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This paper presents formulae for visco-elastic-plastic response to indentation for various
indenter shapes and times of loading, and describes a procedure for obtaining parameters
of creep compliance function from monotonic load. The application is illustrated on
PMMA, whose properties are measured under constant load and in a load-unload test.
A discussion follows on the influence of indenter shape, various forms of creep compliance
function and the relation between the test duration and the model. Also, other information
obtainable from nanoindentation tests is mentioned: apparent modulus, hardness and
components of creep compliance function.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Instrumented indentation, also called nanoindentation,
provides information about mechanical properties from
indenter load and displacement measured continuously
during loading and unloading. The advantages are a very
small loaded volume, negligible damage and no special
demands on test specimens except small size and smooth
surface. Indentation methods are well developed for the
determination of elastic modulus and hardness in elastic-
plastic materials [1–3]. They are also suitable for testing of
polymers and other materials with deformation depending
not only on the load magnitude, but also on its duration
(Fig. 1). In this case, the devices for instrumented indenta-
tion can provide the parameters of creep function from the
load and displacement data recorded as functions of time.

The first papers about characterization of viscoelastic
properties by nanoindentation appeared in the nineties,
e.g. [4–7]. Very simple models were followed by more
�cík).

. All rights reserved.
complex models and procedures [8–24], based on the
theory of viscoelasticity [25–27]. Useful insight has also
been obtained by finite element modeling [28]. The solid
theoretical base, on the other hand, has enabled a unified
approach and simple notation, suitable for practical use
[15,16,20]. This will also be used in this paper, the aim of
which is to provide general information on indentation
testing of viscoelastic-plastic materials under monotonic
load. (For testing under harmonic load see [29–31].)

The next section presents the main formulae. Then,
a procedure is described for obtaining parameters of creep
compliance function. Practical application is illustrated on
polymethyl-methacrylate. The following discussion on the
general properties of creep functions can help in the choice
of test conditions and a suitable model. The last part of the
paper shows some additional information obtainable from
nanoindentation tests.

2. Theory

In elastic-plastic materials, such as metals or ceramics,
low stresses cause only elastic deformations, which disap-
pear after unloading. Stresses exceeding the material’s
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Fig. 1. Indenter penetration into PMMA under constant load during dwell II.
Six tests. h – depth, t – time.
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yield strength also cause plastic flow and permanent
deformation. All these processes are usually considered as
instantaneous.

The response of viscoelastic materials is more complex
and depends on the stress level and thematerial’s structure
and bonds. In solid polymers, low stresses cause instanta-
neous elastic deformations and also delayed ones, which
are reversible and disappear some time after unloading. In
some materials, slow irreversible viscous flow also occurs.
High stresses cause permanent changes in all viscoelastic-
plastic solids, which can be either instantaneous (plastic) or
time-dependent (viscous).

The load response can be described by various models,
with parameters obtainable (also) from nanoindentation
tests. When preparing these tests, one must know what
information is needed. The stresses in many components
are low, causing only reversible deformations. Thus, the
stresses in the tests for study of this behavior should also be
low. This can mean a limitation on the choice of indenter
shape. There are three principal shapes: pointed, spherical,
and cylindrical with flat end. Pointed indenters are very
common, e.g. Vickers or Berkovich (Fig. 2), especially for
the determination of hardness and elastic modulus.
However, the stress concentration under these indenters is
very high and usually leads to permanent deformation.
With spherical indenters, the contact stresses are low for
F

hr hc h

A

0
BC

hc h

F

Fig. 2. Load–depthcurvesof an indentation test (a schematic).F– load,h– total
depth of penetration, hc – contact depth, hr – residual depth after unloading.
Dotted curve at the right – unloading curve typical of viscoelastic materials.
low loads and large indenter radii, and gradually growwith
increasing load. If this load exceeds some value, irreversible
deformation occurs as well.
2.1. Formulae for indentation testing of elastic-plastic
materials

The principal characteristics in nanoindentation tests,
hardness H and elastic modulus E, are determined from
a load-unload cycle (Fig. 2). Hardness is defined as the
mean contact pressure under the loaded indenter:

H ¼ pm ¼ F
A

(1)

F is the load and A is the projected contact area, deter-
mined from the contact depth hc, calculated from the total
penetrationh, indenter loadand contact stiffness S (¼dF/dh)
at the beginning of unloading (Fig. 2). Most often, the
formula by Oliver and Pharr [1] is used:

hc ¼ h� 3
F
S

(2)

where e is a constant (e ¼ 0.75 for a spherical or pointed
indenter, and e ¼ 0 for a flat punch). The stiffness S is
determined from the unloading curve fitted by a regression
function [1]:

F ¼ k
�
h� hp

�m (3)

with empirical constants k, hp and m. Contact area for
a Berkovich or Vickers indenter is A z 24.5 hc

2; for
a spherical indenter of tip radius R and small depth of
penetration, A ¼ 2pRhc. The contact area and stiffness also
serve for the determination of the reduced modulus Er:

Er ¼
ffiffiffi
p

p
2b

Sffiffiffi
A

p (4)

b is the correction factor for indenter shape (b ¼ 1 for
circular contact and 1.05 for Berkovich indenter). Er is
related to the elastic (Youngs)modulus E and Poisson’s ratio
n of the sample (no subscript) and indenter (subscript i) as

1=Er ¼ �
1� n2

��
E þ �

1� n2i
��

Ei (5)

Equation (4) is valid for elastic as well as elastic-plastic
indentation and for any indenter of axisymmetrical shape.
For purely elastic contact with a spherical indenter, Hertz’
formulae may also be used:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9F2

16RE2
r

3

s
(6)

pm ¼ 1
p

ffiffiffiffiffiffiffiffiffiffi
6FE2

r

R2

3

r
(7)

The elastic modulus can be obtained from the load and
displacement using the rearranged Eq. (6), or by fitting
several points h(F) by Eq. (6). Contact depth is related to the
total depth of elastic penetration as hc ¼ h/2.
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2.2. Theoretical background for characterization of
viscoelastic properties by indentation

The load response of solid polymers depends on the
load magnitude and duration. Deformation grows even
under constant load (Fig. 1), and after unloading it gradu-
ally diminishes. The mean contact pressure decreases with
the time under load.

If the deformation is only reversible and small, it can be
calculated using the elastic solution with the apparent
modulus E(t) or creep compliance function J(t) corre-
sponding to the time t under load. There are two limit
cases: very short duration of loading and very long time
under load, with the “instantaneous” modulus E0(t / 0)
and asymptotic value EN(t / N), respectively. The time
course of J(t) or E(t) can be determined, e.g., by indentation.

In load-unload nanoindentation tests, common for the
determination of elastic modulus and hardness, a role is
played by the velocity of load increase and the time under
load. Also, due to delayed response, the unloading part of
the F–h curve is often distorted – more convex than for
elastic materials (dotted curve in Fig. 2). As a consequence,
the apparent contact stiffness S, determined from the
unloading curve as (dF/dh)Fmax, is higher than the actual
value. This can lead to an error in the determination of
contact depth and area, as well as of the elastic modulus
and hardness [28,32–34].

The influence of viscoelastic after-effects can be reduced
in various ways. Often, a dwell time is inserted between the
loading and unloading. Cheng and Cheng [28] recommend
very quick unloading. According to Chudoba and Richter
[33], the effect of delayed deforming on the unloading
curve may be neglected if the penetration depth grows less
than 1% per minute. It is also reduced if the contact depth is
calculated using the effective contact stiffness S, proposed
by Feng and Ngan [34]:

1
S
¼ 1

Sapp
þ

_hd

j _Fuj
(8)

Sapp is the apparent stiffness, obtained fromthe unloading
curve by the common Oliver & Pharr procedure; _hd is the
indenter velocity (dh/dt) at the end of dwell, and _Fu is the
load decrease rate dF/dt at the beginning of unloading.

Adisadvantage of this approach is that the indenter depth
h at the beginning of unloading is larger than at the end of
load increase. This results in larger contact area and lower
apparent hardness. Moreover, it is generally insufficient to
characterizematerialswhichflowunder load only by a single
value of hardness or elastic modulus. The time-dependent
properties are described better by rheological (spring-and-
dashpot) models, which are universal and their parameters
may be used in commercial software for finite element
analysis. Theseparameters canbeobtainedbyfitting the time
course of indenter penetration by a suitable creep function.

The pertinent formulae are based on the approach
proposed by Lee and Radok [25,26]. This approach uses the
elastic solution, but replaces the elastic constants by
a viscoelastic integral operator. The relationship between
the indenter load F and depth h of penetration under
monotonic load can be expressed as
hmðtÞ ¼ K jðF; J; tÞ (9)

m and K are constants for the indenter geometry, and j (F, J,
t) is a response function depending on the load, material
parameters and time. For pointed indenters (cone, Berko-
vich or Vickers), m ¼ 2 and K ¼ p/(2 tana); a is the semi-
angle of indenter tip or of equivalent cone; for Berkovich
and Vickers, a¼ 70.3�. For a spherical indenter,m¼ 3/2 and
K ¼ 3/(4OR), where R is the tip radius.

The general form of response function for linearly
viscoelastic materials is [27]:

jðtÞ ¼
Z t

0
Jðt � uÞ½dF=du�du (10)

J(t) is the creep compliance function – a basic material
characteristic expressing the time course of its response to
a step unit load; t is time, and u is a dummy variable for
integration. For constant load after step change from 0 to F,

jðtÞ ¼ FJ ðtÞ (11)

However, there is always some period of load increase.
Fortunately, there are two load regimes, leading to simple
response functions. If the load grows by a constant rate
k ¼ dF/dt ¼ const,

jðtÞ ¼ k
Z t

0
Jðt � uÞdu (12)

In this case, the test duration is limited by attaining the
maximum possible force F. For longer times, a two-step
arrangement is better. The load first grows by a constant
rate k to the nominal value F, and then it is held constant.
For this second period, Eq. (12) can be used, with the upper
integration limit t equal to the duration of load increase,
tR (¼ F/k).

2.3. Creep compliance and response functions

2.3.1. Reversible viscoelastic deformation
A universal model consists of a spring in series with one

or more Kelvin-Voigt bodies (a spring in parallel with
a dashpot). The creep compliance function for the model
with n Kelvin-Voigt bodies is

JðtÞ ¼ C0 þ
Xn
j¼1

Cj
�
1� exp

��t=sj
��

(13)

C0 and Cj are compliance constants, and sj is time
constant (retardation time), related to the compliance Cj of
the spring and dynamic viscosity hj of the dashpot in the j-
th Kelvin-Voigt body as sj¼ hjCj. Creep compliance function
is related to the apparent reduced modulus as

JðtÞ ¼ 1=ErðtÞ (14)

Its time-independent part, C0, corresponds to the recip-
rocal of reduced elastic modulus, 1/Er,0. With a stiff
indenter,

C0 ¼ �
1� n2

��
E0 (15)

Equation (13) can also be written in the form of a Prony
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series, used in computer codes for finite element analysis of
viscoelastic and creep problems:

JðtÞ ¼ B0 �
X

Cjexp
��t=sj

�
; j ¼ 1; 2. n (16)

where B0 ¼ C0 þ P
Cj

Indentation creep under constant load F after step
change at t ¼ 0 is described by Eq. (11) with the creep
compliance function (13). If the load first increases from
zero with constant rate k and, after reaching the nominal
value F is kept constant, the combination of Eqs. (12) and
(13) gives for t � tR:

jðtÞ ¼ F
n
C0 þ

X
Cj
�
1� rjexp

��t=sj
�� o

(17)

where rj is a ramp correction factor, as introduced by Oyen
[16]:

rj ¼
�
sj=tR

��
exp

�
tR=sj

�� 1
�

(18)

For loading with short load increase compared to the
retardation times, tR « sj, the ramp correction factor rj is
close to 1; it attains 1.025 for tR/sj ¼ 0.05 and 1.05 for tR/
sj ¼ 0.1, and grows rapidly for higher ratios of tR/sj.

2.3.2. Viscoelastic-plastic response
In some cases, irreversible deformations also occur.

They can be time-independent (plastic), or time-dependent
(viscous). Plastic behavior can be characterized by a slider
in the rheological model. Its characteristic (¼ yield strength
Y or hardness H0) is contained together with that for the
instantaneous elastic response (E0) in the compliance C0.
The time-dependent irreversible viscous deformation is
characterized by a dashpot of viscosity h, arranged in series
with the other bodies. The creep compliance function is

JðtÞ ¼ C0 þ cvt þ
X

Cj
�
1� exp

��t=sj
��

(19)

cv ¼ 1/h is viscous compliance. The response function for
indentation creep under constant force F after the load
increase period tR is

jðtÞ¼ F
n
C0þcvðt�tR=2Þþ

X
Cj
�
1�rjexp

��t=sj
��o

(20)

The term –FtR/2 reflects the fact that the viscous defor-
mation during the load increase is proportional to the
average force F/2. If no irreversible viscous flow occurs,
cv ¼ 0.
 F

t0

I.

II.

III.

IV. V.

Fig. 3. Five-step procedure (I. – V.) for the determination of parameters in
creep compliance function.
3. Procedure for the determination of viscoelastic-
plastic properties

The parameters in the creep compliance functionmay be
obtained from the time course of indenter penetration
under load. A universal five step procedure is shown in
Fig. 3. In thefirst step (I) of duration tR, the indenter is loaded
at constant rate k to thenominal load F. A dwell time II under
this load follows, then unloading III to a very low load Fu,
followed by a dwell time IV and unloading to zero (V). The
response during dwell II serves for the determination of
viscoelastic parameters, while the back-creep during the
low load dwell IV serves for revealing the irreversible
components of deformation and check of the duration of
reversible processes and the number of Kelvin-Voigt
elements.

The loading in step I should be fast in order to reduce the
time-dependent processes here. The dwell II under
constant load should last so long that the duration of all
reversible viscoelastic processes can be assessed. The
unloading III should also be fast, and the constant load Fu in
the following period IV should be very low, so that the
indenter only remains in contact with the specimen and
serves for monitoring of deformation recovery. The period
IV should last about the same time as period II.

The constants in the creep compliance function are
obtained from the dwell II. For the response function (19),
equation (10) gives for t � tR:

hmðtÞ¼FK
n
C0þcvðt�tR=2Þþ

X
Cj
�
1�rjexp

��t=sj
��o

(21)

F is the nominal load, andm, K are constants for the given
indenter shape, as defined at Eq. (9). If no irreversible
viscous flow occurs, all terms with cv are left out. The
constants C0, cv, C1, s1, r1, etc. can be obtained byminimizing
the sum of squared differences between the measured and
calculated hm(t) values. However, the actual procedure
must be modified. Equation (21) contains several terms
which do not depend on time: C0, cvtR/2 and Cj, and
regression analysis can determine them only as a whole.
Moreover, the terms Cjrj are present, with the ramp
correction factors rj depending on the retardation times sj,
which are as yet unknown. Actually, Eq. (21) corresponds to
the series (16) extended by cvt:

hmðtÞ ¼ FK
h
B0 þ cvt �

X
Djexp

��t=sj
�i

(22)

with

B0 ¼ C0 � cvtR=2þ
X

Cj; andDj ¼ Cjrj; j ¼ 1; 2; 3. (23)

The determination of model parameters proceeds in
three steps:

Step 1. Calculation of regression constants B0, cv, Dj and
retardation times sj in the proposed model by fitting the
hm(t) data from period II (for t � tR) by the function (22).
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Step 2. Calculation of the ramp correction factors rj from
Eq. (18) for the known duration tR of load increase and the
retardation times sj. Then, the constants Cj are found as
Cj ¼ Dj/rj.

Step 3. Determination of C0 from Eq. (23) as

C0 ¼ B0 þ cvtR=2�
X

Cj (24)

Besides these measurements, tests with fast loading and
unloading can also be done in order to obtain “instanta-
neous” elastic modulus and hardness; cf. Section 2.1.

4. Experimental part

The method for obtaining viscoelastic-plastic parame-
ters was tested on polymethyl-methacrylate, epoxy resin
and tooth enamel. In all tests, the character and quality of
results was similar. Therefore, only the tests with PMMA
(heat cured dental acrylic, manufacturer: Vertex-Dental
B.V.) are described here; for tooth enamel, see [21]. AUMIS-
2000 nanoindenter with diamond Berkovich indenter was
used. Two groups of tests were done; one for obtaining
viscoelastic parameters from the creep data, and the other
for the determination of elastic modulus and hardness.

4.1. Creep tests

Six tests were made according to the five step loading
scheme (Fig. 3). As the purpose of this study was to obtain
a better idea about the possibilities of modeling the load
response of viscoelastic solids, a long dwell under load was
used and also several rheological models. The indenter load
grew for 18 s to the nominal value F¼ 201mN and thenwas
held constant for 3700 s. Then, it was unloaded in 24 s to
Fu ¼ 10 mN, kept constant for 3630 s and then unloaded to
zero. The characteristic depths grew under nominal load
from 6.0 to 7.6 mm. During unloading to Fu they decreased
quickly to 4.7 mm and then (during the following dwell)
gradually to 3.5 mm.While the indenter penetrated into the
specimen all the time under nominal load without signs of
stopping, the back-creep after unloading to Fu ceased after
about 1800 s. The differences between individual h–t
curves were small (Fig. 1).

The load-displacement curve during dwell II was
approximated by seven models described by Eq. (22): 1)
S þ KV, 2) Sþ 2 KV, 3) Sþ 3 KV, 4) Sþ 4 KV, 5) S þ D þ KV,
6) S þ Dþ 2KV, 7) S þ Dþ 3KV; Smeans spring, Ddashpot,
and K-V Kelvin-Voigt body. The constants B, cv, Dj and sj in
Eq. (22) were obtained by minimizing the sum of the
squared differences between the quadrates of themeasured
and calculated depths, S[hm2 (tj) – hc

2(tj)]2, using the solver in
Excel. Then, the ramp correction factors rj and constants C0,
Cj were found. The quality of fit was also illustrated by the
relative differences between measured and calculated
values, Drel,j ¼ [hm(tj) – hc(tj)]/hm(tj).

The results can be summarised as follows. The creep
compliance function (21)with several exponential terms has
proved very suitable for the characterization of long visco-
elastic processes.Verygoodfits (relative errorsnotexceeding
a few tenths of a percent anywhere) were obtained for
models Sþ 4 KV, Sþ 3 KV, S þ Dþ 3 KV and S þ Dþ 2 KV.
Good fits were also obtained with models S þ D þ KV and
Sþ 2KV; the errorsmade tenths of a percent for longer times
and up to a few percent at the beginning of the test. With
the simplest model, Sþ 1 KV, the differences between the
measured and calculated values were obvious, with the
maximum difference 11% for short times. Two examples
(S þ Dþ 2KVandS þ KV) are shown in Fig. 4. Tables 1 and2
show the constants in creep compliance functions for two
models with good fit (S þ Dþ 2 KV and Sþ 3 KV). Inmodels
with two or more K-V bodies, similarly good fits were
obtained regardless of whether or not a dashpot was used.
However, the loaded indenter continued penetrating after
1 h without signs of stopping, but the back-creep essentially
ceased after half an hour (Fig. 5). This indicates that high
stresses beneath the sharp indenter tip promoted irrevers-
ible viscous flow, so that a dashpot in series with other
elements is more appropriate in the model.

As obvious from the tables, the retardation times sj and
constants Cj in various models were different; even the
“instantaneous" compliance C0 differed by up to 38%. Also,
the constants in the same model varied significantly
between individual indents. On the other hand, good fits
were also obtained if fixed retardation times were chosen
(about the averages of "free" values) and only the constants
C0, C1, . were optimized. In this case, the sum of squared
differences was somewhat higher, but the differences
between constants in the individual tests were smaller.
Despite significant differences between the fixed and "free"
retardation times, the resultant creep compliance functions
were close each other. Table 1 also shows the sums of
squared differences between the measured and calculated
values; the difference between both approaches is not large.



Table 1
Creep compliance function for PMMA. Test parameters: Berkovich indenter, F ¼ 201 mN, time under load: 3700 s. Model: Spring þ Dashpotþ 2 K-Voigt
bodies. SSQ – sum of squared differences between the measured and calculated values.

Test No. C0 (m2/N) cv (m2/Ns) C1 (m2/N) C2 (m2/N) s1 (s) s2 (s) SSQ

a) All constants were obtained by the least squares method.
1 2.969E-10 1.482E-14 9.707E-11 5.316E-11 25.37 440.27 4.937Eþ00
2 3.103E-10 1.101E-14 9.558E-11 5.902E-11 32.90 643.75 7.721Eþ00
3 2.923E-10 1.337E-14 1.023E-10 5.792E-11 20.16 357.73 2.665Eþ00
4 3.075E-10 1.058E-14 9.736E-11 5.627E-11 29.79 545.86 9.503Eþ00
5 3.094E-10 8.011E-15 9.926E-11 6.294E-11 31.37 664.06 7.669Eþ00
6 3.054E-10 1.006E-14 1.001E-10 5.651E-11 28.82 539.54 8.441Eþ00

b) Retardation times s1, s2, s3 were chosen, the other constants were obtained by the least squares method.
1 2.940E-10 1.408E-14 1.021E-10 5.322E-11 25.0 500.0 5.449Eþ00
2 2.992E-10 1.269E-14 1.008E-10 5.943E-11 25.0 500.0 8.737Eþ00
3 2.983E-10 1.174E-14 1.047E-10 5.446E-11 25.0 500.0 5.735Eþ00
4 2.992E-10 1.103E-14 1.029E-10 5.752E-11 25.0 500.0 9.704Eþ00
5 3.009E-10 1.015E-14 1.016E-10 6.211E-11 25.0 500.0 9.187Eþ00
6 2.985E-10 1.046E-14 1.047E-10 5.752E-11 25.0 500.0 8.593Eþ00
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4.2. Elastic modulus and hardness

Elastic modulus E and hardness H were determined in
eight standard “load-unload” tests according to Fig. 2 and
Eqs. (1)–(4), with the stiffness correction (8). The load
increase to the nominal load 300 mN lasted 23 s, the dwell
under nominal load lasted 62 s, and the unloading lasted
20.6 s.

The scatter of all results was very small, below 1%. The
average values were: E¼ 3.66 GPa (individual values varied
between 3.62 and 3.67 GPa) and H ¼ 0.205 GPa (0.203–
0.207 GPa); the maximum depths h varied between 8.12
and 8.20 mm. The indentation modulus was close to the
values obtained by the authors for commercial sheet PMMA
in bending tests with fast loading (3.7–3.9 GPa at 0.45 s,
decreasing to 3.0 GPa after 1000 s).

5. Discussion

The creep compliance function (19) was able to fit the
experimental data very accurately, but differences existed
between the constants obtained for various models. One
must be aware that the parameters in a creep function have
no exact physical meaning. They should be understood just
as regression constants which depend on the material,
indenter shape, rheological model and test duration. Thus,
Table 2
Creep compliance function for PMMA. Test parameters: Berkovich indenter, F ¼

Test No. C0 (m2/N) C1 (m2/N) C2 (m2/N)

a) All constants were obtained by the least squares method.
1 3.755E-10 1.041 E-10 5.008 E-11
2 3.574E-10 1.084E-10 5.140E-11
3 4.024E-10 1.044E-10 5.411E-11
4 3,448E-10 1,132E-10 5,250E-11
5 3,416E-10 1,140E-10 5,098E-11
6 3,438E-10 1,128E-10 5,151E-11

b) Retardation times s1, s2, s3 were chosen, the other constants were obtained
1 3,643E-10 1,104E-10 2,870E-11
2 3,672E-10 1,011E-10 4,686E-11
3 3,601E-10 9,977E-11 4,850E-11
4 3,595E-10 9,939E-11 4,972E-11
5 3,597E-10 9,864E-11 5,272E-11
6 3,557E-10 1,011E-10 5,067E-11
if a creep compliance function is to serve for response
characterization of a polymeric material, it must be used as
a whole, with clearly defined conditions of its validity (e.g.
time interval). Any constant alone is not sufficient as
a characteristic.

For elastic deformations, the modulus E0 can be related
to the instantaneous compliance C0 by Eq. (15). Inserting
the average indentation modulus 3.66 GPa and Poisson’s
ratio 0.35 gives C0 ¼ 2.40� 10�10 m2/N. This is less than the
values of creep compliance function obtained by fitting the
creep data (3.0–3.6 � 10�10 m2/N). The higher compliance
C0 in the latter case was obviously due to the fact that the
very high stresses under the Berkovich indenter also
caused plastic deformation. (The relationship between C0
and E0 is discussed in [21].)

The test parameters, especially thedurationand indenter
shape, should be arranged with respect to the character of
the tested material and its potential use. As shown by Oyen
[15,16], the creep compliance function from tests with
a pointed indenter is sometimes not interchangeable with
that obtained by a spherical indenter, and vice versa. The
stresses under a pointed indenter are very high and also
cause irreversible plastic and viscous flow. However, many
polymeric materials are exposed to low stresses. In such
cases, tests with a spherical indenter are better. Equation (7)
can help in finding a proper combination of tip radius and
201 mN, time under load: 3700 s. Model: Springþ 3 K-Voigt bodies.

C3 (m2/N) s1 (s) s2 (s) s3 (s)

1.046 E-10 13.3 171.9 2944.4
9.245E-11 10.8 127.2 1914.5
1.172E-10 17.0 269.9 5514.4
8,248E-11 10.6 137.0 1926.2
8,130E-11 10.1 115.2 1514.5
7,929E-11 11.2 137.7 1847.8

by the least squares method.
9,245E-11 13.0 130.0 1800.0
9,172E-11 13.0 130.0 1800.0
8,300E-11 13.0 130.0 1800.0
8,235E-11 13.0 130.0 1800.0
8,150E-11 13.0 130.0 1800.0
7,967E-11 13.0 130.0 1800.0
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load so that the contact pressure does not exceed the limit
for plastic flow; this limit pressure is obtainable from tests
with a pointed indenter and Eq. (1).

If a new material is investigated, it is important to
ascertain the duration of reversible viscoelastic processes.
A short test, lasting only tens of seconds, often gives
incomplete information, and extrapolation of the corre-
sponding creep compliance function J(t) to long times can
lead to significant errors (Fig. 6). The test duration should
be similar to the duration of delayed reversible processes or
of the load action in applications.

In a long term test, it is reasonable tofit the experimental
h(t) data by several creep compliance functions, and choose
a model which fits the datawell, but is not too complicated.
The number of K-V elements depends, in general, on the
duration of the investigated process. The response of
a Kelvin-Voigt body, described by Cj[1 – exp(– t/sj)], is active
within about two orders of time; roughly for 0.03 < t/
sj < 3.0. For example, 1 – exp(–0.03) z 0.03. Thus, for t/
sj< 0.03 the bodyhardly started reacting, and until this time
it behaves as if it were stiff. On the other hand, 1 – exp
(–3) z 0.95, so that for t/sj > 3 nearly the full deformation
has been reached, and the resultant response corresponds
to a spring of compliance Cj alone. Therefore, longer
processes needmoreK-V bodies in themodel. Their suitable
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Fig. 6. Indenter penetration into PMMA – measured and calculated for
various models (after [22]). The measurement lasted 3000 s, but only the
first 600 s were used for the data fitting.
number can be checked from the back-creep during the low
load dwell.

For models with only a few constants (�4), Solver easily
finds the “best” parameters (C0, C1, s1.). With more
constants, various “optimum” parameters are sometimes
found for different starting values used in the search. The
differences between J(t) curves for individual fits are often
negligible. Hence, it is possible to choose fixed retardation
times sj reasonably scaled, for example s1 ¼ 1 s, s2 ¼ 10 s,
s3 ¼ 100 s, etc. Solver then must seek only the constants C0,
C1, etc., (which are only parameters in the model, valid for
some time range.)

For polymers intended for long term loading, it is
important to ascertain whether the indenter has stopped
during the test or not. The former case can occur in tests
with spherical indenters and low contact pressures, while
continuting penetration is commonwith pointed indenters,
with maximum contact stresses exceeding the limit for
irreversible viscous flow. If the indenter has stopped, the
number of K-V bodies should correspond roughly to the
number of time orders of this process. For example, if
tstop ¼ 300 s, two or three K-V bodies are sufficient and the
model may also be used for longer times. If the indenter
continues penetrating into the specimen at the end of test,
the number of Kelvin-Voigt bodies should correspond to the
test duration, and themodelmay be used only for processes
not significantly longer than this time. Extrapolation can be
dangerous; also the form of the creep compliance function
J(t) plays a role (Fig. 6). The test should, therefore, last as long
as possible, a limitation sometimes being the time-stability
of the indentation device.

The load increase at the beginning of the test should be
fast. The shortest retardation time, which can be revealed
by indentation test, s1, is comparable with the duration of
load increase, tR. Very fast processes (compared to tR)
cannot be revealed, and their parameters are hidden in the
“time-independent” compliance constant C0. Fortunately,
the detailed knowledge of response during the first instants
of loading is often not necessary.

6. Further information on viscoelastic response from
indentation tests

Indentation testing can give also other useful informa-
tion, for example about apparent modulus and hardness, or
relative importance of individual deformation processes.
6.1. Apparent modulus E(t)

Deformation of a viscoelastic body under monotonic
load is directly proportional to the creep compliance
function and indirectly proportional to the apparent
reduced modulus, so that

ErðtÞ ¼ 1=JðtÞ (25)

the uniaxial apparent modulus E(t) is obtained from Er via
Eq. (5). The Poisson’s ratio n is often assumed constant. For
very compliant viscoelastic materials, incompressibility
(n¼ 0.5)may be assumed; for solid polymers usually n< 0.5.
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Caution is necessary if irreversible deformations occurred
during the test, as they are implicitly contained in J(t).

6.2. Apparent hardness H(t)

Hardness, defined as the mean contact pressure under
load, characterizes the resistance against penetration by
another body. In viscoelastic materials it decreases with
time as

HðtÞ ¼ F=AðtÞ (26)

For a pointed indenter, A(t) ¼ khc
2(t). Cheng and Cheng

[28] have shown by finite-element modeling that the ratio
of contact depth to the depth of indenter penetration into
viscoelastic materials is constant, independent of the rate
or duration of loading, hc/h ¼ const. For a pointed indenter,
h2(t)w J(t), so that H(t) ∼ F/J(t). Thus, if the “hardness” H(t0)
from a load-unload test with a characteristic time t0 is
known, the mean contact pressure H(t), corresponding to
another time t under load, can be calculated as

HðtÞ ¼ Hðt0ÞJðt0Þ=JðtÞ (27)

where J(t0) is the value of creep compliance function cor-
responding to t0. A similar approach was used by Oyen [16].

6.3. Importance of various deformation processes

The simplest characteristic is the ratio J(0)/J(t) or J(0)/J(N),
showing what part of the total compliance is instantaneous.
The reciprocal, J(N)/J(0), can be used for the estimation of
maximum possible deformation. These non-dimensional
quantities enable the comparison of response of various
materials. Also, other characteristics can be defined. The
elements in a spring and dashpot model correspond to
various processes in the material (with retardation times
s1, s2.), although these relations can be rather loose. The
constants C0, C1. in the creep compliance function reflect
the significance of these processes and together they form
the retardation (relaxation) spectrum. The quantities C1/C0,
C2/C0. or C0/CN, C1/CN. express the relative proportions
of individual processes.

7. Conclusions

Load response of polymeric materials may be charac-
terized by a creep compliance function, whose parameters
can be obtained from the time course of indenter pene-
tration. The paper has presented formulae and a procedure
for the preparation and evaluation of such tests, and
analyzed the results obtained by experiments. The
parameters in a creep function have no rigorous physical
meaning and should be understood as regression constants
of a particular model rather than genuine material char-
acteristics. The arrangement of tests (indenter shape, creep
compliance function and test duration) must be chosen
with respect to the purpose of measurement. High stresses
under a pointed indenter cause irreversible plastic and
viscous deformations. If only low stresses are expected in
applications, spherical indenters and low loads are better.
The test duration and number of elements in a model
should be adjusted to the times common in applications or
to the duration of delayed processes.
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