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Jiří Němeček ⇑, Vlastimil Králík, Jaroslav Vondřejc
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This paper shows an efficient methodology based on micromechanical framework and grid nanoindenta-
tion for the assessment of effective elastic properties on several types of microscopically heterogeneous
structural materials. Such task is a prerequisite for successful nano- and micro-structural material char-
acterization, development and optimization. The grid nanoindentation and statistical deconvolution
methods previously described in the literature e.g. for cementitious materials [1,2], alkali activated mate-
rials [3] or high-performance concretes [4] have been employed. In this paper we demonstrate their uti-
lization also for other types of structural composites with crystalline nature and we validate the results
by using enhanced numerical method based on fast Fourier transform (FFT). The direct procedure of using
grid nanoindentation data in the FFT method simplifies the evaluation of effective composite properties
and leads to the assemblage of the full stiffness matrix compared to simple analytical approaches.

The paper deals namely with cement paste, gypsum and aluminum alloy. Nanoindentation is used for
the determination of phase properties in grid points at the scale below one micrometer. Statistical
approach and deconvolution methods are applied to assess intrinsic phase properties. Elastic properties
obtained by nanoindentation are homogenized in the frame of the representative volume element (RVE)
by means of analytical and numerical FFT-based schemes. Good correlation of the results from all meth-
ods was found for the tested materials due to the close-to-isotropic nature of the composites in the RVE
having dimensions �100–200 lm. Results were also verified against macroscopic experimental results.
The proposed and validated numerical approach can be successively used for the material modeling in
finite element software or for optimization of materials with inhomogeneous microstructures.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Structural composites such as concrete, gypsum, metals and oth-
ers are often characterized by a heterogeneous microstructure at dif-
ferent length scales (nm to m). Traditionally, their mechanical
properties are assessed from macroscopic tests on samples with
cm to m dimensions that can only describe overall (averaged) prop-
erties like overall Young’s modulus or strength. Nowadays, nanoin-
dentation [5] can be successfully applied to access the nanometer
scale and to assess individual phase properties like C–S–H gels, Port-
landite or clinker. However, the properties extracted from nanoin-
dentation are measured for small material volumes (nm to lm).
The large gap between the scales can be crossed by using multiscale
models and micromechanical framework which uses the concept of
the representative volume element (RVE) [6] defined for each mate-
rial level. Homogenization of individual contributions of the RVE
microstructural components is provided by multiple micromechan-
ical approaches that search for effective properties by solving
ll rights reserved.
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matrix-inclusion problems. There is a variety of analytical methods
and estimates (Voigt, Reuss or Hashin–Strikmann bounds, Mori–Ta-
naka method, self-consistent scheme and others [6]) that usually
need to assess phase properties and their volume fractions prior to
the analysis. Such assessment is not straightforward in the case of
structural composites whose microstructure develops in space and
time during their lifetime. Therefore, statistical estimates obtained
from grid nanoindentation need to be employed. The grid nanoin-
dentation and statistical deconvolution methods have been de-
scribed and used e.g. by Ulm and coworkers [1,2] for cement based
materials, Němeček et al. [3] for alkali activated materials or Sorelli
et al. [4] for high performance concrete.

In the case of numerical methods (e.g. finite elements or FFT
based methods), homogenization can be much easier due to the di-
rect use of grid point mechanical data as will be demonstrated later
in the paper.
2. Methods

In this paper, we first deal with the evaluation of nanoindenta-
tion data received from large statistical sets (hundreds of indents)
on the scale of several hundreds of micrometers which is a scale
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that includes all material phases within RVE in a sufficient content.
Since the microstructure of the composites is very complex in this
scale and the determination of pure individual micromechanically
distinct phases is not straightforward, we assess the individual
properties by using grid indentation technique [2] with subse-
quent statistical deconvolution method [2–4]. Mathematically,
the deconvolution is an ill-posed problem that can be regularized
by a prior setting of the number of mechanically different phases
that are determined. Therefore, we link this number with the num-
ber of chemically different phases or groups of mechanically simi-
lar constituents as described in Section 6. We also adapt the
originally proposed deconvolution method [2] by using different
minimizing criteria and modified Monte Carlo simulations as de-
scribed in Němeček et al. [3]. Such methodology gives us mean
phase properties together with the estimation of their volume frac-
tions based on the experimental dataset from the whole grid.

After setting the RVE size and receiving phase properties, effec-
tive elastic properties are determined by both analytical and
numerical homogenization schemes. The comparison of the meth-
ods is provided by comparing the differences between the output
stiffness matrices. As mentioned earlier, the application of the
numerical scheme does not require the knowledge of intrinsic
phase properties and the direct use of grid data is utilized.
Fig. 1. Microstructures of (a) cement paste, (b) gypsum and (c) Al-alloy.
3. Tested materials and test setup

3.1. Cement paste

Selected heterogeneous structural materials were chosen for
this study. At first, cement paste samples were prepared from Port-
land cement CEM-I 42,5 R (locality Mokrá, CZ) with water to ce-
ment weight ratio equal to 0.5 [7]. Samples were stored in water
for two years. Therefore, high degree of hydration (over 90%) can
be anticipated in the samples. The microstructure of cement paste
in the tested volume includes several chemical phases known from
cement chemistry, namely low- and high- density calcium–silica
hydrates (LD and HD C–S–H), calcium hydroxide Ca(OH)2, residual
clinker, porosity and some other minor phases. The cement paste
microstructure is shown in Fig. 1a. Very light areas in Fig. 1a can
be attributed to the residual clinker, light grey areas are rich of
Ca(OH)2, dark grey zone belongs to C–S–H gels and black color rep-
resents very low density regions or capillary porosity. Note, that C–
S–H gel and Ca(OH)2 zones are spatially intermixed in small vol-
umes (<<10 lm) and the resolution of SEM–BSE images does not
allow for a direct separation of these phases from the image. The
majority of the material volume mostly consists of poorly crystal-
line or amorphous phases (C–S–H) and partly of crystalline phases
(Ca(OH)2). Portlandite crystals are known for their anisotropy.
Since their size and volume is not large in the sample and they
can be mixed with C–S–H, all phases will be supposed to be
mechanically isotropic for simplification in the analysis.

Cement paste includes also wide distribution of pores. Majority
of pores lies in the nanometer range (<100 nm, as checked with He/
Hg-porosimetry) and, on the other hand, large capillary pores are
present in the scale above the indentation level (i.e. >>1 lm).
Therefore, the indentation depth was chosen so that the nanopo-
rosity was included in the tested volume but the large capillary
porosity was not. The depth range �100–300 nm was suitable for
the analysis.

Cement paste was indented by a grid consisting of
20 � 20 = 400 indents with 10 lm spacing which yields the RVE
size �200 lm. The indents were prescribed as load controlled
(maximum force 2 mN, loading/unloading rate 12 mN/min, hold-
ing for 30 s). Examples of load-penetration diagrams for different
constituents are shown in Fig. 2a. The final penetration depths vary
for the phases depending on their stiffness.
3.2. Gypsum

Secondly, dental gypsum (Interdent
�
) was chosen as a model

representative for gypsum based materials. Samples were prepared
with water to gypsum ratio 0.2 and matured in ambient conditions
for two months. From the chemistry point of view, every gypsum
binder is composed of three main components – calcium sulfate
anhydrite (CaSO4), calcium sulfate hemihydrate (CaSO4�½H2O) in
two modifications: a- or b-hemihydrate, and calcium sulfate dihy-
drate (CaSO4�2H2O). The gypsum binder includes also some impu-
rities and additives in the case of natural sources. The Interdent
gypsum is a low-porosity purified a-hemihydrate used for dental
purposes.

The hardened gypsum mass is a porous material with a rela-
tively large internal surface consisting of interlocking crystals in
the form of plates and needles (Singh and Middendorf [8]). Note



Fig. 2. Nanoindentation load–time and load–depth diagrams for (a) cement paste, (b) gypsum and (c) Al-alloy.
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that in the case of b-hemihydrate hydration, the resulting sample
porosity is typically very large (more than 50% for higher water
to binder ratii) and crystals are interlocked very weakly. Therefore,
ordinary gypsum systems used for building purposes which are
based on b-hemihydrate are characterized with relatively low
strengths (<10 MPa in compression). In contrast, hydration of our
samples based on a-hemihydrate produced a dense matrix with
total sample porosity just 19%. The majority of pores lay in the
nano-range 0–300 nm (0–100 nm 7%, 100–300 nm 4%, 300–
1000 nm 1%) and virtually no pores appeared between 1 and
100 lm (<0.5%). Due to the very low porosity, the strength of this
material is much higher (>50 MPa in compression). The gypsum
microstructure is depicted in Fig. 1b in which dark areas can be
attributed to the porosity, very light areas belong to low hydrated
CaSO4 grains or carbonates. The majority of the sample volume in
Fig. 1b composes of hydrated crystalline mass.

Two locations were tested on gypsum samples. Each place was
covered by 15 � 12 = 180 indents with 15 lm spacing. Similar
loading as in the case of cement was used (load controlled test to
maximum force 5 mN). Typical loading diagrams are depicted in
Fig. 2b. A bit wider range of final depths on indented phases
(200–800 nm) was obtained due to larger differences in the phase
stiffness. However, the majority of indents were performed to the
mean final depths around 400–500 nm. The RVE size defined by
the tested area is again �200 lm in this case.
3.3. Aluminum alloy

For the sake of comparison with different kind of material, an
aluminum alloy used for the production of lightweight aluminum
foams Alporas

�
was also studied [9,10]. The material is produced

from an aluminum intermixed with 1.5 wt.% of Ca and 1.6 wt.%
TiH2. Ca/Ti-rich discrete precipitates and diffuse Al4Ca areas devel-
op in the metal solid [11] that can be seen as lighter areas in Fig. 1c.
Therefore, two distinct phases denoted as Al-rich and Ca/Ti-rich
were separated in this study.

Nanoindentation was applied to the cell walls of the foam.
Loading to maximum force 1 mN was used. Final depths arrived
at �100–200 nm. Typical differences between the loading dia-
grams of different phases obtained from nanoindentation are
shown in Fig. 2c. Results from 200 indents (two locations
10 � 10 indents) with 10 lm spacing were evaluated. The RVE size
related to the tested region is �100 lm in this case.
4. Nanoindentation, sample preparation and evaluation of
phase properties

As mentioned above, nanoindentation has been applied to re-
ceive elastic constants of individual material phases. Nanoindenter
(Nanohardness tester, CSM Instruments) located in Prague’s labo-
ratory at the Czech Technical University was employed in our mea-
surements. The apparatus was equipped with a diamond
pyramidal Berkovich tip with the apex radius �100 nm.

The already well-known principle of nanoindentation lies in
bringing a very small tip (Berkovich in our case) to the surface of
the material to make an imprint. Material constants are deduced
from the measured load–displacement curves performed on flat
surfaces.

For our measurements, the depth of penetration was kept
around �300 nm for cement paste, �500 nm for gypsum and
�200 nm for aluminum in order to capture each material phase
on one hand and to minimize phase interactions on the other hand.
The depth of the affected volume under the indenter tip can be
estimated as 3� the penetration depth [2], i.e. around 0.63–
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Fig. 3. Deconvolution of modulus of elasticity frequency plots into mechanical
phases on (a) cement paste, (b) gypsum three phases fit (c) gypsum single phase fit
and (d) Al-alloy.
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1.53 lm3 for the studied cases. Such size roughly corresponds to
1/10 of most of the grains or single phase areas which justifies
the use of phase devonvolution [1,2]. The indentation volume con-
tains also a part of nanoporosity that is naturally included in phase
results.

All samples were mechanically polished prior to the testing in
order to achieve smooth and flat surface with substantially smaller
roughness compared to indentation depths. The surface roughness
(evaluated as root-mean-square on the scanned area of
10 � 10 lm) was checked with AFM. It was found to be �25 nm
on cement paste, �38 nm on gypsum and �12 nm on Al-alloy.
Therefore, the sample roughness was acceptable in relation to
the awaited indentation depths.

The indentation loading history contained three segments:
loading, holding and unloading periods. The holding period was in-
cluded in order to minimize creep effects on the elastic unloading
[7]. Elastic properties were evaluated for individual indents using
analytical formulae derived by Oliver and Pharr [12], which ac-
count for an elasto-plastic contact of a conical indenter with an iso-
tropic half-space. The reduced (combined) elastic modulus is then
defined as:

Er ¼
1

2b

ffiffiffiffi
p
p
ffiffiffi
A
p dP

dh
ð1Þ

in which A is the projected contact area of the indenter at the peak
load, b is geometrical constant (b = 1.034 for the used Berkovich tip)
and dP/dh is a slope of the unloading branch evaluated at the peak.
Elastic modulus E of the measured sample can be found using con-
tact mechanics which accounts for the effect of non-rigid indenter
as:

1
Er
¼ ð1� m2Þ

E
þ ð1� m2

i Þ
Ei

ð2Þ

in which m is the Poisson’s ratio of the tested material, Ei a mi are
known elastic modulus and Poisson’s ratio of the indenter.

The solution of the contact problem for anisotropic materials
can be found in [13,14]. In this work, all material phases were trea-
ted as elastically isotropic. Such simplification was adopted due to
the following reasons. In cement paste, the degree of crystallinity is
poor in the majority of specimen volume (e.g. in C–S–H gel). The
content of crystalline Ca(OH)2 phases is low and due to the limited
space for the crystal growth the degree of crystallinity decreases.

On the other hand, gypsum is composed of a polycrystalline
matter with locally anisotropic character. However, the response
in grid nanoindentation is measured on differently oriented crys-
tals and also on a combination of differently oriented crystals lo-
cated under the indenter in the affected volume �1.53 lm3. The
tested location can be viewed as a set of mechanically different
phases that are physically averaged by an indenter. Apparent iso-
tropic elasticity constants associated with the tested indentation
volume can be derived in this case. Similarly, isotropic estimates
were derived for the measured volume in case of Al-alloy disre-
garding the local anisotropy on a crystalline level.

The distinction of the chemically and/or mechanically different
material phases is often not possible on the microlevel (<1 lm)
even with the use of SEM–EDX images. In order to receive statisti-
cally relevant data from all material phases, we applied grid inden-
tation over the tested RVE (Fig. 1). Large matrices containing
hundreds of indents have been performed on tested samples (see
Section 3). To assess individual phase properties, statistical decon-
volution was employed [2,3]. In this method, experimental data are
analyzed from the frequency plots. Mean elastic properties as well
as phase volume fraction are estimated based on the best fit of the
experimental data with a limited number of Gauss distributions
(Fig. 3).
5. Micromechanical homogenization

5.1. Analytical and numerical schemes

In general, homogenization methods search for effective mate-
rial properties. The previously mentioned concept of RVE which
includes all microstructural inhomogeneities that should be sub-
stantially smaller than the RVE size is utilized. The homogeniza-
tion problem can be solved either by analytical methods or by
numerical approximations. Analytical schemes often rely on sim-
plified assumptions concerning inclusion geometry, boundary
conditions or isotropy. More complex results can be obtained
from numerical methods that are based on finite element solution
or fast Fourier transformation (Moulinec and Suquet [17]), for
instance.
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The classical analytical solution based on constant stress/strain
fields in individual microscale components for an ellipsoidal inclu-
sion embedded in an infinite body was derived by Eshelby [15].
Effective elastic properties are then obtained through averaging
over the local contributions. Various estimates considering differ-
ent geometrical constraints or special choices of the reference
medium such as the Mori–Tanaka method or the self-consistent
scheme [6,16] can be used. For the case of a composite material
with prevailing matrix and spherical inclusions the Mori–Tanaka
method [16] was previously found to be a simple but powerful tool
to estimate effective composite properties also for structural mate-
rials [2] and, therefore, it was used in this work. In the Mori–Tana-
ka method, the homogenized isotropic bulk and shear moduli of an
r-phase composite are assessed as follows:

khom ¼
P

rfrkr 1þ a0
kr
k0
� 1

� �� ��1

P
rfr 1þ a0

kr
k0
� 1

� �� ��1 ð3Þ

lhom ¼
P

rfrlr 1þ b0
lr
l0
� 1

� �� ��1

P
rfr 1þ b0

lr
l0
� 1

� �� ��1 ð4Þ

a0 ¼
3k0

3k0 þ 4l0
; b0 ¼

6k0 þ 12l0

15k0 þ 20l0
ð5Þ

where the subscript 0 corresponds to the reference medium and r
corresponds to a particulate inclusion. Thus, k0 and l0 are the bulk
and shear moduli of the reference medium, while kr and lr refer to
the inclusion phases. Further, bulk and shear moduli can be recom-
puted to engineering values of elastic modulus and Poisson’s ratio
as:

E ¼ 9kl
3kþ l

; m ¼ 3k� 2l
6kþ 2l

ð6Þ

Materials with no preference of matrix phase (e.g. polycrystalline
metals) are usually modeled with the self-consistent scheme [6].
It is an implicit scheme, similar to the Mori–Tanaka method, in
which the reference medium points back to the homogenized med-
ium itself.

Local strain and stress fields in a RVE can also be found by
numerical methods like finite element method or a method based
on fast Fourier transformation (FFT). The later one was proven to
be a reliable and computationally inexpensive method which only
utilizes mechanical data in the regular grid (i.e. equidistant discret-
ization points). Such a concept perfectly matches with the concept
of the grid nanoindentation. Therefore, the FFT method was chosen
for our purposes. The numerical scheme used here solves the prob-
lem of finding the effective elasticity tensor with a periodically
repeating RVE by using discretization of an integral Lippmann–
Schwinger equation:

eðxÞ ¼ e0 �
Z

X
C0ðx� yÞ : ðLðyÞ � L0Þ : eðyÞdy ð7Þ

in which e and L stand for the local strain and stiffness tensor,
respectively, and e0 is the homogenized strain defined as a spatial
average over RVE domain X as

e0 ¼ hei ¼ 1
X

Z
X
eðxÞdx ð8Þ

C0 is the periodic Green operator associated with the reference
elasticity tensor L0 which is a parameter of the method [17,18].
The problem is further discretized using trigonometric collocation
method [19,20] which leads to the assemblage of a nonsymmetrical
linear system of equations:
½I þ F�1ĈFðL� L0Þ�e ¼ e0 ð9Þ

where the vector e stores a strain field at discretization points and
e0 the macroscopic strain, L and L0 stores the material coefficients
at discretization points and reference elasticity tensor respec-
tively, I denotes the identity matrix, Ĉ stores the values corre-
sponding to the integral kernel in the Fourier space, and F (F�1)
stores the (inverse) discrete Fourier transform matrices that can
be provided by fast Fourier transform algorithm. The possibility
to solve the nonsymmetric linear system by the conjugate gradi-
ent method (CG) is proposed by Zeman et al. in [21], where also
the particular expression of individual matrices can be found for
the problem of electric conductivity or heat transfer. The linear
system (Eq. (9)) depends only on stiffness coefficients at grid
points that can be obtained using nanoindentation and thus the
homogenized (effective) tensor (further denoted as LFFT

eff ) can be
calculated.

In practice, the homogenization procedure includes several
steps:

(1) Definition of a periodic unit cell (PUC) with discretization
points corresponding to indents’ locations (a regular grid).

(2) Assessment of Young’s moduli E and Poisson’s ratii m with
the help of nanoindentation in grid points (Oliver and Pharr
method [12] was used for the extraction of Young’s moduli
from load–displacement indentation curves).

(3) Assemblage of local elastic stiffness tensors in grid points
(plane strain assumption used) which in Mandel’s notation
reads:
L ¼ E
ð1þ mÞð1� 2mÞ

1� m m 0
m 1� m 0
0 0 1� 2m

2
64

3
75 ð10Þ
(4) Calculation of local strain (from a linear system, Eq. (9),
using CG algorithm [21]) and stress fields (r = L:e) in grid
points when applying homogeneous macroscopic strain
(unit loads e0) to the PUC domain.

(5) Calculation of an average stress in the PUC by integration
over its volume
hri ¼ 1
X

Z
X
rdx ð11Þ
(6) Calculation of the homogenized elasticity tensor for PUC
from average stress and prescribed macroscopic strain
LFFT
eff : e0 ¼ hri ð12Þ
The resulting homogenized stiffness matrix for PUC must be
symmetric, positive definite, but generally anisotropic. The result-
ing anisotropy of the matrix depends on the topology of inclusions
in PUC regardless of the fact that the individual points are treated
as locally isotropic. Note also, that the FFT homogenization takes
no assumptions on the morphology of the phases as in the case
of analytical schemes. It works only with the stiffness coefficients
distributed within the PUC and its accuracy depends only on the
density of the grid points.

5.2. Comparison of analytical and numerical schemes

The simple analytical methods used in this work (Mori–Tana-
ka, self-consistent) operate with the assumption of isotropic effec-
tive properties. Such assumption is usually acceptable for
disordered structural materials. In this case, the isotropic stiffness
matrix and plane strain conditions takes the form (in Mandel’s
notation):



Table 3
Data received from statistical deconvolution and homogenized values on Al-alloy.

Deconvoluted phase E (GPa) Poisson’s ratio Volume fraction

Al-rich zone 61.88 0.35 0.64
Ca/Ti-rich zone 87.40 0.35 0.36

Homogenization method
M–T 70.09 0.35 1.0
SCS 70.15 0.35 1.0

Table 1
Data received from statistical deconvolution and homogenized values on cement
paste.

Deconvoluted phase E (GPa) Poisson’s
ratio

Volume
fraction

Low stiffness phase (A) 7.45 0.2 0.011
Low density C–S–H (B) 20.09 0.2 0.632
High density C–S–H (C) 33.93 0.2 0.263
Portlandite (D) 43.88 0.3 0.046
Clinker (E) 121.0a 0.3 0.048

Homogenization
C–S–H level (B + C) by M–T 23.36 0.2
C–S–H level (B + C) by SCS 23.41 0.2
Cement paste level (B + C) + A + D + E by M–T 25.39 0.207 1.0
Cement paste level (B + C) + A + D + E by SCS 25.44 0.208 1.0

M–T stands for the Mori–Tanaka scheme; SCS stands for the self-consistent scheme.
a Note: Clinker value was adjusted to 121 GPa according to [7].

Table 2
Data received from statistical deconvolution to the three phases and homogenized
values on gypsum.

Deconvoluted phase E (GPa) Poisson’s ratio Volume fraction

#1 28.36 0.32 0.663
#2 43.46 0.32 0.310
#3 59.89 0.32 0.027

Homogenization method
M–T 32.96 0.32 1.0
SCS 33.02 0.32 1.0

Note: M–T stands for the Mori–Tanaka scheme; SCS stands for the self-consistent
scheme.
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LA
eff ¼

Eeff

ð1þ meff Þð1� 2meff Þ

1� meff m 0
m 1� meff 0
0 0 1� 2meff

2
64

3
75

¼
kþ 4

3 l k� 2
3 l 0

k� 2
3 l kþ 4

3 l 0
0 0 2l

2
64

3
75 ð13Þ

in which Eeff and meff are analytically computed effective Young’s
modulus and Poisson’s ratio, respectively. Alternatively, effective
bulk and shear moduli k and l can be used for the calculation.
The difference between this stiffness matrix and that received from
FFT homogenization can be expressed using a stiffness error norm:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LFFT

eff � LA
eff

� �
:: LFFT

eff � LA
eff

� �

LFFT
eff ::LFFT

eff

� �
vuuut ð14Þ

in which LFFT
eff is the (anisotropic) effective stiffness matrix computed

by the FFT method.
To assess the degree of anisotropy of the LFFT

eff matrix, one can use
different measures. Here, we define the degree of anisotropy as:

dISO ¼ inf
LISO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LFFT

eff � LISO

� �
:: LFFT

eff � LISO

� �

LFFT
eff ::LISO

� �
vuuut ð15Þ

where the infimum is taken over all isotropic positive definite
matrices. We simply calculate the upper estimate dFFT

ISO P dISO:

dFFT
ISO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LFFT

eff � LFFT
ISO

� �
:: LFFT

eff � LFFT
ISO

� �

LFFT
eff :: LFFT

ISO

� �
vuuut ð16Þ

by a particular choice of an isotropic matrix:

LFFT
ISO ¼

kISO þ 4
3 lISO kISO � 2

3 lISO 0
kISO � 2

3 lISO kISO þ 4
3 lISO 0

0 0 2lISO

2
64

3
75 ð17Þ

with

lISO ¼
LFFT

eff ;33

2
; kISO ¼

LFFT
eff ;11 þ LFFT

eff ;22

2
� 4

3
lISO:
Note: M–T stands for the Mori–Tanaka scheme, SCS stands for the self-consistent
scheme.
6. Results and discussion

The resulting frequency plot of elastic moduli measured on ce-
ment paste merged from all positions (400 indents) was deconvo-
luted into five mechanical phases (that correspond to chemical
ones) as specified in Table 1. Note, that the values in Table 1
(and similarly in Tables 2 and 3) were found as the best fit in the
minimization problem solved by the deconvolution algorithm.
The bin size was set to 1 GPa in the construction of probability den-
sity functions (PDFs). Ulm et al. [1] suggested the use of cumulative
density function (CDF) in the deconvolution rather than PDF. Using
CDF does not require the choice of a bin size. On the other hand,
using PDF is more physically intuitive and in the case of large data-
set leads to similar results.

The deconvoluted phases on cement paste correspond to the
peaks shown in Fig. 3a. They are denoted as A = low stiffness phase,
B = low density C–S–H, C = high density C–S–H, D = Ca(OH)2,
E = clinker. In this case, the notation of mechanically distinct
phases matches well with the cement chemistry. Note, that the
stiffest microstructural component, the clinker, is not captured
well by nanoindentation since the stiffness contrast with respect
to other components is too high [2,7]. However, the content of
residual clinker is very low in the case of matured paste and it does
not significantly influence the rest of the results. Nevertheless, the
proper value of elastic modulus for homogenization was taken
from ex situ measurements of clinker [7,22].

Two-step homogenization was used in the case of cement paste.
Firstly, homogenized properties for the C–S–H level were obtained
from low- and high-density C–S–H phases (RVE �1 lm). Upper le-
vel homogenization for RVE (�200 lm) was performed in the sec-
ond step in which homogenized C–S–H properties were considered
together with the rest of the phases (i.e. low stiffness phase, Port-
landite and clinker). Results for cement paste are summarized in
Table 1. Very similar estimates have been obtained with the
Mori–Tanaka and the self-consistent schemes.

Nanoindentation data received on gypsum samples (two loca-
tions with 180 indents each) revealed the polycrystalline nature
of the composite with an anisotropic character. Since the gypsum
crystals are dispersed in the sample volume in a random manner,
surface measurements by nanoindentation show high scatter. As
mentioned earlier, apparent isotropic moduli associated with the
indentation volume �1.53 lm3 were assessed. The scatter in re-
ceived results (Fig. 3b) can be treated as a set of mechanically dif-
ferent responses from different crystal orientations. As such, we
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can either use deconvolution to separate mechanically significant
groups of these orientations (further denoted as phases) or com-
pute apparent elastic moduli of isotropic solid from all responses
in an ensemble (i.e. compute average value from all results). Both
approaches have been tested.

The physical motivation for identifying the mechanical phases
lies in the fact that gypsum crystallizes in the monoclinic system
which is characterized with three significant crystallographic ori-
entations. Therefore, derivation of the three significant peaks by
deconvolution of frequency plot was tested (Fig. 3b). Numerical re-
sults from this deconvolution are summarized in Table 2.

On the other hand, further simplification based on the assess-
ment of only a single apparent isotropic phase is possible. Then,
only one Gaussian distribution is assumed in the calculation. Such
fit is depicted in Fig. 3c. The mean value derived from the histo-
gram (E = 33.90 GPa) can be interpreted as an effective gypsum
Young’s modulus valid for the RVE (�100 lm) which includes also
intrinsic nanoporosity.

The difference between the two solutions in terms of an error
computed as a sum of squared differences between the experimen-
tal and theoretical curves in the deconvolution analysis [3] is very
small (�3%). Thus, both fits are almost equally good as indicated in
Fig. 3b and c. Also, the comparison of the resulting effective
Young’s moduli computed by the self-consistent scheme or the
Mori–Tanaka method in the case of the three phase medium (Ta-
ble 2) with an apparent Young’s modulus in the case of a single
phase (E = 33.90 GPa) shows small differences (�2.7%).

Two mechanically distinct phases were found by the statistical
deconvolution (from 200 indents) on Al-alloy sample (Fig. 3c and
Table 3). According to the SEM–EDX studies, the dominant phase
was denoted as Al-rich zone, whereas the lower stiffness phase
as Ca/Ti-rich area. The bin size in the frequency plots was set again
to 1 GPa in both cases of gypsum and Al-alloy.

Based on the nanoindentation data analytical homogenization
were employed for the assessment of effective RVE elastic proper-
ties at first (Tables 1–3). Very similar results have been produced
by the Mori–Tanaka method or the self-consistent scheme.

At second, the comparison of stiffness matrices (Eq. (13)) de-
rived from analytical results (Mori–Tanaka scheme was considered
for cement pastes and Al-alloy; self-consistent scheme for gyp-
sum), and those from FFT homogenization was performed. Results
are specified in the following equations 18–20. The stiffness values
are given in GPa. Respective error norms are computed in Eq. (21).

cement : LA
eff ¼

28:44 7:43 0

7:43 28:44 0

0 0 21:02

2
664

3
775

LFFT
eff ¼

26:177 6:778 0:068

6:778 26:224 0:014

0:068 0:014 19:818

2
664

3
775 ð18Þ

Gypsum : 3 phase fit : LA
eff ¼

47:25 22:24 0

22:24 47:25 0

0 0 25:02

2
64

3
75

1phase fit : LA
eff ¼

48:51 22:84 0

22:84 48:51 0

0 0 25:69

2
64

3
75

LFFT
eff ¼

45:302 21:185 0:101

21:185 45:497 �0:008

0:101 �0:008 24:396

2
64

3
75 ð19Þ
Al-alloy : LA
eff ¼

112:479 60:566 0
60:566 112:479 0

0 0 51:913

2
64

3
75

LFFT
eff ¼

117:130 62:741 �0:163
62:741 117:106 �0:143
�0:163 �0:143 54:313

2
64

3
75 ð20Þ

Errors : cementd ¼ 0:08; gypsumd ¼ 0:07; Al-alloyd ¼ 0:04 ð21Þ

It is clear from the above equations that both simple analytical
and advanced FFT-based method give comparable results in our
case. The differences given by error norms for cement and gypsum
(7–8%) are acceptable and show good agreement of the results re-
ceived from different methods. The best agreement of the methods
was reached on Al-alloy (error 4%) which can be attributed to the
fact that both material phases (Al-rich, and Ca/Ti-rich zones) are
even more homogeneously dispersed at microscale RVE compared
to the phases that appear in cement paste or gypsum.

The upper bound of the degree of anisotropy for the FFT-based
stiffness matrices was assessed by an index defined in Eq. (16) with
the following results:

cementdISO ¼ 0:0132; gypsumdISO ¼ 0:0043; Al-alloydISO ¼ 0:0016 ð22Þ

Low values in Eq. (22) (0.1–1.3%) show the close-to-isotropic
nature of the tested materials within the specified RVE. In other
words, microstructural inhomogeneities are uniformly dispersed
in the RVE and consequently it also justifies the usage of analytical
methods producing isotropic effective (homogenized) properties.

It must be emphasized again that although both analytical and
numerical methods give similar results, there is a clear advantage
of the FFT method which works directly with the grid indentation
data compared to analytical Mori–Tanaka method which needs the
assessment of phase properties and volume fractions. Moreover,
the full stiffness matrix including possible anisotropy is captured
by using the FFT method.

Comparison with macroscopic experimental values of elastic
moduli for the given materials also shows good agreement with
model predictions. Hydrated compound of cement paste was stud-
ied e.g. by Němeček [7] (E = 26.4 ± 1.8 GPa), Constantinides and
Ulm [23,24] (E = 22.8 ± 0.5 GPa) or Hughes and Trtik [25]
(E = 26.5 GPa). The values correspond well with our results
(E = 25.4 GPa).

Gypsum elastic properties were studied e.g. by Meille and Gar-
boczi [26,27] who estimated the plane strain values of the Young’s
modulus (computed as an angular average from anisotropic crystal
elastic moduli tensor) as �45.7 GPa. Such value was also reported
for zero crystal porosity by Sanahuja et al. [28]. If one takes into ac-
count an intercrystalline porosity 12% (i.e. the gypsum nanoporos-
ity measured for our specific case; see Section 3.2) the Young’s
modulus drops down to �34 GPa [28] which is in excellent agree-
ment with our homogenized value (E = 32–33.90 GPa).

Homogenized Al-alloy properties (E = 70.1 GPa) agree very well
with experimental values reported e.g. by Jeon et al. [29] or Ashby
et al. [30] (E = 70 GPa).

7. Conclusions

Nanoindentation was successfully used for the assessment of
elastic parameters of intrinsic material constituents at the scale be-
low one micrometer and effective composite properties were eval-
uated with analytical Mori–Tanaka, self-consistent and FFT
numerical schemes for three typical structural composites with
heterogeneous microstructure. Based on the micromechanical ap-
proaches and proposed methodologies we can draw the following
conclusions.
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(1) It has been shown that the use of grid indentation gives
access to both phase properties as well as volume fractions
in the case of testing highly heterogeneous microstructures
of cement paste, gypsum and Al-alloy.

(2) Effective elastic properties of their microstructural RVEs
(100–200 lm) were successfully determined with analytical
Mori–Tanaka or self-consistent schemes. However, such
approach assumes isotropic nature of the composite with
spherical inclusions and several assumptions concerning
mainly the number of mechanically different phases and
bin size need to be made in the deconvolution algorithm.
Therefore, an additional knowledge about the composite
microstructure and its microstructural composition is neces-
sary in this case.

(3) Further, numerical FFT-based method was used for the
assessment of effective elastic composite properties. The
direct use of grid indentation data is employed in this
method. The method provides effective stiffness matrix
and can capture also possible anisotropy.

(4) The performance of both analytical and numerical
approaches was in good agreement for the tested materials
mainly due to the close-to-isotropic nature in their RVEs.

(5) Comparison with macroscopic experimental data also shows
good correlation of measured effective values and the pre-
dicted ones.

(6) The proposed numerical procedure for the estimation of
effective elastic properties can be further applied also to
other nano- or micro-heterogeneous structural composites
in order to assess their anisotropic stiffness matrices or to
optimize their composition.
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