uMECH

An open source C/C++ library of analytical solutions
to micromechanical problems

Theory manual & Program documentation

Jan Novak!?

February 12, 2015

!Correspoding address: novakj@cml.fsv.cvut.cz
2Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics

Project partners

Reg
F

Contents

1 Intr 1

2 Theory manuall
2.1 ~Single inhomogeneity problem| o
[2.2 Multiple inhomogeneity problem|o o000
[2.2.1 Multiple inclusion problem via Self-balancing algorithm|

B4 VIKfileformatl e

[3.5 File structure of composite media descriptiondataset|

0 3 L

CONTENTS 3

Preface
This tutorial is freely distributed as the complement of the uMECH C/C++ library under following regulations:

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
LGPL for more details.

You should have received a copy of the GNU LGPL along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

We hope you enjoyed this tutorial as well as uMECH code itself and found it worth to cite our work. If this the
case, please cite either one or more of the following items:

e Novik, J. and Kaczmarczyk, £.. and Grassl, P. and Zeman, J. and Pearce, C. J., A micromechanics-
enhanced finite element formulation for modelling heterogeneous materials. Computer Methods in Ap-
plied Mechanics and Engineering 201:53-64, 2012.

e Oberrecht, S.P. and Novdk, J. and Krysl, P., B-bar FEMs for anisotropic elasticity. International Journal
for Numerical Methods in Engineering 98:92-104, 2014.

Chapter 1

Introduction

What’s the uMECH library about. . .

The library tMECH was principally designed as a subclass of a finite element package. It provides sub-
routines evaluating mechanical fields (strains, stresses, displacements) inside a composite media consisting of
ellipsoidal-like inclusions embedded in an infinite matrix. The implemented, purely analytical, solution of both
internal and external fields (inside and outside inclusion domains, respectively) is based on [1]] and is fully ac-
complished in three dimensions. Moreover, the implemented algorithms extend the classic Eshelby’s solution
to take into account disturbances due to the presence of adjacent inclusions so as to deal with non-dilute media.

So far, the code offers the solution of micromechanical fields within the heterogeneous media containing
inclusions of various shapes as listed below.

Inclusion shape Uniform eigenstrains Non-uniform eigenstrains
Internal fields External fields Internal fields External fields
Ellipsoid yes yes no no
Sphere yes yes no no
Elliptic cylinder yes no no no
Cylinder yes no no no
Penny yes no no no
Closed penny (crack) yes no no no
Flat ellipsoid yes no no no
Oblate spheroid yes no no no
Prolate spheroid yes no no no

Table 1.1: Available mechanical fields with respect to applied eigenstrain and particular inclusion shape

Note, that as regard the inclusion shapes yet not fully implemented, these can be treated as ellipsoidal
inclusions with one or more degenerated semiaxes. In this case, yMECH will work less efficiently in terms of
computational time.

Chapter 2

Theory manual

What’s actually behind the scope of uMECH library. ..

2.1 Single inhomogeneity problem

The basic principle of the solution of mechanical fields in an isotropic infinite medium containing single
isotropic inhomogeneity is sketched in Fig. 2.Th. Eshelby discovered in his fundamental work [1]] that this
problem can be decomposed into exactly two tasks of known solution and then assembled back by making
use of the superposition principle Fig. 2.Ip, c. So that the solution of inhomogeneity problem is given as the
sum of homogeneous infinite body problem and homogeneous inclusion problem [1, 2]]. In brief, the solution
U(x), t(x) U(x), t(x)
i © (1111 © ©
A

y r

TrEees
(), Ux)
TrEees
(¥, Ux)

B e

8
8
Il
|
8
8
|
I
8
8

= — Q:c

§ Q% co § everywhereC? Q% co
g S :
(a) (b) ()

Figure 2.1: Principle of Equivalent Inclusion Method: a) inhomogeneity problem, b) problem of infinite homo-
geneous body, ¢) homogeneous inclusion problem

of the inhomogeneity problem consists from seeking the equivalent transformation eigenstrain to be applied
into homogeneous body within the inclusion domain € having the reference stiffness C" Fig. , so as to
induce identical local mechanical response as original heterogeneous body of the total stiffness C(x). The total

stiffness admits the following decomposition

C(x) = C° + V(x)C*(x), (2.1)

CHAPTER 2. THEORY MANUAL 6

where C! (x) is the complementary stiffness tensor having the characteristic function

0 VxeQ'CR?
V(X)_{ 1 VxeQCR? 2:2)
Local mechanical fields are then searched according to Fig. [2.1]in the decomposed form given by
e(x) =’ +el(x), o(x) = 6 4+ o} (x), and u(x) = u’ + u'(x), (2.3)

where, the fields €°, ¥, u® stand for so called homogeneous part and €' (x), o' (x), u' (x) for the perturbation

(disturbation) part of the strain, stress and displacement field, respectively. Moreover, the Eshelby’s solution of
homogeneous inclusion problem

ul(x) = L(x): €, (2.4)
el(x) = Voul(x) = VL(x)e™ =8S(x):¢e” (2.5)

yields
ol(x)=C": [el(x) —e7]. (2.6)

Note, that £(x), S(x) denote the Eshelby’s tensors generally available even for the fields outside 2. Now we
enforce the equivalence of the local fields in heterogeneous and homogeneous body as

U(C(x),e(x)) = U(CO,€O,S(X),ET), 2.7

and consequently seek for equivalent eigenstrain €7 satisfying the equality between both sides of the equation.
Eq. (2.7) can be expanded by using Hook’s law as well as Eq. (2.3)? and Eq. (2.6) into the form

Cx):e(x) = C':e+C: [el(x)—€T], (2.8)

which further yields
Cx):e(x) = C: [e(x) —€7]. (2.9)

Here the stress free transformation strain €” has identical characteristic function V' (x) as the complementary
stiffness tensor C (x). Now, introducing Eq. 1 and Eq. (2.1) into Eq. (2.9) we end up, after some algebra,
with the relation

[C(x) —C°] : "= [C": S(x) — C(x): S(x) — C"] : ¢, (2.10)

which can be finally recast in a compact form as

e" =B(x): . (2.11)

. C'(x). (2.12)

CHAPTER 2. THEORY MANUAL 7

2.2 Multiple inhomogeneity problem

As regard the multiple inclusion problem, the solution is based on a single inclusion problem which follows
the strategy presented in previous section. In particular, a mechanical field within a body with /N inclusions is
obtained as the sum of NV single inclusion tasks scaled by a multiplier (a;) associated with each inclusion so as
to fulfill self-equilibrium. Note, that the same strategy as in the previous section applies to derive the governing
equations of multiple inclusion problem.

Let us consider a heterogeneous body consisting of clearly distinguishable inclusions in a matrix (Fig.[2.2p)
subjected to a displacement and traction field u(x), t(x), respectively. Analogically to the previous section, the

u(x), t(x) u(x), t(x) U(x), t(x)
HHH > bt * bt *
rale Ly i) ty Ql o 2
== - == SR S S
‘*Q =% 5 Ce0 = =%
-0 ® A~ o @ -0 Q- \ '.8%"' Q? *
~ + PO 4
= = —~ | SO R
X X Bool grer 4L T T
= = o e e SC st
2 = everywhere: C? e % Q0: ¢? ﬂzﬂ
= = 1= —= - e
o T o THEH
u(x), t(x) u(x), t(x)

(b) (©)

Figure 2.2: Principle of Equivalent Inclusion Method: a) multiple inhomogeneity problem, b) infinite homoge-
neous body, ¢) multiple homogeneous inclusion problem

stiftness of such a material is decomposed as follows [3} 2]
C(x) = C° + V(x)C*(x), (2.13)

where C° € QU is the stiffness tensor of the homogeneous infinite matrix and C*(x) = va [Ci(x) — CY is
its complement to C(x) caused by the presence of N inclusions. C*(x) is nonzero only within the domain
Q=0Q'U---UQY, so that the characteristic function V(x) yields

0 VxeQVcR?
V(X)—{ 1 VYxeQCR3 214

The decomposed displacement, strain and stress field, respectively, admit the form

u’(x) +u*(x),
e(x) = €'(x)+e'(x),
o’ (x) + o™ (x). (2.15)

Here, the variables with -0 and -* exponents stand for homogeneous and perturbation part of the fields previously
defined.

As already suggested, the perturbation fields are calculated employing equivalent inclusion method ex-
tended for multiple inclusions by means of Self-balancing algorithm to satisfy their self-equilibrium. The

u(x) =

o(x) =

CHAPTER 2. THEORY MANUAL 8

equivalence of perturbation stresses inside the heterogeneous and homogeneous body (Fig.[2.2h,) is accounted
for by applying N equivalent eigenstrain fields €™(x) into €. So that, written symbolically, it holds

o (C(x),e(x)) =~ o(C",&"(x),S"(x),e"(x)), (2.16)

which employing Eq. (2.15)2 turns into
o(C(x),e(x)) ~ o°)+ Z ;0" (CY, 8% (x),e™(x)), (2.17)

where S’(x) is the position dependent Eshelby’s tensor of i*" inclusion and €(x) = €°(u(x), £(x)) stands for
hypothetical remote strain field producing together with C*(x) the required transformation eigenstrain €”*(x),
so as to ensure the equivalence between original, Fig.[2.2h, and equivalent, Fig.[2.2p, body. Next, the parameter
a; in Eq. is the multiplier enforcing the self-equilibrium among all inclusions, here calculated by means
of self-balancing algorithm. Note that for strongly non-dilute media (extensive mutual interactions among
inclusions Q%) the accuracy of final solution is given by the choice of the order of equivalent eigenstrain poly-
nomials. However, the study [4] shows that even the assumption of uniform eigenstrains exhibits unexpectedly
good results as for both the quality of perturbation fields’ solution as well as high computational efficiency.

2.2.1 Multiple inclusion problem via Self-balancing algorithm

The multiple inclusion perturbation fields u*, €* and o* as the counterpart of single inclusion perturbations
introduced in Eq. (2.15) are determined for multiple inclusions from the separate Eshelby’s solutions of each
single inclusion Eq. (2.17). The required self-equilibrium is enforced by making use of an iterative procedure,
here referred to as the self-balancing algorithm (Tab. ??). A _FULL_ self-balancing algorithm ensures that the

£)

,,,,,,,,,

Figure 2.3: Principle of self-balancing algorithm for double inclusion problem in 1D, €] denotes the initial
transformation strain, E% stands for the perturbation strain after 15 step, 5%72 represents the strain perturbation
in inclusion €2; caused by the presence of inclusion {25 and conversely 5%71 is the strain perturbation in inclusion
()5 caused by the neighboring inclusion {24

mechanical fields associated with inclusion ¢ correctly reflect the influence of the remaining N\i inclusions. A
modification of the equivalent-transformation strain inside an inclusion, so as to account for mechanical fields
of adjacent inclusions, is performed iteratively. The initial transformation eigenstrain €] is applied to each
inclusion within the step 2 (¢7 in Fig. . Consequently, the perturbation strain €] at all 1nclus1on centroids is
evaluated by means of the step 3 (51 in Fig. . Next, the transformation stram correction due to the adjacent

inclusions is calculated in step 7 by using the inverse of the Eshelby tensor Sz and the perturbation strain 6]1 i

CHAPTER 2. THEORY MANUAL 9

at each inclusion centroid (5%72 and 5%71 in Fig. . Finally, within the framework of step 9, the transformation
strain is updated by adding the correction transformation strain, and the new perturbation strains are then
re-calculated exclusively from this correction by means of step 10. The algorithm continues until a small
Euclidean norm between last two total transformation strain fields is achieved. The computational complexity
of this algorithm is O(IN?), however, this can be improved by taking into account only those inclusions which
have a non-negligible influence to a certain inclusion ¢. This version of the self-balancing algorithm is refereed
to as the .OPTIMIZED_ one.

SelfBalancingAlgorithm(e], S;, S;l, N)
1 For (i < N)
2 €totali = €7
3 el =8;:¢€l
4 EndFor
5 Do
6 For (i < N)
7 g = sz Si_l : 5]1',z'
8 €hotali = Ctouli
9 ol = Crouli T &1
10 el =8;: €l
11 EndFor
12 While (3 €t — Eromiill > €)

Table 2.1: Self-balancing algorithm

Chapter 3

Tutorial

Howto...

3.1 Installation

Download and unpack muMECH . z ip archive to a preferred directory, unzip it and compile, see file help_install.txt
for detailed instructions. The resulting static library 1ibmumech. a can be linked to your favourite software

package. Do not forget include problem. h header file to allow calling all the addressed functions. There is

also main file with number of examples of calling 4MECH functions. The executable file mumechtest with
parameter ——tests performs set of test functions.

3.2 Code

Tady napsat nejaky kecy, ze se jede pres tridu Problem, ze ma prazdny konstruktor. Neco o enumech v types.h.
Neco o strukture mumechu...

Udelat 3 priklady, 1. vubec nic se nenastavuje, nacte se file a vytisken 2. totez ape direct 3. seznam toho,
co je default ale da se nastavit plus pomocne fce visualize atd. 4. kombinace 123

3.3 Interface functions

void read_input_file (const char » filename)
Reads £ilename VTK input file containing inclusion geometry and topology.

filename — Name of the input vtk file.

§

void input_data_initialize_and check consistency (void)

Initializes and checks consistency of all input data. This function has to be called after data input.

10

CHAPTER 3. TUTORIAL 11

§

void convert_to_equivalent problem (void)

Converts the given heterogeneous problem to the equivalent problem.

§

void print_equivalent problem (const char » filename)
Prints the equivalent problem record into the £ilename VTK file.

filename — Name of the output VTK file.

§

long giveFieldsOfPoint (double ** displc,double %% strain,
double #*+% stress,const double * coords,
char ptFlag, int rs, int nrs,
PFCmode pfcMode= , long regqIncl=-3,
T2VreductNotation tn=) const

Function gives the analytical solution of the perturbation or total fields (displacements, strains and stresses) of
a point for given set of remote strains. The fields with NULL pointers are not computed. The resulting fields
depend on the action region of surrounding inclusions of a given point if pfcMode == PFCM_OPTIMIZED. In
case of one 1c, send ukazatel, toto dodelej do vzorovych prikladu.

coords — Coordinates of a point.

disp — Set of nrs displacement vectors to be calculated (if displc!=NULL). Vectors are saved in rows.
strain — Set of nrs strain tensors to be calculated (if st rain!=NULL). Tensors are saved in vector form,
one tensor in one row of st rain array.

stress — Set of nrs stress tensors to be calculated (if st ress!=NULL). Tensors are saved in vector form,
one tensor in one row of st ress array.

ptFlag — Flag defines the type of calculated fields, *p’ denotes *perturbation’ and ’t’ denotes ’total’.

rs — The first computed remote strain.

nrs — Number of computed remote strains.

pfcMode — Algorithm type of a point fields calculation (PFCM_FULL/PFCM_OPTIMIZED).

regIncl — Number of the inclusion the point is supposed to lay inside. Allowed values: -3 - no suppose; -2 -
inside of some inclusion; -1 - outside of all inclusions; ;= 0 - inside of the inclusion.

tn — The notation of the strain/stress tensor to vector reduction.

§

long giveFieldsOfPointOneRS (double x displc,double * strain,
double % stress,const double * coords,
char ptFlag, int rs,
PFCmode pfcMode= , long regIncl=-3,
T2VreductNotation tn=) const

CHAPTER 3. TUTORIAL 12

Function gives results for only one given remote strain. See function giveFieldsOfPoint() above.

§

void printFieldsOnMeshVTK (const char xmesh_file out,const char xmesh_file,
char ptFlag, int rs, int nrs,
PFCmode pfcMode=) const

Function computes all fields (displacements, strains and stresses) in nodes a mesh given via VTK file, see
giveFieldsOfPoint() for details about parameters. For every required remote strain (rs, nrs) a mesh with
values in nodes is printed to VTK file mesh_file_out with remote strain id as suffix.

mesh_file_out — Output file with mesh and computed fields in nodes.

mesh_file — Input file with mesh geometry.

ptFlag — Flag defines the type of calculated fields, 'p’ denotes *perturbation’ and °t’ denotes ’total’.
rs — The first computed remote strain.

nrs — Number of computed remote strains.

pfcMode — Algorithm type of a point fields calculation (PFCM_FULL/PFCM_OPTIMIZED).

§

void printFieldsOnMeshGrid (const double x pl,const double =xp2,
const long = n,
char ptFlag, int rs, int nrs,
PFCmode pfcMode=) const

Function computes all fields (displacements, strains and stresses) in nodes a regular orthogonal mesh/grid,
see giveFieldsOfPoint() for details about parameters. Grid is given by coordinates of two diagonally opposed
corners pl and p2 and by count of segments n. For every required remote strain (rs, nrs) a mesh with values
in nodes is printed to VTK file mesh_file_out with remote strain id as suffix.

mesh_file_out — Output file with mesh and computed fields in nodes.

pl — Coordinates of grid corner point with lower coordinates.

p2 — Coordinates of grid corner point with upper coordinates.

n — Number of segments in the directions of particular axes. The grid is 2d when n [2] ==0.
ptFlag — Flag defines the type of calculated fields, 'p’ denotes *perturbation’ and °t’ denotes ’total’.
rs — The first computed remote strain.

nrs — Number of computed remote strains.

pfcMode — Algorithm type of a point fields calculation (PFCM_FULL/PFCM_OPTIMIZED).

§

voidprint visualization (const char = filename, int n, int dim=0,
bool refined=)

Triangulates inclusions surfaces and prints £i lename VTK file.

CHAPTER 3. TUTORIAL 13

filename — Name of the output vtk file.

n — Number segments of a quater ellipse.

dim — Mesh dimension. In the case of 3d problem and dim=2, the 2d mesh is generated in the plane z=0.
refined — The mesh density varies according to ellipse curvature. The process of triangulation is slower.

3.4 VTK file format

At this point, the pMECH I/O file syntax is build exclusively on freely available Visualization Toolkit - VTK
file format, in particular on its both legacy and XML versions with UNSTRUCTURED_GRID dataset format.
However, there is no obstacles to add support of user’s favourite file format or version of VTK syntax if neces-
sary.

The following data can be handled via files: the composite media description, ballanced internal fields, FE
mesh and FE mesh with evaluated values (e.g. perturbation fields), see Fig. ??. In following sections, the file
structure for particular data sets is described for legacy VTK version. The XML VTK syntax is similar a jeji
struktura bude zrejma z ...

3.5 File structure of composite media description data set

In brief, the MECH input file syntax is build on freely available Visualization Toolkit - VTK 1, in particular on
its UNSTRUCTURED_GRID version. The implemented functions described Section 3.3 allow for evaluating
mechanical fields in one or multiple points with respect to applied load cases. In particular, either one or all
the six load cases must be applied. In the first case, the load case is re-called (for some particular reasons) by
a keyword TENSORS Remote_strains_11. In the later one, six keywords TENSORS Remote_strains_ij have to
be included in the input file. The load cases representing the actual remote strains in inclusion centroids must
be specified for each single inclusion. The input file also contains the in formations about the geometry of a
calculated task. The particular meaning of each compulsory keyword mostly reflects its VTK counterpart and
is as follows.

4.3. Exchange data file format The ow of data proceeds between DONKEY and MIDAS by means of les in
VTK XML format, Table 1. The geometry is dened through initial pair of data blocks followed by the POINTS
and CELLS keywords. Structural properties assigned to geometric elements are stored in

§

POINT_DATA and

§

CELL_DATA sections. To speed up the data ow, the ASCII is replaced with the binary format and the particular
les are stored in virtual memory instead of the hard drive.

The example input file with complete description of 3d composite media with 3 inclusions is shown in
Tab. ??. In souladu with VTk syntax, the second line is vyhrazen for comment with exception of first word.
which determines dimension of the problem and nabyva tvaru 3D or 2D. Third and fourth lines should be same

"http://www.vtk.org/VIK/img/file-formats.pdf

CHAPTER 3. TUTORIAL 14

as in the example. The rest of file, from fifth line till end, id compound of data blocks indicated by compulsory
keyword, which meaning mostly reflects its VIK counterpart.
Coordinates of inclusion centroids are given in section

§

POINTS. The keyword

§

CELLS znaci section with definition of cell connectivity (topology). In our case just simple points. Its cell type
definitions is 1", see section

CELL_TYPES.
The unstructured section

FIELD contains generic information.
of the projects name, material specications, cross-section charac- teristics, etc.

§

Inclusion_shape
Defines the shape of each particular inclusion. The shapes are defined in eshelbySoluTypes.h.

symbolic constant input file value
ELLIPSOID 1
SPHERE
_ELLIPTIC.CYLINDER-
CYLINDER

PENNY
_CLOSED_PENNY_
_FLAT_ELLIPSOID._
_OBLATE_SPHEROID_
_PROLATE_SPHEROID_

O 00 3 O\ D B~ W

Table 3.1: Inclusion shape values as defined in eshelbySoluTypes.h

Youngs_modulus
Young’s modulus of each individual inclusion.

CHAPTER 3. TUTORIAL 15

Poissons_ratio
Poisson’s ratio of each individual inclusion.

Semiaxes_dimensions
Semiaxes’ dimensions in following order a1, asz, as. It is not required that a; > ao > as, but if this is the
case, the code becomes more efficient.

§

Euller_angles (Eul(Der is not a spelling mistake, it is really implemented with double ’l’)

The rotation of each inclusion given by means of the Euler angles of its principal semiaxes. Note, that the
Euler angles ¢, v and 1 correspond to successive rotation of ellipsoidal semiaxes a1, as and a3 about global
coordinate axes r3,x1 and xs3, respectively.

Remote_strains_11

The 1*' load step. If the 1 cMode = _SINGLE_ (load case mode), this is the only load case which must be
necessarily included in the input file. On the other hand, one should not meet any troubles when other load
cases included as well. In the case, the mechanical response to all the six load cases is required, instead of
_SINGLE_set lcMode = MULTIPLE..

Remote_strains 22
The 2" load step. Active, only if 1 cMode = MULTIPLE..

§

Remote_strains_33
The 3¢ load step. Active, only if 1 cMode = MULTIPLE..

§

Remote_strains_12
The 4" load step. Active, only if 1 cMode = MULTIPLE..

§

Remote_strains_23
The 5™ load step. Active, only if 1 cMode = MULTIPLE..

§

Remote_strains_13
The 6™ load step. Active, only if 1 cMode = MULTIPLE..

§

The file listed below contains three ellipsoidal inclusions of different Euler rotations loaded by exactly six
(maximum number) load cases Fig.[3.1]

CHAPTER 3. TUTORIAL

Figure 3.1: Geometry and topology of three inclusion benchmark

16

CHAPTER 3. TUTORIAL

vtk DataFile Version 3.0

3D This text is comment.

ASCII

DATASET UNSTRUCTURED_GRID

POINTS 3 double

-0.04806993 0.07826698 0.01481089
0.01645318 -0.17864680 —-0.15450740
0.12793000 -0.06594404 -0.02731760

CELLS 3 6

11

12

13

CELL_TYPES 3

1

1

1

FIELD unstructured_data 2

Matrix_record 1 2 float

1.0 0.1
SBA_mode 1 1 int
1

POINT_DATA 3

SCALARS Inclusion_shape int 1
LOOKUP_TABLE default

1

1

1

SCALARS Youngs_modulus double 1
LOOKUP_TABLE default

2.0

2.0

2.0

SCALARS Poissons_ratio double 1
LOOKUP_TABLE default

0.1

0.1

0.1

VECTORS Semiaxes_dimensions double
0.05 0.075 0.10

0.05 0.10 0.075

0.10 0.075 0.05

VECTORS Euller_angles double
74.2103 48.4392 -48.0699

37.2731 22.2687 -25.5056

46.7402 11.1690 -26.3025

TENSORS Remote_strains_11 double
1. 0. 0. 0. 0. 0. 0. 0. O.

1. 0. 0. 0. 0. 0. 0. 0. O.

1. 0. 0. 0. 0. 0. 0. 0. O.
TENSORS Remote_strains_22 double
0. 0. 0. 0. 1. 0. 0. 0. O.

0. 0. 0. 0. 1. 0. 0. 0. O.

0. 0. 0. 0. 1. 0. 0. 0. O.
TENSORS Remote_strains_33 double
0. 0. 0. 0. 0. 0. 0. 0. 1.

0. 0. 0. 0. 0. 0. 0. 0. 1.

0. 0. 0. 0. 0. 0. 0. 0. 1.
TENSORS Remote_strains_12 double
0. 1. 0. 1. 0. 0. 0. 0. O.

0. 1. 0. 1. 0. 0. 0. 0. O.

0. 1. 0. 1. 0. 0. 0. 0. O.
TENSORS Remote_strains_23 double
0. 0. 0. 0. 0. 1. 0. 1. O.

0. 0. 0. 0. 0. 1. 0. 1. O.

0. 0. 0. 0. 0. 1. 0. 1. O.
TENSORS Remote_strains_13 double
0. 0. 1. 0. 0. 0. 1. 0. O.

0. 0. 1. 0. 0. 0. 1. 0. O.

0. 0. 1. 0. 0. 0. 1. 0. O.

17

List of Figures

D1

Principle of Equivalent Inclusion Method: a) inhomogeneity problem, b) problem of infinite

homogeneous body, c) homogeneous inclusion problem|

02

Principle of Equivalent Inclusion Method: a) multiple inhomogeneity problem, b) infinite ho-

mogeneous body, c) multiple homogeneous inclusion problem|.

23

Principle of selt-balancing algorithm for double inclusion problem in 1D, €7 denotes the initial

transformation strain, &1 stands for the perturbation strain after 1% step, €1 , represents the

strain perturbation in inclusion Q)1 caused by the presence of inclusion Qo and conversely €3

is the strain perturbation in inclusion o caused by the neighboring inclusion {04

B

Geometry and topology of three inclusion benchmark|

18

List of Tables

|1.1 Available mechanical fields with respect to applied eigenstrain and particular inclusion shape)

2.1 Self-balancing algorithm|

.1 Inclusion shape values as defined in eshelbySoluTypes.hl
3.2 VIK XML file generated by Donkey.|

19

LIST OF TABLES 20

Acknowledgements

Funding by following associations/organizations under specified pojects is gratefully acknowledged (chrono-
logical order applies).

CIDEAS - Center of Integrated DEsign of Advanced Structures
o IM0579
GRPE - Glasgow Research Partnership in Engineering
o “Multi-scale modelling of fibre reinforced composites”
GACR - Czech Funding Association

e [3-22230S “A hybrid multiscale predictive modelling tool for heterogeneous solids”
o [03/09/P490 “Simulation of heterogeneous Materials Based on Integral Equations”
o [03/09/1748 “Integration of Nanoindentation with Numerical Tools for Upscaling of Nanomechan-

ical Properties of Heterogeneous Materials”

Furthermore author(s) would like to thank Jan Zeman from CTU in Prague for careful a review of this manuscript.

Bibliography

[1] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems,
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 241 (1957),
no. 1226, 376-396.

[2] T. Mura, Micromechanics of Defects in Solids., Martinus Nijhoff Publishers, P. O. Box 163, 3300 AD
Dordrecht, The Netherlands, 1987. 587 (1982).

[3] J. Novdk, Calculation of elastic stresses and strains inside a medium with multiple isolated inclusions, Pro-
ceedings of the Sixth International Conference on Engineering Computational Technology (Stirlingshire,
UK) (M. Papadrakakis and B.H.V. Topping, eds.), 2008, Paper 127, p. 16 pp.

[4] Jan Novdk, tukasz Kaczmarczyk, Peter Grassl, Jan Zeman, and Chris J Pearce, A micromechanics-
enhanced finite element formulation for modelling heterogeneous materials, Computer Methods in Applied
Mechanics and Engineering 201 (2012), 53-64.

21

	Introduction
	Theory manual
	Single inhomogeneity problem
	Multiple inhomogeneity problem
	Multiple inclusion problem via Self-balancing algorithm

	Tutorial
	Installation
	Code
	Interface functions
	VTK file format
	File structure of composite media description data set

