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Introduction

In the this work the basic homogenization techniques and micromechanical modeling strategies are
discussed with an emphasis on a practical (engineering) application without any comprehensive the-
oretical background. In particular, the work is aimed at the homogenization of cementitious materials
and mortars, where the microstructure on the micro- and meso-level can be approximated by spheri-
cal inhomogeneities with coating (those that chemically react and create various hydration products)
and without coating (inert materials, e.g. sand, and voids). Several works proved that the discussed
homogenization techniques can be used for concretes and mortars.

Several works, [1], [2] and [3], provided an inspiration for the development of micromechanical
models. These works exploit the Mori-Tanaka method ([4] and [5]) to estimate the effective stiffness
of a composite. Pichler et al. [1] estimated the mortar strength assuming that only the deviatoric
stress is responsible for a failure of the material, therefore the quadratic average of the deviatoric
stress in the lime matrix was chosen as an adequate indicator for the determination of mortar strength.
Even though there are a few simplifications in these models, the results in [1], [2] and [3] quite well
correspond to the available experimental data.



Part I

THEORETICAL BACKGROUND

1
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Chapter 1

Elasticity Equations

The governing equations of elasticity involve displacement, strain and stress fields, and they are valid
if the structure undergoes only small deformations and the material behaves in a linearly elastic man-
ner. Scheme of the overall system appears summarized in Fig. 1.1.

Figure 1.1: Diagram describing relationship between displacements, strains, stresses and body forces

1.1 Strain-to-Displacement Relations

The displacements of the points within an elastic body are described by three components (u, v, w)
or (u1, u2, u3), all of them dependent on the position in the Cartesian coordinate system (x, y, z) or
(x1, x2, x3). In a matrix notation, the displacements are arranged in a vector as follows:

u(x) =

 u1(x1, x2, x3)
u2(x1, x2, x3)
u3(x1, x2, x3)

 (1.1)

while in the index notation, the filed of displacements can be described as ui(xj), where i = 1, 2, 3
and j = 1, 2, 3.

Strains describe the deformation of the body and here only infinitesimal strains are dealt with. At
a point, the stretching, e.g. in the x-direction, can be seen as the differential displacement per unit
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length. The x-component of strain is then

εx = lim
∆x→0

∆u(x, y, z)

∆x
=
∂u

∂x
(1.2)

and therefore, the normal strain can be understood as a displacement gradient. The distortion of the
material, which can be described as the change in originally right angles, is the sum of tilts imparted
to vertical and horizontal lines (also called engineering strain):

γxy = γ1 + γ2 ≈ tan γ1 + tan γ2 =
∂v

∂x
+
∂u

∂y
(1.3)

For other displacement gradients εy, εz and distortions γyz, γzx the same reasoning can be applied
with cyclic change of coordinates x→ y → z → x and displacements u→ v → w → u.

The strain is a second order tensor and therefore the components can be arranged in a matrix form
as

ε =

 εx 1/2 γxy 1/2 γxz
1/2 γyx εy 1/2 γyz
1/2 γzx 1/2 γzy εz

 =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (1.4)

where, in the tensorial notation, shear strains (distortions) are halves of the engineering strains (e.g.
γ12 = 1/2 γxy).

The index notation provides a compact description of all the components of three-dimensional
states of strain:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
(ui,j + ui,j) (1.5)

where the comma denotes differentiation with respect to the following spatial variable (partial deriva-
tive). This double-subscript index notation leads naturally to a matrix arrangement of the strain com-
ponents, in which the i-j component of the strain becomes the matrix element in the ith row and
the jth column. Since the strain tensor is symmetric, i.e. εij = εji, there are six rather than nine
independent strains. In the symbolic notation the strain-displacement relationship can be expressed
as ε = ∇su.

Sometimes it is convenient to arrange the strain components in a vector, or rather pseudovector.
Because strain is actually a 2nd order tensor, like stress or moment of inertia, it has mathematical
properties very different from those of vectors. That must be taken into account while transforming
or calculating the norm of strain. The ordering of the elements in the pseudovector is arbitrary, but
it is conventional to list them in order (1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2) [6]. This arrangement
yields so-called Voigt notation.

Following the rules of a matrix multiplication, the strain pseudovector can also be written in
terms of the displacement vector and a proper operator. The strain-displacement relationship can be
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expressed as ε = ∂u:

ε =


εx
εy
εz
γyz
γxz
γxy

 =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0



 u
v
w

 (1.6)

In so-called Mandel notation, the components of strain are arranged in the pseudovector and the
shear components of strain tensor are multiplied by

√
2 as follows:

ε =



ε11

ε22

ε33√
2 ε23√
2 ε13√
2 ε12

 =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0

√
2

2

∂

∂z

√
2

2

∂

∂y√
2

2

∂

∂z
0

√
2

2

∂

∂x√
2

2

∂

∂y

√
2

2

∂

∂x
0



 u
v
w

 (1.7)

Such arrangement brings simplifications to many operations.

1.2 Equilibrium Equations

The force equilibrium on an infinitesimal cube results in the following equations (Cauchy’s equa-
tions):

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ bx = 0

∂τyx
∂x

+
∂σy
∂y

+
∂τyz
∂z

+ by = 0

∂τzx
∂x

+
∂τzy
∂y

+
∂σz
∂z

+ bz = 0

(1.8)
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where bi are body forces, such as gravity. By a closer observation it can be seen that the previous
equation can be expressed in compact a matrix-pseudovector form as ∂Tσ + b = 0. The Cauchy’s
equation can be also written using the index notation as

σij,j + bi = 0 (1.9)

and in the symbolic notation as ∇ · σ + b = 0, where the stress tensor can be visualized by a matrix
as

σ = σij =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (1.10)

and is also symmetric (because of a moment equilibrium on the infinitesimal cube). The element in
the ith row and the jth column of this matrix is the stress on the ith face in the jth direction.

On the body surface the equilibrium of internal stress and surface traction acting on the boundary
can be expressed by the Cauchy’s formula. The traction t is associated with any plane characterized
by its normal n and can be understood as a stress on the surface of the body. Therefore the static
boundary conditions can be written as n · σ = t where t is the prescribed traction (applied stress) at
the boundary Γt and n contains the multiples of the cosine angles between the investigated plane and
coordinate system (it is a projection onto the coordinate axes).

1.3 Constitutive Relations

The previous sections deal only with the kinematics (geometry) and the static equilibrium of the body;
however, they do not provide insight on the role of the material itself. The kinematic equations relate
strains to displacement gradients, and the equilibrium equations relate stress to the applied tractions
on loaded boundaries and also provide the relations among stress gradients within the material. More
equations, relating the stresses to strains are needed, and these are provided by the material’s consti-
tutive relations [6]. In this section, only isotropic elastic materials are dealt with.

In the general case of a linear relation between components of the strain and stress tensors, we
might propose a statement of the form:

σij = Lijkl(εkl − εtkl) (1.11)

where Lijkl is a 4th order tensor and εtkl is the initial (or eigen / stress-free) strain. Because the indices
kl do not appear in the equation after summation, they are called ”dummy indices”. Previous expres-
sion constitutes a sequence of nine equations, since each component of σij is a linear combination of
all the components of εkl. For instance

σ23 = L2311ε11 + L2312ε12 + . . .+ L2333ε33 (1.12)

Based on each of the indices of Lijkl taking on values from 1 to 3, we might expect 81 independent
components in L. However, both the stress tensor and the strain tensor are symmetric (σij = σji and
εij = εji), we must also have Lijkl = Lijlk and Lijkl = Ljikl. These relations are called minor
symmetries. The major symmetry of the stiffness tensor is expressed as Lijkl = Lklij . This reduces
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the number of components in L to 36, as can be seen from a linear relation between the pseudovector
forms of the strain and stress [6]:


σx
σy
σz
τyz
τxz
τxy

 =


L11 L12 · · · L16

L21 L22 · · · L26
...

... . . . ...
L61 L62 · · · L6




εx
εy
εz
γyz
γxz
γxy

 (1.13)

or, using the Mandel notation:

σ11

σ22

σ33√
2σ23√
2σ13√
2σ12

 =



L1111 L1122 L1133

√
2L1123

√
2L1113

√
2L1112

L2211 L2222 L2233

√
2L2223

√
2L2213

√
2L2212

L3311 L3322 L3333

√
2L3323

√
2L3313

√
2L3312√

2L2311

√
2L2322

√
2L2333 2L2323 2L2313 2L2312√

2L1311

√
2L1322

√
2L1333 2L1323 2L1313 2L1312√

2L1211

√
2L1222

√
2L1233 2L1223 2L1213 2L1212





ε11

ε22

ε33√
2 ε23√
2 ε13√
2 ε12

 (1.14)

It can be shown that the L matrix in this form is also symmetric and therefore it contains only 21
independent elements. If the material exhibits symmetry in its elastic response, the number of inde-
pendent elements in the L matrix can be further reduced. In the simplest case of an isotropic material,
having the same stiffness in all directions, only two elements are independent - for example Young’s
modulus (E) and Poisson’s ratio (ν). From these, so-called shear modulus can be calculated:

G =
E

2(1 + ν)
(1.15)

If a body is loaded by the stress σx, the resulting deformation in x-direction is εx = σx/E and the
other normal components of strain are εy = εz = −νεx = −νσx/E. In the general stress-state, the
other normal strain components are derived analogically (but the material must be isotropic):

εx =
1

E
(σx − νσy − νσz) (1.16a)

εy =
1

E
(−νσx + σy − νσz) (1.16b)

εz =
1

E
(−νσx − νσy + σz) (1.16c)

In case of isotropic material, each shear deformation is proportional to the corresponding shear stress
with the constant of proportionality 1/G:

γxy =
τxy
G

=
2(1 + ν)

E
τxy (1.17a)

γxz =
τxz
G

=
2(1 + ν)

E
τxz (1.17b)

γyz =
τyz
G

=
2(1 + ν)

E
τyz (1.17c)
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The six above equations can be written in the matrix form as
ε11

ε22

ε33

ε23

ε13

ε12

 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν




σ11

σ22

σ33

σ23

σ13

σ12

 (1.18)

which can be written in a compact form as

ε = Mσ (1.19)

where M is the elastic compliance matrix. However, if the Mandel notation is used (which is neces-
sary in some applications) the last 3 diagonal terms in the compliance matrix must be divided by 2.
By inversion of M, we get the generalized Hook’s law:

σ = M−1ε = Lε (1.20)

where

L =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν

 (1.21)

is the elastic stiffness matrix of an isotropic material. In the Mandel notation the last 3 diagonal terms
must be multiplied by 2 (see equation (1.14)).

Table 1.1: Summary of basic elasticity equations

equations
tensorial form

engineering form domain
index notation symbolic notation

kinematic εij = 1
2
(ui,j + ui,j) ε = ∇su ε = ∂u volume Ω

constitutive σij = Lijkl εkl σ = L : ε ε = Lε volume Ω

static σij,j + bi = 0 ∇ · σ + b = 0 ∂Tσ + b = 0 volume Ω

kinematic b.c. ui = ui u = u u = u surface Γu

static b.c. σijnj = ti n · σ = t nσ = t surface Γt
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Chapter 2

Volumetric and Deviatoric Components

2.1 Hydrostatic and Deviatoric Stresses

A state of hydrostatic compression is the one in which no shear stresses exist and where all the normal
stresses are equal. For this stress state it is obviously true that

σm =
σ11 + σ22 + σ33

3
=

1

3
σkk (2.1)

This quantity (so called mean stress) is one third of invariant I1 (so called hydrostatic or volumetric
stress), which is a reflection of hydrostatic pressure being the same in all directions, not varying with
axis rotations. Then the volumetric stress-state is in matrix representation of the tensor σij defined as
follows:

σ =

 σm 0 0
0 σm 0
0 0 σm

 (2.2)

The stress tensor is then composed of the volumetric part and the deviatoric part:

σij =
1

3
σkkδij + sij (2.3)

where the symbol δij is the Kronecker delta, which is defined as

δij =

{
1 if i = j
0 if i 6= j

(2.4)

The hydrostatic stress state can be then represented by

s =

 σ11 − σm σ12 σ13

σ21 σ22 − σm σ23

σ31 σ32 σ33 − σm

 (2.5)

The hydrostatic (volumetric) stress is related to the change of volume of a material during deforma-
tion, while the deviatoric part is responsible for the distortion. This concept is also convenient because
the material responds to these stress components in very different ways. For instance, plastic and vis-
cous behavior is caused dominantly by the distortional components, with the volumetric component
causing only an elastic deformation [6].

The graphical representation of the stress tensor decomposition is shown in the following figure:
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Figure 2.1: Decomposition of stress in volumetric and deviatoric parts

2.2 Volumetric and Deviatoric Strains

In a cubical element, originally of volume V = abc, subjected to normal strains in all three directions,
the change in the element’s volume is

∆V

V
=
a′b′c′ − abc

abc
=
a(1 + εx)b(1 + εy)c(1 + εz)− abc

abc
=

= (1 + εx)(1 + εy)(1 + εz)− 1 ≈ εx + εy + εz (2.6)

where products of strains are neglected. The volumetric strain is therefore the sum of the diagonal
elements in the strain tensor (also called trace of the matrix, or Tr(ε). In the index notation, this can
be written simply as

εV =
∆V

V
= εkk (2.7)

Similarly to the mean stress σm, the mean strain is calculated as

εm =
ε11 + ε22 + ε33

3
=

1

3
εkk (2.8)

and the strain tensor can be then composed of the volumetric and deviatoric part:

εij =
1

3
εkkδij + eij (2.9)

The volumetric and deviatoric strain states can be represented by a matrix in a similar fashion as
volumetric and deviatoric stress states, see. equations 2.2 and 2.5.

2.3 Constitutive Relations

Since εV is a relative change of volume, it must be independent of the coordinate system (therefore,
it is so called invariant). The relation between volumetric strain and mean stress can be derived as
follows:

εV =
1

E
(σx − νσy − νσz) +

1

E
(−νσx + σy − νσz) +

1

E
(−νσx + σy − νσz) =

=
1− 2ν

E
(σx + σy + σz) =

3(1− 2ν)

E

(σx + σy + σz)

3
=
σm

K
(2.10)
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where

K =
E

3(1− 2ν)
(2.11)

is so called bulk modulus connecting the mean volumetric stress σm with the volumetric strain εV.
However, the volumetric change is proportional to the mean stress only in case of an isotropic mate-
rial. Note that as ν → 0.5, K → ∞, which means that the material becomes infinitely stiff as the
Poison’s ratio approaches 0.5. Values of the Poisson’s ratio greater than 0.5 are not possible since
such values imply that a tensile hydrostatic stress would cause a volumetric contraction.

The normal component of the deviatoric deformation ex can be expressed as

ex = ex − εm =
1

E
(σx − νσy − νσz)−

1

3K
σm =

=
1

E
[(sx + σm − ν(sy + σm)− ν(sz + σm)]− 1− 2ν

E
σm =

=
1

E
(sx − νsy − νsz) (2.12)

and since the sum of the deviatoric normal components is equal to zero:

sx + sy + sz = (σx − σm) + (σy − σm) + (σz − σm) = σx + σy + σz − 3σm =

= 3σm − 3σm = 0 (2.13)

the following equality holds:

νsx = −νsy − νsz (2.14)

Therefore the relationship between the first components of the deviatoric stress and strain tensors can
be express as

νex =
1

E
(sx + νsx) =

1 + ν

E
sx =

sx
2G

(2.15)

The same relation holds for the other normal components of the deviatoric strain tensor as well.

2.3.1 Lamé’s Constants

For the diagonal terms in the strain tensor, for instance the strain ε11, the strain-stress relationship can
be expressed as

ε11 =
1

E
σ11 −

1

E
ν(σ22 + σ33) =

1 + ν

E
σ11 −

1

E
ν(σ11 + σ22 + σ33) (2.16)

which can be, using the index notation, for all normal strains expressed as

εij =
1 + ν

E
σij −

ν

E
σkk if i = j (2.17)



VOLUMETRIC AND DEVIATORIC COMPONENTS 11

The shear components of the stress tensor, for instance the strain

ε12 =
1 + ν

E
σ12 (2.18)

can be, using the index notation, expressed generally as

εij =
1 + ν

E
σij if i 6= j (2.19)

The equations (2.17) and (2.19) can be written in a single expression by making use of the Kronecker
delta, defined in equation (2.4):

εij =
1 + ν

E
σij −

ν

E
δijσkk (2.20)

The isotropic elasticity law can be decomposed into its volumetric and deviatoric parts, σkk =
3Kεkk and sij = 2µ eij .The required form of the stress-strain relationship (dependence of stress on
strains), using so-called Lamé’s constants µ and λ has a form

σij = 2µεij + λδijεkk (2.21)

In order to establish the relationship between Lamé’s constants, Young’s modulus and Poisson’s ratio,
it is necessary to compare the two forms of the constitutive equations for an isotropic elastic material
with equation (2.21). However, in order to make that comparison, the equations for strain-stress
relationship must be inverted, because the previous equation expresses the stress components in terms
of the strain components.

By simple arrangement, the following equation can be obtained:

σkk =
E

1− 2ν
εkk (2.22)

and the whole equation (2.20) can be inverted:

σij =
E

1 + ν
εij +

Eν

(1 + ν)(1− 2ν)
δijεkk (2.23)

Therefore by comparison with equation (2.21), the Lamé’s constants can be expressed as

µ = G =
E

1 + ν
(2.24)

and

λ =
Eν

(1 + ν)(1− 2ν)
= K − 2

3
G (2.25)

in terms of E, ν, K and G.
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Table 2.1: Relations between elastic constants

basic pair of elastic constants

λ, µ µ, K E, G E, ν

λ λ K − 2
3
ν

G(E − 2G)

3G− E
Eν

(1 + ν)(1− 2ν)

µ µ µ G
E

2(1 + ν)

K λ+ 2
3
G K

GE

3(3G− E)

E

3(1− 2ν)

E
µ(3λ+ 2µ)

λ+ µ

9K µ

3K + µ
E E

ν
λ

2(λ+ µ)

3K − 2µ

2(3K + µ)

E

2G
− 1 ν

2.3.2 Tensorial Notation

In the tensorial notation, there is needed the use of the unit fourth-order tensor, Iijkl , having the
components Iijkl = δikδjl, with Kronecker delta being called the unit second-order tensor. This
tensor exhibits the major symmetry but not the minor symmetry, and it has the important property
that I : ε = ε : I = ε for any second order tensor ε [7].

Sometimes it is useful to work with the symmetrized unit fourth-order tensor, IS, with components

ISijkl =
δikδjl + δilδjk

2
(2.26)

This tensor exhibits the minor and major symmetries, but the identity I : ε = ε : I = ε holds only if
the second-order tensor ε is symmetric [7].

Using the Lamé’s constants, the stiffness tensor in linear isotropic elasticity can be expressed as

Le
ijkl = λδikδjl + µ(δikδjl + δilδjk) (2.27)

or in a symbolic notation as Le = λδ⊗δ+ 2µIS. The generalized Hooke’s law can be then presented
as

σ = Le : ε = λδ ⊗ δ : ε+ 2µIS : ε = 3λδεm + 2µe (2.28)

where εm = 1/3 δ : ε is one third of the trace of the strain tensor, representing the relative change of
volume as defined in Section 2.2. The volumetric part of the strain tensor is then εmδ, and when it is
subtracted from the strain tensor, we obtain the deviatoric strain tensor:

e = ε− δεm = ε− 1

3
δ ⊗ δ : ε =

(
IS −

1

3
δ ⊗ δ

)
: ε = ID : ε (2.29)
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Therefore the deviatoric projection tensor is defined as

ID = IS −
1

3
δ ⊗ δ (2.30)

and the volumetric projection tensor as

IV =
1

3
δ ⊗ δ (2.31)

Then the volumetric-deviatoric decomposition of the strain tensor can be done as follows:

ε = IS : ε = (IV + ID) : ε = IV : ε+ ID : ε = εmδ + e (2.32)

and the stress tensor can be decomposed in the same way:

σ = IS : σ = (IV + ID) : σ = IV : σ + ID : σ = σmδ + s (2.33)

The elastic stiffness tensor can be also decomposed into its volumetric and deviatoric part. Real-
izing that δ ⊗ δ = 3IV, we can rewrite the stiffness tensor in the linear isotropic elasticity as

Le = λδ ⊗ δ + 2µIS = 3λIV + 2µ(IV + ID) = (3λ+ 2µ)IV + 2µID =

= 3KIV + 2GID (2.34)

because the coefficient (3λ+2µ) is recognized as three times bulk modulusK and µ = G is the shear
modulus (see Table 2.1). The generalized Hooke’s law

σ = Le : ε = (3KIV + 2GID) : ε = 3KIV : ε+ 2GID : ε = 3Kεmδ + 2Ge (2.35)

can be split into the volumetric and deviatoric part:

σm = 3KεV and s = 2Ge (2.36)

2.3.3 Engineering Notation

While the tensorial notation is useful in theoretical derivations, for developing a numerical algorithm
that should be implemented into a computer code, it is more convenient to store the stress and strain
components in one-dimensional arrays (pseudovectors) and stiffness moduli in matrices [7]. However,
the double contraction of stress tensor ε : ε used for calculation of norm or strain energy density is
equal to the pseudovector multiplication εTε only if the shear components in the pseudovector are
multiplied by the factor of

√
2, i.e. using the Mandel notation (see section 1.14). The same holds for

the norm of stress tensor. For the purpose of the volumetric-deviatoric decomposition, the engineering
counterpart of the unit second-order tensor (Kronecker delta) is established as δ = (1 1 1 0 0 0)T. Then
the volumetric-deviatoric decomposition is in the engineering notation based on projection matrices

IV =
1

3
δδT and ID = I − 1

3
δδT (2.37)

with I representing the identity matrix. Using the Mandel notation, the elastic stiffness matrix can
be simply expressed by means of the volumetric and deviatoric projection matrices as Le = 3KIV +
2GID.
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Chapter 3

Stiffness Homogenization

Many materials are inhomogeneous, i.e., they consist of dissimilar constituents (phases) that are dis-
tinguishable at some small length scale. The behavior of inhomogeneous materials is determined, on
the one hand, by the relevant material properties of the constituents and, on the other hand, by their
geometry and topology (phase arrangement) [8].

A macroscopically homogeneous material may have a heterogeneous microstructure at the mi-
croscopic level. Under certain conditions, the material can be described at the macroscopic level
as homogeneous with spatially constant effective properties. This means that the microstructure is
averaged; this micro-to-macro transition is called homogenization

3.1 Basic Assumptions

Defects in an elastic material give rise to inhomogeneous stress and strain fields by which the de-
fects can be characterized. Equivalence between an inhomogeneous material and some homogeneous
material with a certain eigenstrain or eigenstress distribution can be established [8].

Instead of modeling a material with its microstructure (texture) it is much more efficient to con-
sider the material as homogenous, having some effective (macroscopic) properties. In this case the
modeled body has to be large enough to include all inhomogeneities and avoid influence of local fields
by their averaging.

3.1.1 Representative Volume Element

The suitable volume for homogenization is called ”representative volume element” (RVE). The rep-
resentative volume element must be big enough to include enough inhomogeneities (statistically ho-
mogeneous distribution of the defects or heterogeneities), but small enough to have the stresses and
strains within the RVE uniform (size with respect to the analyzed detail of a structure).

3.1.2 Inhomogeneities

The term inhomogeneity is understood as an inclusion of a material embedded in a matrix, having
different material properties from those of the matrix. Inhomogeneities are instead of eigenstrains in
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a homogeneous material characterized by inhomogeneous, i.e., spatially varying, material properties
are called inhomogeneities.

In analytical (mean-field) methods we first describe these defects by an equivalent eigenstrain
in some homogeneous comparison material in order to then apply again Eshelby’s result [9] (see
Section 3.3). This strategy involves replacing an actual perfectly bounded inhomogeneity (superscript
(r)), subjected to the eigenstrain εt, with an equivalent (fictitious) homogeneous inclusion subjected
to the equivalent eigenstrain. This equivalent eigenstrain must be chosen in such a way, that the
inhomogeneity and the equivalent homogeneous inclusion attain the same stress state σ(r) and the
same constrained strain [10].

3.1.3 Averaging

The macro-stresses and macro-strains, which characterize the mechanical state of the macroscopic
material point, are defined as the volumetric averages of the microscopic fields, e.g.

〈σij〉 = Σij =
1

|Ω|

∫
Ω

σij dx (3.1)

In case of the effective (average) stress in the volume Ω. The macro-strains are calculated then in a
similar fashion as

〈εij〉 = Eij =
1

|Ω|

∫
Ω

εij dx (3.2)

Often a volume Ω of a heterogeneous material consists of n subdomains and a matrix with volume
fractions

c(r) =
|Ω(r)|
|Ω|

(3.3)

where r = 0, .., n, with r = 0 representing the matrix itself. Obviously then
n∑

r=0

c(r) = 1 (3.4)

if the inclusion (inhomogeneity) properties are piecewise constant. In case of such microstructure,
consisting of discrete phases, we have

Σij =
n∑

r=0

c(r)Σ
(r)
ij (3.5)

since

Σij =
1

|Ω|

∫
Ω

σij dx =
1

|Ω|

(
n∑

r=0

∫
Ω(r)

σij dx

)
=

1

|Ω|

(
|Ω(r)|
|Ω(r)|

n∑
r=0

∫
Ω(r)

σij dx

)
=

=
n∑

r=0

c(r)Σ
(r)
ij (3.6)

and analogously for the strains it hold that

Eij =
n∑

r=0

c(r)E
(r)
ij (3.7)

which means that the total stress (or strain) is the sum of phase stress (or strain) with the weight c(r).
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3.2 Energy methods

Unlike in case of analytical solutions, the energy methods are used for the determination of an exact
range within which the effective properties of a heterogeneous material are located. The derivation
is based on extremum principles of the elasticity theory which allow to derive strict upper and lower
bounds for the effective properties from energetic expressions [9].

3.2.1 Voigt and Reuss Bounds

The advantage of Voigt and Reuss bounds is that they are easy to calculate and can be considered
as the upper and lower bounds for the effective elastic properties of a heterogeneous material. This
can be shown form the principle of minimum potential energy, stating that among all kinematically
admissible strain fields the true strains attain the one having the minimum potential energy [9].

In a homogeneous material, the boundary conditions lead to homogeneous (spatially constant)
stress and strain fields. The simplest approximation is to assume the micro-fields to be constant, in
accordance with the boundary conditions [9]. The first possibility is to prescribe linear displacements
at the boundary u|Γ= E · x and therefore E = const. = 〈ε〉. The second possibility is loading by
uniform tractions at the boundary t|Γ= Σ · n where Σ = const. = 〈σ〉.

These approximations are exact only in one-dimensional special cases of different materials ar-
ranged ”in parallel” (Voigt) or ”in series” (Reuss). Despite obvious deficiencies, the simple approx-
imations by Voigt and Reuss bear the advantage that they yield exact bounds for the true effective
elastic constants of a heterogeneous material.

If the displacements are prescribed along the entire boundary of a volume Ω, the potential of the
boundary loads vanishes (the body does not move) and the total potential energy (or internal energy)
of a kinematically admissible strain field ε̂ can be expressed as

Π̂(ε̂) =
1

2

∫
Ω

ε̂ : L : ε̂ dΩ =
Ω

2
〈ε̂ : L : ε̂〉 (3.8)

In case of prescribed displacement on the boundary, the strain energy according to the Hill’s lemma,
expressing the equality between the average strain energy density 〈We〉 in the RVE by means of the
microscopic or macroscopic quantities [9]:

〈We〉 =
1

2
〈ε : L : ε〉 =

1

2
〈ε〉 : Leff : 〈ε〉 =

1

2
E : Leff : E (3.9)

is Π(ε) = Ω
2
〈ε〉 : Leff : 〈ε〉. From the extremum principle (we seek for the minimum) stating that

Π̂(ε̂) ≥ Π(ε) it follows that

〈ε̂ : L : ε̂〉 ≥ 〈ε〉 : Leff : 〈ε〉 (3.10)

for all strain fields ε̂ that satisfy the boundary condition (prescribed displacements). In the Voigt
approximation the strain field is given by E = const. = 〈ε〉 and insertion into equation (3.10) yields

〈ε〉 : 〈L〉 : 〈ε〉 ≥ 〈ε〉 : Leff : 〈ε〉 (3.11)

or

〈ε〉 : (〈L〉 − Leff) : 〈ε〉 ≥ 0 (3.12)
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Because of the quadratic form of 〈ε〉, the average elasticity tensor 〈L〉 is larger than Leff and therefore
presents an upper bound for the effective elasticity tensor.

Analogously, from the principle of minimum complementary energy, where stress fields σ̂ have
to satisfy equilibrium with prescribed tractions, t, a lower bound can be found. In this case the
complementary energy is given by

Π̂c(σ̂) =
Ω

2
〈σ̂ : Meff : σ̂〉 (3.13)

If the boundary tractions are uniform, t|∂Ω= Σ · n where Σ = const. = 〈σ〉, the complementary
energy according to the Hill’s lemma is Πc(σ) = Ω

2
〈σ〉 : Meff : 〈σ〉. From the condition Π̂c(σ̂) ≥

Πc(σ) it follows that

〈σ̂ : M : σ̂〉 ≥ 〈σ〉 : Meff : 〈σ〉 (3.14)

for all admissible fields σ̂. Such field is used in the Reuss approximation, yielding

〈σ〉 : (〈M〉 −Meff) : 〈σ〉 ≥ 0 (3.15)

Because of the quadratic form of 〈σ〉, the average elasticity tensor 〈M〉 is larger than Meff and
therefore presents an upper bound for the effective compliance tensor.

When these two results (Voigt and Reuss approximation) are combined, the effective elasticity
tensor always lies between these two bounds:

Leff
Voigt = 〈L〉 ≥ Leff ≥ 〈M〉−1 = Leff

Reuss (3.16)

In case of materials with discrete isotropic phases that are isotropically distributed, the effective mate-
rial properties are also isotropic. Obviously from equation (3.16) the upper (Voigt) bound for effective
elastic stiffness tensor can be found simply as

Leff
Voigt = 〈L〉 =

n∑
r=0

c(r)L(r) (3.17)

and since the isotropic elasticity tensor can be decomposed into volumetric and deviatoric parts, L =
3KIV + 2GID, the upper bound for the effective bulk and shear moduli can be found as

Keff
Voigt =

n∑
r=0

c(r)K(r) and Geff
Voigt =

n∑
r=0

c(r)G(r) (3.18)

However, if one of the phases is rigid (e.g., L(1) → ∞) one obtains Leff → ∞ from the Voigt
approximation.

The lower bound for the elastic constants can be found in a similar fashion. It is clear that from
equation (3.16) the lower (Reuss) bound for effective elastic stiffness tensor can be found as

Meff
Reuss = 〈M〉 =

n∑
r=0

c(r)M(r) (3.19)

After projection into volumetric and deviatoric part we obtain the formula for bulk and shear moduli:

1

Keff
Reuss

=
n∑

r=0

c(r)

K(r)
and

1

Geff
Reuss

=
n∑

r=0

c(r)

G(r)
(3.20)

However, in case of a matrix containing cavities or cracks having vanishing stiffness (e.g., L(1) → 0),
the Reuss approximation leads to Leff → 0.
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3.3 Eigenstrain

Since the eigenstrain is not caused by stress, eigenstrains are also referred to as stress-free transforma-
tion strains (superscript t). Formally, all kinds of strain that may prevail in a material in the absence
of stress, can be interpreted as eigenstrains; typical examples are thermal or plastic strains. In the
framework of infinitesimal deformations the total strains εij are sum of elastic strains, εeij = Mijklσkl,
and the eigenstrains: εij = εeij + εtij . The stress-strain relationship is then [9]

σij = Lijkl(εkl − εtkl) (3.21)

The phase transformation in solids, where atomic rearrangements change the geometry of the
lattice, gives rise to spatial distribution of eigenstrain εtij(x). If non-vanishing eigenstrains prevail,
only in some bounded subregion Ω of the homogeneous material, this region is called an inclusion
and the surrounding material is called a matrix. It has to be emphasized that the elastic properties of
an inclusion and the matrix are the same; otherwise the region Ω would be called an inhomogeneity
[9].

Probably J.D. Eshelby (1916-1981) has found the most important analytical solution of microme-
chanics [10]. It is valid for an unbounded domain which contains an ellipsoidal inclusion Ω(r) with
principal axes ai. If the eigenstrains in the inclusion are constant (εtkl = const.) then the remark-
able result holds that the total strains εkl inside the inclusion are constant as well. Via fourth-order
Eshelby’s tensor Sijkl they depend linearly on the eigenstrains [9]

εij = Sijklε
t
kl in Ω(r) (3.22)

The Eshelby’s tensor is symmetric in the first and second pair of indices, but in general it is not
symmetric with regard to an exchange of these pairs (exhibits the minor but not the major symmetry)
[9]:

Sijkl = Sjikl = Sijlk but Sijkl 6= Sklij (3.23)

In case of an isotropic material, its components depend only on Poisson’s ratio ν, the ratios of the
principal axes ai, and their orientation with respect to some Cartesian coordinate system. The respec-
tive expressions are very long and can be found in literature, e.g. in [11]. Only in case of an isotropic
material there exists a closed-form representation of the tensor Sijkl, and the fields outside the in-
clusion. The Eshelby solution for ellipsoidal inclusions is of fundamental importance for analytical
homogenization techniques (e.g. Mori-Tanaka).

Starting from the general ellipsoid various special cases can be derived. For instance, the two-
dimensional solution for an infinitely long cylinder of elliptic cross section in plane strain is obtained
from the limit process a3 →∞ [9].

For a spherical inclusion (ai = a) in an isotropic material the dependence on the principal axes
and their orientation vanishes (geometric isotropy) and the Eshelby tensor reduces to

Sijkl = α(0) 1

3
δijδkl + β(0)

(
IS
ijkl −

1

3
δijδkl

)
= α(0)IV + β(0)ID (3.24)

where

α(0) =
1 + ν(0)

3(1 + ν(0))
=

3K(0)

3K(0) + 4G(0)
and β(0) =

2(4− 5ν(0))

15(1− ν(0))
=

6(K(0) + 2G(0))

5(3K(0) + 4G(0))
(3.25)
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are scalar parameters. The superscript (0) stands for the matrix. The entire (i.e., elastic and geometric)
isotropy of the problem then allows the decomposition into volumetric and deviatoric strain, which
highlights the meaning of the parameters α and β [9]:

εkk = αεtkk and εij = βεtij in Ω(r) (3.26)

Therefore the fourth rank Eshelby tensor turns out to be isotropic when the shape of the inclusion is
spherical and can be characterized by the constraint constants α and β (representing the volumetric
and the deviatoric parts of the constraint, respectively).

3.4 Dilute (Non-Interacting) Defect Distribution

The simplest situation for modeling is when the inhomogeneities or defects are so dilutely distributed
in the homogeneous matrix that their interaction among each other and with the boundary of the RVE
can be neglected (”dilute distribution”), see Figure 3.1.

Figure 3.1: Model of dilute phase distribution [9]

If a sample of an inhomogeneous material is subjected to the external load E, then the average
strain in individual phases can be calculated as E(r) = A(r) : E, where A(r) represents a strain
concentration factor for a phase r. The superscript r attains the values from 1 (possibly even 0 if the
matrix is included) to the number of phases n. The strain concentration factor can be calculated as
follows (for details and derivation see e.g. [8]):

A
(r)
dil = [I + S : M(0) : (L(r) − L(0))]−1 where r = 1, ..., n (3.27)

where I represents the fourth order unity tensor with components Iijkl = 1/2(δikδjl + δilδjk), where
δij is a Kronecker delta defined in equation (2.4); S is the Eshelby tensor, M(0) is a compliance tensor
representing the matrix, the L(r) and L(0) are stiffness tensors, representing the individual phases and
the matrix, respectively.

The subscript ”dil” in equation (3.27) stands for a ”dilute distribution”, because equation (3.27) is
valid under the assumption that the inhomogeneity is embedded in an infinite matrix. The assumption
of dilutely distributed non-interacting inhomogeneities is a starting point for a refinement of the model
accounting for a mutual interaction of inhomogeneities, such as the Mori-Tanaka scheme introduced
next.
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3.5 Mori-Tanaka Model

The Mori-Tanaka model, [4] and [5], formally equals to that of a dilute distribution. However, the
strain in individual inhomogeneities is not directly dependent on the externally applied load (macro-
scopic strain), but rather on a strain in the matrix (see Figure 3.2), which is approximated by a constant
field E(0):

E(r) = A
(r)
dil : E(0) (3.28)

The relationship between the macroscopic strain and strain in the matrix can be found using a simple
reasoning:

E = c(0)E(0) +
n∑

r=1

c(r)E(r) = c(0)E(0) +
n∑

r=1

c(r)A
(r)
dil : E(0) = (3.29)

=

(
c(0)I +

n∑
r=1

c(r)A
(r)
dil

)
: E(0)

where c, having a superscript (0) and (r), stands for a volume fraction of the matrix and inhomo-
geneities, respectively. The relationship between the average matrix strain and the macroscopic strain
can be described simply as E(0) = A

(0)
MT : E, where

A
(0)
MT =

(
c(0)I +

n∑
r=1

c(r)A
(r)
dil

)−1

(3.30)

is the Mori-Tanaka strain concentration factor. The strain in the individual inhomogeneities is then
provided by

E(r) = A
(r)
dil : E(0) = A

(r)
dil : A

(0)
MT : E (3.31)

The relationship between the macroscopic stress Σ and strain E can be obtained as follows:

Σ =
n∑

r=0

c(r)Σ(r) =
n∑

r=0

c(r)L(r) : E(r) =
n∑

r=0

c(r)L(r) : A(r) : E = Leff : E (3.32)

where Leff is the effective stiffness tensor, and in case of the Mori-Tanaka scheme it can be obtained
as

Leff =

(
c(0)L(0) +

n∑
r=1

c(r)L(r) : A
(r)
dil

)
: A

(0)
MT (3.33)

In the special case of an isotropic matrix containing isotropic spherical inhomogeneities, the Mori-
Tanaka model yields also an isotropic overall behavior, irrespective of the spatial arrangement of
the phases. Using the equations (3.31), (3.25) and knowing that the elastic stiffness tensor can be
decomposed into volumetric and deviatoric parts, L = 3KIV + 2GID, all the terms in equation (3.33)
can be decomposed into their volumetric and deviatoric parts. Since the volumetric and deviatoric
components are independent of each other, the dilute concentration factors defined in equation (3.27)
can be represented separately by their volumetric and deviatoric part as

A
(r)
dil,K =

K(0)

K(0) + α(0)(K(r) −K(0))
and A

(r)
dil,G =

G(0)

G(0) + β(0)(G(r) −G(0))
(3.34)
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Figure 3.2: Interaction of inhomogeneities in the Mori-Tanaka model [9]

. The effective bulk and shear moduli can be then expressed as

Keff =

c(0)K(0) +
n∑

r=1

c(r)K(r)A
(r)
dil,K

c(0) +
n∑

r=1

c(r)A
(r)
dil,K

and Geff =

c(0)G(0) +
n∑

r=1

c(r)G(r)A
(r)
dil,G

c(0) +
n∑

r=1

c(r)A
(r)
dil,G

(3.35)



Chapter 4

Homogenization with Coated Particles

This section is devoted to the evaluation of the dilute concentration factors for individual layers of
coated particles. Herve and Zaoui [12] found an analytical solution for derivation of the elastic strain
and stress fields in an infinite medium constituted of an n-layered isotropic spherical inclusion, em-
bedded in a matrix subjected to uniform stress or strain conditions at infinity. The integration constants
were found using the continuity conditions and equilibrium of stresses on the interface of individual
phases. Since the Harve-Zaoui scheme describes an infinite domain consisting of n + 1 inclusions,
it belongs to the family of self-consistent schemes. The geometrical and material isotropy allows
separation of the volumetric and deviatoric part.

4.1 Dilute Concentration Factors by Herve-Zaoui Scheme

Only the determination of the dilute concentration factors for a coated particle and its coating is
presented here. The whole derivation by Herve and Zaoui of the elastic strain and stress fields in an
infinite medium constituted of an n-layered spherical inclusion, embedded in a matrix and subjected
to uniform stress or strain conditions at infinity can be found in [12]. The problem is illustrated in
Figure 4.1. Each phase of the composite from the Figure ?? is represented by its radius (except for
the matrix), ri, Poisson’s ratio, νi, bulk and shear moduli, Ki and Gi.

Note that the layers are marked by subscript i attaining the values from 1 (representing the inner
sphere) to n (representing the outer layer of the inclusion) and n + 1 representing the matrix. This
notation is used for the determination of concentration factors next.

4.1.1 Volumetric Part

The volumetric part of the dilute concentration factors for individual layers of the spherical inclusion
can be found as elements of a vector F:

A
(i)
dil,K = Fi (4.1)

where the first term is determined as

F1 =
1

Q
(n)
11

(4.2)

22
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Figure 4.1: The n-layered spherical inclusion considered in Harve-Zaoui scheme

and the remaining terms as

Fi =
Q

(i−1)
11

Q
(n)
11

for i = 2, ..., n (4.3)

The determination of matrices Q(i), representing individual layers of the composite inclusion, can be
found in Appendix, Section A.1.

4.1.2 Deviatoric Part

The deviatoric part of the dilute concentration factor for the inner sphere (i = 1) can be found as:

A
(1)
dil,G = A1 −

21

5

r(1)2

1− 2ν(1)
B1 (4.4)

and for the other layers as

A
(i)
dil,G = Ai −

21

5

r(i)5 − r(i−1)5

(1− 2ν(i))(r(i)3 − r(i−1)3
)
Bi for i = 2, ..., n (4.5)

The determination of vectors A(i) and B(i), representing individual layers of the composite inclusion,
can be found in Appendix, Section A.2.

4.2 Modification of Mori-Tanaka Model

For the calculation of the effective moduli, Keff and Geff , the coated particle and its coating(s) are in
equation (3.35) represented by the dilute concentration factorsA(i)

dil,K andA(i)
dil,G evaluated according to

equations (4.1), (4.4) and (4.5) instead of concentration factors A(r)
dil,K and A(r)

dil,G calculated according
to equation (3.34). Otherwise there is no change in the procedure of the effective stiffness estimation.
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Chapter 5

Strength Estimation

The strength estimation is based on the J2 yield criterion, i.e. that only the deviatoric part of the
imposed load can cause a failure of the material. Therefore, it is necessary to calculate the deviatoric
stress in individual components, which can be afterwards compared with a critical stress. Such ap-
proach was used by [1] and it turned out to be suitable for an estimation of the compressive strength
in cementitious materials.

Due to the assumed elastic linear behavior of the RVE, all imposed work is stored at each point as
an elastic energy density, We = 1

2
σ : ε, which can be decomposed into the volumetric and deviatoric

part:

We =
1

2
σ : ε =

1

2
(s + σmδ) : (e + εmδ) =

1

2
s : e +

1

2
σmεmδ : δ =

1

2
s : e +

1

2
σmεV (5.1)

knowing that We = 1
2
σ : ε = 1

2
ε : L : ε and that the elastic stiffness tensor can be also decomposed

as L = 3KIV + 2GID, we can express the deviatoric part of the imposed work as

WeD =
1

2
s : e =

1

4G
s : s (5.2)

which is proportional to the second invariant of the stress deviator, J2, where

J2 =
1

2
s : s (5.3)

and therefore WeD = J2/(2G). The quadratic average of the deviatoric stress is then ‖s‖=
√

2 J2.

5.1 Quadratic Strain Averages

The expression for the quadratic average of the deviatoric strain field over a general phase, r, can
be derived using the Hill’s lemma, which expresses the equality between the average strain energy
density, 〈We〉, in the RVE by means of the microscopic or macroscopic quantities [9]. From equation
(3.9) the following equality can be obtained:

E : Leff : E =
1

|Ω|

∫
Ω

ε(x) : L(x) : ε(x) dx (5.4)
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where Ω stands for the domain of the entire RVE, opposed to Ω(r) denoting the domain of the single
inclusion (inhomogeneity). The local strain ε(x) can be then decomposed into its volumetric and
deviatoric part (responsible for the material failure):

E : Leff : E =
1

|Ω|

∫
Ω

ε(x) : [3K(x)IV + 2G(x)ID] : ε(x) dx (5.5)

To extract the deviatoric part, it is convenient to differentiate the entire expression (5.5) with
respect to G(r). The volumetric part vanishes and we obtain

E :
∂ Leff

∂ G(r)
: E =

1

|Ω|

n∑
r=0

∫
Ω(r)

2 e(r)(x) : e(r)(x) dx (5.6)

which can be after a simple manipulation:

1

2
E :

∂ Leff

∂ G(r)
: E =

1

|Ω|
|Ω(r)|
|Ω(r)|

n∑
r=0

∫
Ω(r)

e(r)(x) : e(r)(x) dx (5.7)

knowing that c(r) = |Ω(r)|/|Ω|, even more simplified:

1

2
E :

∂ Leff

∂ G(r)
: E = c(r) 1

|Ω(r)|

∫
Ω(r)

e(r)(x) : e(r)(x) dx (5.8)

The quadratic average of the deviatoric strain field over a general phase, r, is defined as [1]

‖e(r)‖=

√
1

|Ω(r)|

∫
Ω(r)

1

2
e(r)(x) : e(r)(x) dx (5.9)

and obviously from equation (5.8), it can be also expressed as

‖e(r)‖=
√

1

4c(r)
E :

∂ Leff

∂ G(r)
: E (5.10)

The related quadratic average of the deviatoric stress field (see (5.3)) is used as an estimate for devia-
toric stress peaks [1]:

‖s(r)‖=

√
1

|Ω(r)|

∫
Ω(r)

1

2
s(r)(x) : s(r)(x) dx = 2G(r)‖e(r)‖ (5.11)

Assuming the elasto-brittle behavior, the elastic response can be expected until the quadratic de-
viatoric stress averages over each of the phases remain below a critical strength [1]:

‖s(r)‖≤ s
(r)
crit (5.12)
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Appendix A

Herve-Zaoui Solution

The individual matrices, needed for the calculation of the dilute concentration factors in Herve-Zaoui
scheme (n-layered spherical inclusion problem, see Section 4.1), are presented next.

A.1 Volumetric Part

The matrices Q(i), needed for the determination of the volumetric part of the dilute concentration
factors for the individual layers of the spherical inclusion can be found as

Q(i) = N(i) for i = 1 (A.1)

and

Q(i) = N(i)Q(i−1) for i = 2, ..., n (A.2)

The matrices N(i) are calculated as

N(i) =
1

3K(i+1) +G(i+1)

 3K(i) + 4G(i+1) 4

r(i)3 (G(i+1) −G(i))

3r(i)3
(K(i+1) −K(i)) 3K(i+1) + 4G(i)

 (A.3)

A.2 Deviatoric Part

The vectors A(i) (having the number of elements n), needed for the determination of the volumetric
part of the dilute concentration factors for the individual layers of the spherical inclusion can be found
as

A(i) =
P

(n)
22

P
(n)
11 P

(n)
22 − P

(n)
12 P

(n)
21

for i = 1 (A.4)

and

A(i) = W
(i)
1 for i = 2, ..., n (A.5)
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The vectors B(i) can be found as

B(i) =
−P (n)

21

P
(n)
11 P

(n)
22 − P

(n)
12 P

(n)
21

for i = 1 (A.6)

and

B(i) = W
(i)
2 for i = 2, ..., n (A.7)

where

W(i) =
1

P
(n)
22 P

(n)
11 − P

(n)
12 P

(n)
21

P(i−1)


P

(n)
22

−P (n)
21

0
0

 (A.8)

The matrices P(i) are calculated as

P(i) = M(i) for i = 1 (A.9)

and

P(i) = M(i)P(i−1) for i = 2, ..., n (A.10)

The matrices M(i) are then calculated as

M(i) =
1

5(1− ν(i+1))



c(i)

3

r(i)2
(3b(i) − 7c(i))

5(1− 2ν(i))

0
b(i)(1− 2ν(i+1))

5(1− 2ν(i))

r(i)5
α(i)

2

−r(i)7
(2a(i) + 147α(i))

70(1− 2ν(i))

−5α(i)r(i)3
(1− 2ν(i+1))

6

7α(i)r(i)5
(1− 2ν(i+1))

2(1− 2ν(i))

. . .

. . .

−12α(i)

r(i)5

4(f (i) − 27α(i))

15r(i)3
(1− 2ν(i))

−20α(i)(1− 2ν(i+1))

7r(i)7

−12α(i)(1− 2ν(i+1))

7r(i)7
(1− 2ν(i))

d(i)

7

r(i)2
(105(1− ν(i+1)) + 12α(i)(7− 10ν(i+1))− 7e(i))

35(1− 2ν(i))

0
e(i)(1− 2ν(i+1))

3(1− 2ν(i))


(A.11)
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with

a(i) =
G(i)

G(i+1)
(7 + 5G(i))(7− 10G(i+1))− (7− 10G(i))(7 + 5G(i+1)) (A.12a)

b(i) =
G(i)

G(i+1)
(7 + 5G(i)) + 4(7− 10G(i)) (A.12b)

c(i) = (7− 5G(i+1)) + 2(4− 5G(i+1))
G(i)

G(i+1)
(A.12c)

d(i) = (7 + 5G(i+1)) + 4(7− 10G(i+1))
G(i)

G(i+1)
(A.12d)

e(i) = 2(4− 5G(i)) +
G(i)

G(i+1)
(7− 5G(i)) (A.12e)

f (i) = (4− 5G(i))(7− 5G(i+1))− G(i)

G(i+1)
(4− 5G(i+1))(7− 5G(i)) (A.12f)

α(i) =
G(i)

G(i+1)
− 1 (A.12g)
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