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1 Introduction

The presented manual describes the basic usage of the software for material model parameter identi-
fication delivered by the CTU team as a partial result of the project CeSTaR - Computer simulation
and experimental validation - complex service for flexible and efficient design of pre-cast concrete
columns with innovative multi-spiral reinforcement. There are two main MATLAB programs: IDEN-
TIFICATION and SENSITIVITY ANALYSIS, which provides information about relations between
inputs and outputs of the investigated material model for concrete and estimation of the model inputs’
values together with the associated uncertainties for given experimental data.

1.1 Methodology

The theoretical methodology of the implemented parameter identification is based on the Bayesian
inference [2]. This probabilistic approach enables to efficiently combine prior knowledge about the
unknown values of parameters and experimental data in order to obtain estimation of parameters’
values together with corresponding uncertainties. The inference provides the updated a posteriori
parameter probability distribution for combination of uniform prior parameter distribution and likeli-
hood function based on Gaussian distribution. However, the formulation of the identified distribution
involves the finite element material model, which makes analytical work with the distribution im-
possible. In order to get samples from the defined distribution, the Metropolis algorithm is utilized
to generate Markov chain with the corresponding stationary distribution [6]. The implemented sam-
pling method is generally suitable for nonlinear models and its convergence is mathematically proved.
The computational effort of the method is primarily given by computational demands of the model
simulations.

The second part of this software package allows to investigate the relationship between the model
inputs and model outputs. It provides some information about importance of particular observations
or significance of each parameter for a system behaviour. In parameter identification, it enables to
discover which parameters play an important role in the model response so they are identifiable from
the corresponding experimental data. Specifically in the software, the global sensitivity analysis is
based on evaluations of Spearman’s rank correlation coefficient.

An illustrative example of the software application is presented in the next section. The software
functions, the appropriate setting and inputs/outputs information are in Section 3.

1.2 Prerequisites

The software package delivered by the CTU team requires following external software:

• finite element package OOFEM v. 2.5 and above (http://www.oofem.org/),

• MATLAB v. 2019a (https://www.mathworks.com/products/matlab.html).
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2 Application

In order to demonstrate the software in practise, the identification procedure was used for calibration
of the Concrete damage plasticity model CDPM2 [3], which was previously calibrated in a determin-
istic way [1]. Since computational demands of the CDPM2 simulation for single finite element have
been reduced, corresponding parameter identification can be performed in probabilistic setting for the
full numerical model without any model response approximation.

2.1 Model parameters

The CDPM2 parameters are a priori considered as uniformly distributed. This prior distribution is
uninformative and it is adequate in the case where not much information is available. Specifically,
the unknown values of the CDPM2 parameters are a priori prescribed to be from the intervals given
in Table 1 and determined by a combination of literature data and the previous results obtained by the

Parameter Units Minimum Maximum
ecc [-] 0.5 0.6

kinit [-] 0.2 0.4

Ahard [-] 10−2 100

Bhard [-] 10−5 0.01

Chard [-] 1 10

Asoft [-] 5 50

del [-] 0.85 1.2

Hp [-] 0 0.25

efc [-] 10−4 10−3

E [GPa] 28.5 31.5

ν [-] 0.17 0.22

fc [MPa] 42.5 52

Table 1: Bounds for single element model parameters.

deterministic optimisation, see [1]. In the current version, the total number of the parameters increase
from 9 to 12, because the Young’s modulus E, the Poisson ratio ν, and compressive strength fc are
unfixed and subject to identification.

Since values of parametersAhard and efc vary accros different orders, the parameters themselves
are replaced by their logarithms, i.e., instead of Ahard and efc, we work with a = log(Ahard) and
e = log(efc), where a is from 〈−2; 0〉 and e is from 〈−4;−3〉. Furthermore, there is a relation
between parameters Ahard and Bhard defined as Bhard = Ahard/b . In the identification procedure, we
estimate coefficient b instead of model parameter Bhard. The possible values of b are on the interval
〈4; 100〉. The parameters to be identified together with their ranges of values are listed in Table 2.
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Parameter Units Minimum Maximum
ecc [-] 0.5 0.6

kinit [-] 0.2 0.4

a [-] −2 0

b [-] 4 100

Chard [-] 1 10

Asoft [-] 5 50

del [-] 0.85 1.2

Hp [-] 0 0.25

e [-] −4 −3
E [GPa] 28.5 31.5

ν [-] 0.17 0.22

fc [MPa] 42.5 52

Table 2: Parameters to be identified with corresponding ranges of values.

In the Metropolis algorithm itself, all the parameters are linearly transformed into the interval
〈0; 1〉 in order to get rid of the scales. Prior distribution is determined as uninformative multivariate
uniform distribution of independent parameters on 〈0; 1〉.

2.2 Results and software outputs

The presented software has been verified for pseudo-experimental data and validated for experimen-
tal data available in [4]; namely samples with water-cement ration 0.55 measured on dried specimens
with confinement stress level 2.15 MPa. The response of the single element model consists of two
quantities, particularly they are axial stress σ and lateral strain ε2. The control variable is axial strain
ε1 which takes values on the interval (0;−8.6 · 10−3) and is discretised into 100 uniformly distributed
steps. The corresponding experimental errors are assumed to be normally distributed random vari-
ables with zero mean values and standard deviations 1.0 MPa in the case of measured stress and 0.1

for lateral strain. The likelihood function is then formulated as multivariate normal distribution of
independent experimental errors of all measured values.

5



Model parameter identification for concrete: Software Documentation 2 APPLICATION

Posterior parameters’ distribution is obtained in the form of 120.000 MCMC samples. For the
case of verification, the resulting histograms of particular parameters are depicted in Figure 1 together
with marked true values of model parameters. Parameters a and fc are identified very precisely
with small remaining uncertainties. A good match is obtained also for parameters b, del and E

but the estimations are burdened with higher uncertainties. The other parameters are not identified
well, which is probably caused by mutual correlations among the parameters, see Figure 2, and low
sensitivity of the model outputs to these parameters, see Figure 3.

Figure 1: Verification: Histograms of generated MCMC samples and the true model inputs (*).
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Figure 2 presents two-dimensional marginal posterior distributions estimated from the obtained
MCMC samples together with corresponding values of correlations. The strongest relationship is
between parameters a and b which arises from the parameters definition itself as mentioned above.
Another almost fully correlated parameters are e and Asoft. Significant relations are also between
parameters ecc and fc, kinit and a, Chard and a, Chard and b, Hp and del.

Figure 2: Verification: Two-dimensional marginal distributions estimated from generated MCMC
samples and corresponding correlations.
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Results of sensitivity analysis are depicted in Figure 3. Only 5 of total 12 unknown parameters
play significant role in the model output on the defined prior intervals. The parameters with almost no
influence to the model output cannot be identified from this type of measurement, therefore another
experiment should be employed in the identification process to activate the parameters in order to
make them identifiable.

Figure 3: Sensitivity analysis based on Spearman’s rank correlation coefficients between model out-
puts and particular model input.
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The important point of view for evaluation of method success is comparison of pseudo-experimental
data and model response obtained for identified model parameters’ values. Figure 4 shows a perfect
match of these two curves.

Figure 4: Verification: Comparison of pseudo-experimental data and model response for maximum a
posteriori estimate of model parameters.

In the case of method validation, the same procedure was performed for experimental data from
literature and the obtained results are very satisfactory. The comparison of experimental curve and
model response for identified model parameters’ values is presented in Figure 5. The identified para-
maters’ distributions are shown in Figures 6 and 7.

Figure 5: Validation: Comparison of experimental data and model response for maximum a posteriori
estimate of model parameters.
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Figure 6: Validation: Histograms of generated MCMC samples.
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Figure 7: Validation: Two-dimensional marginal distributions estimated from generated MCMC sam-
ples and corresponding correlations.
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3 Functions

In this chapter, the functions created and/or used by CTU team are briefly described. Following file
folder tree is considered:

CESTAR-Identification.Software Package
data
figs
mfiles

Bayes graphics.m
CDPM tetra.m
halton LHS.m
interpolate model response.m
interpolate sig.m
OOFEM CDPM tetra.m
oofemInputFileFromVector tetra.m
OOFEMout imp.m
removeOscillations.m
run MCMC Metropolis algorithm.m
run SA.m
SA graphics.m
transform X.m

oofem data
bin
lib
oofem.in
oofem.out

IDENTIFICATION.m
SENSITIVITY ANALYSIS.m

12
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3.1 Software for identification and sensitivity analysis

script IDENTIFICATION

The main script of the computer program for the identification of the model parameters. The cal-
ibrated model has to be defined as a function of a column (k x 1) vector of its parameters. The
expected model response consists of two variables, each of them dicretized into fixed discretization
steps according to discretization of experimental data. The format of model response is a row vector
containing all components of the first variable, then all components of the second variable. Variable
NoSamples specifies a number of performed model simulations (equal to a number of generated
samples). A priori knowledge of the model parameters is given as minimum and maximum of param-
eters’ values, names of parameters are required in the case of demand for graphical outputs. Besides
the experimental data themselves, standard deviations of the normally distributed experimental errors
have to be specified. The computer program generates samples from the probability distribution de-
fined according to Bayes’ theorem for given setting. It enables to plot resulting figures and save the
generated samples. For default setting, the program computes the samples of identified model pa-
rameters’ probability distribution based on given pseudo-experimental data for single finite element
model CDPM.

1 %% Author: Eliska Janouchova, Karel Mikes
2 % 11/2019, CTU in Prague, Czech Republic
3 %
4 %% Bayesian updating
5 % Identification of material model parameters
6 %
7 % Prior: joint uniform distribution of parameters
8 % Likelihood: joint normal distribution of experimental errors in
9 % given observations

10 %
11 clc
12 clear
13 RandStream.setGlobalStream(RandStream(’mt19937ar’, ’seed’, sum(100*clock)));
14 warning(’on’);
15 % Add paths to folders containing required *.m files and data
16 path([pwd,’/mfiles’],path);
17 path([pwd,’/data’],path);
18

19 %% Numerical model
20 % OOFEM material model
21 % Confinement stress level
22 compression vector = [0 2.15 4.3];
23 level = 2;
24 compression = compression vector(level);
25 % Discretization steps of model response
26 load eps1 exp
27 steps = eps1 exp(level,:);
28 % Model
29 model = @(X)OOFEM CDPM tetra(X, compression, steps);
30 % Model output: [vector of model response, convergence control: 1 - ok, 0 - ko]
31

32 % Feasible number of model simulations for identification procedure
33 NoSamples = 100000;
34

35 %% Model parameters
36 % Number of parameters
37 k = 12;
38 % Names of parameters for graphical outputs
39 par names = {’ecc’,’kinit’,’a’,’b’,’Chard’,’Asoft’,’del’,’Hp’,’e’,’E’,’nu’,’fc’};
40 % Prior bounds (minimum and maximum) of parameters’ values
41 par bounds = [0.5 0.6; 0.2 0.4; -2 0; 4 100; 1 10; 5 50; 0.85 1.2; 0 0.25; -4 -3; 28.5e9 31.5e9;
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42 0.17 0.22; 42.5e6 52.0e6];
43

44 %% Experimental data
45 % Synthetic experimental data for verification of the identification method
46 material vector test = [0.53 0.25 -0.876874 39.3098 8 10 1.05 0.1 -3.77322 30.e9 0.2 47.7e6]’;
47 Exper = model(material vector test);
48 % Variable "Exper" can be replaced by real experimental data, but the discretization
49 % has to be identical for data as well as for model response.
50

51 % Experimental errors corresponding to:
52 % 1. observed stress [MPa],
53 epsilon1 = 1.0;
54 % 2. observed lateral strain [-]
55 epsilon2 = 0.1;
56

57 %% Results
58 % Name of output files
59 filename = sprintf(’Bayes %1.1f’, compression);
60 % Save numerical results
61 num result = 1; %(1 - yes, 0 - no)
62 % Save graphical results
63 graph result = 1; %(1 - yes, 0 - no)
64

65 %% Markov chain Monte Carlo sampling of Bayesian posterior distribution for given setup
66 run MCMC Metropolis algorithm
67

script SENSITIVITY ANALYSIS

This program serves as a tool for analysis of relations between the model response and a particu-
lar model parameter. The sensitivity of the model response to a model parameter is expressed by
Spearman’s rank correlation coefficients. The program allows to plot sensitivity coefficients for both
response variables and save the coefficients together with model inputs and outputs employed for
computing the correlations.

1 %% Author: Eliska Janouchova, Karel Mikes
2 % 11/2019, CTU in Prague, Czech Republic
3 %
4 %% Sensitivity analysis (SA)
5 % Relation between model response and particular model parameters evaluated
6 % by Spearman’s rank correlation coefficient
7 %
8 %
9 clc

10 clear
11 RandStream.setGlobalStream(RandStream(’mt19937ar’,’seed’,sum(100*clock)));
12 warning(’on’);
13 % Add paths to folders containing required *.m files and data
14 path([pwd,’/mfiles’],path);
15 path([pwd,’/data’],path);
16

17

18 %% Numerical model
19 % OOFEM material model
20 % Confinement stress level
21 compression vector = [0 2.15 4.3];
22 level = 2;
23 compression = compression vector(level);
24 % Discretization steps of model response
25 load eps1 exp
26 steps = eps1 exp(level,:);
27 % Model

14



Model parameter identification for concrete: Software Documentation 3 FUNCTIONS

28 model = @(X)OOFEM CDPM tetra(X, compression, steps);
29 % Feasible number of model simulations for SA
30 n = 10000;
31

32 %% Model parameters
33 % Number of parameters
34 k = 12;
35 % Names of parameters for graphical outputs
36 par names = {’ecc’,’kinit’,’a’,’b’,’Chard’,’Asoft’,’del’,’Hp’,’e’,’E’,’nu’,’fc’};
37 % Prior bounds (minimum and maximum) of parameters’ values
38 par bounds = [0.5 0.6; 0.2 0.4; -2 0; 4 100; 1 10; 5 50; 0.85 1.2; 0 0.25; -4 -3; 28.5e9 31.5e9;
39 0.17 0.22; 42.5e6 52.0e6];
40

41 %% Results
42 % Name of output files
43 filename = sprintf(’SA %1.1f’,compression);
44 % Save numerical results
45 num result = 1; %(1 - yes, 0 - no)
46 % Save graphical results
47 graph result = 1; %(1 - yes, 0 - no)
48

49 %% Sensitivity analysis for given setup
50 run SA

3.2 mfiles

script Bayes graphics

The script provides graphical outputs of the probabilistic identification procedure:

• comparison of experimental observations and model response corresponding to the identified
maximum a posteriori estimates of parameters’ values,

• histograms of MCMC samples of each single parameter,

• two-dimensional marginal distributions estimated from MCMC.

function [eps1, eps2, sig, convergence] = CDPM tetra(material vector, compression,

name)

The function computes the response of CDPM material model for given parameters and given con-
finement stress. First, the corresponding OOFEM input file is generated, then the OOFEM simulation
is executed, and finally corresponding model response (i.e. vector of axial strains, vector of lateral
strains, and vector of stress values) is provided together with information about simulation conver-
gence.

15
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InputVar: material vector 12 x 1 double Values of CDPM parameters
compression 1 x 1 double Confinement stress
name 1 x - char Core name for OOFEM output file

OutVar: eps1 1 x - double Vector of axial strains
eps2 1 x - double Vector of lateral strains
sig 1 x - double Vector of stress values
convergence 1 x 1 double Identifier of OOFEM simulation convergence

(1 - ok, 0 - ko)

function [X] = halton LHS (np,dim)

The function creates a design of experiments of a defined number of samples in a defined number of
dimensions. This advanced procedure created by our colleague generates Latin hypercube sampling
design from the Halton sequence.

InputVar: np 1 x 1 double Number of design points
dim 1 x 1 double Number of variables

OutVar: X np x dim double Design of experiments

function [eps1, eps2, sig] = interpolate model response(eps1, eps2, sig, steps)

The function interpolates numerical response of the model (i.e. vector of axial strains, vector of lateral
strains, and vector of stress values) into the points defined by vector of experimental axial strains

InputVar: eps1 1 x - double Vector of axial strains
eps2 1 x - double Vector of lateral strains
sig 1 x - double Vector of stress values
steps 1 x n double Vector of experimental axial strains

OutVar: eps1 1 x n double Vector of interpolated axial strains
eps2 1 x n double Vector of interpolated lateral strains
sig 1 x n double Vector of interpolated stress values

function [s] = interpolate sig(sig, eps1, discretization)

The function interpolates computed stress values in given vector of experimental axial strains. Linear
interpolation is used.

InputVar: sig 1 x - double Vector of stress values
eps1 1 x - double Vector of axial strains
discretization 1 x n double Vector of experimental axial strains

OutVar: s 1 x n double Vector of interpolated stress values

16
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function [response, convergence] = OOFEM CDPM tetra(material vector, compression)

The function defines the numerical model to be calibrated. It incorporates all functions regarding
to the numerical material model, i.e. creation OOFEM input file, OOFEM simulation and post-
processing of output data, and provides the final model response together with information about
simulation convergence.

InputVar: material vector 12 x 1 double Values of CDPM parameters
compression 1 x 1 double Confinement stress

OutVar: response 1 x 2n double Vector of stress values and lateral strains
convergence 1 x 1 double Identifier of OOFEM simulation convergence

(1 - ok, 0 - ko)

function [ ] = oofemInputFileFromVector tetra(compression, parameters, TypeOfConcrete,

OutputFileName)

The function generates OOFEM input file (3.3) to provide compression test of a single tetrahedral
element with given confinement stress and given material parameters of CDPM material model.

InputVar: compression 1 x 1 double Confinement stress
parameters 12 x 1 double Values of CDPM parameters
TypeOfConcrete 1 x - string Define type of concrete ”55d”
OutputFileName 1 x - string Name of OOFEM output file

OutVar:

function [reqData, info] = OOFEMout imp(filen, requestedField, shortenFile, nLinesToRead)

The function, created by our colleagues, enables to extract required data from OOFEM output file (3.3)
into MATLAB environment. A detailed description of the function is presented in the beginning of
the corresponding m-file.

InputVar: filen 1 x 1 string Name of output file with extension
requestedField 1 x - array Labels of the requested fields
shortenFile 1 x - boolean shorten version on input file
nLinesToRead 1 x 1 integer Number of lines to be read at once

OutVar: reqData 1 x - structure Output data
info 1 x - structure Information details

function [sig new, eps1 new, eps2 new] = removeOscillations(sig, eps1, eps2)

The function removes oscillations in computed stress response. Is some rare cases, the computed
stresses may exhibit nonphysical peaks. This function is designed to find such peaks and replace
them with values interpolated from surrounding points to provide smooth stress response.
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InputVar: sig 1 x - double Vector of stress values
eps1 1 x - double Vector of lateral strains
eps2 1 x - double Vector of lateral strains

OutVar: sig new 1 x - double Vector of modified stress values
eps1 new 1 x - double Vector of modified lateral strains
eps2 new 1 x - double Vector of modified lateral strains

script run MCMC Metropolis algorithm

The script creates Markov chain on a basis of the Metropolis algorithm with symmetric random walk.
An efficient setup of the algorithm is problem dependent. In the beginning of the script, two main
features can be changed in order to accelerate the algorithm convergence. It involves a choice of
starting point and proposal standard deviation. The starting point X is set as default to be equal to a
mean value of the prior distribution. Proposal distribution of a new state is normal distribution with
zero mean value and standard deviation s p chosen according acceptance rate AR, an optimal value
of AR is between 0.1 and 0.6. The next adjustable feature is length of burn-in period, which involves
initial samples until the stationary distribution of Markov chain is reached. Default value of burnin
is 10% of NoSamples, but it specifically depends on the algorithm convergence rate.
Input variables and choice of outputs are specified in the main script of the program IDENTIFICA-
TION (3.1).

script run SA

The script provides computation of Spearman’s rank correlation coefficients between model response
and model parameters on a basis of Latin hypercube design of experiments generated from the Halton
sequence by the function halton LHS (3.2).
Inputs and choice of outputs are specified in the main script of the program SENSITIVITY ANALY-
SIS (3.1).

script SA graphics

The script creates graphical outputs of the sensitivity analysis of the numerical model, if it is required
in the main script of the program SENSITIVITY ANALYSIS (3.1).

function [material vector] = transform X(X, par bounds)

The function transforms normalised parameters from the interval [0, 1] into material model parameters
from the interval with minimum and maximum defined in par bounds.

InputVar: X k x 1 double Normalised values of model parameters
par bounds k x 2 double Minimum and maximum for parameters’ values

OutVar: material vector k x 1 double Values of model parameters

18
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3.3 oofem data

This folder contains all files associated with OOFEM, which is free finite element code with object
oriented architecture avialable at http://www.oofem.org/. The detail of individual folders and
files are listed bellow.

folder bin

This folder contains the installation of OOFEM, including the main executable file oofem.exe.

folder lib

This folder contains dynamic library used by OOFEM.

file oofem.in

The OOFEM input file that contains all the information required to run OOFEM simulation. Each
line in input file represents one input record. The order of records in file is compulsory with given
structure. The individual records consist of record keyword followed by one or more attributes. Full
details and examples can be found in [5]. Before each OOFEM simulation, the corresponding input
file is automatically genereted via function oofemInputFileFromVectortetra.

file oofem.out

The OOFEM output file, that contain data computed by OOFEM. This file is created/rewrited by
OOFEM after each execution. After each OOFEM simulation, the required data are automatically
extracted from current output file; see function OOFEMoutimp for more details.
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