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0.1 Statistical Deconvolution

For heterogeneous materials, individual phase properties can be determined
by the statistical deconvolution applied to histograms of any mechanical prop-
erty like E modulus, for example. The deconvolution procedure here was
adopted from [1] but different minimizing criteria and a different generation
of random sets of probability functions were used as will be demonstrated in
the following.

Experimental histograms are constructed from all measurements whose
number is N exp, using equally spaced N bins bins of the size b (see Fig. 1). Each
bin is assigned with a frequency of occurrence f exp

i that can be normalized
with respect to the overall number of measurements as f exp

i /N exp. From that,
we can compute the experimental probability density function (PDF) as a set
of discrete values:

P exp
i =

f exp
i

N exp
· 1

b
. (1)

Figure 1: Construction of property histogram with bin size b.

The task of deconvolution into M phases represents finding j = 1 . . .M in-
dividual PDFs related to single material phases. If we assume normal (Gauss)
distributions, the PDF for a single phase can be written as:

pj(x) =
1√
2πs2j

exp
−(x− µj)

2

2s2j
(2)

in which µj and sj are the mean value and standard deviation of the j-th
phase computed from nj values as:

µj =
1

nj

nj∑
k=1

xk s2j =
1

nj − 1

nj∑
k=1

(xk − µj)
2 (3)
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and x is the approximated quantity, i.e. the E modulus in our case. The
overall PDF covering all M phases is then:

C(x) =
M∑
j=1

fjpj(x) (4)

where fj is the volume fraction of a single phase:

fj =
nj

N exp
(5)

It was proposed to find individual distributions by minimizing the follow-
ing error function:

min

Nbins∑
i=1

[(P exp
i − C(xi))P

exp
i ]2 (6)

in which quadratic deviations between experimental and theoretical PDFs
are computed in a set of discrete points that is further weighted by the ex-
perimental probability in order to put emphasis on the measurements with a
higher occurrence.

For practical computations, the number of mechanically distinct phases
M must be known in advance to reduce the computational burden and to
give the results a physical meaning. It is usually assessed by some indepen-
dent measurements, using the knowledge of sample chemistry or simply by
detection of several significant peaks in the property histogram. Also the bin
size b have to be chosen in advance. Higher value of b leads to more fuzzy
histograms with the peaks being smoothed whereas low value of b leads to
more precise distributions but the distinctinon between the phases may be
harder. In case of structural materials included in this work a reasonable bin
size was find to be b = 1 GPa and the number of distinct phases M was 1 to
5 depending on a sample.

The minimization in Eq. (6) was based on the random Monte Carlo gen-
eration of M probability density functions. They have to satisfy the compat-
ibility condition:

M∑
j=1

fj = 1. (7)

There is an infinite number of possibilities that can satisfy the condition
Eq. (7). So, completely random generation of the sets can lead to a time con-
suming procedure. In order to guarantee the convergence of the algorithm
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and to minimize the computational effort, it is suggessted in this work to use
the set of M PDFs in Eq. (2) generated from the experimental dataset of
all E moduli. Separation of the dataset into M randomly spaced successive
intervals can be done in a straightforward way (see Fig. 2). Mean values,
standard deviations in Eq. (3) and volume fractions in Eq. (5) are then com-
puted in these intervals from corresponding E moduli and used in Eq. (4).
Then, finding of the set satisfying condition Eq. (6) is a question of a few
seconds on a regular PC.

Figure 2: Separation of the experimental dataset to j = 1 . . .M intervals
and construction of M probability density functions.
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