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Jiří Němeček ⇑, Vlastimil Králík, Jaroslav Vondřejc
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a b s t r a c t

The main aim of this paper is to develop and verify simple but effective model for elastic properties of a
porous aluminium foam system and to compare results received from experimental micromechanics
with solutions given by analytical or more advanced numerical methods. The material is characterized
by a closed pore system with very thin but microscopically inhomogeneous pore walls (�0.1 mm) and
large air pores (�2.9 mm). Therefore, two material levels can be distinguished. The lower level of the pro-
posed model contains inhomogeneous solid matter of the foam cell walls produced from an aluminium
melted with admixtures. Elastic parameters as well as volume fractions of microstructural material
phases at this level are assessed with nanoindentation and effective properties computed via analytical
and numerical homogenization schemes. The effective Young’s modulus of the cell walls was found close
to 70 GPa irrespective to the used homogenization procedure.

The higher model scale contains homogenized cell walls and a significant volume fraction of air voids
(91.4%). Since analytical schemes fail to predict effective properties of this highly porous structure,
numerical homogenization based on a simple two dimensional finite element model is utilized. The
model geometry is based on foam optical images from which an equivalent beam structure is produced
using Voronoi tessellation. Effective foam Young’s modulus was found to be 1.36–1.38 GPa which is in
relation with �1.45 GPa obtained from uniaxial compression experiments.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Metal foams and especially lightweight aluminium foams be-
long to the group of up-to-date engineering materials with high
potential to many applications. Metal foam is a highly porous hier-
archical material with a cellular microstructure. Macroscopically, it
can be characterized by attractive mechanical and physical proper-
ties such as high stiffness and strength in conjunction with very
low weight, excellent impact energy absorption, high damping
capacity and good sound absorption capability. The usual source
material for the production of metal foams are aluminium and alu-
minium alloys because of low specific density (�2700 kg/m3), low
melting point (�660 �C), non-flammability, possibility of recycling
and excellent corrosion resistance. The metal foams are used in
applications ranging from automotive and aerospace industries
(e.g. bumpers, car body sills, motorcycle helmets) to building
industry (e.g. sound proofing panels). Our aim has been to charac-
terize and to model a commercially available foam Alporas pro-
duced by Shinko Wire Company, Ltd. This paper, that is devoted

to the micromechanical characterization of this material, is an up-
dated and revised version of the conference paper [1].

Alporas [2,3] is characterized with a hierarchical system of
pores containing different cell morphologies (in shape and size)
depending on the foam density and inhomogeneous material prop-
erties of the cell walls [2,4]. A typical cross section of the foam can
be seen in Fig. 1 where large pores (having typically 1–13 mm in
diameter) are shown with detailed view on thin walls (�100 lm
thick).

It follows from its hierarchical microstructure that the mechan-
ical properties of metal foams are governed by two major factors:

(i) cell morphology (shape, size, and distribution of cells) and
(ii) material properties of the cell walls [4].

Traditionally, mechanical properties of metal foams are ob-
tained using conventional macroscopic testing techniques on large
samples that can give overall (effective) properties, e.g. [5–10].
However, conventional measurements face significant obstacles
in the form of very small dimensions of cell walls, low local bearing
capacity, local yielding, and bending of the cell walls. These
problems can be overcome using micromechanical experimental
methods in which the load–displacement curve is obtained in the
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sub-micrometer range. A few attempts have been carried out in the
past, e.g. [4,7].

The paper develops a bottom-up approach for modeling the
elastic properties of metal foam starting from lower level at which
microscopic measurements, nanoindentation, and statistical
deconvolution for the phase separation [11–13] are utilized. Com-
pared to traditional macroscopic techniques, nanoindentation can
distinguish between individual inhomogeneous microstructural
entities. The effective cell wall properties have been obtained
through analytical and numerical up-scaling techniques [14].

Finally, simple 2-D finite element model for the upper compos-
ite scale has been proposed and results validated against full-scale
experiments.

2. Experimental part

2.1. Materials and sample preparation

Commercial aluminium foam Alporas� (Shinko Wire Company,
Ltd) was used in this study. The manufacturing process of the Alp-
oras is a batch casting process [3] in which 1.5 wt.% of calcium is
added to the aluminium molten at 680 �C. Calcium serves as a
thickening agent which increases viscosity and stabilizes the air
bubbles. The alloy is poured into a casting mold and stirred with
an admixture of 1.6 wt.% TiH2 that is used as a blowing agent. Then,
the foamed molten material is cooled down. A typical resulting
internal structure of the aluminium foam is shown in Fig. 1(a).

Firstly, a large panel of Alporas (160 � 100 � 60 mm) was pol-
ished and scanned with a high resolution scanner. Acquired images
were segmented to binary ones and further used in an image anal-
ysis. Then, a smaller Alporas block was cut into thin slices (�5 mm)
and embedded into epoxy resin to fill the pores. The surface was
mechanically grinded and polished to reach minimum surface
roughness suitable for nanoindentation. Very low roughness
Rq � 10 nm [15] was achieved on the cell walls. Then, the sample
was investigated with electron microscopy and nanoindentation.

2.2. SEM and microstructural analysis

The microstructure of the cell walls was firstly studied in scan-
ning electron microscope (SEM). It was found that a significant
inhomogeneity of the microstrutural material phases exists on
the level of tens of micrometers (Fig. 1(b) and (c)). Two distinct
phases, that exhibit different color in back-scattered electron
(BSE) images, can be distinguished. The chemical composition of
the two phases was checked with EDX element analysis in SEM.
It was found that the majority of the volume (dark zone in
Figs. 1(c) and 2(a)) consists of aluminium (�67 wt.%), oxygen
(�32 wt.%), and further trace elements (Mg, Ti, Fe, Co, Ni, Cu,
Si < 2 wt.%). Lighter zones in Fig. 2 consist of Al (�60 wt.%), O
(�30 wt.%), Ca (�5 wt.%), Ti (�5 wt.%) and other elements
(<1 wt.%). As expected, the majority of the volume (dark zone) is

composed of aluminium and aluminium oxide Al2O3 (further de-
noted as Al-rich area). Lighter zones contain significant amount
of calcium and titanium (further denoted as Ca/Ti-rich area). The
non-uniform distribution of these zones shows inhomogeneous
mixing of the admixtures that are added during the production
process.

2.3. Image analysis and porosity

In order to estimate the volume fractions of Al-rich and Ca/Ti-
rich areas, image analysis based on previously taken SEM images
was employed. Ten arbitrarily chosen areas on wall cross sections
were explored. Images were segmented to two phases using a
common threshold value of a grey level for all images (Fig. 2).
The Ca/Ti-rich area was estimated to cover 22 ± 4% of the whole
area.

The overall porosity of the sample was assessed by weighing
of a large Alporas panel (knowing the sample dimensions and solid
mass density 2700 kg m�3). The porosity reached 91.4% which
corresponds to e.g. [3,16]. In other words, solid mass (i.e. the cell
walls) occupied only 8.6% of the total volume in the specimen.

Further, the distributions of the cell wall thicknesses and the
distribution of pore sizes were studied by means of pore contour
detection in the Matlab environment. At first, the contours were
generated for every pore in the image and section properties (cen-
troid, area, second moment of inertia) were computed (Fig. 3). The
wall thicknesses were calculated as the minimum distance be-
tween the neighboring contours. The distribution of the thick-
nesses is shown in Fig. 4 where a significant peak occurs around
�60 lm which can be understood as a characteristic cell wall
thickness.

Then, equivalent ellipses were constructed from contours under
the condition that they have the same area and the same principal
second moment of inertia. Such assumption led to the evaluation
of two main half axes (ai and bi) for each equivalent ellipse. In order
to characterize the shape of pores, an equivalent ellipse shape fac-
tor was defined as the ratio ei ¼ ai

bi
. The distribution of the shape

factor is depicted in Fig. 5. It can be concluded that pores have typ-
ically a round shape with the shape factor lying mostly between 1
and 2. The peak with the highest occurrence in Fig. 5 appears
around ei = 1.15.

Due to the round shape of pores, it also makes sense to compute
an equivalent pore diameter using a circular pore replacement. The
distribution of equivalent circular pores is depicted in Fig. 6. Wide
distribution of pores with diameters 0–6 mm was found. The mean
equivalent diameter was found to be 2.9 ± 1.5 mm for the specific
specimen.

2.4. Nanoindentation

Micromechanical properties of the cell walls were measured by
means of nanoindentation. The tests were performed using the

Fig. 1. (a) Overall view on a foam structure (further denoted as Level II); (b) SEM image of a cell wall; (c) detailed SEM image of a cell wall (denoted as Level I) showing Al-rich
(dark grey) and Ca/Ti-rich areas (light zones).
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Hysitron Tribolab system� at the Czech Technical University in
Prague. This system consists of in-situ SPM imaging which was
used for scanning the sample surface. Three-sided pyramidal dia-
mond tip (Berkovich type) was used for all measurements. Two
distant locations were chosen on the sample to capture its hetero-
geneity. Each location was covered by a series of 10 � 10 indents

with 10 lm spacing (Fig. 7). It yields 200 indents in total which
was considered to give sufficiently large statistical set of data.
Standard load controlled test of an individual indent consisted of
three segments: loading, holding at the peak and unloading.
Loading and unloading of this trapezoidal loading function lasted
for 5 s, the holding part lasted for 10 s. Maximum applied load
was 1 mN. Maximum indentation depths were ranging between
100 and 300 nm depending on the stiffness of the indented phase.
Elastic modulus was evaluated for individual indents using
standard Oliver and Pharr methodology [17] which accounts for
elasto-plastic contact of a conical indenter with an isotropic half-
space as

Er ¼
1

2b

ffiffiffiffi
p
p
ffiffiffi
A
p dP

dh
ð1Þ

in which Er is the reduced modulus measured in an experiment, A is
the projected contact area of the indenter at the peak load, b is a

Fig. 2. An example of (a) SEM image of the cell wall and (b) processed image segmented to two phases (white = Ca/Ti-rich, black = Al-rich area).

Fig. 3. (a) Binary image of the polished foam panel. (b) Binary image of �50 � 50 mm foam cut. (c) Cell contours in the cut (prepared in Matlab).

Fig. 4. Distribution of cell wall thicknesses.

Fig. 5. Distribution of equivalent ellipse shape factor.

Fig. 6. Distribution of equivalent circular pores.
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geometrical constant (b = 1.034 for the used Berkovich tip) and dP
dh is

a slope of the unloading branch evaluated at the peak. Young’s mod-
ulus E of the measured media can be found using contact mechanics
which accounts for the effect of non-rigid indenter as

1
Er
¼ ð1� m2Þ

E
þ ð1� m2

i Þ
Ei

ð2Þ

in which m is the Poisson’s ratio of the tested material, Ei a mi are
known elastic modulus and Poisson’s ratio of the indenter. In our
case, m = 0.35 was taken as an estimate for all indents.

For the use of analytical homogenization techniques, the mate-
rial was decomposed into individual phases using the statistical
deconvolution technique [11–13]. It searches for n-Gauss
distributions in an experimental probability density function –
PDF (Fig. 9) of the analyzed quantity, i.e. elastic modulus in this
case. Random seed and minimizing criteria of the differences be-

tween the experimental and theoretical overall PDFs (particularly
quadratic norm of the differences) are computed in the algorithm
to find the best fit. Details on the deconvolution technique can
be found in [12,13]. Two-phase system (one dominant Al-rich
phase and one minor Ca/Ti-rich phase) was assumed in our decon-
volution which corresponds to SEM findings.

3. Numerical part

3.1. Scale separation

In order to describe heterogeneous systems and their effective
properties, representative volume element (RVE) have been previ-
ously introduced [14]. RVE statistically represents a higher struc-
tural level of the material and serves for evaluation of the
effective (homogenized) properties within the defined volume.
It includes all microstructural inhomogeneities that should be
substantially smaller than the RVE size. The definition of the
material scales can be defined through the scale separation
inequality:

s� V � D ð3Þ

in which s is the characteristic size of the largest microstructural
inhomogeneity, V is the RVE size and D is a characteristic structural
length scale. Knowing the material and geometrical properties of
the microstructural material phases a homogenization can be
performed.

Nanoindentation is able to access intrinsic material properties
of individual micro-scale phases provided the dimension of an in-
dent (h) is small enough, i.e. h� s. As a rule of thumb h < s/10 is
usually used to access material properties of individual constitu-
ents without any dependence on the length scale.

As mentioned above, the metal foam material has a hierarchical
microstructure. At least two levels need to be considered:

� Level I (the cell wall level) has a characteristic dimension
defined by the mean midspan wall thickness VI � 60 lm. This
level consists of prevailing aluminium matrix (Al-rich area)
with embedded heterogeneities in the form of Ca/Ti-rich areas.
Intrinsic elastic properties of the constituents were assessed by
nanoindentation at this level. Individual indent size was pre-
scribed to be considerably smaller (h � 100–300 nm) than a
characteristic size of Ca/Ti inhomogeneities (�4 lm).
� Level II (the foam level) has a characteristic dimension of VII -
� 50 mm. At this level, large pores with an average equivalent
diameter �2.9 mm (assuming circular pores) occur in the total
volume of 91.4%. At Level II, the cell walls are considered as
homogeneous having the properties that come from the Level
I homogenization.

Fig. 7. Part of the indentation matrix showing 6 � 6 indents with 10 lm spacing as
scanned with Hysitron Tribolab.

Fig. 9. (a) Probability density functions of elastic moduli from two measured positions and (b) merged results with deconvoluted phases.

Fig. 8. Typical loading diagrams for Al-rich and Ca/Ti-rich zones.
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3.2. Analytical homogenizations of Level I

The RVE with substantially smaller dimensions than the macro-
scale body allows imposing homogeneous boundary conditions
over the RVE. Continuum micromechanics provides a framework,
in which elastic properties of heterogeneous microscale phases
are homogenized to give overall effective properties on the upper
scale [14]. A significant group of analytical homogenization meth-
ods relies on the Eshelby’s solution [18] that is derived for ellipsoi-
dal inclusions embedded in an infinite body. Then, uniform stress
field appears in inclusions when macroscopic load is applied in
infinity. Effective elastic properties are obtained through averaging
over the local contributions.

From the material point of view, composite materials are usu-
ally characterized by a prevailing matrix phase, which serves as a
reference medium in homogenization methods, reinforced with
geometrically distinguishable inclusions. For example, the Mori–
Tanaka method [19] can be appropriate for these cases. In this
method, the effective bulk keff and shear leff moduli of the compos-
ite with spherical inclusions are computed as follows

keff ¼
P

rfrkr 1þ a0
kr
k0
� 1

� �� ��1

P
rfr 1þ a0

kr
k0
� 1

� �� ��1 ; ð4Þ

leff ¼
P

rfrlr 1þ b0
lr
l0
� 1

� �� ��1

P
rfr 1þ b0

lr
l0
� 1

� �� ��1 ; ð5Þ

a0 ¼
3k0

3k0 þ 4l0
; b0 ¼

6k0 þ 12l0

15k0 þ 20l0
; ð6Þ

where fr is the volume fraction of the rth phase, kr its bulk modulus
and the coefficients a0 and b0 describe bulk and shear properties of
the 0th phase, i.e. the reference reference medium [19,14]. The bulk
and shear moduli can be directly linked with Young’s modulus E
and Poisson’s ratio m used in engineering computations as

E ¼ 9kl
3kþ l

; ð7Þ

m ¼ 3k� 2l
6kþ 2l

: ð8Þ

Polycrystalline metals, in which no preference of matrix phase
exists, are usually modeled with the self-consistent scheme [14]
in which the reference medium refers back to the homogenized
medium itself. Regardless the most suitable homogenization tech-
nique, which would be probably the Mori–Tanaka method in our
case, we use multiple estimates assuming spherical inclusions.
Namely, the Mori–Tanaka method, self-consistent scheme, Voigt
and Reuss bounds.

As a first step, we use analytical schemes to predict characteris-
tic effective properties on the Level I and thus characteristic phase
values need to be identified at first. We propose to use grid nano-
indentation and statistical deconvolution of the phase properties to
solve this task which leads to the assessment of phase distributions
for their elastic properties. Although, it would be possible to per-
form a probabilistic computation with these results (as described
e.g. in [20]), and to find fluctuations of the effective properties in
the analytical solutions we leave the calculation as deterministic
and we concentrate on the validation of the homogenization by
numerical (FFT-based) method which fully respects the spatial dis-
tribution of material heterogeneities without any geometrical
restrictions.

3.3. Numerical homogenization of Level I based on FFT

In order to verify results from simple analytical schemes, ad-
vanced homogenization method based on fast Fourier transforma-
tion (FFT) was used. The behavior of any heterogeneous materials
consisting of periodically repeating RVE (occupying domain
X ¼

Qd
i¼1ð�Yi;YiÞ, where Yi is the axial size and d denotes the space

dimension) can be described with differential equations with peri-
odic boundary conditions and prescribed macroscopic load as

hei :¼ 1
jXj

Z
X
eðxÞdx ¼ e0; ð9Þ

rðxÞ ¼ LðxÞ : eðxÞ divrðxÞ ¼ 0 x 2 X; ð10Þ

where r denotes symmetric second order stress tensor, e symmetric
second order strain tensor and L(x) the fourth order tensor of elastic
stiffness at individual locations x. The effective (homogenized)
material tensor Leff is such a tensor satisfying

hri ¼ Leffhei ð11Þ

for an arbitrary macroscopic strain e0 = hei. Thus the problem of
finding effective material tensor is composed of finding correspond-
ing strain field e and associated stress field r for known elastic
properties L and prescribed strain e0 using differential Eq. (10).

In addition to discretization of the weak formulation leading to
classical finite element method, the problem can be solved by
method based on the fast Fourier transform, proposed by Moulinec
and Suquet in [22], based on an integral (Lippmann–Schwinger)
equation

eðxÞ þ
Z

X
C0ðx� yÞ : ðLðyÞ � L0Þ : eðyÞdy ¼ e0; ð12Þ

where C0 is the periodic Green’s operator associated with the refer-
ence elasticity tensor L0 which is a parameter of the method. The
operator is expressed in the Fourier space as

Ĉ0
ijklðnÞ ¼

1

4ljnj2
ðdkinlnj þ dlinknj þ dkjnlni þ dljnkniÞ

� kþ l
lðkþ 2lÞ

ninjnknl

jnj4
: ð13Þ

The numerical solution of Eq. (13) is based on the discretization of
the periodic unit cell X (PUC) into a regular periodic grid with
N1 � � � � � Nd nodal points and grid spacings h ¼ 2 Y1

N1
; . . . ;2 Yd

Nd

� �
.

The searched field e is approximated by a trigonometric polynomial
eN in the form [23]

eðxÞ � eNðxÞ ¼
X
k2Zd

N

êðkÞukðxÞ; x 2 X; ð14Þ

where N = (N1, . . . , Nd), ê designates the Fourier coefficients and

Zd
N ¼ k 2 Zd : �Na

2
6 ka <

Na

2
; a ¼ 1; . . . ;d

� �
: ð15Þ

The discretization leads to a non-symmetric linear system of
equations

½Iþ F�1ĈFðL� L0Þ	e ¼ e0; ð16Þ

where the vector e stores a strain field at discretization points and
e0 the macroscopic strain, L and L0 stores the material coefficients at
discretization points and reference elasticity tensor respectively, I
denotes the identity matrix, Ĉ stores the values corresponding to
the integral kernel in the Fourier space, and F (F�1) stores the (in-
verse) discrete Fourier transform matrices that can be provided by
the fast Fourier transform algorithm. The possibility to solve the
non-symmetric linear system by the conjugate gradient method is
proposed by Zeman et al. in [24] and justified in Vondřejc et al.
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[25], where also the particular expression of individual matrices can
be found for the problem of electric conductivity or heat transfer.
The linear system (Eq. (16)) depends only on stiffness coefficients
at grid points that can be obtained using nanoindentation and thus
the homogenized (effective) tensor LFFT

eff can be calculated from Eq.
(11). The particular case of homogenization of elastic properties re-
ceived from nanoindentation on a sample surface (half-space) also
requires an assumption of plane strain conditions.

The resulting homogenized stiffness tensor LFFT
eff must be sym-

metric, positive definite, but generally it is anisotropic even for iso-
tropic phases. The resulting anisotropy of the tensor depends on
the topology of phases (or inclusions) in the PUC. Note also, that
the FFT homogenization takes no assumptions on the geometry
of the phases as in the case of analytical schemes. It uses only
the stiffness coefficients distributed within the PUC and its accu-
racy depends only on the density of the grid points, i.e. nanoinden-
tation grid points in our case.

3.4. Comparison of analytical and numerical schemes

The comparison of the analytical and the FFT schemes includes
an assessment of the stiffness matrix (here in Mandel’s notation)
for isotropic material assuming plane strain conditions (equally
with the FFT scheme) as

LA
eff ¼

Eeff

ð1þ meff Þð1� 2meff Þ

1� meff m 0
m 1� meff 0
0 0 1� 2meff

2
64

3
75; ð17Þ

where Eeff and meff comes from analytical methods.
The difference between the analytical results (LA

eff) and numer-
ically computed stiffness matrix (LFFT

eff ) can be expressed using a
stiffness error metric as

dðLFFT
eff ; L

A
effÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LFFT

eff � LA
eff

� �
:: LFFT

eff � LA
eff

� �

LFFT
eff :: LFFT

eff

� �
vuuut : ð18Þ

We also define an anisotropy degree of stiffness matrix (LFFT
eff ) as

qðLFFT
eff Þ ¼ infLiso�isotropic matrixdðLFFT

eff ; LisoÞ: ð19Þ

It measures the distance between LFFT
eff and all isotropic matrices –

the calculation is provided analytically as the metric is dependent
only on two material constants. We also note that the degree of
anisotropy is zero for an isotropic matrix.

4. Results and discussion

4.1. Nanoindentation

Results from nanoindentation clearly indicated heterogeneity of
the cell walls, i.e. the presence of mechanically different inclusions.
An example of typical loading diagrams gained from nanoindenta-
tion at Al-rich area (dark zone in Fig. 1(b) and (c)) and Ca/Ti-rich
area (light zone in Fig. 1(b) and (c)) are shown in Fig. 8. Due to
the load controlled nanoindentation test, the final penetration
depth varied for differently stiff phases. An average maximum
depth of penetration reached by the indenter was around
�180 nm. Higher values (�190 nm) were reached for more compli-
ant Al-rich zone whereas the indentation depths to harder but less
frequent Ca/Ti-rich areas were around 100 nm.

Elastic moduli were evaluated for each individual indent. Over-
all results are depicted in Fig. 9(a) plotting histogram of all elastic
moduli obtained from two different positions and the results
merged from both positions. No significant differences between

the positions were found. Therefore, merged results were further
used in the deconvolution of phase elastic properties.

Two-phase system (one dominant Al-rich phase and one minor
Ca/Ti-rich phase) was assumed in the deconvolution algorithm
(Fig. 9(b)). It can be seen in Fig. 9(b) that a significant peak appears
around 62 GPa. This value can be considered as a dominant charac-
teristic of the prevailing phase (Al-rich). The rest of the results can
be attributed to the minor Ca/Ti-rich phase. Table 1 contains
numerical results from the deconvolution with the estimated vol-
ume fractions of the phases.

The characteristic value for the first phase roughly corresponds
to the elastic modulus of pure aluminium (70 GPa, Ref. [21]). The
lower value obtained from nanoindentation suggests that probably
some small-scale porosity or impurities (Ca) added to the molten
are intrinsically included in the results of this mechanically domi-
nant phase. The determined elastic modulus of Al-rich zone is also
in excellent agreement with the value 61.7 GPa measured by Jeon
et al. [6] on melted Al-1.5 wt.%Ca alloy.

4.2. Level I homogenization

It is clear from SEM images (Figs. 1 and 2) that the Ca/Ti-rich
areas occupy much larger space of the solid compared to the initial
batch volume fractions (Ca and TiH2 content is less than 1 vol.%).
Chemical reactions and precipitation during hardening form new
compounds in the Al matrix. It follows from other studies [7,26]
that zones formed by precipitates of Al4Ca and TiAl3 develop in
the metal solid. The volume of these Ca/Ti-rich areas in the sample
was estimated by image analysis from segmented SEM images as
22 ± 4%. Results from statistical nanoindentation (36.2%) suggest
that a substantially larger part of the matrix is mechanically influ-
enced by the Ca/Ti addition and a higher fraction of the volume be-
longs to this mechanically distinct phase.

The elastic homogenization of the Level I was performed con-
sidering input parameters from nanoindentation. In Table 2, the
homogenized elastic moduli are summarized for individual
homogenization techniques. Very close bounds and insignificant
differences in the estimates given by the schemes were found. In
the following considerations, we use the result received from the
Mori–Tanaka scheme, i.e. we take the homogenized isotropic elas-
tic constants (Young’s modulus and Poisson’s ratio) of the Level I as
Eeff,I = 70.083 GPa, meff,I = 0.35.

Further, numerical FFT-based homogenization algorithm was
applied and the stiffness matrix was computed from grid values
of elastic moduli obtained in nanoindentation.

The resulting stiffness matrices (in Mandel’s notation) com-
puted from analytical Mori–Tanaka results (i.e. using Eqs. (4)–
(8)) and from FFT homogenization are:

LA
eff ¼

112:479 60:566 0
60:566 112:479 0

0 0 51:913

2
64

3
75 ðGPaÞ; ð20Þ

LFFT
eff ¼

117:1300 62:7413 �0:1625
62:7413 117:1060 �0:1430
�0:1625 �0:1430 54:3132

2
64

3
75 ðGPaÞ: ð21Þ

Table 1
Elastic moduli and volume fractions from deconvolution.

Phase Mean (GPa) St. dev. (GPa) Volume fraction (–)

1 (Al-rich zone) 61.88 4.6 0.638
2 (Ca/Ti-rich zone) 87.40 16.7 0.362
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It is worth noting that the analytical form of the stiffness matrix
LA

eff as well as LFFT
eff contains perfect symmetry by definition. The

stiffness error evaluated for the matrices by Eq. (18) is
d = 0.0393. The difference in schemes less than 4% shows a very
good agreement of the methods for the studied case.

The LFFT
eff matrix is characterized by a very small degree of

anisotropy (q = 0.0016, Eq. (19)). The nonzero value is caused
mainly by the fact that microstructural phases are not absolutely
uniformly dispersed within the tested volume. However, the
anisotropy is very small. Consequently, this finding also justifies
the usage of analytical methods producing isotropic effective
(homogenized) properties. Note also, that negative components
appearing in LFFT

eff are in no discrepancy with physical meaning
(only the positive definiteness is required). They are just a product
of the small anisotropy.

4.3. Level II homogenization

At this level, cell walls are considered as a homogeneous phase
having the properties that come from the Level I homogenization.
The solid phase is very sparse in the sample volume due to its
porosity (91.4% of air). The walls create a matrix phase and the
large air pores can be considered as inclusions with zero stiffness
in this homogenization.

Since analytical approaches are often used also for extreme
cases of large stiffness contrast of phases or for large sample poros-
ities (e.g. [27]), we firstly tried to estimate effective elastic proper-
ties with the same analytical schemes used at Level I. The result is
summarized in Table 3. Voigt and Reuss bounds are quite distant in
this case. Unfortunately, simple analytical schemes also fail to pre-
dict correctly the composite stiffness due to the extreme sample
porosity. The Mori–Tanaka method approaches the arithmetic
mean between the bounds, whereas the self-consistent scheme
tends to reach the stiffness of the phase with higher occurrence
(i.e. the air).

Most of analytical studies on the homogenization of foams are
based on models with a regular periodic microstructure [28,29].
Nevertheless, real foam microstructures are characterized with dif-
ferent sizes and shapes and sizes of pores rather than with periodic
structures as shown in Section 2 of this paper. The solution can be
to solve the problem of irregular microstructures by an analysis of
a large representative volume element containing large enough
number of pores. Such model can be solved in two or three
dimensions.

Therefore, more appropriate (but still simple) two dimensional
microstructure based FEM model was proposed. The model geom-
etry was generated from high resolution optical image of polished
foam cross-section (Fig. 10(a)). Square domain with 106 � 106 mm
size (i.e. being much larger than an average pore size �2.9 mm)

was extracted from the image. At this domain, pore centroids were
detected, Delaunay triangulation applied and Voronoi cells created.
Then, an equivalent 2D-beam structure was generated from Voro-
noi cell boundaries (Fig. 10(b)). Based on several numerical studies
performed for this purpose (but not shown here in details), it was
found that the distribution of cross sectional areas and bending
stiffness of individual beams do not play a significant role in the
evaluation of the homogenized elastic properties. The overall stiff-
ness is influenced mainly by the sum of the beam cross sectional
areas and by the beam inclination to the load direction. The contri-
bution of the beam bending stiffness is diminished due to the very
large beam length compared to its small cross sectional dimen-
sions. Therefore, as an approximate but sufficient estimate, uni-
form cross-sectional area and uniform second moment of inertia
were prescribed to all beams. The beam cross sectional area (Abeam)
was computed from the total sample porosity (u = 0.086) and the
total length of all beams (ltotal) in the RVE with rectangular dimen-
sions a � b as

Abeam ¼
abu
ltotal

: ð22Þ

Taking into account 2-D case (i.e. unit thickness of the plane) beam
height can be set as

hz;beam ¼
Abeam

1
¼ Abeam: ð23Þ

Assuming rectangular shape of a cross section one can readily ob-
tain the second moment of inertia as

Iy;beam ¼
1

12
1h3

z;beam ¼
A3

beam

12
: ð24Þ

In the analysis, macroscopic strain e0 is prescribed to the RVE and
microscopic strains and stresses are solved. Volumetric averaging
of microscopic stresses leads to the assessment of an average mac-
roscopic stress and finally estimation of effective stiffness parame-
ters. The key issue of the computation is the size of the RVE and
application of boundary conditions around the domain. Since the
domain size is always smaller than an infinite body, any constraints
can strongly influence the results. Application of the kinematic
boundary conditions leads to the overestimation of effective stiff-
ness and it can give an upper bound, whereas the static boundary
conditions give a lower bound [30]. The best solution is usually pro-
vided by applying periodic boundary conditions to RVE which are,
however, difficult to implement into commercial codes.

Nevertheless, the influence of the boundary conditions on
microscopic strains and stresses in the domain decrease in distant
points from the boundary. The size of our domain (106 � 106 mm)
allowed us to solve the problem with kinematic boundary condi-
tions. For homogenization, considerably smaller region (later
found optimum 35–50 mm) in the central part was used. Micro-
scopic strains and stresses were computed inside this smaller area
which was assumed to be still sufficiently large to describe the
material inhomogeneities and to serve as the material RVE.

Kinematic constrains were applied on all domain sides. Free
beams located around the boundary and not connected to any cell
were deleted and supports put on the nodes located on the closest
cell. Such arrangement of beams and supports prevented the struc-
ture from unreasonably large deformations of these free boundary
beams. Finally, the FE model consisted of 2117 nodes and 3099
beam elements.

The elastic analysis was performed on the whole domain
(106 � 106 mm) subjected to homogeneous macroscopic strain in
one axial direction (e0 = {1,0,0}T) by imposing prescribed displace-
ment to one domain side (Fig. 10(c)). In general, compressive
mechanical properties of the foam are not equal to tensile proper-
ties results beyond the elastic limit. In our case, however, the

Table 2
Values of the Level I effective Young’s modulus computed by different homogeniza-
tion schemes.

Scheme Mori–
Tanaka

Self-consist. scheme Voigt bound Reuss bound

E (GPa) 70.083 70.135 71.118 69.195

Table 3
Values of the Level II effective Young’s modulus computed by different analytical
homogenization schemes.

Scheme Mori–
Tanaka

Self-consist. scheme Voigt bound Reuss bound

E (GPa) 3.1510 0.0012 6.0200 0.0011
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homogenized elastic modulus (i.e. using elastic solution only) will
be the same for both tension (as in the model) and compression
(which was later used in our experimental program). The test
was performed using commercial Ansys FEM software and micro-
scopic strains and stresses solved in the domain. Strains and stres-
ses (structural forces for the case of beams, respectively) inside the
smaller area (35–50 mm) were averaged and used for computation
of the homogenized stiffness matrix (one column in the matrix,
respectively). Assuming material isotropy, the first component
(1,1) at the material stiffness matrix is given by:

L11 ¼ E
ð1� mÞ

ð1þ mÞð1� 2mÞ ð25Þ

in which E is the Young’s modulus and m Poisson’s ratio, respec-
tively. Since the Poisson’s ratio of the whole foam is close to zero
(as confirmed by experimental measurements) the L11 member
coincides with the Young’s modulus E.

For the tension test in x-direction (Fig. 10(c)), the homogenized
Young’s modulus was found to be RVE size dependent. Experimen-
tal investigations of the dependence of sample size on apparent
elastic modulus and strength were conducted e.g. by Ashby et al.
[31]. They found, the modulus and strength become independent
of size when the sample dimensions exceeded about seven cell
diameters. This would imply minimum RVE size 20.3 mm for our
typical cell size (2.9 mm). On the other hand, the RVE size should
not exceed roughly 1/3 to 1/2 of the whole domain size not to be
influenced by boundary conditions which implies maximum RVE
width about 35 to 53 mm for our 106 mm wide domain. To find
an optimum RVE size a numerical study was conducted for differ-
ent RVE sizes in the range 20 to 90 mm (see Fig. 11). An optimum
RVE was confirmed to be between 35 and 50 mm for our specific
domain. Results for smaller RVEs (<35 mm) are influenced by the
beam inhomogeneity inside the RVE (in other words, such small
RVE is not representative enough) whereas larger RVEs (>50 mm)
are already influenced by the vicinity of boundary conditions. For
optimum RVE sizes, the effective Young’s modulus varied in the
range Eeff,II = 1.36–1.38 GPa.

The resulting homogenized Young’s modulus is comparable
with the range of experimental values reported for Alporas� e.g.
by Ashby et. al. [31] (0.4–1 GPa), Sugimura et al. [7] (1.05–
1.25 GPa) or Simone et al. [26] (0.87–1.21 GPa).

Experimental measurements in uniaxial compression per-
formed on our samples (30 � 30 � 60/90 mm Alporas blocks) indi-
cate E = 1.45 ± 0.15 GPa (see Section 4.4). The slightly lower
stiffness obtained from the proposed two-dimensional model can
be explained by the lack of additional confinement appearing in
the three-dimensional case and the simplified beam geometry.

The influence of the RVE size can also play a role as described
above. However, the obtained difference is small (�5%), probably
also due to the almost zero foam Poisson’s ratio. Anyway, results
of the simplified 2-D model have to be treated as a relatively close
but only the first estimate of the Level II material properties which
should be refined e.g. by using more precise geometrical descrip-
tion or using a three-dimensional model.

4.4. Results from macroscopic measurements

Uniaxial compression tests on 30 � 30 � 60 and
30 � 30 � 90 mm Alporas blocks (Fig. 12(a)) were performed in
an electromechanical press to verify numerical results on the Level
II. Specimens were loaded-unloaded by five to ten cycles at very
low strains and than fully compressed up to �5% longitudinal
strain (Fig. 12(b) and (c)). Longitudinal and transversal (engineer-
ing) strains were evaluated by means of digital image correlation
(DIC) from CCD camera images taken during the test [32]. Negligi-
ble differences have been found between the slopes of loading/
unloading cycles (Fig. 12(c)) which justifies evaluation of the elas-
tic properties from this part of the loading diagram. Young’s mod-
ulus was finally computed as the average slope from all relevant
cycles (i.e. all cycles except the first and the last one that both
can be influenced by non-linear effects). Young’s modulus was
determined as E = 1.45 ± 0.15 GPa on six foam samples. Poisson’s
ratio was found to be m � 0 in the elastic regime.

It is worth noting that the elastic limit of the foam lies in very
low strains since local yielding and buckling of the thin corrugated
walls starts early after the first loading. The elastic modulus assess-
ment, therefore, requires high resolution of strain measurements
not influenced by boundary conditions which might be difficult
to obtain in classical test instrumentation (using e.g. tensometric

Fig. 10. (a) Binary image of the foam (106 � 106 mm). (b) Voronoi tesselation. (c) 2-D beam model with boundary constraints (red squares indicate optimum RVE sizes from
which homogenized properties have been obtained; solid line = 35 � 35 mm, dashed line = 50 � 50 mm).

Fig. 11. Dependence of effective Level II Young’s modulus on RVE size.
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gauges fixed to the sample, to the machine platens or using the
cross-beam deflection). Some of the experimental results found
in the literature, e.g. [33,34], use unloading modulus computed
from an unloading cycle performed at approximately 75% of the
peak stress (i.e. already after the yielding onset) rather than the ini-
tial modulus. However, such unloading modulus is not equivalent
to the initial one. The DIC method provides an advantage of high
precision also for strains about 10�6. Thus, it is a suitable technique
for the determination of the initial elastic modulus.

5. Conclusions

In this paper, a simple but effective two-scale microstructure
based model of closed-cell aluminium foam was proposed to as-
sess the homogenized elastic properties. The homogenization
was split into two levels. The first one, characterized by thin cell
walls (�60 lm), was successfully homogenized with several
analytical continuum mechanics schemes. Two different material
phases (Al-rich and Ca/Ti-rich) were detected at this lower scale
by SEM and statistical grid nanoindentation. Effective
Young’s modulus Eeff,I � 70 GPa was received regardless of the
used scheme. The value was also justified by numerical FFT-
based homogenization with a very good agreement (error less than
4%).

The upper foam level (Level II) contains homogenized walls and
large air pores. Here, analytical tools were applied without success.
Very poor estimates were given by the Mori–Tanaka or self-consis-
tent schemes due to extremely high air content in the foam and
large stiffness contrast. To better describe the real foam micro-
structure, a FEM model was proposed for the numerical homogeni-
zation at the second level. The model geometry was generated
from large optical scan of polished foam cross section converted
to the binary image. Delaunay triangulation and Voronoi tessella-
tion have been applied and equivalent 2-D beam structure gener-
ated. The dependence of RVE size was solved in a large domain
(106 � 106 mm) supported by kinematic boundary conditions.
An optimum RVE size was found to be in the range 35–50 mm
(i.e. 33–47% of the domain size) for which effective elastic proper-
ties were assessed (Eeff,II = 1.36–1.38 GPa).

The model has proven to realistically describe macroscopic elas-
tic properties of the foam. The two-dimensional approximation
slightly underestimated the experimentally obtained stiffness
(E � 1.45 GPa). It is likely due to the inability to capture additional
confinement coming from the three-dimensional material micro-
structure and the simplified beam geometry. Other possible rea-
sons can lie in uncertainties connected with the foam
geometrical representation, finite element discretization and
boundary conditions applied in the homogenization. Nevertheless,

the prediction of elastic properties complies with the experimental
results.

Further enhancement of the numerical model and generation of
the model geometry from micro-CT data (i.e. extension to 3-D) are
planned as future developments.
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[1] Němeček J, Králík V. A two-scale micromechanical model for closed-cell
aluminium foams. In: Topping BHV, editor. Proceedings of the 11th
international conference on computational structures
technology. Stirlingshire, UK: Civil-Comp Press; 2012. http://dx.doi.org/
10.4203/ccp.99.259 [Paper 259].

[2] Banhart J. Manufacture, characterisation and application of cellular metals and
metal foams. Prog Mater Sci 2001;46:559–632.

[3] Miyoshi T, Itoh M, Akiyama S, Kitahara A. Aluminium foam ‘‘ALPORAS’’: the
production process, properties and application. In: Materials Research Society
Symp. Proc., vol. 521; 1998.

[4] Hasan MA, Kim A, Lee H-J. Measuring the cell wall mechanical properties of Al-
alloy foams using the nanoindentation method. Compos Struct 2008;83:
180–8.

[5] Papadopoulos DP, Konstantinidis IC, Papanastasiou N, Skolianos S, Lefakis H,
Tsipas DN. Mechanical properties of Al metal foams. Mater Lett 2004;
58(21):2574–8.

[6] Jeon I et al. Cell wall mechanical properties of closed-cell Al foam. Mech Mater
2009;41(1):60–73.

[7] Sugimura Y, Meyer J, He MY, Bart-Smith H, Grenstedt J, Evans AG. On the
mechanical performance of closed cell Al alloy foams. Acta Mater 1997;45:
5245–59.

[8] Idris MI, Vodenitcharova T, Hoffman M. Mechanical behaviour and energy
absorption of closed-cell aluminium foam panels in uniaxial compression.
Mater Sci Eng A 2009;517:37–45.

[9] Yongliang M, Guangchun Y, Hongjie L. Effect of cell shape anisotropy on the
compressive behavior of closed-cell aluminum foams. Mater Des 2010;31:
1567–9.

[10] De Giorgi M, Carofalo A, Dattoma V, Nobile R, Palano F. Aluminium foams
structural modelling. Comput Struct 2010;88:25–35.

[11] Constantinides G, Chandran FR, Ulm F-J, Vliet KV. Grid indentation analysis of
composite microstructure and mechanics: principles and validation. Mater Sci
Eng A 2006;430(1–2):189–202.
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[27] Šejnoha M, Šmilauer V, Němeček J, Kopecký L. Application of micromechanics
in engineering practice. In: Topping BHV, editor. Proceedings of the eighth
international conference on engineering computational
technology. Stirlingshire, Scotland: Civil-Comp Press; 2012.

[28] Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge
University Press; 1999.

[29] Hohe J, Becker W. A probabilistic approach to the numerical homogenization
of irregular solid foams in the finite strain regime. Int J Solids Struct
2005;42:3549–69.

[30] Šmilauer V, Bittnar Z. Microstructure-based micromechanical prediction of
elastic properties in hydrating cement paste. Cem Concr Res 2006;36:
1708–18.

[31] Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HN. Metal
foams: a design guide. Oxford, UK: Butterworth-Heinemann; 2000.
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