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Preface

This tutorial is freely distributed as the complement of the µMECH C/C++ library under following regulations:

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
LGPL for more details.

You should have received a copy of the GNU LGPL along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

We hope you enjoyed this tutorial as well as µMECH code itself and found it worth to cite our work. If this the
case, please cite either one or more of the following items:

• Novák, J. and Kaczmarczyk, Ł. and Grassl, P. and Zeman, J. and Pearce, C. J., A micromechanics-
enhanced finite element formulation for modelling heterogeneous materials. Computer Methods in Ap-
plied Mechanics and Engineering 201:53–64, 2012.

• Oberrecht, S.P. and Novák, J. and Krysl, P., B-bar FEMs for anisotropic elasticity. International Journal
for Numerical Methods in Engineering 98:92–104, 2014.



Chapter 1

Introduction

What’s the µMECH library about. . .

The library µMECH was principally designed as a subclass of a finite element package. It provides sub-
routines evaluating mechanical fields (strains, stresses, displacements) inside a composite media consisting of
ellipsoidal-like inclusions embedded in an infinite matrix. The implemented, purely analytical, solution of both
internal and external fields (inside and outside inclusion domains, respectively) is based on [1] and is fully ac-
complished in three dimensions. Moreover, the implemented algorithms extend the classic Eshelby’s solution
to take into account disturbances due to the presence of adjacent inclusions so as to deal with non-dilute media.

So far, the code offers the solution of micromechanical fields within the heterogeneous media containing
inclusions of various shapes as listed below.

Inclusion shape Uniform eigenstrains Non-uniform eigenstrains
Internal fields External fields Internal fields External fields

Ellipsoid yes yes no no
Sphere yes yes no no
Elliptic cylinder yes no no no
Cylinder yes no no no
Penny yes no no no
Closed penny (crack) yes no no no
Flat ellipsoid yes no no no
Oblate spheroid yes no no no
Prolate spheroid yes no no no

Table 1.1: Available mechanical fields with respect to applied eigenstrain and particular inclusion shape

Note, that as regard the inclusion shapes yet not fully implemented, these can be treated as ellipsoidal
inclusions with one or more degenerated semiaxes. In this case, µMECH will work less efficiently in terms of
computational time.
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Chapter 2

Theory manual

What’s actually behind the scope of µMECH library. . .

2.1 Single inhomogeneity problem

The basic principle of the solution of mechanical fields in an isotropic infinite medium containing single
isotropic inhomogeneity is sketched in Fig. 2.1a. Eshelby discovered in his fundamental work [1] that this
problem can be decomposed into exactly two tasks of known solution and then assembled back by making
use of the superposition principle Fig. 2.1b, c. So that the solution of inhomogeneity problem is given as the
sum of homogeneous infinite body problem and homogeneous inclusion problem [1, 2]. In brief, the solution

8−

8−

Γ

C  (x)1Ω:

y

x

, t(x) (x)  u

, t(x) (x)  u

, t
(x

)
(x

) 
 u

, t
(x

)
(x

) 
 u

C0

8

8

0Ω :

≡

8−

8−

C0

y

x

, t(x) (x)  u

, t(x) (x)  u

, t
(x

)
(x

) 
 u

, t
(x

)
(x

) 
 u

8

8

everywhere:

+

8−

8−

Γ

C0Ω:

y

x

ετ

C00Ω :

8

8

 (x)0(x)u ,q0

0(x)u ,q (x)0

0 (x
)

u
,q

 (
x)

0

,q
 (

x)
0 (x

)
0

u

(a) (b) (c)

Figure 2.1: Principle of Equivalent Inclusion Method: a) inhomogeneity problem, b) problem of infinite homo-
geneous body, c) homogeneous inclusion problem

of the inhomogeneity problem consists from seeking the equivalent transformation eigenstrain to be applied
into homogeneous body within the inclusion domain Ω having the reference stiffness C0 Fig. 2.1c, so as to
induce identical local mechanical response as original heterogeneous body of the total stiffness C(x). The total
stiffness admits the following decomposition

C(x) = C0 + V (x)C1(x), (2.1)
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CHAPTER 2. THEORY MANUAL 6

where C1(x) is the complementary stiffness tensor having the characteristic function

V (x) =

{
0 ∀ x ∈ Ω0 ⊂ R3

1 ∀ x ∈ Ω ⊂ R3 . (2.2)

Local mechanical fields are then searched according to Fig. 2.1 in the decomposed form given by

ε(x) = ε0 + ε1(x), σ(x) = σ0 + σ1(x), and u(x) = u0 + u1(x), (2.3)

where, the fields ε0, σ0, u0 stand for so called homogeneous part and ε1(x), σ1(x), u1(x) for the perturbation
(disturbation) part of the strain, stress and displacement field, respectively. Moreover, the Eshelby’s solution of
homogeneous inclusion problem

u1(x) = L(x) : ετ , (2.4)

ε1(x) = ∇su1(x) = ∇L(x)ετ = S(x) : ετ (2.5)

yields
σ1(x) = C0 :

[
ε1(x)− ετ

]
. (2.6)

Note, that L(x), S(x) denote the Eshelby’s tensors generally available even for the fields outside Ω. Now we
enforce the equivalence of the local fields in heterogeneous and homogeneous body as

σ
(
C(x), ε(x)

)
≡ σ

(
C0, ε0,S(x), ετ

)
, (2.7)

and consequently seek for equivalent eigenstrain ετ satisfying the equality between both sides of the equation.
Eq. (2.7) can be expanded by using Hook’s law as well as Eq. (2.3)2 and Eq. (2.6) into the form

C(x) : ε(x) ≡ C0 : ε0 + C0 :
[
ε1(x)− ετ

]
, (2.8)

which further yields
C(x) : ε(x) ≡ C0 : [ε(x)− ετ ] . (2.9)

Here the stress free transformation strain ετ has identical characteristic function V (x) as the complementary
stiffness tensor C1(x). Now, introducing Eq. (2.3)1 and Eq. (2.1) into Eq. (2.9) we end up, after some algebra,
with the relation [

C(x)−C0
]

: ε0 =
[
C0 : S(x)−C(x) : S(x)−C0

]
: ετ , (2.10)

which can be finally recast in a compact form as

ετ = B(x) : ε0. (2.11)

Note, that B(x) tensor in the last equation reads as

B(x) = −
[
C1(x) : S(x) + C0

]−1
: C1(x). (2.12)
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2.2 Multiple inhomogeneity problem

As regard the multiple inclusion problem, the solution is based on a single inclusion problem which follows
the strategy presented in previous section. In particular, a mechanical field within a body with N inclusions is
obtained as the sum of N single inclusion tasks scaled by a multiplier (αi) associated with each inclusion so as
to fulfill self-equilibrium. Note, that the same strategy as in the previous section applies to derive the governing
equations of multiple inclusion problem.

Let us consider a heterogeneous body consisting of clearly distinguishable inclusions in a matrix (Fig. 2.2a)
subjected to a displacement and traction field u(x), t(x), respectively. Analogically to the previous section, the
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Figure 2.2: Principle of Equivalent Inclusion Method: a) multiple inhomogeneity problem, b) infinite homoge-
neous body, c) multiple homogeneous inclusion problem

stiffness of such a material is decomposed as follows [3, 2]

C(x) = C0 + V (x)C∗(x), (2.13)

where C0 ∈ Ω0 is the stiffness tensor of the homogeneous infinite matrix and C∗(x) =
∑N

i [Ci(x) −C0] is
its complement to C(x) caused by the presence of N inclusions. C∗(x) is nonzero only within the domain
Ω = Ω1 ∪ · · · ∪ ΩN , so that the characteristic function V (x) yields

V (x) =

{
0 ∀ x ∈ Ω0 ⊂ R3

1 ∀ x ∈ Ω ⊂ R3 . (2.14)

The decomposed displacement, strain and stress field, respectively, admit the form

u(x) = u0(x) + u∗(x),

ε(x) = ε0(x) + ε∗(x),

σ(x) = σ0(x) + σ∗(x). (2.15)

Here, the variables with ·0 and ·∗ exponents stand for homogeneous and perturbation part of the fields previously
defined.

As already suggested, the perturbation fields are calculated employing equivalent inclusion method ex-
tended for multiple inclusions by means of Self-balancing algorithm to satisfy their self-equilibrium. The
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equivalence of perturbation stresses inside the heterogeneous and homogeneous body (Fig. 2.2a, c) is accounted
for by applying N equivalent eigenstrain fields ετ,i(x) into Ωi. So that, written symbolically, it holds

σ
(
C(x), ε(x)

)
≈ σ

(
C0, ε0(x),Si(x), ετ,i(x)

)
, (2.16)

which employing Eq. (2.15)3 turns into

σ
(
C(x), ε(x)

)
≈ σ0

(
C0, ε0(x)

)
+

N∑
i

αiσ
∗(C0,Si(x), ετ,i(x)

)
, (2.17)

where Si(x) is the position dependent Eshelby’s tensor of ith inclusion and ε0(x) = ε0
(
u(x), t(x)

)
stands for

hypothetical remote strain field producing together with C∗(x) the required transformation eigenstrain ετ,i(x),
so as to ensure the equivalence between original, Fig. 2.2a, and equivalent, Fig. 2.2b, body. Next, the parameter
αi in Eq. (2.17) is the multiplier enforcing the self-equilibrium among all inclusions, here calculated by means
of self-balancing algorithm. Note that for strongly non-dilute media (extensive mutual interactions among
inclusions Ωi) the accuracy of final solution is given by the choice of the order of equivalent eigenstrain poly-
nomials. However, the study [4] shows that even the assumption of uniform eigenstrains exhibits unexpectedly
good results as for both the quality of perturbation fields’ solution as well as high computational efficiency.

2.2.1 Multiple inclusion problem via Self-balancing algorithm

The multiple inclusion perturbation fields u∗, ε∗ and σ∗ as the counterpart of single inclusion perturbations
introduced in Eq. (2.15) are determined for multiple inclusions from the separate Eshelby’s solutions of each
single inclusion Eq. (2.17). The required self-equilibrium is enforced by making use of an iterative procedure,
here referred to as the self-balancing algorithm (Tab. ??). A FULL self-balancing algorithm ensures that the

Ω1 Ω2

ε1,2 ε2,1

x

ε
ε1

τ

ε1
1

1 1

Figure 2.3: Principle of self-balancing algorithm for double inclusion problem in 1D, ετ1 denotes the initial
transformation strain, ε11 stands for the perturbation strain after 1st step, ε11,2 represents the strain perturbation
in inclusion Ω1 caused by the presence of inclusion Ω2 and conversely ε12,1 is the strain perturbation in inclusion
Ω2 caused by the neighboring inclusion Ω1

mechanical fields associated with inclusion i correctly reflect the influence of the remaining N\i inclusions. A
modification of the equivalent-transformation strain inside an inclusion, so as to account for mechanical fields
of adjacent inclusions, is performed iteratively. The initial transformation eigenstrain ετi is applied to each
inclusion within the step 2 (ετ1 in Fig. 2.3). Consequently, the perturbation strain ε1i at all inclusion centroids is
evaluated by means of the step 3 (ε11 in Fig. 2.3). Next, the transformation strain correction due to the adjacent
inclusions is calculated in step 7 by using the inverse of the Eshelby tensor S−1i and the perturbation strain ε1j,i
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at each inclusion centroid (ε11,2 and ε12,1 in Fig. 2.3). Finally, within the framework of step 9, the transformation
strain is updated by adding the correction transformation strain, and the new perturbation strains are then
re-calculated exclusively from this correction by means of step 10. The algorithm continues until a small
Euclidean norm between last two total transformation strain fields is achieved. The computational complexity
of this algorithm is O(N2), however, this can be improved by taking into account only those inclusions which
have a non-negligible influence to a certain inclusion i. This version of the self-balancing algorithm is refereed
to as the OPTIMIZED one.

SelfBalancingAlgorithm(ετi ,Si,S
−1
i , N)

1 For (i ≤ N)
2 ετtotal,i = ετi
3 ε1i = Si : ετi
4 EndFor
5 Do
6 For (i ≤ N)

7 ετi =
∑N

j\i S
−1
i : ε1j,i

8 ετtotal,i = ετ,new
total,i

9 ετ,new
total,i = ετ,new

total,i + ετi
10 ε1i = Si : ετi
11 EndFor
12 While

(∑N
i ‖ετtotal,i − ε

τ,new
total,i‖ > ε

)
Table 2.1: Self-balancing algorithm



Chapter 3

Tutorial

How to . . .

3.1 Installation

Download and unpack muMECH.zip archive to a preferred directory, unzip it and compile, see file help install.txt
for detailed instructions. The resulting static library libmumech.a can be linked to your favourite software
package. Do not forget include problem.h header file to allow calling all the addressed functions. There is
also main file with number of examples of calling µMECH functions. The executable file mumechtest with
parameter --tests performs set of test functions.

3.2 Code

Tady napsat nejaky kecy, ze se jede pres tridu Problem, ze ma prazdny konstruktor. Neco o enumech v types.h.
Neco o strukture mumechu...

Udelat 3 priklady, 1. vubec nic se nenastavuje, nacte se file a vytisken 2. totez ape direct 3. seznam toho,
co je default ale da se nastavit plus pomocne fce visualize atd. 4. kombinace 123

3.3 Interface functions

void read input file ( const char * filename )

Reads filename VTK input file containing inclusion geometry and topology.

filename – Name of the input vtk file.

§

void input data initialize and check consistency ( void )

Initializes and checks consistency of all input data. This function has to be called after data input.

10
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§

void convert to equivalent problem ( void )

Converts the given heterogeneous problem to the equivalent problem.

§

void print equivalent problem ( const char * filename )

Prints the equivalent problem record into the filename VTK file.

filename – Name of the output VTK file.

§

long giveFieldsOfPoint ( double ** displc, double ** strain,
double ** stress, const double * coords,
char ptFlag, int rs, int nrs,
PFCmode pfcMode=PFCM OPTIMIZED, long reqIncl=-3,
T2VreductNotation tn=TVRN THEORETICAL ROW )const

Function gives the analytical solution of the perturbation or total fields (displacements, strains and stresses) of
a point for given set of remote strains. The fields with NULL pointers are not computed. The resulting fields
depend on the action region of surrounding inclusions of a given point if pfcMode == PFCM OPTIMIZED. In
case of one lc, send ukazatel, toto dodelej do vzorovych prikladu. termitovo

coords – Coordinates of a point.
disp – Set of nrs displacement vectors to be calculated (if displc!=NULL). Vectors are saved in rows.
strain – Set of nrs strain tensors to be calculated (if strain!=NULL). Tensors are saved in vector form,
one tensor in one row of strain array.
stress – Set of nrs stress tensors to be calculated (if stress!=NULL). Tensors are saved in vector form,
one tensor in one row of stress array.
ptFlag – Flag defines the type of calculated fields, ’p’ denotes ’perturbation’ and ’t’ denotes ’total’.
rs – The first computed remote strain.
nrs – Number of computed remote strains.
pfcMode – Algorithm type of a point fields calculation (PFCM FULL/PFCM OPTIMIZED).
reqIncl – Number of the inclusion the point is supposed to lay inside. Allowed values: -3 - no suppose; -2 -
inside of some inclusion; -1 - outside of all inclusions; ¿= 0 - inside of the inclusion.
tn – The notation of the strain/stress tensor to vector reduction.

§

long giveFieldsOfPointOneRS ( double * displc, double * strain,
double * stress, const double * coords,
char ptFlag, int rs,
PFCmode pfcMode=PFCM OPTIMIZED, long reqIncl=-3,
T2VreductNotation tn=TVRN THEORETICAL ROW )const
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Function gives results for only one given remote strain. See function giveFieldsOfPoint() above.

§

void printFieldsOnMeshVTK ( const char * mesh file out,const char * mesh file,
char ptFlag, int rs, int nrs,
PFCmode pfcMode=PFCM OPTIMIZED )const

Function computes all fields (displacements, strains and stresses) in nodes a mesh given via VTK file, see
giveFieldsOfPoint() for details about parameters. For every required remote strain (rs, nrs) a mesh with
values in nodes is printed to VTK file mesh file out with remote strain id as suffix.

mesh file out – Output file with mesh and computed fields in nodes.
mesh file – Input file with mesh geometry.
ptFlag – Flag defines the type of calculated fields, ’p’ denotes ’perturbation’ and ’t’ denotes ’total’.
rs – The first computed remote strain.
nrs – Number of computed remote strains.
pfcMode – Algorithm type of a point fields calculation (PFCM FULL/PFCM OPTIMIZED).

§

void printFieldsOnMeshGrid ( const double * p1,const double * p2,
const long * n,
char ptFlag, int rs, int nrs,
PFCmode pfcMode=PFCM OPTIMIZED )const

Function computes all fields (displacements, strains and stresses) in nodes a regular orthogonal mesh/grid,
see giveFieldsOfPoint() for details about parameters. Grid is given by coordinates of two diagonally opposed
corners p1 and p2 and by count of segments n. For every required remote strain (rs, nrs) a mesh with values
in nodes is printed to VTK file mesh file out with remote strain id as suffix.

mesh file out – Output file with mesh and computed fields in nodes.
p1 – Coordinates of grid corner point with lower coordinates.
p2 – Coordinates of grid corner point with upper coordinates.
n – Number of segments in the directions of particular axes. The grid is 2d when n[2]==0.
ptFlag – Flag defines the type of calculated fields, ’p’ denotes ’perturbation’ and ’t’ denotes ’total’.
rs – The first computed remote strain.
nrs – Number of computed remote strains.
pfcMode – Algorithm type of a point fields calculation (PFCM FULL/PFCM OPTIMIZED).

§

void print visualization ( const char * filename, int n, int dim=0,
bool refined=false )

Triangulates inclusions surfaces and prints filename VTK file.
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filename – Name of the output vtk file.
n – Number segments of a quater ellipse.
dim – Mesh dimension. In the case of 3d problem and dim=2, the 2d mesh is generated in the plane z=0.
refined – The mesh density varies according to ellipse curvature. The process of triangulation is slower.

3.4 VTK file format

At this point, the µMECH I/O file syntax is build exclusively on freely available Visualization Toolkit - VTK 1

file format, in particular on its both legacy and XML versions with UNSTRUCTURED_GRID dataset format.
However, there is no obstacles to add support of user’s favourite file format or version of VTK syntax if neces-
sary.

The following data can be handled via files: the composite media description, ballanced internal fields, FE
mesh and FE mesh with evaluated values (e.g. perturbation fields), see Fig. ??. In following sections, the file
structure for particular data sets is described for legacy VTK version. The XML VTK syntax is similar a jeji
struktura bude zrejma z ...

3.5 File structure of composite media description data set

In brief, the MECH input file syntax is build on freely available Visualization Toolkit - VTK 1 , in particular on
its UNSTRUCTURED GRID version. The implemented functions described Section 3.3 allow for evaluating
mechanical fields in one or multiple points with respect to applied load cases. In particular, either one or all
the six load cases must be applied. In the first case, the load case is re-called (for some particular reasons) by
a keyword TENSORS Remote strains 11. In the later one, six keywords TENSORS Remote strains ij have to
be included in the input file. The load cases representing the actual remote strains in inclusion centroids must
be specified for each single inclusion. The input file also contains the in formations about the geometry of a
calculated task. The particular meaning of each compulsory keyword mostly reflects its VTK counterpart and
is as follows.

4.3. Exchange data file format The ow of data proceeds between DONKEY and MIDAS by means of les in
VTK XML format, Table 1. The geometry is dened through initial pair of data blocks followed by the POINTS
and CELLS keywords. Structural properties assigned to geometric elements are stored in

§

POINT DATA and

§

CELL DATA sections. To speed up the data ow, the ASCII is replaced with the binary format and the particular
les are stored in virtual memory instead of the hard drive.

The example input file with complete description of 3d composite media with 3 inclusions is shown in
Tab. ??. In souladu with VTk syntax, the second line is vyhrazen for comment with exception of first word.
which determines dimension of the problem and nabyva tvaru 3D or 2D. Third and fourth lines should be same

1http://www.vtk.org/VTK/img/file-formats.pdf
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as in the example. The rest of file, from fifth line till end, id compound of data blocks indicated by compulsory
keyword, which meaning mostly reflects its VTK counterpart.

Coordinates of inclusion centroids are given in section

§

POINTS. The keyword

§

CELLS znaci section with definition of cell connectivity (topology). In our case just simple points. Its cell type
definitions is ”1”, see section

§

CELL TYPES.
The unstructured section

§

FIELD contains generic information.
of the projects name, material specications, cross-section charac- teristics, etc.

§

Inclusion shape
Defines the shape of each particular inclusion. The shapes are defined in eshelbySoluTypes.h.

symbolic constant input file value
ELLIPSOID 1
SPHERE 2
ELLIPTIC CYLINDER 3
CYLINDER 4
PENNY 5
CLOSED PENNY 6
FLAT ELLIPSOID 7
OBLATE SPHEROID 8
PROLATE SPHEROID 9

Table 3.1: Inclusion shape values as defined in eshelbySoluTypes.h

§

Youngs modulus
Young’s modulus of each individual inclusion.

§
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Poissons ratio
Poisson’s ratio of each individual inclusion.

§

Semiaxes dimensions
Semiaxes’ dimensions in following order a1, a2, a3. It is not required that a1 > a2 > a3, but if this is the

case, the code becomes more efficient.

§

Euller angles (Eul(l)er is not a spelling mistake, it is really implemented with double ’l’)
The rotation of each inclusion given by means of the Euler angles of its principal semiaxes. Note, that the

Euler angles ϕ, ν and ψ correspond to successive rotation of ellipsoidal semiaxes a1, a2 and a3 about global
coordinate axes x3, x1 and x3, respectively.

§

Remote strains 11
The 1st load step. If the lcMode = SINGLE (load case mode), this is the only load case which must be

necessarily included in the input file. On the other hand, one should not meet any troubles when other load
cases included as well. In the case, the mechanical response to all the six load cases is required, instead of
SINGLE set lcMode = MULTIPLE .

§

Remote strains 22
The 2nd load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 33
The 3rd load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 12
The 4th load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 23
The 5th load step. Active, only if lcMode = MULTIPLE .

§

Remote strains 13
The 6th load step. Active, only if lcMode = MULTIPLE .

§

The file listed below contains three ellipsoidal inclusions of different Euler rotations loaded by exactly six
(maximum number) load cases Fig. 3.1.
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Figure 3.1: Geometry and topology of three inclusion benchmark
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# vtk DataFile Version 3.0
3D This text is comment.
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 3 double
-0.04806993 0.07826698 0.01481089
0.01645318 -0.17864680 -0.15450740
0.12793000 -0.06594404 -0.02731760
CELLS 3 6
1 1
1 2
1 3
CELL_TYPES 3
1
1
1
FIELD unstructured_data 2
Matrix_record 1 2 float
1.0 0.1
SBA_mode 1 1 int
1
POINT_DATA 3
SCALARS Inclusion_shape int 1
LOOKUP_TABLE default
1
1
1
SCALARS Youngs_modulus double 1
LOOKUP_TABLE default
2.0
2.0
2.0
SCALARS Poissons_ratio double 1
LOOKUP_TABLE default
0.1
0.1
0.1
VECTORS Semiaxes_dimensions double
0.05 0.075 0.10
0.05 0.10 0.075
0.10 0.075 0.05
VECTORS Euller_angles double
74.2103 48.4392 -48.0699
37.2731 22.2687 -25.5056
46.7402 11.1690 -26.3025
TENSORS Remote_strains_11 double
1. 0. 0. 0. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0. 0. 0. 0.
TENSORS Remote_strains_22 double
0. 0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 1. 0. 0. 0. 0.
TENSORS Remote_strains_33 double
0. 0. 0. 0. 0. 0. 0. 0. 1.
0. 0. 0. 0. 0. 0. 0. 0. 1.
0. 0. 0. 0. 0. 0. 0. 0. 1.
TENSORS Remote_strains_12 double
0. 1. 0. 1. 0. 0. 0. 0. 0.
0. 1. 0. 1. 0. 0. 0. 0. 0.
0. 1. 0. 1. 0. 0. 0. 0. 0.
TENSORS Remote_strains_23 double
0. 0. 0. 0. 0. 1. 0. 1. 0.
0. 0. 0. 0. 0. 1. 0. 1. 0.
0. 0. 0. 0. 0. 1. 0. 1. 0.
TENSORS Remote_strains_13 double
0. 0. 1. 0. 0. 0. 1. 0. 0.
0. 0. 1. 0. 0. 0. 1. 0. 0.
0. 0. 1. 0. 0. 0. 1. 0. 0.

Table 3.2: VTK XML file generated by Donkey.
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