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Abstract
Using a high-damping thermoplastic as a standard reference material, the purpose of this work
is to compare measured values of the complex modulus as determined by dynamic
nanoindentation and dynamic mechanical analysis (DMA). Experiments were performed at
approximately 22 ◦C and seven frequencies over the range 1–50 Hz. The indentation
measurements were performed using a 103 µm diameter flat punch and a newly developed test
method that optimizes the accuracy and precision of the measured stiffness and damping. As
determined by dynamic nanoindentation, values of the storage modulus and loss factor
(tangent delta) ranged from 4.2 to 10.2 MPa, and 0.28 to 1.05, respectively. Over the range
1–25 Hz, DMA confirmed the nanoindentation results to within 15% or better. Collectively,
these data and the testing methods used to generate them should help future investigators make
more accurate and precise measurements of the dynamic properties of viscoelastic solids using
nanoindentation.

1. Introduction

The attractiveness of nanoindentation is its ability to
characterize the mechanical behaviour of small volumes
of material with spatial resolutions in the nanometre to
micrometre range. Over the past 20 years, the technique
has been routinely used to investigate the linear elastic and
plastic properties of thin films, modified surfaces, individual
phases in alloys and composites and other microscopic features
and structures [1, 2]. Attempts to characterize viscoelastic
solids, on the other hand, have been far fewer in number, and
additionally, most have focused on the strain-rate sensitivity
and the transient properties of creep and stress relaxation
[3–12]. Among the reasons for the large gap between
dynamic elastic and dynamic viscoelastic indentation data in
the open literature is the added complexity of performing
meaningful experiments in the frequency domain. Loubet
and Lucas were the first investigators to use dynamic
nanoindentation to investigate the frequency response of
polymers [13,14]. As they emphasized, accurate experimental
techniques are entirely dependent on rigorous dynamic
characterization of the measurement system itself. In addition,
experimental data are most frequently modelled such as to

be representative of steady-state harmonic motion, a known
contact geometry, and in many cases, linear viscoelasticity.
Only under these conditions are the storage and loss modulus
uniquely related to the transient functions from which the
material parameters are derived, namely, creep and stress
relaxation.

Among the investigations that have used dynamic
nanoindentation to measure the complex modulus, notable
contributions have been made by Odegard and White [15–17].
In both cases, the investigators present a direct comparison of
results generated by nanoindentation and dynamic mechanical
analysis (DMA). This comparison is important because
it provides a means of assessing the accuracy of the
nanoindentation results, since DMA is regarded as the standard
testing technique used by many modellers and designers.
Odegard and White’s results show good agreement between
nanoindentation and DMA data for glassy, high modulus
materials (E′ ∼ 1 GPa). In contrast, White’s results on a
rubbery, low modulus material (E′ ∼ 1 MPa) did not match as
well; the nanoindentation results overestimated the DMA by
nearly a factor of 2.

If nanoindentation is to become a viable characterization
tool for the dynamic behaviour of viscoelastic solids, a
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comparison between nanoindentation and DMA results like
that of Odegard and White is needed to demonstrate the
strengths and weaknesses of the technique. Additionally,
meaningful comparisons must be supported by experimental
verification of a steady-state harmonic response, a known
contact geometry and linear viscoelasticity. Seemingly simple
choices like indenter geometry have a significant impact on
the ability to make meaningful measurements, as pyramids,
spheres and punches each have their own unique advantages
and disadvantages. For example, recent work by Tweedie
and Van Vliet [18] found that experiments performed with a
pyramidal indenter on a number of polymer materials failed
to generate a contact consistent with the assumptions of linear
viscoelasticity. Conversely, spheres used in the limit of small
displacements relative to the radius of the tip were successful
in generating data that accurately describes the linear
viscoelasticity in these materials. The message from these
investigations is that accurate experimental determination of
the complex modulus by nanoindentation requires thoughtful
experiments based on the general properties of the material and
the choice of indenter geometry. Moreover, the cornerstone of
the technique is a rigorous dynamic characterization of the
measurement system itself.

The goal of this work is to provide experimental
evidence that will help demonstrate the viability of
dynamic nanoindentation as a characterization technique for
viscoelastic solids. In doing so, a strategy will be established
that may be used to ensure the accuracy and precision of
dynamic nanoindentation measurements. These objectives
are achieved by (1) developing a thorough understanding of
the key factors that control the design of robust experiments,
(2) demonstrating how these factors can be incorporated
experimentally and (3) presenting a direct comparison of
complex modulus measurements made on a high-damping
thermoplastic using dynamic nanoindentation and DMA.

2. Theory

2.1. The dynamic response of a linear viscoelastic solid

For a linear viscoelastic material under sinusoidal loading, the
stress–strain relationship may be expressed as

σ = εoE
′ sin ωt + εoE

′′ cos ωt, (1)

where σ is the stress, εo is the strain amplitude, ω is the angular
frequency, t is the time,

E′ = σo

εo
cos φ (2)

and
E′′ = σo

εo
sin φ, (3)

where σo is the stress amplitude and φ is the phase lag between
the stress and the strain [19]. E′ and E′′ are, respectively, the
storage and loss modulus. E′ represents the material’s capacity
to store energy; it is the component in phase with the applied
displacement or load. E′′ represents the material’s capacity
to dissipate energy; it is the component 90◦ out of phase with

the applied displacement or load. The ratio E′′/E′ = tan φ is
called the loss factor and is often used as a measure of damping
in a linear viscoelastic material. Collectively, these frequency-
dependent properties are used to characterize the viscoelastic
response of a material.

It is often useful to analyse the mechanics of visco-
elasticity by writing the stress–time and strain–time
relationships in their complex forms:

σ = σoeiωt (4)

and
ε = εoei(ωt+φ). (5)

Taking the ratio of stress to strain,

σ

ε
= σo

εo
eiφ = E∗, (6)

where E∗ is called the complex modulus, and in accordance
with Euler’s identity,

E∗ = σo

εo
(cos φ + i sin φ) = E′ + iE′′. (7)

One benefit of casting the relationship in this form is that
it allows the complex harmonic motion to be graphically
represented by a phasor diagram, which provides a simple
interpretation of the relationship between E∗, E′, E′′ and φ.
The phasor diagram is shown in figure 1(a), where φ is an angle
in the complex plane. E∗ is the phasor, whose magnitude
equals σo/εo, which is also equivalent to

√
E′ 2 + E′′ 2. In

accordance with equation (7), the x- and y-axes represent,
respectively, the real (elastic stress) and imaginary (viscous
stress) components of the complex modulus. The value of the
phasor diagram here is that it helps provide physical insight
in developing robust indentation experiments to measure the
complex modulus of viscoelastic solids.

2.2. The dynamic response of a damped, forced
oscillator—the test instrument

Figure 2(a) shows a schematic illustration of the instrument
used to perform the dynamic nanoindentation testing and its
corresponding dynamic model. In response to a sinusoidally
varying force, the differential equation which describes the
motion of the system is

Foeiωt = mḧ + Cḣ + Kh, (8)

where Fo is the amplitude of the load oscillation, m is the
mass of the indenter, h is the displacement response, C is the
damping coefficient of the instrument and K is the stiffness of
the support springs. Since equation (8) is nonhomogeneous,
the general solution is the sum of a complimentary solution and
a particular solution. The particular solution, which describes
the steady-state motion of the system, is assumed to be

h(t) = hoei(ωt−φ), (9)

where ho is the amplitude of the displacement oscillation.
Thus, the displacement oscillates at the same frequency as the
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Figure 1. Schematic illustrations showing the imaginary and real
components of (a) the complex modulus of a linear viscoelastic
solid subject to sinusoidal loading, (b) the frequency response of a
damped, forced oscillator and (c) the combined frequency response
of a viscoelastic solid (sample) and a damped, forced oscillator
(instrument).

applied force but potentially lags behind by the phase angle.
By substituting the necessary time derivatives and simplifying
equation (8), the real and the imaginary components can be
equated to solve for the magnitude of the dynamic compliance
of the system,

ho

Fo
= [((K − mω2)2 + ω2C2)1/2]−1. (10)

Additionally, the phase angle between the applied load and the
resulting displacement is given by

tan φ = Cω

K − mω2
. (11)

(a)

(b)

Figure 2. (a) A schematic illustration of the testing system and the
dynamic model used to describe the behaviour of the system as a
function of frequency. (b) The dynamic model used to describe the
combined frequency response of the instrument and sample.
Throughout this work, the load frame is assumed to be rigid relative
to the stiffness of the support springs, Ks.

Using equations (10) and (11), the dynamic stiffness, K−mω2,
and damping, Cω, of the instrument are found to be

K − mω2 = Fo

ho
cos φ (12)

and

Cω = Fo

ho
sin φ. (13)

Analogous to figure 1(a), the dynamic response of a damped,
forced oscillator may also be represented by a phasor diagram.
Figure 1(b) illustrates the instrument’s frequency response
in the complex plane and shows the relationships between
K − mω2, Cω, φ and Fo/ho. As shown in the figure, Fo/ho

is the magnitude of the phasor representing the frequency
response of the instrument and φ is an angle in the complex
plane. The x- and y-axes represent the real (stiffness)
and imaginary (damping) components of the displacement
response of the system. Although the axes in figures 1(a)
and (b) are fundamentally different, they are uniquely related
through the geometry of the contact.

2.3. Determining E′ and E′′ in a dynamic nanoindentation
experiment

For a load controlled testing system, the force amplitude is
set and the resulting displacement amplitude and phase angle
are measured. When the indenter and sample, which are
coupled through the geometry of the contact, undergo steady-
state harmonic motion, the measured stiffness (equation (12))
and damping (equation (13)) represent the combined frequency
response of the instrument and the sample. The dynamic
stiffness and damping of the contact (i.e. material response and
parameters) are determined by subtracting out the instrument’s
contribution to the total measured response. It is important to
note, however, only in the limit that the additional moving
mass of the sample is small in comparison with the mass of
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the column do the mω2 terms cancel. In other words, the
inertial contribution of the sample is assumed to be negligible
in comparison with the testing system. In the limit of
linear viscoelasticity, the elastic–viscoelastic correspondence
principle is deemed valid and thus Sneddon’s stiffness
equation, the fundamental equation of nanoindentation, may
be used to relate the dynamic stiffness and damping of the
contact to E′ and E′′ [20],

E′

1 − ν2
= Fo

ho
cos φ

√
π

2

1

β

1√
A

(14)

and
E′′

1 − ν2
= Fo

ho
sin φ

√
π

2

1

β

1√
A

, (15)

where ν is Poisson’s ratio, β is a term related to the geometry
of the contact and A is the projected contact area. β = 1
for a circular contact (circular flat punch, sphere and cone),
β = 1.034 for a Berkovich [21]. While Poisson’s ratio is
physically capable of exhibiting time dependent behaviour,
it was assumed to be a constant value of 0.3 for all of the
nanoindentation and DMA data analysis presented in this work.

The phasor diagram in figure 1(c) can now be used to
explain the coupled dynamic response of the sample and
the testing system. As previously explained, the frequency
response of the instrument is controlled by the magnitude of
the moving mass, the stiffness of the support springs and the
damping in the head. For a given instrument, these parameters
are essentially fixed. The frequency response of the sample is
controlled by E′(ω), E′′(ω) and the geometry of the contact.
E′(ω) and E′′(ω) are fixed for a given material and frequency,
and the geometry of the contact can be controlled by using a
flat punch indenter. As such, control of the contact geometry
is the means by which robust experiments can be designed so
that the sample dominates the measured response. In working
with constraints such as the available volume of material and
microstructure, however, this criterion is not always simple to
achieve. Thus, when the instrument’s contribution comprises
a significant fraction the combined response, it is imperative
to know the dynamic stiffness and damping of the instrument
as accurately and precisely as possible, since the accuracy of
the experimental measurements then relies on isolating small
changes in potentially large numbers. As dictated by many
applications, this is frequently the condition under which many
experiments are performed, i.e. thin films and small volumes
of material.

2.3.1. Modelling the sample. The dynamic behaviour
of viscoelastic solids is most frequently modelled using
combinations of linear springs and linear dashpots. The
various groupings of springs and dashpots are used to establish
the differential equations which describe the material’s
response to an applied load or displacement. At one end
of the spectrum, the Voigt model, a spring and dashpot in
parallel, offers the simplest means of describing viscoelastic
behaviour, as its response to a sinusoidal input is a sinusoidal
output with a phase lag. At the other end of the spectrum,
models incorporating more complex assemblages of springs

and dashpots may be used to capture more complex material
behaviour as a function of frequency. All these models are
phenomenological in nature and based on the assumption of
linear viscoelasticity. This condition is valid only in the limit
of small strains, loosely defined as strains less than 1%.

In this work, the sample was chosen to be modelled as
a Voigt solid, as indicated by the ‘contact’ in figure 2(b) (the
contact and the instrument are arranged in parallel because
they necessarily experience the same change in displacement).
This model captures the essence of viscoelastic behaviour and
is simple to implement. However, because this model only
has the means of incorporating a single relaxation time, it is
limited to modelling material behaviour at a single frequency.
Furthermore, it has no means of accounting for instantaneous
elasticity. While more complex models offer a means to
overcome these limitations, experimental evidence is needed
to determine the extent of the improvements and the ability
to predict the frequency dependence. The recent work of
Wright et al [22] explores this issue, and develops the rigorous
mathematics required to incorporate an additional spring into
the Voigt model to allow for instantaneous elasticity.

3. Experimental measurements

The storage and loss moduli, E′ and E′′, were measured on a
bulk sample of a highly plasticized polyvinyl chloride (PVC),
which is a high-damping thermoplastic. The experiments
were conducted at frequencies of 1, 3, 5, 10, 20, 30 and
50 Hz. Both the indentation and DMA samples were taken
from the exact same sheet of material. The indentation sample
measured 8.2 mm long, 6.8 mm wide and 7 mm thick. The
precision-machined DMA sample was approximately 35 mm
long, 15 mm wide and 5 mm thick. Every effort was made
to ensure uniformity in the thickness of the sample, since
E′ is proportional to the thickness cubed (E′ ∝ t3). All
of the experiments were conducted at approximately 22 ◦C,
which is well above the sample’s glass transition temperature of
−17.2 ◦C. For the indentation experiments, the air temperature
in the lab was controlled to within ±1 ◦C using a constant
reheat system. The air temperature near the surface of the
sample was measured using a precision thermometer. For the
DMA experiments, the air temperature was controlled using a
liquid nitrogen gas cooling system provided by the instrument
manufacturer, TA Instruments.

The nanoindentation experiments were performed on a
MTS NanoIndenter® XP using a 103µm diameter diamond
flat punch in conjunction with a 50 nm oscillation amplitude
and the continuous stiffness measurement (CSM) technique.
Details of the CSM technique have been described previously
[1]. The DMA experiments were performed using a TA
Instruments model Q800 and the dual cantilever sample
mount, which clamps the sample at both ends. The instrument
was completely calibrated in accordance with the procedures
provided by TA Instruments. Using polycarbonate as a
standard reference material, the measured E′ at 1 Hz and room
temperature was 2349 MPa, which compares well with the
literature value of 2350 MPa. Measurements performed on the
PVC at 1 Hz with amplitudes of 20, 40 and 60 µm generated
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data consistent with the assumptions of linear viscoelasticity,
as the change in amplitude had virtually no impact on the
measured E′. As a result, the oscillation amplitude was chosen
to be 20 µm for all DMA experiments performed on the PVC.
In addition, the experiments incorporated a thermal soak period
of 1 h. All of the averaged nanoindentation and DMA data
are presented with error bars spanning one standard deviation
about the mean.

The diameter of the flat punch was chosen by design. As
previously discussed, important considerations in choosing the
tip geometry are (1) the desire to achieve dynamic stiffness and
damping measurements that are dominated by the response of
the sample and (2) the microstructure of the sample and the
available volume of material. The reference material selected
for this work is a commercially available, high-damping
thermoplastic in bulk form. The material is amorphous and
devoid of crosslinking; therefore even small volumes of the
material are representative of the bulk microstructure. Using
equation (12) and assuming E′ at 1 Hz is on the order of
1–10 MPa, β = 1, and the flat punch has a radius of 50 µm,
the resulting contact stiffness is 100–1000 N m−1, which is
approximately 1–10 times larger than the stiffness of the
instrument’s support springs. The fact that the instrument
stiffness is actually less than that of the contact places limits on
the accuracy with which specimen properties can be measured.
Clearly, as the disparity between the stiffness of the instrument
and the stiffness of the contact decreases, the more important
it becomes to precisely know the stiffness of the instrument in
order to accurately isolate the material’s response. The same
is also true for the damping of the contact in comparison with
the damping of the instrument.

3.1. Instrument characterization

Regardless of the type of instrumentation, accurate and precise
measurements of E′ and E′′ are critically dependent on the
ability to correctly measure and model the frequency response
of the test equipment. While the characterization techniques
discussed in this section are specific to the instrument used in
this study the general concepts are applicable to all types of
instrumentation, regardless of the manufacturer.

Figure 2(a) shows a schematic illustration of the head
design of the instrument and the simple harmonic oscillator
model used to predict its frequency response. For the purposes
of this discussion, it is important to note the following
features: the load is controlled by electromagnetic actuation,
the displacement is measured using the parallel plate capacitive
gauge, and the indenter column is supported by two leaf
springs with a vertical stiffness of approximately 100 N m−1

and a lateral stiffness of approximately 10 000 N m−1. Among
the most important aspects of the head design is that the
lateral stiffness of the support springs effectively limits the
system to only 1 degree of freedom, i.e. vertical motion.
This physical limit is imperative in order for the oscillator
model to be an accurate reflection of the physical motion
of the indenter. However, because the remaining degrees
of freedom each have their own frequency response, there
will be a cutoff frequency above which cross-talk and/or

phase rotations caused by other modes of vibration effectively
prevent accurate instrument characterization. Thus, accurate
measurements can only be made below the cutoff frequency.
Also, of significant importance is knowledge that eddy currents
in the voice coil as well as moving air through the 2 mm gap
of the capacitance gauge generate sufficient damping such that
the instrument is over critically damped. In addition to being
dependent on frequency, the dynamic stiffness and damping
of the instrument are also a function of the physical location
of the centre plate relative to its full range of travel in the
capacitance gauge. To simplify further discussion of this
positional dependence, the centre plate’s position in the gap is
called the raw displacement and the centre of the gap is taken
to be the zero datum (0 nm). Generally speaking, it is good
experimental practice to mount the samples in the instrument
such that the raw displacement at the surface of the sample is
within ±100 000 nm of 0 nm. This range in the capacitance
gauge corresponds to nearly constant stiffness and damping at
a given frequency. Complete dynamic characterization of the
instrument consists of measuring the reference phase angle
as a function of frequency, and measuring the stiffness and
damping as a function of frequency and raw displacement.

3.1.1. Determining the cutoff frequency. Because other
modes of vibration come into play at high frequencies, cross-
talk and/or phase rotations can affect the frequency response of
the instrument in a manner that is not described or accounted
for in the simple one-dimensional oscillator model shown
in figure 2(a). As a result, this additional motion makes it
impossible to accurately determine the dynamic stiffness and
damping of the instrument. Therefore, this cutoff frequency
must be experimentally identified and not exceeded in any
characterization work. One way to identify the cutoff is to
measure the phase angle as a function of frequency with the
indenter free hanging in space. Figure 3(a) shows the phase
angle as a function of frequency for the indentation system
used in this work. The smooth region of the curve, from
1 to 50 Hz, indicates frequencies consistent with the one-
dimensional oscillator model. The discontinuity at 53 Hz
indicates the cutoff frequency, beyond which cross-talk and/or
phase rotations from other modes of vibration contribute to
the measured response in a manner that is not modelled.
Therefore, accurate characterization of the instrumentation,
and hence the complex modulus of the sample, can be made
only over the frequency range of approximately 1–50 Hz.

3.1.2. Measuring the reference phase angle. The dynamic
measurements performed with the CSM technique are carried
out using a frequency-specific phase-lock amplifier or PLA.
As the command signal for the harmonic load travels through
filters in the PLA, a phase shift that varies almost linearly as
a function of frequency is introduced. During an experiment,
accurate measurement of the phase angle between the applied
harmonic load and the resulting harmonic displacement
therefore depends on correcting the measured phase angle for
the filter-induced phase shift.

Applying a large load (3 mN) oscillation to reduce the
signal to noise ratio, the phase angle between the applied load
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Figure 3. (a) The phase angle as a function of frequency, measured
in increments of 1 Hz with the indenter column hanging in free
space. The discontinuity at 53 Hz indicates the point at which the
difference in stiffness between the z and x–y plane is no longer large
enough to prevent (cross-talk cross-talk and/or phase rotation).
(b) The reference phase angle as a function of frequency, measured
with the indenter column hanging in free space and at the same
frequencies to be used in characterizing the sample (filter induced
phase shift).

and the load leaving the PLA is easily measured as a function of
frequency. Figure 3(b) shows the average of 15 measurements
of this reference phase angle over the range 1–50 Hz. The
error bars span one standard deviation about the mean. The
reference phase angle is used to correctly configure the PLA
at each frequency during the experiment.

3.1.3. Measuring the dynamic stiffness and damping of the
testing system. In order to maximize the accuracy of the
measured E′ and E′′, it is necessary that the instrument and
sample characterization be performed at or near the same
raw displacement, since the stiffness and damping of the
instrument are a function of position, particularly towards the
extreme ends of travel. Thus, in terms of the chronological
flow of the experiment, the dynamic stiffness and damping
can be measured only after determining the approximate
raw displacement at which the sample characterization will
subsequently take place. A number of factors affect the
determination of the appropriate raw displacement to perform
the sample characterization, as it depends on the choice of
indenter geometry and ultimately, the necessity to generate a
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Figure 4. The dynamic stiffness and damping of the testing system
as a function of frequency, measured with the indenter column
hanging in free space and at the same frequencies to be used in
characterizing the sample. The indenter is positioned at the raw
displacement (position in the capacitance gauge) that corresponds to
full contact (measured stiffness and damping in free space, raw
disp. = 18.8 µm).

contact representative of linear viscoelasticity. These factors
will be discussed in detail in section 3.2.

With the indenter tip hanging in free space and positioned
at the approximate raw displacement at which the sample
characterization will take place, the stiffness and damping
of the instrument are measured as a function of frequency
using equations (12) and (13). Clearly, these measurements
must be performed with the PLA correctly configured with
the previously measured reference phase angles. Figure 4
shows the measured stiffness and damping of the testing
system at each frequency that will be used to characterize the
sample. These data represent the average of 15 measurements.
The error bars span one standard deviation about the mean.
Among the notable features in these data are the excellent
reproducibility, and beyond resonance (14.3 Hz), the rapid
increase in the magnitude of the dynamic stiffness. Consistent
with the oscillator model and the phasor diagram in figure 1(b),
the dynamic stiffness goes to zero and the phase angle goes to
90◦ at the resonant frequency. Beyond resonance, the dynamic
stiffness is negative because the phase angle is in excess of 90◦.

The data presented in figure 4 may also be used to
experimentally confirm the validity of the assumed dynamic
model of the instrument (figure 2(a)). Assuming the model is
an accurate description of the physical motion of the system,
then adding mω2 to both sides of equation (12) and dividing
both sides of equation (13) by ω will produce constant values as
a function of frequency for both the support spring stiffness Ks

and the damping coefficient C. Using the data acquired at 1 and
50 Hz in conjunction with equation (12), the mass was found to
be 12.14 g. For each of the seven frequencies, adding the mω2

term back into the stiffness and dividing the damping by ω

led to an average stiffness of 98 N m−1 ± 4.9% and an average
damping coefficient of 2.9 Ns m−1 ±2.5%. The fact that these
values are relatively constant as a function of frequency clearly
demonstrates that the simple harmonic oscillator accurately
describes the physical motion of the system.
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3.2. Measurement of the complex modulus by dynamic
nanoindentation

In order to accurately measure E′ and E′′, the dynamic
indentation experiment must achieve steady-state harmonic
motion while the instrument and sample are coupled through
a known contact geometry. In addition, the resulting stress
and strain must be representative of linear viscoelasticity.
Once the tip geometry has been chosen, these three criteria
shape the design of the indentation experiment. As such, the
purpose of this section is to develop an indentation test
method that optimizes the accuracy and precision of the
measured E′ and E′′. The results presented in this section
were calculated in accordance with the procedure outlined in
section 2.3.

3.2.1. Determining full contact with the flat punch. Among
the reasons for choosing the flat punch indenter geometry are
(1) it effectively eliminates uncertainty in the contact area and
(2) it avoids the problem of achieving steady-state harmonic
motion in the presence of transient behaviour. However, the
flat punch is not without its drawbacks, the most significant of
which is that the punch cannot be mounted perfectly normal
to the test surface. There is always a small angle between the
face of the punch and the surface of the sample. As a result, the
test method must have a robust means of identifying the point
at which the face of the punch is brought in full contact with
the surface of the sample. In addition, the punch geometry
also creates a stress concentration along the circumference
of the contact. It is assumed that the contribution of the
stress concentration to the measured dynamic stiffness and
damping is negligible. However, this has not been confirmed
experimentally.

Figure 5 presents data from a single experiment and shows
the harmonic displacement and phase angle as a function of
raw displacement. For the sake of clarity, only 5% of the
data are plotted. Both the harmonic displacement and phase
angle can be used as a reliable indicator of the point of contact,
since the drop in both signals occurs precisely when the punch
makes contact with the surface of the sample. The criterion
for full contact between the face of the punch and surface of
the sample is thus based on the harmonic displacement and its
establishment of a stable, constant value.

3.2.2. Generating steady-state harmonic motion. A fun-
damental assumption in modelling the combined dynamic
response of the instrument and sample (figure 2(b)) is that
of a steady-state harmonic response. In order for the model to
be an accurate reflection of the physical experiment, transient
behaviour must be given enough time to dissipate such that
its effect on the dynamic response is negligible. For example,
in a load-amplitude controlled experiment performed with a
pointed indenter or sphere, creep behaviour will cause the
contact area to increase with time, which in turn will cause
the displacement amplitude to decrease until the creep tran-
sient dissipates. Only once the transient is removed is the
model presented in figure 2(b) an accurate reflection of the
experiment.
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Figure 5. The harmonic displacement and phase angle as a function
of raw displacement. These data are used to determine the raw
displacement at both the point of initial contact and full contact
between the face of the punch and the surface of the sample. The
criterion for initial contact is a specified change in the phase angle.
The criterion for full contact is a specified time rate of change in the
harmonic displacement.
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Figure 6. The raw displacement and oscillation amplitude as a
function of time for a typical measurement performed on the
sample. At each frequency, the harmonic load is different but fixed.
The resulting oscillation amplitude is constant at each frequency
only because the contact area does not change, despite the transient
behaviour in the raw displacement (steady-state harmonic motion).

A distinct advantage of the flat punch geometry is that
even in the presence of creep behaviour, the contact area cannot
change, and hence, neither can the amplitude of the oscillation.
However, if the creep rate is large enough, it is possible that the
additional strain in the vicinity of the contact may be enough
to violate the small strain assumption of linear viscoelasticity.
This undesirable effect of creep may be easily avoided by
monitoring the creep rate, while at the same time, periodically
returning the indenter to the raw displacement corresponding
to full contact. Until the measured creep rate falls below a
specified level, the experiment continues to measure the creep
rate and then return to the raw displacement at full contact.
In this way, the raw displacement is maintained at the target
position and the transient behaviour is given enough time to
effectively dissipate.
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Figure 7. The storage modulus and loss factor as a function of
frequency and static pre-compression distance. These data show
that the static pre-compression distance must be less than 5 µm in
order to generate data consistent with the assumptions of linear
viscoelasticity (complex modulus as a function of static
pre-compression).

Illustrating data from one experiment on the PVC, figure 6
shows the raw displacement and the RMS displacement
amplitude as a function of time and frequency. The change in
the raw displacement with time is due to creep. The increase
in penetration depth over the duration of the experiment is
approximately 490 nm. Despite this creep behaviour, the
contact area is constant and hence the displacement amplitude
is constant with time as well, as shown in the figure. It
is important to note that the displacement oscillation is
driven by a different, but constant force oscillation at each
frequency. Because the force and displacement amplitude
are both constant with time at each frequency, steady-state
behaviour is achieved.

3.2.3. Determining the linear viscoelastic regime. In order
to make a meaningful comparison between the DMA and
nanoindentation test results, determination of E′ and E′′

requires data representative of linear viscoelasticity. By
definition, this means that an increase in the applied load
or displacement amplitude has no effect on the measured
E′ and E′′. Therefore, only in the regime where the
measured properties are constant as a function of static
pre-compression (an increase in the applied load) and
oscillation amplitude is the condition of linear viscoelasticity
valid.

Figure 7 shows E′ and the loss factor as a function of
frequency and static pre-compression. The oscillation
amplitude was nominally 50 nm for all five compression
distances. Because tan φ is considered the fundamental
measure of damping in a linear material, the remaining test
results will be presented in terms of E′ and the loss factor.
The data in figure 7 represent an average of 15 measurements,
and the error bars span one standard deviation about the mean.
For the sake of clarity, the loss factor is represented by the
individual lines for each compression distance, but only one
set of data markers are plotted. These results clearly show that
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Figure 8. The storage modulus and loss factor as a function of
frequency and oscillation amplitude. These data clearly show that
oscillation amplitudes ranging from 50 to 3000 nm generate data
consistent with the assumptions of linear viscoelasticity
(complex modulus as a function of displacement oscillation
amplitude).

compressing the sample up to an additional 5 µm beyond the
point of full contact has no measurable effect on E′. However,
between 5 and 10 µm of compression, the measured E′ begins
to increase. Presumably, the increase is due to the additional
static strain, thereby violating the small strain assumption of
linear viscoelasticity. However, it is also possible that the
surface of the sample has made partial contact with the sides
of the punch. The fact that there is little to no measurable
change in the loss factor indicates that E′′ mirrors the change
in E′. The picture that emerges is that additional static strain
in the vicinity of the contact produces a proportional increase
in the material’s ability to store and dissipate energy such
that there is no measurable change in the material’s internal
friction.

Figure 8 shows E′ and the loss factor as a function
of frequency and oscillation amplitude. The compression
distance is 3 µm beyond the point of full contact. The data
represent an average of 15 measurements and the error bars
span one standard deviation about the mean. These data
clearly show that ranging the oscillation amplitude from 50
to 3000 nm has no measurable effect on the components of the
complex modulus. Collectively, the experimental observations
presented in figures 7 and 8 indicate that compressing the
sample an additional 3 µm past the point of full contact and
using a 50 nm oscillation amplitude results in data which are
well within the limits of linear viscoelasticity.

3.2.4. Comparing nanoindentation and DMA results.
Figure 9 presents a direct comparison of E′ and the loss
factor of highly plasticized PVC (a bulk, high-damping
thermoplastic) as determined by nanoindentation and DMA
at 22 ◦C. Both the nanoindentation and DMA data represent
the average of 15 measurements and the error bars span one
standard deviation about the mean. Clearly, the two techniques
produce similar results over the range 1–25 Hz. At 1 Hz, where
the disparity in E′ is greatest, the difference between the two

8



J. Phys. D: Appl. Phys. 41 (2008) 074021 E G Herbert et al

0

2

4

6

8

10

12

1 10

DMA

nanoindentation
S

to
ra

g
e 

m
o

d
u

lu
s 

(M
P

a)

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

1 10

L
o

ss
 f

ac
to

r 
(-

)

Frequency (Hz)

Figure 9. The complex modulus as a function of frequency as determined by dynamic nanoindentation and DMA (highly plasticized
PVC at 22 ◦C).

techniques is still within 15%. Between 30 and 35 Hz, the
DMA data unexpectedly break from the smooth curve for
unknown reasons. Conversely, over the full frequency range
1–50 Hz, the nanoindentation data give a smooth curve that
is consistent with expectations for the behaviour of a bulk,
isotropic, homogeneous viscoelastic solid well above its glass
transition temperature. While the nature of the discrepancy
in the DMA data is unknown, it is important to recall that
the instrument was completely calibrated in accordance with
the procedure provided by TA Instruments. Nevertheless,
in comparing the nanoindentation and DMA data, the clear
message is the two characterization techniques produce very
nearly the same results.

4. Summary and conclusions

The data presented in this work demonstrate the ability
of nanoindentation to accurately and precisely measure the
complex modulus of linear viscoelastic solids. Successful
application of the technique requires rigorous characterization
of the frequency response of the measurement system itself.
For the measurement system used in this study, the crucial
parameters are the reference phase angle of the phase-
lock amplifier and the dynamic stiffness and damping of
the instrument, both of which depend on the frequency
of the measurement and the position of the centre plate
in the capacitance gauge. Because of cross-talk and/or
phase rotations, there is a cutoff frequency above which
the instrument’s frequency response cannot be accurately
modelled. This cutoff frequency must be experimentally
determined and not exceeded in any measurements. In order
to confirm the accuracy of the nanoindentation test results,
experimental verification should be provided to prove the data
are representative of steady-state harmonic motion, a known
contact geometry and linear viscoelasticity. Only under these
conditions are the measured storage and loss modulus uniquely
related to the transient functions from which they are derived,
namely, creep and stress relaxation.
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