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Abstract

We propose a dual indentation technique for the assessment of the cohesion and friction angle of cohesive-frictional
materials of the Mohr–Coulomb type. The technique is based on a computational implementation of the yield design
theorems applied to conical indentation tests with different apex angles. The upper bound solutions are found to be very
close to flat indentation solutions available for cohesive-frictional materials. On this basis we derive fundamental hard-
ness-to-cohesion solutions in function of the friction angle and the apex angle. By studying the property of these dimen-
sionless relations, we show that the ratio of two hardness measurements obtained from indentation tests with different
apex angles, allows one to determine the friction angle. This dual indentation method is applied to Berkovich and Cor-
ner Cube indenter assimilated to equivalent cones of different apex angle. The method is validated for a �model� mate-
rial, metallic glass, which has recently been identified as a cohesive-frictional materials. The only input to the method
are two hardness values which we obtain by microindentation on metallic glass. The outcome are values of the cohesion
and friction angle, which are found to be in excellent agreement with reported cohesion and friction angle values of
metallic glass obtained by macroscopic triaxial testing and comprehensive finite-element backanalysis of indentation
curves.
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1. Introduction

The hardness of materials is a fundamental quantity used in Materials Science and Engineering for mate-
rials property characterization. It is obtained in a standardized fashion from an indentation test by dividing
the applied load P by the area of the contact surface projected on the initial sample surface, Ac (see for
instance Borodich and Keer, 2004):
H ¼def P
Ac

. ð1Þ
From the very beginning of hardness measurements of metals (Brinell, 1901; Williams, 1942; Tabor, 1951),
the hardness was found to correlate with strength properties. From slip-line field solution for indentation in
a rigid-plastic solids by a frictionless rigid wedge, Tabor (1948) suggested a hardness vs. yield stress rela-
tionship of the form H/Y = 3. This �rule of thumb� (Schuh and Nieh, 2004) got under scrutiny by several
researchers for conical indentation into rigid plastic solids with and without contact friction (Locket, 1963;
Chitkara and Butt, 1992), elastic-perfectly plastic solids (see discussion in Johnson, 1985) and more recently
for work-hardening materials (Cheng and Cheng, 2004). All these studies lead to the conclusion that hard-
ness is not a material property, but rather a snapshot of materials mechanical properties and indenter
geometry dependent. This conclusion does not only hold for cohesive materials (of the Von-Mises or
Tresca-type), but as well for cohesive-frictional materials: several reseachers report hardness-to-compressive
strength ratios for frictional materials on the order of H/Yc ’ 20–30 (Kholmyansky et al., 1994; Igarashi
et al., 1996; Constantinides et al., 2003), which highlights the effect of internal friction on the hardness of
cohesive-frictional materials. But in contrast to cohesive materials, the hardness-strength relation for inden-
tation in cohesive-frictional materials has not been studied in the same depth, and is the focus of this paper.

To motivate the forthcoming developments, consider a conical indentation test on a homogeneous elas-
tic perfectly plastic cohesive-frictional material half-space. The two dependent quantities of interest that de-
fine the hardness, force P and contact area Ac, depend on the material properties (stiffness Cijkl, cohesion c,
friction angle u), the indentation geometry (which in the case of conical indentation reduces to the half-
apex angle h), and the indentation depth h:
P ¼ f ðCijkl; c;u; h; hÞ; ð2aÞ

Ac ¼ gðCijkl; c;u; h; hÞ. ð2bÞ

From a straightforward application of dimensional analysis (or more precisely the Pi-Theorem) to relations
(2), it is readily found that the two dimensionless relations,
P

ch2
¼ Pa

Cijkl

c
;u; h

� �
; ð3aÞ

Ac

h2
¼ Pb

Cijkl

c
;u; h

� �
; ð3bÞ
define a unique third dimensionless relation, the hardness-to-cohesion ratio as a unique function of the stiff-
ness-to-cohesion ratio, the friction angle and the half-apex angle h:
H
c
¼ Pa

Pb
¼ Hc

Cijkl

c
;u; h

� �
. ð4Þ
Relation (4) has been extensively studied for elasto-plastic cohesive materials (u = 0), with and without
strain hardening (see review in Cheng and Cheng, 2004). In particular, it has been shown, that the H/c�
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ratio for cohesive materials, for which (Cijkl/c)
�1 ! 0, comes close to Tabor�s suggestion (noting that

Y = 2c for a Tresca material):
Fig. 1.
sample
H
Y

¼ H
2c

¼ 1

2
Hc

Cijkl

c
! 1;u ¼ 0; h

� �
’ 2.8 ð5Þ
A similar limit analysis result is still missing for conical indentation in cohesive-frictional materials, since—
as Johnson (1985) notes in his classical book—�problems of axi-symmetrical plastic flow cannot, in general,
be solved by the method of characteristics (slip lines) as in plane strain (page 168)�. Indeed, to our knowl-
edge, the only analytical slip-line solutions we found for cohesive-frictional materials in axi-symmetrical
conditions are for flat punch indentation problems (the circular foundation problem), for which h = p/2
(Hopkins et al., 1961; Salençon and Matar, 1982). Of course, like for pure cohesive materials, the finite-ele-
ment method has been employed for the inverse analysis of indentation load vs. indentation depth curves
for some particular cohesive-frictional materials, such as metallic glass (Vaidyanathan et al., 2001). Beside
questions concerning the uniqueness of this inverse problem (Cheng and Cheng, 2004), finite element anal-
ysis are computational too intensive to be used for day-to-day applications in instrumented indentation
analysis. Hence, a solution for conical indentation is highly desirable as a first engineering approach to
the assessment of the cohesion and friction angle of cohesive-frictional materials. This is the focus of this
paper. By means of an original computational implementation of the limit theorems of yield design, we
develop such a solution, of the form:
H
c
¼ Hcðu; hÞ. ð6Þ
2. Yield design approach for conical indentation

2.1. Problem formulation

Consider an indentation test of a rigid conical indenter into an infinite half-space oriented in the �z

direction (Fig. 1). The indenter is at an indentation depth h, the projected contact area Ac is assumed to
be known, and a force P is applied. The work rate provided from the outside to the (half-space materials)
system is:
dW ¼ P h
�
¼

Z
AM

T ðnÞ � U da; ð7Þ
rz

h θ

P

hc
Ac

Conical indentation test: h is the indentation depth; hc is the contact height; Ac is the contact surface projected on the initial
surface.
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where h
�
is the rate of indentation depth, AM ¼ Ac= sin h is the contact area of the cone mantel with the mate-

rial (Ac being the projection of this surface on the z-axis); T(n) = r Æ n is the stress vector on AM oriented by
the unit outward normal n (positive outward to the material domain; i.e. in a cylinder coordinate frame
n ¼ � cos her þ sin hez); and U is the velocity field of the material on AM.

In elastoplastic problems, a part of the external work rate (7) is stored into recoverable elastic energy
(incl. hardening) into the material system. By contrast, limit analysis is based on the assumption, that a
materials system, at plastic collapse, has exhausted, in response to the prescribed force P, its capacities,
(i) to develop stress fields that are both statically compatible (i.e. in equilibrium) with the external loading
and compatible with the local strength domain of the constitutive materials; and (ii) to store the externally
supplied work rate (7) into recoverable elastic energy. As a consequence, the work rate dW is entirely dis-
sipated in the material bulk and along surfaces of discontinuity; hence from an application of the general-
ized divergence theorem to (7):
dW ¼
Z
X
pðdÞdXþ

Z
C
pð½½U ��ÞdC; ð8Þ
where p(d) = sup r :d and p ([[U]]) = supT Æ [[U]] is the maximum dissipation capacity the material can de-
velop in the material bulk and along surfaces of discontinuity for the solution fields (r,U). The solution
stress field r is statically and plastically admissible, satisfying:
r ¼ tr; divr ¼ 0; ½½T �� ¼ ½½r � n�� ¼ 0; ð9aÞ

f ðrÞ 6 0; f ðT Þ 6 0; ð9bÞ

where superscript t stands for transpose; and f(r) and f(T) are the yield function defining the strength do-
main of the material system respectively in continuous material sub-domains and on surfaces of disconti-
nuity; while d is the solution strain rate field in continuous material sub-domains, and [[U]] is the velocity
jump over surfaces of discontinuity C, which are kinematically compatible with the velocity field U, and
compatible with the plastic flow rule of the material:
d ¼ 1

2
ðgradU þ tgradUÞ ¼ k

� of
or

ð10aÞ

½½U �� ¼ Uþ � U� ¼ k
� of
oT

ð10bÞ
Provided that (r,U) are related through (10) by the normality rule of plastic flow, the dissipation functions
are unique functions of the strain rate (respectively velocity jump) only. For instance, for a Mohr–Coulomb
material, for which the yield function is given by:
f ðrÞ ¼ rIð1þ sinuÞ � rIIIð1� sinuÞ � 2c cosu 6 0; ð11aÞ

f ðT Þ ¼j t � T ðnÞ j þ tanuðn � T ðnÞÞ � c 6 0; ð11bÞ
the volume dissipation functions reads (Salençon, 1983):
pðdÞ ¼
qtrd if trd P sinuðj dI j þ j dII j þ j dIII jÞ

þ1 else

� �
ð12Þ
and the discontinuity dissipation function:
pð½½U ��Þ ¼
c j U t j if Un Pj U t j tanu

þ1 else

� �
; ð13Þ
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where rI P rII P rIII are principal stresses; dI P dII P dIII are principal strain rates; Ut = t Æ [[U]] and
Un = n Æ [[U]] are respectively the tangential and normal velocity jump, and q = ccotu is the cohesive
pressure.

The limit theorems of yield design approach the actual dissipation capacity (8) by a lower and an upper
bound estimate. The lower estimate is based on statically and plastically admissible stress fields r 0 and stress
vectors T 0 satisfying (9); and the upper bound approach on kinematically and plastically admissible strain
rate fields d 0 and velocity jumps [[U 0]], satisfying (10). Noting that trd 0 = divU 0 in (12) and making use of
the generalized divergence theorem for the upper bound, the limit theorems for the conical indentation
problem into a homogeneous Mohr–Coulomb material half-space can be written in the form:
�
Z
AM

T 0ðnÞ � ez da h
�
6 P h

�
6 q

Z
oX

U 0 � nda: ð14Þ
Herein, P 0 ¼ �
R
AM
T 0ðnÞ � ez da is a lower bound limit indentation load in equilibrium with statically and

plastically admissible stress fields r 0 in X, satisfying (9) and (12) while U 0 Æ n is the normal component of
the velocity field at the surface oX of the half-space, which includes the cone mantel AM oriented by
n ¼ � cos her þ sin hez, and the stress-free surface outside the contact radius r P rc ¼

ffiffiffiffiffiffiffiffiffiffi
Ac=p

p
. In order

for the dissipation to remain finite, this surface velocity field U 0 must be such to locally satisfy the inequal-
ities in (12) and (13). Finally, since the contact area Ac is assumed to be known, inequalities (14) can be
recast in the form of the dimensionless relation (6):
H�

c
6

H
c
¼ Hcðu; hÞ 6

Hþ

c
¼ d0ðu; hÞ

tanu
; ð15Þ
where d0ðu; hÞ ¼ 1
Ac

R
oXU

0 � nda (with U
0 ¼ U 0= h

�
the normalized surface velocity field) can be seen as a

global dilatation coefficient. Hence, any statically admissible stress-strength solution provides a lower
bound H�/c to the sought dimensionless relation (6) and for any velocity-flow rule solution it is the inverse.

Last, for either lower and upper bound, we need to define boundary conditions, or more precisely con-
tact conditions at the indenter–material interface. For a frictionless contact condition, all shear stresses at
the interface are zero, i.e. 8t � n ¼ 0;t � T 0ðnÞ ¼ 0 () T 0ðnÞ ¼ r0n:
8ðr; zÞ 2 AM ;
t � T 0ðnÞ ¼ 1

2
ðr0

zz � r0
rrÞ sin 2hþ r0

rz cos 2h ¼ 0

n � T 0ðnÞ ¼ r0
rrsin

2hþ r0
zzcos

2h� r0
rz sin 2h

( )

8r P rc; z ¼ 0 : T 0ðnÞ ¼ 0:

ð16Þ
In the upper bound approach, a velocity field is kinematically admissible, if it satisfies the zero-velocity
boundary conditions at infinity. On the other hand, there is an additional interface condition, which arises
from a frictionless contact condition, which a priori permits a tangential slip (without dissipation), while the
normal velocity U 0 Æ n is the one of the rigid indenter:
8ðr; zÞ 2 AM ; U 0 � n ¼ � h
�
sin h;

ðr; zÞ ! 1; U 0 ¼ 0:
ð17Þ
2.2. Formulation as optimization problem

The limit theorems define two formidable optimization problems, either to construct statically admissi-
ble stress fields r 0 that maximize the indentation load (respectively the hardness); or to construct kinemat-
ically admissible velocity fields U 0 that minimize the maximum dissipation capacity the material can
support. Given the limited possibilities for analytical solutions (such as slip-line solutions), the beneficial
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use of a continuum discretization into finite elements together with linear programming techniques was
early on recognized for the implementation of both the lower bound theorem for plane-stress conditions
(Lysmer, 1970; Pastor, 1976; Pastor and Turgeman, 1976) and the upper bound theorem for plane-strain
conditions (Anderheggen and Knopfel, 1972; Fremond and Salençon, 1973; Turgeman, 1976; Bottero et
al., 1980). The most advanced implementation is due to Sloan and co-worker combining (plane stress/plane
strain) 2-D or 3-D linear finite element formulations with linear and non-linear programming (Sloan,
1988a, ; Sloan and Kleeman, 1995; Lyamin and Sloan, 2002a,b). We employ a similar strategy for the
axi-symmetrical conditions of the indentation test, which to our knowledge have not been addressed in
the open literature. The material domain is discretized by linear finite elements (triangles in 2-D, tetrahedra
in 3-D). In the lower bound approach, stress discontinuities are a priori permitted for out of-plane stresses
provided that the stress vector continuity ([[r 0 Æ n]] = 0) is enforced as a constraint condition over common
edges of adjacent elements. This is achieved by designing nodes to elements, so that multiple nodes share
the same set of coordinates. A similar strategy is employed to model velocity jumps in the upper bound
approach.

In the lower bound approach, the stress field is discretized in the form:
r0
ij ¼

X
k

Nkðr; zÞrk
ij; ð18Þ
where rk
ij are the nodal stresses and Nk are linear shape functions which in axi-symmetrical conditions de-

pends only on r,z. Since most optimization algorithms come as minimization algorithm, the lower bound
optimization problem for the indentation test is formulated using as objective function maxrkijðH

�Þ ¼
minrkij

ð�H�Þ in the discretized form for a unit projected contact area:
�H� ¼ �min
rkij

½C�T½r0�

Subject to:

½A1�½r0� � ½b1� ¼ 0

F ðr0Þ ’ ½A2�½r0� � ½b2� 6 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. ð19Þ
Herein, [C] assembles the objective function matrices for the nodes along the cone surface from a discret-
ization of the lower bound integral in (14); [A1] and [b1] assemble the constraint coefficients arising from a
discretization of the momentum balance divr 0 = 0 per element, of the stress vector continuity [[r 0 Æ n]] = 0
over shared edged of elements, and of extension elements at the boundary of the discretized domain, which
extend the statically admissible stress field beyond the limits of the domain discretized by finite elements.
F(r 0) assembles the constraints arising from the yield criterion (11a) at all nodes (including the one of
the extension elements situated at the boundary), which ensures that the stress field is plastically admissible
throughout the entire half-space. In order to satisfy the strength criterion (11b) throughout the element, it
suffices to enforce it at the element nodes since the stresses vary linearly (Lyamin and Sloan, 2002a). This
reduces the number of inequalities significantly. Furthermore, in order to employ the tools of linear pro-
gramming (thus avoiding nonlinear constraints on the unknown nodal stresses), the Mohr–Coulomb crite-
rion is linearized through a polygonal approximation of the principal stresses, which is expressed by the
matrix [A2] and vector [b2] in (19). The derivation and expressions of the matrices and vectors for axi-sym-
metrical conditions can be found in Ganneau and Ulm (2004).

In the upper bound approach, the velocity field is discretized in the form:
U 0
i ¼

X
k

Nkðr; zÞuki ; ð20Þ
where uki are the nodal velocities and Nk are linear shape functions. Using the classical notation of dis-
placement-based finite element formulation (see e.g. Bathe, 1996) which is here applied to the velocity
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formulation, the components of the strain rate tensor are given by ½d 0� ¼ ½Bij�½uki �, where [Bij] is the strain
rate–velocity matrix (equivalent to the strain–displacement matrix in the FEM), which allows a straight-
forward calculation of the maximum local dissipation capacity per element from (12) and along surfaces
of discontinuities (i.e. joined edges between elements) from (13). Integrated over the discretized half-space
domain, it is this dissipation capacity which is minimized in the upper bound implementation; i.e.
formally:
Hþ ¼ min
uki

½C0�T½U 0�

Subject to:

½A0
1�½U

0� � ½b01� ¼ 0

GðU 0Þ ’ ½A0
2�½U

0� � ½b02� 6 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð21Þ
where ½U 0� ¼ uki = h
�
is the normalized nodal velocity vector and matrix [C 0] assembles the (unit) element and

discontinuity dissipation terms. The equality constraints arise from the contact condition (17), while
GðU 0Þ 6 0 assembles the constraints arising from the conditions gðd0Þ ¼ sinuðj d 0

I j þ j d 0
II j þ j d 0

III jÞ�
trd0 6 0 and gð½½U 0��Þ ¼j U t j tanu� Un 6 0 in (12) and (13), that ensure the finiteness of the (local) dissi-
pation. In order to preserve the nature as a linear programming tool, these (nonlinear) inequality
constraints were linearized (on similar lines as the Mohr–Coulomb criterion), in a series of linear
inequalities. The derivations and expressions of the matrices and vectors can be found in Ganneau and
Ulm (2004).

Finally, it should be noted that we evaluate both the lower and the upper bound theorem on an idealized
geometrical indentation configuration, by considering the surface surrounding the indenter to be flat and
not deformed. In other words, we neglect in the evaluation of the dissipation capacity sinking-in or pil-
ing-up phenomena in the immediate surrounding of the indenter. The error one commits through such
an idealized geometrical configuration should be on the order of the sink-in or pile-up volume, which how-
ever should be of second order compared to the material bulk volume that contributes to the overall dis-
sipation capacity.
2.3. Validation for flat punch problem

To validate our yield design solutions, we consider the flat punch problem, or rigid circular footing
(h = p/2), on a Mohr–Coulomb half-space, for which two benchmark solutions within the framework of
limit equilibrium theory in axi-symmetrical conditions are available. The first solution, which is due to
Hopkins et al. (1961), is for the �smooth� punch corresponding to the frictionless boundary conditions
(16) and (17):
8ðr; z ¼ 0Þ 2 AM ;
r0 ¼ �r0

zz;r
0
rz ¼ 0

U 0 � n ¼ � h
�

( )
. ð22Þ
It is based on kinematically admissible velocity fields U 0, i.e. an upper bound approach, which is shown to
be compatible with a statically and plastically admissible stress field r�

ijðU 0Þ in the bounded region below the
footing and throughout the rest of the half-space satisfying the lower bound conditions (9). Hence, the slip-
line solution for the smooth flat punch problem is the exact plastic collapse solution in the sense of relations
(7), (8), (9) and (10). The second benchmark solution is due to Salençon and Matar (1982): a perfectly
rough punch on a Mohr–Coulomb half-space. The perfectly rough punch translates into a frictional inter-
face stress condition and a no-slip velocity condition of the form:
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Fig. 2. Hardness-to-cohesion solutions for the flat punch problem: top: �Smooth� punch solutions (benchmark solution of Hopkins
et al., 1961); bottom: �Perfectly rough� punch solutions (benchmark solution of Salençon and Matar, 1982).
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8ðr; z ¼ 0Þ 2 AM ;
f ðT 0Þ ¼j r0

rz j þ tanur0
zz � c 6 0

U 0 � n ¼ � h
�
;U 0 � t ¼ 0

( )
: ð23Þ
Matar and Salençon�s solution is based on statically and plastically admissible stress fields r0
ij, ie. a lower

bound approach, constructed by the method of characteristics along characteristic lines in a zone spread-
ing under the foundation and emerging at the stress-free surface. In this same zone a velocity field U �ðr0

ijÞ
is constructed that satisfies the compatibility conditions (10) and (23)2; yielding a so-called �incomplete
solution� (Bishop, 1953), as the stress field and the velocity fields have not been extended throughout
the rest of the half-space. Both solutions employ the Haar–Karman hypothesis1which is a posteriori
verified.

Fig. 2 display the lower and upper bounds of the hardness-to-cohesion relation H=c ¼ Hcðu; h ¼ p=2Þ,
we obtain with our algorithms for the smooth punch problem and the rough punch problem together with
the benchmark solutions. The upper bound solution comes remarkably close to the exact solution of Hop-
kins et al. (1961), and also very close to the �incomplete� (lower bound solution) of Salençon and Matar
(1982) (the maximum relative difference is consistently less than 6%); while the lower bound solution
e Haar–Karman hypothesis assumes that the middle principle stress is equal either to the major or minor principal stress,

rII ¼
1

2
½ðrI þ rIIIÞ � �ðrI � rIIIÞ�; � ¼ �1.



Fig. 3. Velocity fields for the upper bound flat punch solutions: top: frictionless indenter–material interface condition, bottom:
perfectly rough interface (u = 10�).
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perform rather poorly. The reason for this poor performance is that the algorithm converges towards
diagonal stress fields (no shear stress) due to the stress-free boundary condition on r P rc, which propagates
r0
rz ¼ 0 from the surface boundary into the entire domain (Ganneau and Ulm, 2004). Because of this restric-

tion to diagonal stress fields, the lower bound approach is limited to a relative small range of possible stress
solutions that appear too restrictive to come close to the actual stress fields in the punch tests. In contrast,
the upper bound approach is free of such restrictions and is able to accommodate any collapse mechanism
(see Fig. 3), converging towards the actual dissipation capacity. The observation that the upper bound solu-
tions appear much more realistic than the lower bound solutions does not only hold for the punch problem,
but was verified for all types of axi-symmetrical indentation tests: conical, spherical, etc. (for details, see
Ganneau and Ulm, 2004). This and the excellent agreement of the flat punch solutions with the reference
solutions are very strong arguments in favor of the use of the upper bound solution for indentation
analysis.
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3. Dual indentation approach

In this section, we develop a dual indentation approach for the assessment of cohesion and friction angle
of cohesive-frictional materials, which is based on the self-similarity of the conical indentation test, and on
the dependence of the hardness-to-cohesion ratio (6) on two parameters only, the friction angle u and the
tip half-angle h. We show that the approach satisfies the uniqueness of the inverse analysis to extract the
strength properties of cohesive-frictional materials from two hardness measurements carried out with con-
ical indenters of different apex angle. The dual indentation strategy we develop is of the same vain as other
multiple indenter approaches recently proposed for elasto-plastic cohesive materials (with or without strain
hardening) using conical or pyramidal indenters (Futakawa et al., 2001; Bucaille et al., 2003; Chollacoop et
al., 2003; DiCarlo et al., 2003; Swaddiwudhipong et al., 2005), which all aim at overcoming the non-unique-
ness of the reverse analysis of material properties from a single indentation test (Futakawa et al., 2001;
Cheng and Cheng, 2004).

3.1. Hardness-to-cohesion relations for varying apex angles (at constant friction angle)

We ran upper-bound simulations for different tip apex angles (and frictionless contact conditions), while
keeping the friction angle constant. Some results are displayed in Figs. 4 and 5 in form of a plot of H/c vs. h
(Fig. 4), together with some velocity fields for selected apex angles (Fig. 5). The resulting
H=c ¼ Hðu0 ¼ const; hÞ curve has a minimum around h ’ 45� and increases for both smaller and larger
apex angles. The increase for larger apex angles comforts the simple idea that a sharp cone (h P 45�) is eas-
ier to drive into a material half-space than a flat punch (h = 90�). This is evidenced from the velocity profiles
shown in Fig. 5: the velocity profiles appear more concentrated for smaller apex angle than for larger apex
angle. Hence, at plastic collapse, the amount of activated material volume that contributes to the overall
dissipation decreases when the apex angle is reduced and reaches a minimum around h ’ 45�. Surprisingly,
for very sharp cones (h 6 45�) there is an inverse trend, an apparent increase of the hardness, which may be
due to the fact that the plastic zone concentrates into a material cone around the very sharp indenter whose
volume increases quadratically compared to the volume of the conical indenter. A similar minimum phe-
nomenon was reported by Houlsby and Wroth (1982) for the cone penetration test used in geotechnical
6
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Fig. 4. Influence of the apex angle on the hardness-to-cohesion ratio (u = 10�). Evidence of the existence of a minimum.



Fig. 5. Velocity fields for upper bound conical indentation solutions: (top-down, left-right) h = 0, h = 70�, h = 45�, h = 25� (all results
for u = 10�).

F.P. Ganneau et al. / International Journal of Solids and Structures 43 (2006) 1727–1745 1737
applications, who reported a minimum of h ’ 50� from exploring a lower bound approach. Such a mini-
mum phenomenon has been also found for frictionless materials around h ’ 20� (Chitkara and Butt,
1992), and the presence of friction appears to shift the minimum to higher cone angles. This minimum phe-
nomenon is an important property regarding uniqueness of the inverse problem of the assessment of the
cohesion and friction angle by two indentation tests. Indeed, provided that H/c, for a given friction angle,
is a monotonic increasing (or decreasing) function of the apex angle, the uniqueness of the dual indentation
method can be ensured.

3.2. Application to Berkovich and Corner cube indentation

By way of application, we consider two commercially available indenters that are commonly employed
in instrumented indentation tests, the 3-sided pyramidal Berkovich and Cube Corner indenter. As it is com-
mon practice in indentation analysis (see e.g. Min et al., 2004), the 3-sided pyramids are assimilated to
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cones so that the normalized projected contact area Ac/h
2 of the cone is the same as that of the real indenter,

ie. Ac=h
2 ¼ ptan2h. In the light of the results displayed in Fig. 4, it is readily understood that the effective

cone angle of hB = 70.32� for the Berkovich indenter and hCC = 42.28� for the Cube Corner indenter ensure
the uniqueness of the reverse problem. Fig. 6 displays the H+/c� relations we determined with the upper
bound approach for those two apex angles. Following the dimensionless expression (15), we fit the obtained
results in a power-series of the form:
Table
Coeffic
equiva

hB = 7
hCC =
Hþ

c
¼ d0ðu; hÞ

tanu
¼ 1

tanu

Xk¼N

k¼1

ðakðhÞ tanuÞk; ð24Þ
where coefficients ak(h) depend only on the apex angle. In the interval u 2 [3�, 30�], a N = 6 power expres-
sion (i.e. fifth-order in tanu) fits perfectly the results, and the coefficients ak(hB) and ak(hCC) are given in
Table 1. While this fitting function is strictly valid only in the interval for which it was fitted, it may serve
for limited extrapolation to higher friction angle. We ran simulations for u = 35� and the results lay within
the range of 1% from the fitted values. We should also note that the algorithm did not converge for a zero
friction angle, since the implemented dissipation function of the Mohr–Coulomb (12) does not converge in
a continuous fashion towards the dissipation function of the Tresca material (p(d) = c(jdIj + jdIIj + jdIIIj)),
but becomes infinite for u = 0. Hence, expression (24) with the fitted coefficients ak(h) of Table 1, has lim-
ited extrapolation capacity for frictionless materials. On the other hand, as the friction angle increases (for
which our solution provide reliable results), we observe a strong deviation from the �rule-of-thumb� value
(5), generally admitted for metallic materials. In fact, internal friction kinematically impedes the 45� slip
lines commonly observed for frictionless materials. As a consequence, the plastic yield volume increases
1
ients of power-series fit (24) for H/c relations of Berkovich indenter (hB) and Cube Corner indenter (hCC) assimilated to
lent cones of same projected contact area

a1 a2 a3 a4 a5 a6

0.32� 5.7946 2.9455 �2.6309 4.2903 �3.4887 2.7336
42.28� 5.9455 2.4253 �2.7578 4.0152 �3.2938 2.5369
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and thus the overall dissipation capacity of the system, which translates into a higher hardness value, and
which is captured by the results displayed in Fig. 6.

On this basis, we can develop the dual indentation technique from a combination of Berkovich and Cube
Corner hardness values. Given the dimensionless expression (15), it is possible to determine the friction
angle of the material from the ratio of two hardness measurements:
H 1

H 2

¼ Hcðu; h1Þ
Hcðu; h2Þ

¼ d0ðu; h1Þ
d0ðu; h2Þ

. ð25Þ
Fig. 7 displays the hardness ratio for the Berkovich and Corner–Cube indenters (h1 = hB;h2 = hCC) as a
function of the friction angle in the interval u 2 [5�, 30�]. The figure confirms that there is a unique relation
between the hardness ratio and the friction angle, which provides a means of assessing u from the difference
in hardness between a Berkovich indentation test and a Cube Corner indentation test. While small for very
small friction angles, the hardness ratio becomes significant for greater friction angles, for which the ratio
appears to increase almost linearly with the friction angle in the interval considered. Once the friction angle
is determined, it is possible to determine the cohesion from the H/c curves displayed in Fig. 6.
4. Validation for a model cohesive-frictional material: bulk metallic glass

This Section deals with the validation of the proposed dual conical indentation technique for a
�model�material, bulk metallic glass, which has been recently found to exhibit a cohesive-frictional behavior
from the scale of its atoms (Schuh and Lund, 2003) to the microscale of indentation analysis (Vaidyanathan
et al., 2001) and the macroscale of laboratory test specimens (Donovan, 1989; Lu and Ravichandran, 2003).
Furthermore, bulk metallic glass shows an almost elastic-perfectly plastic behavior in uniaxial compression/
tension, with almost no strain hardening. This makes the application of a yield design approach even more
appealing for this model material.

The material investigated is an as-cast fully amorphous Zr41.2Ti13.8Cu12.5NI10Be22.5 bulk metallic glass
(which goes by the commercial name Vitreloy 1TM), manufactured by Howmet Corporation, Greenwich,
CT. It is the same Zr-based material composition investigated by Lu and Ravichandran (2003) and Vaidya-
nathan et al. (2001). The elastic properties of this material are well known by now, from both ultrasonic
measurements (Lu and Ravichandran, 2003) and microindentation tests (Vaidyanathan et al., 2001):
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Young�s modulus E = 96 GPa, Poisson�s ratio m = 0.36. An indentation campaign with a Berkovich inden-
ter and a Cube corner indenter was performed. The indentations tests were load controlled at a constant
rate of 300 mN/s. Fig. 8 displays characteristic P–h curves for the two indenter geometries. Indentation size
effects were found to be negligible for indentation depth larger than 4 lm, which is why we base our val-
idation for maximum indentation depths of roughly 10 lm, for which the dimensionless relations (2), (3a),
(3b), (4) apply. In a traditional fashion, the projected contact area was measured from ESEM and AFM
images of five residual impression left after complete unloading (Fig. 9), and the mean value (±accuracy
of surface measurements) was taken to determine the hardness from its definition (1):
HB ¼ 5.42� 0.03 GPa ; HCC ¼ 5.13� 0.22 GPa: ð26Þ

These values yield a hardness ratio (calculated from the meanvalues) of HB/HCC = 1.057, which we use in
Fig. 7 to obtain the friction angle:
HB

HCC

¼ 1.057� 0.04 ) u ¼ 7.3� � 2.7�: ð27Þ
Furthermore, use of the friction angle in Fig. 6 (resp. in Eq. (24)) yields the HB/c and HCC/c ratio. Since the
hardness values (26) are known, we solve for the cohesion:
tanu ¼ 0.13 )
HB=c ¼ 7.15

HCC=c ¼ 6.78

� �
) c ¼ 760� 30 MPa: ð28Þ
In a last step, we need to verify the yield design assumption (Cijkl/c)
�1 ! 0, which reduces here to c/

E = 8 · 10�3 � 1. The fact that c/E is two orders of magnitude smaller than tanu justifies a posteriori
the use of our yield design solution for the extraction of the cohesion and friction angle.

Finally, the friction angle we obtain agrees remarkably well with the one obtained by Vaidyanathan et al.
(2001) from extensive 3-D finite element back calculation of Berkovich indentation P–h curves
(a ¼ tanu ¼ 0.13;Y c ¼ 1; 900 MPa in Vaidyanathan et al., 2001), and with values obtained by molecular
statics simulations of Zr- and Cu-based metallic glasses by Schuh and Lund (2003); tanu ¼ 0.123�



Fig. 9. Traditional measurements of projected contact area from residual impression after unloading: ESEM images of Berkovich
indenter (TOP); AFM topographic images of Cube Corner imprint on metallic glass. The projected contact areas as seen though the
microscope on a plan-view were measured using straight line measurements. The accuracy of the length measurements was on the order
of 0.1lm, which translates into an accuracy of 10lm2 in the area calculations.
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0.004. The obtained friction coefficient and cohesion values also compare very well with the values Lu and
Ravichandran reported from a large series of multiaxial compression tests for the same Zr-based bulk mate-
rial (b ¼ tanu ¼ 0.17;c ¼ 804 MPa in Lu and Ravichandran, 2003), and are on the same order of the mac-
roscopic values reported by Donovan (1989) for Pd-based metallic glass (Pd40Ni40P20) from uniaxial
compression, plane-strain compression, plane-strain tension and shear tests (tanu ¼ 0.113� 0.03;c ¼
795� 25 MPa). The proposed dual indentation method which requires only two hardness measurements,
complements these approaches and confirms (if need still be) that bulk metallic glasses are cohesive-fric-
tional materials of the Mohr–Coulomb type.
5. Discussion

The dual indentation method we here propose is highly reductionist: it is based on the geometrical self-
similarity of the conical indentation test and on yield design assumptions, reducing the number of param-
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eters governing the hardness-to-cohesion ratio to two: the friction angle uand the cone half-angle h. In this
reduced (H/c,u,h) invariant space, it is possible to ensure the uniqueness of the inverse analysis and extract
the strength properties of cohesive-frictional materials. This method has several advantages, but also
restrictions, compared to other inverse analysis methods:

1. The main advantage of the method is its ease of utilization: Compared to advanced finite element elas-
toplastic backanalysis of indentation curves, the method requires as input only two hardness values cor-
responding to two indenter geometries (cone half-angle h). By means of fundamental dimensionless
relations for the hardness-to-cohesion ratio, we find that the hardness-to-hardness ratio is a unique func-
tion of the friction angle, which ensures the uniqueness of the reverse problem. We demonstrated this
method for two indenters commonly employed in instrumented indentation, Berkovich and Corner
Cube indenter assimilated to cones of different apex angles. Of course, the same method could be
employed with any other apex angle, and the method is the more efficient the higher the H/c� contrast
between two apex angles for a given friction angle. We should also note that such a contrast is not
achieved by spherical indentation of different sphere radius-to-indentation depth ratios, R/h, which
replaces the tip half-angle in the dimensionless relation (6), ie. H=c ¼ Hsðu;R=hÞ, making the conical
indentation test the most efficient way to extract cohesion and friction angle from hardness measure-
ments. We come to this conclusion from lower and upper bound H/c� solutions for spherical indenta-
tion which we obtained with our optimization algorithms. Not surprisingly, we also found that it is not
possible to extract the friction angle from the hardness ratio of two indenter geometries that do not
belong to the same family of self-similar indenter shapes (for a review of the conditions under which fric-
tionless Hertz type contact problems possess classical self-similarity, see Borodich et al., 2003); for
instance from a combination of conical and spherical indentation; entailing the non-uniqueness of the
reverse problem (for details, see Ganneau and Ulm, 2004). This emphasizes that the geometrical self-sim-
ilarity is a necessary condition for the uniqueness of the proposed inverse procedure.

2. The main analytical tools we employ in our method are fundamental H=c ¼ Hcðu; hÞ relations which we
developed from a novel computational implementation of the limit theorems in axi-symmetrical condi-
tions. One restriction of our approach relates to the assumption of the normality rule (or principle of
maximum plastic work), which is at the very basis of the existence of the limit theorems of yield design,
and which cannot capture an eventually non-associated flow behavior of the plastically deforming mat-
ter. From the perspective of dimensional analysis, the consideration of a non-associated flow rule adds
one additional independent quantity, the dilatation angle, to the set of parameters in relations (2); but
cannot be handled by the proposed yield design solution procedure in which the dilatation angle equals
the friction angle. For such materials, advanced finite element simulations are required. In this case, the
proposed method can be used to determine initial values of the cohesion and friction angle for the iter-
ative backanalysis. A similar remark can be made for contact friction (which has been investigated for
cohesive materials by Chitkara and Butt, 1992) and strain hardening effects, which we ignore in our yield
design solutions. These effects appear to be negligible in the case of our �model� material, since the dia-
mond-metal contact friction is relativy low, and since metallic glass shows almost no strain hardening.
Both effects may gain some importance for other materials, and may become significant particularly for
small indenter angles for which pile-up occurs.

3. It could also be (and has been) argued that yield design approaches cannot capture piling-up or sinking-
in phenomena, as yield design evaluates the dissipation capacity of a materials system for a fixed geom-
etry. Indeed, in our upper-bound simulations, we assumed the surface surrounding the indenter to be
flat, which is far from what is observed on topographic images in indentation tests particularly for very
sharp indenters like the Corner Cube (see Fig. 9). However, compared to the material bulk volume that
contributes to the overall dissipation capacity (see Fig. 5), the additional contribution of the pile-up
material volume is expected to be of second-order in the evaluation (8) of the maximum dissipation
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the material system can afford. Of course, the piling-up or sinking-in phenomena cannot be neglected in
the evaluation of the hardness values from its definition (1), which are the input to our method. Hence,
like all indentation procedures, the successful determination of the strength properties from the two
indentation tests relies on the determination of the correct projected contact area. This is not an easy
task: in the validation of our method for metallic glass, we measured the contact area by direct measure-
ment of the residual hardness impression after a complete unloading. For practical reasons, however,
some means other than direct observation of the hardness impressions is needed. Several methods that
circumvent the necessity to measure the contact area have been proposed (for a recent review see Oliver
and Pharr, 2004), and have been validated primarily for blunt and spherical indenter. It is expected that
similar methods will become soon available also for very sharp indenters and cohesive-frictional mate-
rials having a pronounced plastic dilating behavior. In fact, from visual inspections, we found out that
the Berkovich indenter has a contact-height-to-indentation depth ratio of hc=h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pbðu; hBÞ=p
p

cot hB ¼ 0.85 (see Fig. 1 and relation (3b)), which is well captured by existing indirect
methods (Oliver and Pharr, 1992); while hc=h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pbðu; hCCÞ=p

p
cot hCC ¼ 1.17 for the Cube Corner

indenter on metallic glass, which is not covered by such methods. Progress on this front is expected
to complete our developments in the close future.
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