entirely free, released under GNU regulations, you
can modify/distribute it freely as well. You can even use all the functions/methods declared outside
analyticalFunctions.h which has been not directly addressed in this tutorial, but be aware to
include additional header file(s) containig appropriate declarations.

3.2 Input file format

In brief, the µMECH input file syntax is build on freely available Visualization Toolkit - VTK 1, in
particular on its UNSTRUCTURED_GRID version. The implemented functions described Section 3.3
allow for evaluating mechanical fields in one or multiple points with respect to applied load cases. In
particular, either one or all the six load cases must be applied. In the first case, the load case is re-called
(for some particular reasons) by a keyword TENSORS Remote_strains_11. In the later one, six
keywords TENSORS Remote_strains_ij have to be included in the input file. The load cases
representing the actual remote strains in inclusion centroids must be specified for each single inclusion.

The input file also contains the in formations about the geometry of a calculated task. The particular
meaning of each compulsory keyword mostly reflects its VTK counterpart and is as follows.

§

POINTS
Coordinates of inclusion centroids.

§
1http://www.vtk.org/VTK/img/file-formats.pdf
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CELLS
Definition of cell connectivity (topology). In our case just simple points.

§

CELL TYPES
Cell type definitions. In our case, only simple points (i.e. integer 1) makes sense.

§

Inclusion shape
Defines the shape of each particular inclusion. The shapes are defined in eshelbySoluTypes.h.

symbolic constant input file value
ELLIPSOID 1
SPHERE 2
ELLIPTIC CYLINDER 3
CYLINDER 4
PENNY 5
CLOSED PENNY 6
FLAT ELLIPSOID 7
OBLATE SPHEROID 8
PROLATE SPHEROID 9

Table 3.1: Inclusion shape values as defined in eshelbySoluTypes.h

§

Youngs modulus
Young’s modulus of each individual inclusion.

§

Poissons ratio
Poisson’s ratio of each individual inclusion.

§

Semiaxes dimensions
Semiaxes’ dimensions in following order a1, a2, a3. It is not required that a1 > a2 > a3, but if this

is the case, the code becomes more efficient.

§



CHAPTER 3. TUTORIAL 12

Euller angles (Eul(l)er is not a spelling mistake, it is really implemented with double ’l’)
The rotation of each inclusion given by means of the Euler angles of its principal semiaxes. Note,

that the Euler angles ϕ, ν and ψ correspond to successive rotation of ellipsoidal semiaxes a1, a2 and a3
about global coordinate axes x3, x1 and x3, respectively.

§

Remote strains 11
The 1st load step. If the lcMode = SINGLE (load case mode), this is the only load case which

must be necessarily included in the input file. On the other hand, one should not meet any troubles
when other load cases included as well. In the case, the mechanical response to all the six load cases is
required, instead of SINGLE set lcMode = MULTIPLE .

§

Remote strains 22
The 2nd load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 33
The 3rd load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 12
The 4th load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 23
The 5th load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 13
The 6th load step. Active, only if lcMode = MULTIPLE .

§

Example
The file listed below contains three ellipsoidal inclusions of different Euler rotations loaded by ex-

actly six (maximum number) load cases Fig. 3.1.
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Figure 3.1: Geometry and topology of three inclusion benchmark

# vtk DataFile Version 3.0
created by Jan Novak, 08.12.2009
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 3 double
-0.04806993 0.07826698 0.01481089
0.01645318 -0.17864680 -0.15450740
0.12793000 -0.06594404 -0.02731760

CELLS 3 6
1 1
1 2
1 3
CELL_TYPES 3
1
1
1
POINT_DATA 3
SCALARS Inclusion_shape int 1
LOOKUP_TABLE default
1
1
1
SCALARS Youngs_modulus double 1
LOOKUP_TABLE default
2.0
2.0
2.0
SCALARS Poissons_ratio double 1
LOOKUP_TABLE default
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0.1
0.1
0.1
VECTORS Semiaxes_dimensions double
0.05 0.075 0.10
0.05 0.10 0.075
0.10 0.075 0.05
VECTORS Euller_angles double
74.2103 48.4392 -48.0699
37.2731 22.2687 -25.5056
46.7402 11.1690 -26.3025
TENSORS Remote_strains_11 double
1. 0. 0. 0. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0. 0. 0. 0.
TENSORS Remote_strains_22 double
0. 0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 1. 0. 0. 0. 0.
TENSORS Remote_strains_33 double
0. 0. 0. 0. 0. 0. 0. 0. 1.
0. 0. 0. 0. 0. 0. 0. 0. 1.
0. 0. 0. 0. 0. 0. 0. 0. 1.
TENSORS Remote_strains_12 double
0. 1. 0. 1. 0. 0. 0. 0. 0.
0. 1. 0. 1. 0. 0. 0. 0. 0.
0. 1. 0. 1. 0. 0. 0. 0. 0.
TENSORS Remote_strains_23 double
0. 0. 0. 0. 0. 1. 0. 1. 0.
0. 0. 0. 0. 0. 1. 0. 1. 0.
0. 0. 0. 0. 0. 1. 0. 1. 0.
TENSORS Remote_strains_13 double
0. 0. 1. 0. 0. 0. 1. 0. 0.
0. 0. 1. 0. 0. 0. 1. 0. 0.
0. 0. 1. 0. 0. 0. 1. 0. 0.

3.3 Available functions

3.3.1 Interface - C++

§
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Constructor

analyticalFunctions( char * vtkTopologyFile,
MatrixRecord infMedRec,
SBAtype SelfBalAlgorithm,
LCtype lcMode )

vtkTopologyFile – pointer to a VTK file containing inclusion geometry and topology
infMedRec – structure containing infinite medium record, i.e. one must initialize E, nu, origin
items (see eshelbySoluTypes.h for more details)
SelfBalAlgorithm – self balance algorithm flag ( FULL or OPTIMIZED )
lcMode – load case type flag ( SINGLE or MULTIPLE )

§

Destructor
ãnalyticalFunctions()

§

Creating the VTK file of inclusion record

void createInclRecFile( char * vtkTopologyFile,
MatrixRecord infMedRec,
SBAtype SelfBalAlgorithm,
LCtype lcMode )

vtkTopologyFile – pointer to a VTK file containing inclusion geometry and topology
infMedRec – structure containing infinite medium record, i.e. one must initialize E, nu, origin
items (see eshelbySoluTypes.h for more details)
SelfBalAlgorithm – self balance algorithm flag ( FULL or OPTIMIZED )
lcMode – load case type flag ( SINGLE or MULTIPLE )

§

Solution of the perturbation fields of a point in required notation

void giveEshelbyPertFieldsOfOnePoint( double *coords,
double * disp,
double * strain,
double * stress,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of a point
disp – displacement vector to be calculated
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strain – strain tensor to be calculated
stress – stress tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacements and stresses of a point in required notation

void giveEshelbyPertFieldsOfOnePoint( double * coords,
double * disp,
double * stress,
LoadCase LS,
NotationType notationFlag)

coords – coordinates of a point
disp – displacement vector to be calculated
stress – stress tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacements and stresses of a point in required notation depending on
chosen action region of each inclusion

void giveEshelbyPertFieldsOfOnePoint( double * coords,
double * disp,
double * stress,
LoadCase LS,
NotationType notationFlag,
PFCmode pfcMode )

coords – coordinates of a point
disp – displacement vector to be calculated
stress – stress tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL
pfcMode – flag of point fields calculation type ( FULL , OPTIMIZED )
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§

Solution of the perturbation strain field of a point in required notation. Note: For efficiency purposes,
rather use giveEshelbyPertFieldsOfOnePoint especially in the case when other fields are
also required.

void giveEshelbyPertStrainOfOnePoint( double * coords,
double * strain,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of a point
strain – strain tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacement field of a point in required notation. Note: For efficiency
purposes, rather use giveEshelbyPertFieldsOfOnePoint especially in the case when other
fields are also required.

void giveEshelbyPertDisplOfOnePoint( double * coords,
double * disp,
LoadCase LS )

coords – coordinates of a point
disp – displacement vector to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )

§

Solution of the perturbation fields of multiple points in required notation

void giveEshelbyPertFieldsOfMultPoint( double * coords,
double * disp,
double * strain,
double * stress,
int noPoints,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
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strain – strain tensors to be calculated in C row-by-row alignment
stress – stress tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the fields will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacements and stresses of multiple points in required notation

void giveEshelbyPertFieldsOfMultPoint( double * coords,
double * disp,
double * stress,
int noPoints,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
stress – stress tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the fields will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacements and stresses of multiple points in required notation. The
resulting fields depend on the action region of surrounding inclusions of given points.

void giveEshelbyPertFieldsOfMultPoint( double * coords,
double * disp,
double * stress,
int noPoints,
LoadCase LS,
NotationType notationFlag,
PFCmode pfcMode )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
strain – strain tensors to be calculated in C row-by-row alignment
stress – stress tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the fields will be evaluated
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LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL
pfcMode – flag of point fields calculation type ( FULL , OPTIMIZED )

§

Solution of the perturbation strain of multiple points in required notation. Note: For efficiency purposes,
rather use giveEshelbyPertFieldsOfMultiplePoint especially in the case when other fields
are also required.

void giveEshelbyPertStrainOfMultPoint( double * coords,
double * strain,
int noPoints,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of points in C row-by-row alignment
strain – strain tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the field will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Function gives the solution of the perturbation displacement of multiple points. Note: For efficiency
purposes, rather use giveEshelbyPertFieldsOfMultiplePoint especially in the case when
other fields are also required.

void giveEshelbyPertDisplOfMultPoint( double * coords,
double * disp,
int noPoints,
LoadCase LS )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
noPoints – number of points in which the field will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )

§
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Solution of the total displacement field of a point

void analDirihletNonHomogenousEshelby( double * coords,
double * disp,
LoadCase LS )

coords – coordinates of point
disp – displacement vector to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )

3.3.2 Interface - C

§

Creating the VTK file of inclusion record

void esh createInclRecFile( char * vtkTopologyFile,
MatrixRecord infMedRec,
SBAtype SelfBalAlgorithm,
LCtype lcMode )

vtkTopologyFile – pointer to a VTK file containing inclusion geometry and topology
infMedRec – structure containing infinite medium record, i.e. one must initialize E, nu, origin
items (see eshelbySoluTypes.h for more details)
SelfBalAlgorithm – self balance algorithm flag ( FULL or OPTIMIZED )
lcMode – load case type flag ( SINGLE or MULTIPLE )

§

Initializing of inclusion record (constructor-like function)

void esh reloadInclRecord( char * vtkTopologyFile,
MatrixRecord infMedRec,
SBAtype SelfBalAlgorithm,
LCtype lcMode)

vtkTopologyFile – pointer to a VTK file containing inclusion geometry and topology
infMedRec – structure containing infinite medium record, i.e. one one must initialize E, nu, origin
items (see eshelbySoluTypes.h for more details)
SelfBalAlgorithm – self balance algorithm flag ( FULL or OPTIMIZED )
lcMode – load case type flag ( SINGLE or MULTIPLE )

§
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Deleting of inclusion record (destructor-like function)

void esh deleteInclRecord( void )

§

Solution of the perturbation fields of a point in required notation

void esh givePertFieldsInOnePoint( double *coords,
double * disp,
double * strain,
double * stress,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of a point
disp – displacement vector to be calculated
strain – strain tensor to be calculated
stress – stress tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacements and stresses of a point in required notation

void esh givePertFieldsInOnePoint( double *coords,
double * disp,
double * stress,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of a point
disp – displacement vector to be calculated
stress – stress tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§
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Solution of the perturbation displacements and stresses of a point in required notation. The resulting
fields depend upon the action region of surrounding inclusions of a given point.

void esh givePertFieldsInOnePoint( double *coords,
double * disp,
double * stress,
LoadCase LS,
NotationType notationFlag,
PFCmode pfcMode )

coords – coordinates of a point
disp – displacement vector to be calculated
stress – stress tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL
pfcMode – flag of point fields calculation type ( FULL , OPTIMIZED )

§

Solution of the perturbation strain field of a point in required notation. Note: For efficiency purposes,
rather use esh givePertFieldsInOnePoint especially in the case when other fields are also
required.

void esh givePertStrainInOnePoint( double * coords,
double * strain,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of a point
strain – strain tensor to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacement field of a point in required notation. Note: For efficiency
purposes, rather use esh givePertFieldsInOnePoint especially in the case when other fields
are also required.

void esh givePertDisplInOnePoint( double * coords,
double * disp,
LoadCase LS )



CHAPTER 3. TUTORIAL 23

coords – coordinates of a point
disp – displacement vector to be calculated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )

§

Solution of the perturbation fields of multiple points in required notation

void esh givePertFieldsInMultPoint( double * coords,
double * disp,
double * strain,
double * stress,
int noPoints,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
strain – strain tensors to be calculated in C row-by-row alignment
stress – stress tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the fields will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§

Solution of the perturbation displacements and stresses of multiple points in required notation

void esh givePertFieldsInMultPoint( double * coords,
double * disp,
double * stress,
int noPoints,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
stress – stress tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the fields will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL
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§

Solution of the perturbation displacements and stresses of multiple points in required notation. The
resulting fields depend on the action region of surrounding inclusions of given points.

void esh givePertFieldsInMultPoint( double * coords,
double * disp,
double * stress,
int noPoints,
LoadCase LS,
NotationType notationFlag,
PFCmode pfcMode )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
strain – strain tensors to be calculated in C row-by-row alignment
stress – stress tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the fields will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL
pfcMode – flag of point fields calculation type ( FULL , OPTIMIZED )

§

Solution of the perturbation strain of multiple points in required notation. Note: For efficiency purposes,
rather use esh givePertFieldsInMultPoint especially in the case when other fields are also
required.

void esh givePertStrainInMultPoint( double * coords,
double * strain,
int noPoints,
LoadCase LS,
NotationType notationFlag )

coords – coordinates of points in C row-by-row alignment
strain – strain tensors to be calculated in C row-by-row alignment
noPoints – number of points in which the field will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )
notationFlag – notation of strain/stress field ( VOIGT = ENGINEERING , MANDEL , ACTUAL
= THEORETICAL ), default notation is MANDEL

§
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Function gives the solution of the perturbation displacement of multiple points. Note: For efficiency
purposes, rather use esh givePertFieldsInMultPoint especially in the case when other fields
are also required.

void esh givePertDisplInMultPoint( double * coords,
double * disp,
int noPoints,
LoadCase LS )

coords – coordinates of points in C row-by-row alignment
disp – displacement vectors to be calculated in C row-by-row alignment
noPoints – number of points in which the field will be evaluated
LS – given load case ( LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )

3.4 Implementation examples

When using either C++ or C interface it is necessary to initialize infinite matrix record as either
static MatrixRecord infMedRec = { 0.1, 1.0, { 0., 0., 0. } };
where the values within curly breckets represent, respectively, the Poisson’s ratio, Young’s modulus and
coordinates of the global coordinate system origin, or in verbose form
double infMedRec.nu = 0.1;
double infMedRec.E = 1.0;
double infMedRec.origin = { 0., 0., 0. };
Furthemore, the type of self-balancing algorithm must be set by e.g.
SBAtype sbAlg = OPTIMIZED ; (either OPTIMIZED or FULL ),
the load case mode as e.g.
LCtype lcMode = SINGLE ; (optiopns: SINGLE / MULTIPLE )
LoadCase LS = LS11 ; (optiopns: LS11 , LS22 , LS33 , LS12 , LS23 , LS13 , LSALL )

The two examples for both C and C++ interface follow.

3.4.1 Implementation via C++ interface

//*******************************************************************
// ## # ### ## ## ### ###### ### (c) copyright is for loosers!
// ## # # # # # # # # # #
// # # # ### ### ## # # # #
// # ### # # ### # # # ### MICROMECHANICS
//*******************************************************************
#include <stdio.h>
#include "analyticalFunctions.h"
#include "eshelbySoluTypes.h"
//*******************************************************************
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// description: main function - C++_test
// last edit: 26. 11. 2010
//*******************************************************************
int main( )
{

//declarations and initializations
//inclusions’ geometry and topology file
char vtkFile[] = "3_icl_geom.vtk";
//infinite medium properties
static MatrixRecord infMedRec = { 0.1, 1.0, { 0., 0., 0. } };
SBAtype sbAlg = _OPTIMIZED_; //type of self-balancing algorithm
LCtype lcMode = _MULTIPLE_; //load case mode
LoadCase LS = _LSALL_; //load case to be evaluated
//type of algorithm of point fields to be evaluated
PFCmode pfcMode = __OPTIMIZED_;
//arbitrary coordinates of two points
double coords[6] = { 0., 0., 0., .1, .3, .4 };
//calculated fields
double d[2*3*6]; //displs: 2 points*3 components*6 load cases
double e[2*6*6]; //strains: 2 points*6 components*6 load cases
double s[2*6*6]; //stresse: 2 points*6 components*6 load cases
int i, j = 0; //increments
//pointer to analytical functions object
analyticalFunctions * analFunc = NULL;

//PRE-PROCESOR
//self-balancing algorithm and VTK file re-creating
analFce = new analyticalFunctions(lcMode);
analFce->createInclRecFile(vtkFile,infMedRec,sbAlg,lcMode);
delete analFce;
//building inclusion record
analFunc = new analyticalFunctions(vtkFile,infMedRec,sbAlg,lcMode);
//PROCESOR
analFunc->giveEshelbyPertFieldsOfMultPoint(coords,d,e,s,2,LS,

_ACTUAL_);
//POST-PROCESOR
printf("\nperturbation dlacements:\n");
for(i = 0; i < 6; i++){

j = i*6;
printf("Load case %d:\tux\t\tuy\t\tuz\n",i+1);
printf("point 1: \t%e\t%e\t%e\n",d[0+j],d[1+j],d[2+j]);
printf("point 2: \t%e\t%e\t%e\n",d[3+j],d[4+j],d[5+j]);

}
printf("\nperturbation stress:\n");
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for(i = 0; i < 6; i++){
j = i*6;
printf("Load case %d:\texx\t\teyy\t\tezz\t\texy\t\teyz\t\texz\n",

i+1);
printf("point 1:\t%e\t%e\t%e\t%e\t%e\t%e\n",

e[0+j],e[1+j],e[2+j],e[3+j],e[4+j],e[5+j]);
printf("point 2:\t%e\t%e\t%e\t%e\t%e\t%e\n",

e[6+j],e[7+j],e[8+j],e[9+j],e[10+j],e[11+j]);
}
printf("\nperturbation strain:\n");
for(i = 0; i < 6; i++){

j = i*6;
printf("Load case %d:\tsxx\t\tsyy\t\tszz\t\tsxy\t\tsyz\t\tsxz\n",

i+1);
printf("point 1:\t%e\t%e\t%e\t%e\t%e\t%e\n",

s[0+j],s[1+j],s[2+j],s[3+j],s[4+j],s[5+j]);
printf("point 2:\t%e\t%e\t%e\t%e\t%e\t%e\n",

s[6+j],s[7+j],s[8+j],s[9+j],s[10+j],s[11+j]);
}
//deleting inclusion record
delete analFunc;
printf("C++_test: done\n");
return 0;

}//end of function: C++_test
/*end of file*/
//*******************************************************************

3.4.2 Implementation via C interface

//*******************************************************************
// ## # ### ## ## ### ###### ### (c) copyright is for loosers!
// ## # # # # # # # # # #
// # # # ### ### ## # # # #
// # ### # # ### # # # ### MICROMECHANICS
//*******************************************************************
#include <stdio.h>
#include "analyticalFunctions.h"
#include "eshelbySoluTypes.h"
//*******************************************************************
// description: main function - C_test
// last edit: 26. 11. 2010
//*******************************************************************
int main( )
{
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//declarations and initializations
//inclusions’ geometry and topology file
char vtkTopologyFile[] = "3_icl_geom.vtk";
//infinite medium properties
static MatrixRecord infMedRec = { 0.1, 1.0, { 0., 0., 0. } };
SBAtype sbAlg = _OPTIMIZED_; //type of self-balancing algorithm
LCtype lcMode = _MULTIPLE_; //load case mode
LoadCase LS = _LSALL_; //load case to be evaluated
//type of algorithm of point fields to be evaluated
PFCmode pfcMode = __OPTIMIZED_;
//arbitrary coordinates of two points
double coords[6] = { 0., 0., 0., .1, .3, .4 };
//calculated fields
double d[2*3*6]; //displs: 2 points*3 components*6 load cases
double e[2*6*6]; //strains: 2 points*6 components*6 load cases
double s[2*6*6]; //stresse: 2 points*6 components*6 load cases
int i, j = 0; //increments

//PRE-PROCESOR
//self-balancing algorithm and VTK file re-creating
esh_createInclRecFile(vtkTopologyFile,infMedRec,sbAlg,lcMode);
//creating inclusion record
esh_reloadInclRecord(vtkTopologyFile,infMedRec,sbAlg,lcMode);
//PROCESOR
esh_givePertFieldsInMultPoint(coords,d,e,s,2,LS,_ACTUAL_);
//POST-PROCESOR
printf("\nperturbation dlacements:\n");
for(i = 0; i < 6; i++){

j = i*6;
printf("Load case %d:\tux\t\tuy\t\tuz\n",i+1);
printf("point 1: \t%e\t%e\t%e\n",d[0+j],d[1+j],d[2+j]);
printf("point 2: \t%e\t%e\t%e\n",d[3+j],d[4+j],d[5+j]);

}
printf("\nperturbation stress:\n");
for(i = 0; i < 6; i++){

j = i*6;
printf("Load case %d:\texx\t\teyy\t\tezz\t\texy\t\teyz\t\texz\n",

i+1);
printf("point 1:\t%e\t%e\t%e\t%e\t%e\t%e\n",

e[0+j],e[1+j],e[2+j],e[3+j],e[4+j],e[5+j]);
printf("point 2:\t%e\t%e\t%e\t%e\t%e\t%e\n",

e[6+j],e[7+j],e[8+j],e[9+j],e[10+j],e[11+j]);
}
printf("\nperturbation strain:\n");
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for(i = 0; i < 6; i++){
j = i*6;
printf("Load case %d:\tsxx\t\tsyy\t\tszz\t\tsxy\t\tsyz\t\tsxz\n",

i+1);
printf("point 1:\t%e\t%e\t%e\t%e\t%e\t%e\n",

s[0+j],s[1+j],s[2+j],s[3+j],s[4+j],s[5+j]);
printf("point 2:\t%e\t%e\t%e\t%e\t%e\t%e\n",

s[6+j],s[7+j],s[8+j],s[9+j],s[10+j],s[11+j]);
}
//deleting inclusion record
esh_deleteInclRecord( );
printf("C_test: done\n");
return 0;

}//end of function: C_test
/*end of file*/
//*******************************************************************

3.5 Important comments

The codeµMECH, as such, also contain a huge number of functions suitable for pre- and post-processing
of calculated data, especially implemented for visualization purposes by means of VTK file(s). Further
functions evaluating the standard (position independent) Eshelby tensors are also available. Hopefully,
all of those will be documented in a near future as long as one requests so.

Any comments and questions email to: novakj(at)cml.fsv.cvut.cz.
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