0.1 Statistical Deconvolution

For heterogeneous materials, individual phase properties can be determined
by the statistical deconvolution applied to histograms of any mechanical prop-
erty like £ modulus, for example. The deconvolution procedure here was
adopted from [1] but different minimizing criteria and a different generation
of random sets of probability functions were used as will be demonstrated in
the following.

Experimental histograms are constructed from all measurements whose
number is NP, using equally spaced N”"* bins of the size b (see Fig. 1). Each
bin is assigned with a frequency of occurrence fi” that can be normalized
with respect to the overall number of measurements as f;* /NP, From that,
we can compute the experimental probability density function (PDF) as a set
of discrete values:
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Figure 1: Construction of property histogram with bin size b.

The task of deconvolution into M phases represents finding 7 = 1... M in-
dividual PDFs related to single material phases. If we assume normal (Gauss)
distributions, the PDF for a single phase can be written as:
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in which p; and s; are the mean value and standard deviation of the j-th
phase computed from n; values as:
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and x is the approximated quantity, i.e. the E modulus in our case. The
overall PDF covering all M phases is then:
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where f; is the volume fraction of a single phase:
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It was proposed to find individual distributions by minimizing the follow-
ing error function:

Nbins

min 3 (P = (i) P (®

in which quadratic deviations between experimental and theoretical PDFs
are computed in a set of discrete points that is further weighted by the ex-
perimental probability in order to put emphasis on the measurements with a
higher occurrence.

For practical computations, the number of mechanically distinct phases
M must be known in advance to reduce the computational burden and to
give the results a physical meaning. It is usually assessed by some indepen-
dent measurements, using the knowledge of sample chemistry or simply by
detection of several significant peaks in the property histogram. Also the bin
size b have to be chosen in advance. Higher value of b leads to more fuzzy
histograms with the peaks being smoothed whereas low value of b leads to
more precise distributions but the distinctinon between the phases may be
harder. In case of structural materials included in this work a reasonable bin
size was find to be b = 1 GPa and the number of distinct phases M was 1 to
5 depending on a sample.

The minimization in Eq. (6) was based on the random Monte Carlo gen-
eration of M probability density functions. They have to satisfy the compat-
ibility condition:
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There is an infinite number of possibilities that can satisfy the condition
Eq. (7). So, completely random generation of the sets can lead to a time con-
suming procedure. In order to guarantee the convergence of the algorithm



and to minimize the computational effort, it is suggessted in this work to use
the set of M PDFs in Eq. (2) generated from the experimental dataset of
all F moduli. Separation of the dataset into M randomly spaced successive
intervals can be done in a straightforward way (see Fig. 2). Mean values,
standard deviations in Eq. (3) and volume fractions in Eq. (5) are then com-
puted in these intervals from corresponding F moduli and used in Eq. (4).
Then, finding of the set satisfying condition Eq. (6) is a question of a few
seconds on a regular PC.
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Figure 2: Separation of the experimental dataset to j = 1...M intervals
and construction of M probability density functions.
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