ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavební Katedra mechaniky

Benchmark VERCORS 2022 - slepá predikce chování železobetonového kontejnmentu

Benchmark VERCORS 2022 - slepá predikce chování železobetonového kontejnmentu

BAKALÁŘSKÁ PRÁCE

Studijní program: Stavební inženýrství Studijní obor: Konstrukce a dopravní stavby

Vedoucí práce: Ing. Petr Havlásek, Ph.D.

Štěpán Krátký Praha 2021

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNI A STUDIJNI UDAJE				
Příjmení: Krátký	Jméno: Štěpán	Osobní číslo: 477244		
Zadávající katedra: Katedra mecha	aniky K132			
Studijní program: Stavební inžený	rství			
Studijní obor: Konstrukce a doprav	ní stavby			
II. ÚDAJE K BAKALÁŘSKÉ PRÁC	I			
Název bakalářské práce: Benchmark VERCORS 2022 - slepá predikce chování železobetonového kontejnmentu				
Název bakalářské práce anglicky:	Benchmark VERCORS 2022 - blind predict reinforced concrete containment	tion of mechanical response of		
Pokyny pro vypracování: Data z laboratorních měření poskytnutá v rámci benchmarku "VERCORS 2022" budou porovnána se slepou predikcí dle modelu B3, příp. dalších modelů. Bude provedena kalibrace materiálového modelu pro dotvarování a smrťování betonu (B3/MPS) na základě poskytnutých dat. Bude vytvořen výpočetní model kotejnmentu nebo jeho reprezenativní části. Pro řešení bude použit MKP program OOFEM. Bude provedena analýza výsledků.				
Seznam doporučené literatury: Bažant Z.P., Jirásek, M.: Creep and Hygrothermal Effects in Concrete Structures, 2018 Popis benchmakru VERCORS 2022 a detaily experimentálních měření, EDF 2021 Dokumentace k programu OOFEM.org Vědecké články a normy týkající se problematiky				
Jméno vedoucího bakalářské práce: Petr Havlásek				
Datum zadání bakalářské práce: 1	5. 2. 2021 <i>Údaj uvedte v souladu s da</i>	alářské práce: <u>16. 5. 2021</u> ttem v časovém plánu příslušného ak. roku		
Podpis vedoucího prác	e Pod	lpis vedoucího katedry		

III. PŘEVZETÍ ZADÁNÍ

Beru na vědomí, že jsem povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je nutné uvést v bakalářské práci a při citování postupovat v souladu s metodickou příručkou ČVUT "Jak psát vysokoškolské závěrečné práce" a metodickým pokynem ČVUT "O dodržování etických principů při přípravě vysokoškolských závěrečných prací".

Datum převzetí zadání

Podpis studenta(ky)

Čestné prohlášení

Prohlašuji, že jsem tuto bakalářskou práci na téma "Benchmark VERCORS 2022 - slepá predikce chování železobetonového kontejnmentu" vypracoval samostatně pod odborným vedením Ing. Petra Havláska, Ph.D. a že jsem uvedl veškeré použité zdroje informací.

Štěpán Krátký

Praha, květen 2021

Poděkování

Děkuji vedoucímu práce Ing. Petru Havláskovi, Ph.D. za cenné rady, odborné vedení, konstruktivní kritiku při tvorbě práce a technickou podporu při práci s novým operačním systémem a množstvím mně do té doby neznámých programů. Dále děkuji Studentské grantové soutěži ČVUT, grant číslo SGS21/037/OHK1/1T/11.

Abstrakt

Tato práce se, v návaznosti na třetí benchmark VERCORS 2022, zabývá predikcí chování zmenšené makety budovy kontejnmentu jaderného reaktoru, a to především důsledků procesů spojených s dotvarováním a vysycháním betonu. Na začátku této práce je představen benchmark VERCORS 2022 a jsou prezentována data sloužící ke kalibraci materiálových modelů. Následně je popsán průběh kalibrace a její výsledky. Poslední část práce je věnována simulacím na modelu reprezentativního periodického segmentu stěny kontejnmentu metodou konečných prvků a diskuzi o jeho odezvách na různé vlivy. Data získaná v této práci poskytnou přehled o numerickém modelování kontejnmentu a budou dále využita v budoucích fázích benchmarku.

Abstract

In connection with the third benchmark VERCORS 2022 this thesis focuses on predicting the behaviour of diminished mock-up concrete containment building, especially on consequences of causes related to creep and drying of concrete. At the beginning of this thesis, the benchmark VERCORS 2022 is introduced and data used for calibration of material models are presented. The process of calibration and its results are described in the following part. The last part of the thesis is focused on the finite element simulations of the representative periodic segment of the containment wall and a discussion on its response to various factors is presented. All data obtained by this thesis will provide a solid view on numerical modeling of a concrete containment building and will be further used in next phases of benchmark.

Klíčová slova

Kontejnment jaderného reaktoru, Smršťování a dotvarování betonu, Modelování MKP, Předpjatý beton, Benchmark VERCORS.

Keywords

Concrete containment building, Shrinkage and creep of concrete, FEM modeling, Prestressed concrete, Benchmark VERCORS.

Obsah

Se	znam použitých symbolů	13
1	Motivace	15
2	Úvod 2.1 VERCORS mockup	17 17 17
3	Časově závislé chování betonu3.1Složky přetvoření	20 20 21
4	Laboratorní zkoušky a predikce4.1Materiálové charakteristiky a složení	 23 24 24 24 25 26 26 26 27 28 29
5	Kalibrace materiálového modelu pro 20°C 5.1 Výpočetní model 5.2 Kalibrace parametrů základního dotvarování 5.3 Kalibrace parametrů transportu vlhkosti 5.4 Výsledky kalibrace Kalibrace materiálového modelu pro 40°C 6.1 Kalibrace parametrů základního dotvarování a transportu tepla 6.2 Kalibrace parametrů transportu vlhkosti 6.3 Výsledky kalibrace	 30 30 30 31 34 34 34
7	Výpočetní model stěny kontejnmentu 7.1 Popis modelu 400 mm	37 37 37 38 40

0.0		-
05	Shrputí	61
8.4	Srovnání modelů segmentů pro maketu a plnou velikost	59
8.3	Transport tepla a vlhkosti v betonu	57
8.2	Vývoj napětí v betonové stěně	47
8.1	Vývoj předpětí na zmenšeném modelu . .	45
Výs	sledky simulací	45
7.5	Silová zatížení	43
	 7.5 Výs 8.1 8.2 	 7.5 Silová zatížení

Seznam použitých symbolů

- α_T [-] Součinitel teplotní roztažnosti
- ΔT [°C] Inkrement teploty
- ν [-] Poissonovo číslo
- $\rho_d \, [\text{kg/m}^3]$ Objemová hmotnost suchého betonu
- $\rho_s \; [\rm kg/m^3]$ Objemová hmotnost saturovaného betonu
- σ [MPa] Napětí
- σ_c [MPa] Napětí v betonu
- σ_p [MPa] Napětí v předpínací výztuži
- ε_e [-] Pružná deformace
- $\varepsilon_{sh,A}$ [-] Autogenní smrštění
- $\varepsilon_{sh,D}$ [-] Smrštění od vysychání
- $a \, [kg/m^3]$ Hmotnostní zastoupení kameniva v betonové směsi
- $a \left[J/den/m^2/K \right]$ Součinitel přestupu tepla
- $A_c \text{ [mm^2]}$ Plocha betonu
- $A_p \; [\mathrm{mm}^2] \; \mathrm{Průřezová plocha předpínací výztuže}$
- $c \, [\text{kg/m}^3]$ Hmotnostní zastoupení pojiva v betonové směsi
- $c ~[{\rm J/kg/K}]\,$ Měrná tepelná kapacita
- $C(h) \, [m^2/den]$ Funkce difuzivity
- $C_0(t,t')$ [MPa⁻¹] Funkce poddajnosti pro základní dotvarování
- $C_1 \ [\mathrm{m^2/den}]$ Difuzivita při plné saturaci
- $C_d(t,t^\prime,t_0)~[{\rm MPa^{-1}}]$ Funkce poddajnosti pro dotvarování při vysychání
- capa [kg/m³] Vlhkostní kapacita
- E(t) [MPa] Modul pružnosti

- $f_c(t)$ [MPa] Pevnost v tlaku
- $f_t(t)$ [MPa] Pevnost v tahu
- h [-] Relativní vlhkost
- $J(t,t^\prime,t_0)~[{\rm MPa^{-1}}]~$ Funkce poddajnosti
- $J_b(t,t^\prime)~[{\rm MPa^{-1}}]$ Funkce poddajnosti pro základní dotvarování
- $J_d(t,t^\prime,t_0)~[{\rm MPa^{-1}}]~$ Funkce poddajnosti pro dotvarování při vysychání
- $k~[{\rm J/den/k}]~{\rm Tepelná vodivost}$
- RH [-] Relativní vlhkost
- $SR \ [-]$ Stupeň nasycení vodou
- $w~[\rm kg/m^3]$ H
motnostní zastoupení vody v betonové směsi

1 Motivace

V současné době získává Francie až 75 % elektrické energie z jaderných elektráren. Tento podíl by se měl v následujících 15 letech snížit na 50 %, avšak nadále zůstává klíčovou složkou francouzské energetiky. Jedním z úkolů Electricité de France (Francouzská energetika - dále EDF) je i zajištění a prokázání bezpečnosti provozovaných reaktorů a všech jejich částí.

Železobetonové kontejnmenty chrání zařízení jaderného reaktoru před vlivem okolí a stejně tak okolí před vlivem jaderného reaktoru. Musí ustát obrovský vnitřní přetlak při nehodách reaktorů, potenciální útok, explozi, přírodní katastrofu, ale i náraz dopravního letadla a stále zůstat vzduchotěsný a neuvolnit do atmosféry nebezpečné látky.

Smršťování a dotvarování betonu v čase ale vede ke ztrátám předpětí a v důsledku ke vzniku a rozvoji trhlin, kterými může vzduch unikat. Concrete containment building (kontejnment - dále CCB) má tak omezenou životnost, kdy je schopen plnit svou roli. Výstavba takové konstrukce je velmi nákladná a ve Francii politicky nepřijatelná, a tak jsou vyvíjeny snahy o prodloužení životnosti stávajících kontejnmentů. Z tohoto důvodu také vznikl program VERCORS [7].

2 Úvod

EDF při svém přechodu na výkonnější 1300 MW reaktory na začátku 70. let 20. století vyhodnotila, že je potřeba také zajistit dostatečnou úroveň ochrany [3]. Z tohoto důvodu nahrazuje železobetonové kontejnmenty s jednou stěnou, kde nepropustnost zajišťuje kovový plášť, kontejnment se dvěma stěnami, mezi kterými je aktivně udržován podtlak. Díky této technologii je možné, při úniku skrze primární stěnu, uniklý vzduch odčerpat a škodliviny odfiltrovat. Do ovzduší se tak nedostávájí žádné nebezpečné látky. Životnost těchto CCB byla numerickými modely stanovena na 40 let. V průběhu životnosti nesmí propustit větší masu vzduchu, než je hraniční hodnota 1,5 % vnitřního objemu za den [3]. Některé z kontejnmentů již slaví 36 let, a tak je na pořadu otázka, zda je jejich životnost možné prodloužit ze 40 na 60 let a jaká opatření jsou k tomu nezbytná. Pro takový návrh je nutné velmi přesně predikovat především vývoj deformací na více než půl století dopředu. To je vzhledem k charakteru betonu, kdy se i po desítkách let pod zatížením výrazně přetváří, nelehký úkol.

2.1 VERCORS mockup

Verification Réaliste du Confinement des Réacteurs (VERCORS) je třikrát zmenšený model reálného betonového kontejnmentu, na kterém jsou a dále budou prováděny zkoušky a pozorování pro lepší pochopení chování CCB plné velikosti. Jsou v něm zabudovány 2 km optických kabelů a stovky senzorů a měřících zařízení. Měřítko 1:3 bylo zvoleno z důvodu urychlení procesů souvisejících s vysycháním betonu a zároveň pro zachování reprezentativnosti plnohodnotného kontejnmentu. Časový faktor (cca 9) umožňuje pozorovat 60 let života CCB zhruba za 7 let [3]. Stavba makety byla zahájena na začátku roku 2014 a dokončena v polovině roku 2016. Délka stavby také ve všech směrech respektovala urychlení vysychání. Tato stavba se tak stává nejpozorovanější betonovou strukturou na světě. Jak je možné vidět na Obrázku 1, CCB se skládá z vnitřního a vnějšího kontejnmentu s masivní základovou deskou. Stěny o tloušťce cca 400 mm jsou hustě vyztuženy měkkou betonářskou výztuží a předpjaté ve vertikálním i horizontálním směru kabely o devětkrát menší průřezové ploše a třetinových osových vzdálenostech. Stejná úprava platí i pro měkkou výztuž. Receptura betonu byla navržena, aby co nejlépe korespondovala s reálnými CCB v oblasti Nogent-sur-Seine a maximální velikost kameniva je stanovena na 16 mm.

2.2 VERCORS benchmark

V rámci programu VERCORS jsou také pořádány benchmarky, kdy jsou porovnávány výsledky predikcí různých veličin s výsledky pozorování makety. Tento systém by měl poskytnout přesná a solidní data pro numerické modelování reálných kontejnemntů. V minulosti již proběhly 2 benchmarky a to v roce 2015, který se týkal chování betonu a vzdu-

Obrázek 1: Řez kontejnmentem [2].

chotěsnosti v raném stáří a v roce 2018 se zaměřením na chování betonu a vzduchotěsnost během tlakových testů. Tlakové testy probíhají na reálných CCB každých 10 let pro zjištění míry úniků vzduchu a na maketě se provádí každých 13 měsíců [3].

Současný třetí benchmark si klade za cíl predikovat chování betonu a vzduchotěsnost za vyššího tlaku než při běžném tlakovém testu (až 7 bar) a porovnat s daty, která budou naměřena v roce 2022. Rozdělený je do dvou fází, kdy je první predikce kalibrována podle laboratorních měření na vzorcích a na druhou fázi, kdy kalibrace probíhá podle dat naměřených přímo na maketě VERCORS [3].

Cílem této práce je dle laboratorních dat nakalibrovat materiálové modely a na výpočetních modelech reprezentativních výseků stěn metodou konečných prvků srovnat předpokládané chování makety (tloušťka stěny 400 mm) a kontejnmentu plné velikosti (tloušťka stěny 1200 mm). U zmenšeného modelu bude vyhodnocena citlivost na teplotní, vlhkostní a silové zatížení. Těmito výpočty bude možné pozorovat predikované chování makety a zároveň výsledky porovnat s hodnotami pro plnou velikost. Bude tak patrné, do jaké míry je splněn předpoklad devítinásobného urychlení časových procesů v betonu, či jakým směrem se ubírat v dalších simulacích. Pro veškeré simulace bude použit výpočetní program OOFEM [8]. Data získaná v této práci budou dále uplatněna v dalších fázích benchmarku VeRCoRs.

3 Časově závislé chování betonu

Jak již bylo v úvodu nastíněno, beton nepodléhá pouze okamžité lineárně elastické deformaci jako například ocel (s výjimkou vysokých teplot a extrémních napětí). Při zatížení se v čase dále přetváří a toto přetvoření nikdy nedosáhne konečné hodnoty, ačkoliv rychlost deformace se snižuje. Tento jev je u běžných pozemních staveb zanedbatelný, případně se při zvýšených nárocích na mezní stav použitelnosti vyjadřuje zjednodušeně součinitelem dotvarování aplikovaným na jednoduchý lineárně elastický materiál. Ve složitějších případech konstrukcí velmi citlivých na smrštění a dotvarování, jako jsou například mosty velkých rozponů, výškové budovy nebo řešené CCB, je nutné místo součinitele dotvarování použít některý ze složitějších viskoelastických modelů se stárnutím a pomocí funkce poddajnosti J(t, t') určit co nejpřesnější výsledky na výpočetním modelu MKP [12].

3.1 Složky přetvoření

Přetváření betonu v čase je možné rozdělit na čtyři základní složky.

- Okamžitá elastická deformace
- Smšťování (shrinkage)
- Dotvarování (creep)
- Teplotní deformace

$$\varepsilon(t, t', t_0) = \sigma[J_b(t, t') + J_d(t, t', t_0)] + \varepsilon_{sh,D}(t - t_0) + \varepsilon_{sh,A}(t) + \alpha_T \Delta T$$
(1)

Okamžitá elastická deformace $\varepsilon_e = \sigma/E(t_1)$ se odvíjí od napětí a modulu pružnosti v čase zatížení. V případě betonu je vlivem stárnutí i modul pružnosti veličina závislá na čase.

Z opožděných složek přetvoření se práce dále zabývá smršťováním při transportu vlhkosti, základním dotvarováním a dotvarováním při vysychání. Okrajově také uvažuje vliv autogenního smrštění.

Ke smršťování při vysychání (drying shrinkage) dochází ve chvíli, kdy je beton vystaven prostředí s nižší relativní vlhkostí. Není závislé na napětí. Snižující se objem vody v HCP (hardened cement paste) způsobuje zvýšení kapilárního napětí a k jejich zužování. Hodnota smrštění dosahuje v čase konečné hodnoty. Značeno je $\varepsilon_{sh,D}$ [12].

Autogenní smrštění (autogenous shrinkage) je možné pozorovat v případě izolovaného nevysychajícího betonu. Nastává vlivem chemických reakcí při hydrataci cementu a je u běžných směsí s vyšším vodním součinitelem zanedbatelnou složkou celkového přetvoření. Autogenní smršťování se zastaví při relativní vlhkosti pod 65 %, kdy již pokračování hydratačních procesů není možné. Značeno je $\varepsilon_{sh,A}$ [12]. Pod základním dotvarováním (basic creep) se rozumí zpožděná deformace vyvozená konstantním napětím v izolovaných podmínkách za konstantní vlhkosti a teploty. Základní dotvarování není shora omezeno, avšak rychlost jeho nárůstu se v čase zpomaluje. Funkce poddajnosti vyvozená pouze základním dotvarováním je značena $J_b(t, t')$, kde t' je čas ve kterém nastala změna napětí a t je sledovaný čas [12].

Dotvarování při vysychání (drying creep) je druhou složkou dotvarování, ke které dochází při transportu vlhkosti do okolí. Značí se $J_d(t, t', t_0)$. Vývoj takového dotvarování je velmi podobný vývoji smrštění od vysychání a je také závislý na tvaru a velikosti vysychajícího tělesa. Funkce poddajnosti vyvozená celkovým dotvarováním (okamžitá deformace + základní dotvarování + dotvarování při vysychání) je značena $J(t, t', t_0)$, kde t' je čas ve kterém nastala změna napětí, t_0 je čas, ve kterém je prvek vystaven vysychání a t je sledovaný čas[12].

3.2 Materiálové modely

V článku představujícím model B3 [13] jsou pro zajímavost popsány úrovně složitosti staveb a doporučené úrovně analýzy časově závislých vlastností. Betonové kontejnmenty vzhledem k vysokým požadavkům na jejich použitelnost vyžadují analýzu na nejvyšší úrovni a měly by být řešeny co nejpřesnějšími a nejrealističtějšími materiálovými modely a výpočetními modely MKP. Pro účely této práce jsou využity především modely B3 [13] a MPS [9][10][6] +Bažant-Najjar [11] k řešení problému s transportem vlhkosti za pomoci sdružené analýzy. V některých případech je ke sdružené analýze připojena také úloha vedení tepla, která je popsána lineárním materiálovým modelem definovaným měrnou tepelnou kapacitou a vodivostí. Dále je pouze pro účely porovnání v první fázi použit model *fib* Model Code 2010 [1].

B3 je model viskoelastického materiálu se stárnutím pro výpočet dotvarování a smršťování betonu, poprvé publikovaný v roce 1995 Prof. Bažantem. Jedná se o třetí aktualizaci tohoto typu modelu, který je použitelný pro "běžné" betonové směsi a neuvažuje vlivy případných příměsí. Výsledná hodnota funkce poddajnosti zahrnuje okamžitou deformaci, základní dotvarování i vliv smršťování. Vstupními parametry pro tento model je složení betonové směsi, tlaková pevnost v 28 dnech, geometrie uvažovaného prvku nebo způsob a trvání ošetřování. Funkce poddajnosti a funkce smrštění jsou popsány následujícími rovnicemi.

$$J(t,t') = q_1 + C_0(t,t') + C_d(t,t',t_0)$$
(2)

$$C_0(t,t') = q_2 Q(t,t') + q_3 \ln[1 + (t-t')n] + q_4 \ln\frac{t}{t'}$$
(3)

$$C_d(t, t', t_0) = q_5 \left(\exp[-8H(t)] - \exp[-8H(t'_0)] \right)^{\frac{1}{2}}; t'_0 = \max(t', t_0)$$
(4)

$$q_1 = 0.6 \times 10^6 / E_{28}; \ q_2 = 185.4 c^{0.5} f_c^{-0.9}; \ q_3 = 0.29 (w/c)^4 q_2; \ q_4 = 20.3 (a/c)^{-0.7}$$
(5)

$$\varepsilon_{sh}(t,t_0) = -\varepsilon_{sh\infty} k_h \tanh \sqrt{\frac{t-t_0}{k_t (k_s D)^2}}$$
(6)

$$\varepsilon_{sh\infty} = \varepsilon_{s\infty} \frac{E(607)}{E(t_0 + \tau_{sh})} \tag{7}$$

Bohužel není možné zohlednit složitější vývoj vlhkosti a teploty (pouze formou opravných součintelů) [13], a tak je pro následující výpočty nutné použít pokročilejší model, který je díky možnostem výpočetní techniky schopný postupovat krok po kroku.

Takovým modelem je model založený na teorii Solidifikace a mikropředpětí MPS, který je díky svému algoritmu schopný uvažovat vliv proměnné teploty i vlhkosti na dotvarování [9]. Rozsah platnosti tohoto modelu je pro lineárně viskoelastický výpočet napětí do 40 % pevnosti betonu. Tato podmínka je ve výpočtech splněna, a není tak třeba uvažovat vliv nelineárního dotvarování. V tahu jsou napětí pod mezí pevnosti, proto není nutné uvažovat vliv poškození. Jedinou výjimkou je případ času před zavedením předpětí v simulacích reprezentativní části stěny. Jedná se o krátký časový úsek a jeho vliv je pro účely této práce zanedbán.

4 Laboratorní zkoušky a predikce

EDF v první etapě poskytla, mimo jiné, laboratorní data zkoušek, které měřily:

- základní dotvarování (basic creep) $J_b(t,t')$
- celkové dotvarování (total creep) $J(t,t^\prime)$
- smrštění od vysychání (drying shrinkage) $\varepsilon_{sh,D}(t-t_0)$
- autogenní smrštění (autogenous shrinkage) $\varepsilon_{sh,A}(t-t_0)$
- relativní úbytek hmotnosti

Prvním krokem bylo projít poskytnutá laboratorní data, ověřit jejich konzistenci a určit podmínky pro jejich použitelnost. V okamžiku, kdy bylo možné považovat vlastní interpretaci dat za správnou, byla porovnána s predikcemi modelů B3 a *fib*. Toto srovnání poskytlo základní informace o vzorku a jeho odlišnosti od "normálního" chování. (Pokud není stanoveno jinak, deformace jsou pro zjednodušení zobrazení uvedeny v absolutní hodnotě.)

4.1 Materiálové charakteristiky a složení

V následující Tabulce 1 je popsáno složení betonové směsi použité v maketě CCB a ze které byly odlity vzorky.

Surovina	Množství $[kg/m^3]$
CEM I 52,5 N CE CPE NF	320
Písek 0/4 REC GSM LGP1	830
Štěrk $4/11 \text{ R GSM LGP1}$	445
Štěrk $8/16 \ R$	550
SIKAPLAST techno 80	$2,\!6$
Voda	$167,\!89$
w/c	0,525
a/c	5,703

Tabulka 1: Recep	ura betonu pro	VERCORS [3]
------------------	----------------	-----------	----

Data dále uvádí velké množství různých materiálových charakteristik, které bylo opět nutné projít a interpretovat pro jejich využití jako vstup do materiálových modelů.

Toto jsou některé z vybraných charakteristik:

- pevnost v tlaku v 28 dnech $f_c(28) = 41$ MPa
- pevnost v tahu v 28 dnech $f_t(28) = 4,4$ MPa
- objemová hmotnost saturovaného betonu $\rho_s=2395~{\rm kg/m^3}$

- objemová hmotnost vysušeného betonu $\rho_d=2200~{\rm kg/m^3}$
- Poissonovo číslo $\nu = 0,2$
- součinitel teplotní roztažnosti $\alpha_{\tau} = 13.9 \times 10^{-6} \ \mathrm{K}^{-1}$

4.2 Parametry modelu B3

Pro prvotní predikci modelem B3 byly použity následující vstupní parametry:

• $f_c = 41 \text{ MPa}$ • $c = 320 \text{ kg/m}^3$ • w/c = 0.525• a/c = 5.703• $w = 167.89 \text{ kg/m}^3$ • $k_{sh} = 1.15 \text{ pro nekonečný válec}$

Na základě těchto hodnot byly vypočítány parametry $E_{(28)}; q_1; ...q_5$

Použité vzorky pro zkoušky při 20°C byly tvaru válce o výšce 1000 mm a průměru 160 mm. Dá se tedy předpokládat, že axiální směr vysychání nemá na smršťování podstatný vliv.

4.3 Parametry modelu fib

Pro účely srovnání modelem *fib* byly použity následující parametry:

• $\alpha_E = 1,0$ • s = 0,2• $\alpha = 1,0$ • h = 79,5 mm• $\alpha_{as} = 700$ • $\alpha_{as} = 700$ • $\alpha_{ds1} = 6$ • $\alpha_{ds2} = 0,012$

4.4 Autogenní smrštění

Vzhledem k nízké hodnotě autogenního smršťování jsou na Obrázku 2 znatelné výkyvy pravděpodobně zapříčiněné nestabilní teplotou prostředí, ačkoliv samotný průběh je patrně téměř lineární a je tak dále uvažován.

Obrázek 2: Autogenní smrštění.

4.5 Základní dotvarování 20°C.

Laboratorní data byla očištěna o vývoj autogenního smrštění a normována napětím. Vzorek byl zatížen napětím $\sigma = 11,97$ MPa ve stáří t' = 92,8 dne a měření probíhala až do stáří t = 1024,5 dne za téměř konstantní teploty 20°C. Okamžitá reakce vzorku je téměř stejná jako u výpočetního modelu. Dále je poddajnost vzorku výrazně vyšší a úplně se tak vymyká predikci, i když rychlost dotvarování je pro délku trvání zatížení t - t' > 100 dní podobná.

Obrázek 3: Základní dotvarování - prvotní predikce B3 a fib.

4.6 Smrštění od vysychání 20°C

Laboratorní data byla očištěna o vývoj autogenního smrštění. U vzorku bylo zabráněno vysychání do stáří $t_0 = 92,51$ dne a poté byl vystaven okolí o téměř konstantní relativní vlhkosti 50 % a téměř konstantní teplotě 20°C až do stáří t = 1851 dní. Vývoj smrštění podle modelu B3 velmi věrně sleduje naměřená data. Výkyvy v naměřených datech jsou způsobeny výkyvy relativní vlhkosti prostředí a teploty od referenčních hodnot.

Obrázek 4: Smrštění od vysychání - prvotní predikce B3 a fib.

4.7 Celkové dotvarování 20°C

Laboratorní data byla očištěna o vliv celkového smrštění. Dále bylo naměřené přetvoření normováno napětím a přičtena hodnota okamžité elastické deformace získané z dat pro základní dotvarování. Vzorek byl zatížen napětím $\sigma = 11,97$ MPa a vystaven vysychání ve stáří t' = 93,57 dne.

4.8 Základní dotvarování 40°C

Laboratorní data byla očištěna o účinky teplotní roztažnosti a normována napětím. Vzorek byl ve stáří t' = 160,08 dne zatížen napětím $\sigma = 14,3$ MPa a jak je patrné z grafu, teplota byla během jednoho dne zvýšena z 19°C na 40°C. Vzorek byl odtížen ve stáří t = 205 dne a teplota klesla ve stáří t = 213 dne na 21°C. Laboratorní data uvádí parazitický relativní úbytek hmotnosti 0,63 %. Porovnání provedeno s modelem MPS pro 20°C. Parametry modelu MPS se nachází v Sekci 5.

Obrázek 5: Celkové dotvarování - prvotní predikce B3 a fib.

Obrázek 6: Základní dotvarování 40°C - prvotní predikce.

4.9 Smrštění od vysychání 40°C

Vzorek byl ve stáří $t_0 = 126,25$ dní vystaven vysychání. Ve stáří t = 129,23 dní teplota dosáhla 40°C a měření pokračovalo do stáří t = 190,29 dní. Porovnání provedeno s modelem MPS pro 20°C. Parametry modelu MPS se nachází v Sekci 5.

Obrázek 7: Smrštění od vysychání 40° - prvotní predikce.

4.10 Celkové dotvarování 40°C

Laboratorní data byla očištěna o účinky teplotní roztažnosti a normována napětím. Vzorek byl ve stáří $t_0 = 126,25$ dní vystaven vysychání a ve stáří t' = 128,24 dní zatížen napětím $\sigma = 15,7$ MPa. Ve stáří t = 129,23 dní teplota dosáhla 40°C a meření pokračuje do t = 182,1 dní, kdy byl vzorek odtížen a měření pokračuje do t = 190 dní. Porovnání provedeno s modelem MPS pro 20°C. Parametry modelu MPS se nachází v Sekci 5.

Obrázek 8: Celkové dotvarování 40°C - prvotní predikce.

4.11 Ztráta vlhkosti a desorpční izoterma

V této sekci jsou vykreslena data pro relativní úbytek hmotnosti vzorku v čase. Vzorek byl vystaven vysychání ve stáří $t_0 = 90,47$ dne a měření probíhalo až do stáří t = 1865 dní za téměř konstantní relativní vlhkosti 50 % a za téměř konstantní teploty 20°C. Dále je vykreslena desorpční izoterma pro 25°C a 40°C. V rámci izotermy je vykreslen lineární regresní model pro interval 50 % až 98 % kvůli kalibraci a využití v přesnějším modelu.

Obrázek 9: Relativní úbytek hmotnosti.

Obrázek 10: Desorpční izoterma pro 25°C a 40°C.

5 Kalibrace materiálového modelu pro 20°C

V tomto kroku je popsána kalibrace modelu MPS a Bažant-Najjar v programu OOFEM podle dostupných laboratorních dat představených v předchozí sekci. Kalibrace je vzhledem k odchylkám od normového chování nezbytná a bude jí zajištěno, aby chování materiálového modelu co nejvíce korespondovalo se zkouškami a aby bylo dosaženo co nejpřesnější predikce chování kontejnmentu. (Pokud není stanoveno jinak, deformace jsou pro zjednodušení zobrazení uvedeny v absolutní hodnotě.)

5.1 Výpočetní model

Výpočet MKP byl proveden na modelu válce výšky 5 mm a poloměru 80 mm. Jedná se tedy o reprezentativní vzorek, který byl za účelem zrychlení numerické simulace "odříznut" ze vzorku o výšce 1000 mm, na kterém byla prováděna laboratorní měření. Napětí aplikované v čase t = 0 dní je konstantní $\sigma = -11,97$ MPa. Počáteční relativní vlhkost prostředí je 98 % a v době t = 1 den klesá na 50 %. Základní kostra výpočetního modelu byla dodána vedoucím práce.

5.2 Kalibrace parametrů základního dotvarování

MPS závisí na stejné skupině parametrů jako B3 a kalibrace $q_1; q_2; q_3; q_4$ byla provedena na experimentální křivce pro základní dotvarování se zohledněním autogenního smrštění a na jejím základě byly stanoveny následující hodnoty parametrů:

- $q_1 = 9.0 \times 10^{-6} \text{ MPa}^{-1}$
- $q_2 = 70.0 \times 10^{-6} \text{ MPa}^{-1}$
- $q_3 = 25.0 \times 10^{-6} \text{ MPa}^{-1}$
- $q_4 = 6.0 \times 10^{-6} \text{ MPa}^{-1}$

Na Obrázku 11 je patrné, že se cca v 90. dni začíná měřená křivka odchylovat. Model nebylo možno kalibrovat zcela přesně, avšak odchylka se dále nezvyšuje, rychlost dotva-rování je téměř shodná.

5.3 Kalibrace parametrů transportu vlhkosti

Úlohy transportu vlhkosti jsou vyjádřeny modelem Bažant–Najjar a jsou popsány základní rovnicí difúze:

$$\frac{\partial h}{\partial t} = \nabla \cdot (C(h)\nabla h) \tag{8}$$

$$C(h) = C_1 \left(\alpha_0 + \frac{1 - \alpha_0}{1 + (\frac{1 - h}{1 + h_c})^n} \right)$$
(9)

Kalibrace byla provedena na křivkách relativního úbytku hmotnosti a smrštění od vysychání bez vlivu dotvarování. Během kalibrace byla uvažována měrná hmotnost betonu 2300 kg/m^3 . Stanoveny byly následující hodnoty parametrů:

• $capa = 130 \text{ kg/m}^3$ • $h_C = 0.7$

•
$$C_1 = 36,65 \times 10^{-4} \text{ m}^2 \text{den}^{-1}$$
 •

• $alpha_0 = 0.055$

 $\mathbf{5.4}$

• $k_3 = 10$

n = 10

100 MPS Axiální Experiment Axiální Poddajnost, J_{b(t,t'}) [10⁻⁶/MPa] 80 60 40 20 0 100 10000 1 10 1000 0.1 Trvání zatížení, t-t' [den]

Výsledky kalibrace

Obrázek 11: Základní dotvarování - kalibrace.

Obrázek 12: Smrštění při vysychání - kalibrace.

Obrázek 13: Úbytek hmotnosti - kalibrace.

Obrázek 14: Celkové dotvarování - kalibrace.

6 Kalibrace materiálového modelu pro 40°C

Kalibrace pro zvýšenou teplotu se nesla ve stejném duchu jako předchozí, pouze ke sdružené analýze přibyl vliv teploty. Výpočetní model a materiálové modely zůstávají totožné.

6.1 Kalibrace parametrů základního dotvarování a transportu tepla

Hodnoty parametrů $q_1...q_4$ jsou shodné s kalibrací pro 20°C, tedy:

- $q_1 = 9.0 \times 10^{-6} \text{ MPa}^{-1}$
- $q_2 = 70.0 \times 10^{-6} \text{ MPa}^{-1}$
- $q_3 = 25.0 \times 10^{-6} \text{ MPa}^{-1}$
- $q_4 = 6.0 \times 10^{-6} \text{ MPa}^{-1}$

Do modelu dále vstupuje parametrkTma parametry pro lineární model zohledňující účinky teploty IsoHeat. Tansportní úlohy tepla jsou vyjádřeny rovnicí:

$$c\,\frac{\partial T}{\partial t} = \nabla \cdot (k\nabla T) \tag{10}$$

Na základě kalibrace podle křivky základního dotvarování se zohledněním parazitického relativního úbytku hmotnosti byly stanoveny následující hodnoty parametrů:

- kTm = 6.5 k = 146880 J/den/K
- c = 1000 J/kg/K $a = 691200 \text{ J/den/m}^2/\text{K}$

6.2 Kalibrace parametrů transportu vlhkosti

Hodnoty parametrů zůstávají oproti kalibraci pro 20°C beze změny, tedy:

•	$capa = 130 \text{ kg/m}^3$	•	$h_C = 0,7$
•	$C_1 = 36,65 \times 10^{-4} \text{ m}^2 \text{den}^{-1}$	•	n = 10
•	$alpha_0 = 0.055$	•	$k_3 = 10$

6.3 Výsledky kalibrace

Obrázek 15: Deformace nezávislá na silovém zatížení - vysychání a teplotní účinky.

Obrázek 16: Základní dotvarování - kalibrace za zvýšené teploty.

Obrázek 17: Celkové dotvarování - kalibrace za zvýšené teploty.

7 Výpočetní model stěny kontejnmentu

Před samotnou simulací a predikcí různých vlastností kontejnmentu je vhodné provést výpočet pro relativně malý reprezentativní segment. Model CCB je rozsáhlý a složitý. Simulace tak vyžaduje množství času a výsledky jsou nejisté. Použitím modelu výřezu stěny bude docíleno nejen významné časové úspory, ale i jednoduššího pozorování odezvy za použití materiálového modelu kalibrovaného na základě laboratorních dat nebo možnosti naladit vhodné okrajové podmínky v transportních úlohách. Okrajové podmínky, podle kterých kalibrace proběhla jsou značně odlišné o těch, které jsou zavedeny pro model reprezentativní části a to zejména periodické cykly teploty a vlhkosti. Získané výsledky mohou také posloužit pro porovnání odezvy výpočetního modelu celého kontejnmentu. Pro tuto fázi simulace byly zanedbány procesy předcházející čas t < 0 dní, jako je například hydratace betonu.

7.1 Popis modelu 400 mm

Pro zmenšený model byl vytvořen výsek stěny zhruba 280 mm široký a 250 mm vysoký. Tyto rozměry byly voleny účelově pro dodržení modulu dvou kabelů ve vodorovném směru a jednoho kabelu ve svislém směru. Model je tedy v obou směrech periodický. Základní kostra výpočetního modelu byla dodána vedoucím práce. Beton je vyjádřen pomocí materiálového modelu MPS + Bažant - Najjar + lineární model pro transport tepla. Pro modelování betonářské výztuže byl použit lineárně elastický materiálový model a pro předpínací výztuž model s účinky relaxace [14][4]. Model pro transportní úlohy vlhkosti je tvořen sítí konečných prvků se zahuštěním sítě u vnitřního a vnějšího okraje. Pro zjednodušení simulace transportu tepla a omezení oscilací je model pro vedení tepla tvořen jedním prvkem na tloušťku stěny. Toto zjednodušení je možné díky malému rozdílu vnitřní a vnější teploty.

Stupeň vyztužení horizontální betonářskou výztuží B500 B za použití profilů 8 mm a 6 mm činí 0,115 %. Stupeň vyztužení vertikální betonářskou výztuží B500 B profily 8 mm a 10 mm je roven 0,127 %. Předpínací výztuž se skládá z kabelů 4C15. Každý kabel tedy obsahuje 4 lana z oceli třídy Y1860S7 o průřezové ploše 139 mm² a celková průřezová plocha každého kabelu je rovna 556 mm². Vertikální kabely jsou rozmístěny v osové vzdálenosti 290 mm a horizontální v osové vzdálenosti 132 mm nebo 264 mm mezi každou dvojicí.

Model 1200 mm je totožný a pouze zvětšený v měřítku 3:1.

7.2 Časové kroky

Podle časových kroků uvedených ve specifikaci benchmarku byly stanoveny důležité časy pro simulaci. Pro začátek simulace bylo stanoveno datum 28.04.2015, které je shodné s koncem betonáže a zároveň je v podkladech EDF uvedeno jako referenční čas. Počátku simulace (t = 0 dní) odpovídá stáří betonu 90 dní.

Obrázek 18: Výpočetní model reprezentativního segmentu - mechanika.

7.3 Teplota a relativní vlhkost

Pro stanovení okrajových podmínek byla využita data měření teploty vzduchu, líců stěny kontejnmentu a relativní vlhkosti poskytnutá EDF. Před úplným uzavřením vnitřního kontejnmentu vnějším byla měření prováděna venkovní meteorologickou stanicí (rozdíl doby měření na Obrázcích 21 a 22). Z Obrázku 21 a 22 je možné pozorovat pravidelné výkyvy, které jsou způsobeny každoročními tlakovými testy. Přibližně měsíc před testy je odstaveno vytápění interiéru simulující provoz jaderného reaktoru (pokles teploty) a zaplavením žlabu v základové desce se zamezí únikům vzduchu skrze tuto oblast (výrazný narůst relativní vlhkosti).

Na Obrázku 23 jsou zobrazeny hodnoty teploty líců stěny vnitřního kontejnmentu. Čas 0 je zde vztažen k referenčnímu času 28.04.2015 a poslední měření proběhlo 15.11.2020. Pro účely zrychlení simulace je teplota ve dvou stupních zjednodušení. Přesný průběh z měření, zjednodušený průběh s poklesy (dále S_{T1}) a zjednodušený průběh konstantní (dále S_{T2}). Pro dobu před uzavřením vnitřního kontejnmentu vnějším je uvažována stejná teplota a vlhkost pro interiér i exteriér.

Pro hodnoty relativní vlhkosti byl uplatněn stejný postup. Na Obrázku 25 jsou zobrazeny opravené hodnoty RH získané měřením a na Obrázku 26 zjednodušený průběh

(a) Vlhkost.

(c) Mechanika.

Obrázek 19: FEM modely pro transportní úlohy.

(dále S_{H1}), po částech konstantní průběh (dále S_{H2}) a konstantní průběh (dále S_{H3}). Zjednodušené okrajové podmínky byly vytvořeny za účelem zrychlení simulace a pro jednodušší pozorování a určení různých trendů v chování modelu.

Obrázek 20: Konvence barevného označení okrajových podmínek.

Tabulka 2: Význ	amná časová	data.
-----------------	-------------	-------

Datum	Čas pro simulaci [den]	Událost
03.07.2014	t = -299	Počátek měření teploty a vlhkosti exteriér
24.07.2014	t = -278	Začátek betonáže
28.04.2015	t = 0	Konec betonáže - Počátek simulace
06.05.2015	t = 8	Začátek předpínání
12.06.2015	t = 45	Aktivace předpětí
12.08.2015	t = 106	Konec předpínání
17.09.2015	t = 141	Počátek měření teploty a vlhkosti interiér
26.01.2016	t = 273	VC1 tlakový test
14.03.2017	t = 686	VD1 tlakový test
21.03.2017	t = 694	VD1bis tlakový test
29.03.2018	t = 1066	VD2 tlakový test
19.03.2019	t = 1421	VD3 tlakový test
Neuskutečněno		VD4 tlakový test
20.02.2021	t = 2152	VD5 tlakový test
30.03.2022	t = 2528	VD6 tlakový test

7.4 Citlivost na teplotní a vlhkostní zatížení

Na Obrázku 27 je vykreslena hodnota zprůměrované relativní vlhkosti betonu v tloušťce stěny. Tyto hodnoty byly získány simulací vedení vlhkosti, kde jako okrajové podmínky pro relativní vlhkost prostředí byla použitá reálná měřená historie a zjednodušené průběhy z Obrázku 26. Průběh simulace podle reálných měřených podmínek je vykreslen zelenou čarou, nicméně v tomto měřítku zcela odpovídá průběhu zjednodušení S_{H1} .

Náhlá rychlá zvýšení vlhkosti prostředí na krátkou dobu mají zjevný efekt

Obrázek 21: Relativní vlhkost a teplota na vnější straně kontejnmentu.

Obrázek 22: Relativní vlhkost a teplota na vnitřní straně kontejnmentu.

na průměrnou vlhkost betonu. Rychlost změn vlhkosti oproti celkovému trendu, který lze vidět na konstantní historii, naznačuje, že dochází pouze k významnému navýšení vlhkosti v okrajích stěny a střední části se příliš netýká. Průběh S_{H3} ukazuje, že je tuto okrajovou podmínku možné použít pro získání prvních výstupů a díky možnosti prodloužit výpočetní krok také významné zkrácení simulace. Není možné ji použít například pro získání hodnot napětí v okrajích stěny.

Na Obrázku 28 se nachází srovnání účinků teplotního zatížení. Vykreslená teplota je průměrem teplot v tloušťce stěny a je výsledkem simulace pro reálnou historii tep-

Obrázek 23: Teplota stěny kontejnmentu - měření.

Obrázek 24: Teplota stěny kontejnmentu - zjednodušené průběhy.

loty z Obrázku 23 a zjednodušené historie na Obrázku 24. Průběh podle reálné historie je vykreslen zeleně.

Je zjevné, že proměnná teplota se v průřezu šíří relativně rychle a výkyvy v historii zatížení není možné zanedbat. Vzhledem ke složitosti reálného zatížení byla simulace provedena s velmi jemným časovým krokem, a přesto docházelo ke znatelným nežádoucím oscilacím teploty. Pro jejich eliminaci by bylo nutné krok více zjemnit, což je nevýhodné z hlediska trvání simulace, která by se tak prodloužila až $80 \times$.

Obrázek 25: Relativní vlhkost - měření.

Obrázek 26: Relativní vlhkost - zjednodušené průběhy.

7.5 Silová zatížení

Dle Tabulky 2 byla aktivace předpětí stanovena na čas t = 45 dní. Všechny kabely v modelu jsou předepnuty současně napětím cca 1488 MPa. Toto předpětí vyvozuje v betonu tlakové napětí cca 15 MPa v tangenciálním směru a 7 MPa ve vertikálním směru. Napětí neodpovídá napětí specifikovanému EDF, ačkoliv není možné blíže určit v jakém místě či stáří bylo uváděné napětí měřeno. Výsledné napětí zcela odpovídá předpínacímu napětí a druhu kabelů použitých v maketě VERCORS.

Obrázek 27: Srovnání účinků historií vlhkostního zatížení.

Obrázek 28: Srovnání historií teplotního zatížení.

$$\sigma_{c,vert} = \frac{A_p \, \sigma_p}{A_{c,vert}} = \frac{139 \times 4 \times 1488}{400 \times 290} = 7,13 \text{ MPa}$$
(11)

$$\sigma_{c,vert} = \frac{A_p \, \sigma_p}{A_{c,vert}} = \frac{139 \times 4 \times 1488}{400 \times 132} = 15,67 \text{ MPa}$$
(12)

Zatížení vlastní tíhou betonu bylo zanedbáno. Podtlak udržovaný v kontejnmentu po celou dobu životnosti nebyl do simulace zaveden, protože rozdíl mezi normálním atmosferickým tlakem a podtlakem je minimální.

8 Výsledky simulací

8.1 Vývoj předpětí na zmenšeném modelu

Následující grafy na Obrázcích 29, 30, 31 představují vývoj napětí kabelů předpínací výztuže v různých režimech simulace za použití okrajových podmínek $S_{T1} + S_{H1} + S_{T2} + S_{H3}$, a to v režimu bez transportu tepla a vlhkosti, s transportem vlhkosti a transportem tepla a vlhkosti. Do výpočtu nebyl zahrnut vliv vnitřního přetlaku. Tyto grafy slouží jako názorný příklad vlivu teploty a vlhkosti na smršťování a dotvarování betonu a následné ztráty předpětí. Z důvodu přehlednosti grafů byl počátek osy X posunut do času vnesení předpětí, tedy t = 45 dní.

Obrázek 29: Napětí v předpínacích kabelech - vnější horizontální.

V grafech je možné vidět jako první křivku průběhu napětí ve výztuži v případě, kdy byl pro ocel použit lineárně pružný materiálový model. Zcela tak odpadl vliv relaxace výztuže, a zůstává zde pouze ztráta předpětí vlivem základního dotvarování betonu. Hodnota tlakového napětí v betonu v tangenciálním směru v čase vnesení předpětí činí zhruba 14,5 MPa a ve směru vertikálním 8 MPa. Tento rozdíl vysvětluje poměr mezi ztrátami základním dotvarováním v obou směrech.

Následující červená křivka bere v potaz i relaxaci předpínací výztuže zavedením vhodného materiálového modelu. Příčinek relaxace ke ztrátám předpětí dosahuje v konečném stáří odhadem 9 % celkového napětí.

Modrá křivka byla získána pomocí simulace s vlhkostní okrajovou podmínkou S_{H3} a doplňuje ztráty předpětí vlivem vysychání. Průběh poměru mezi vertikálním a tangenciálním napětím nejspíše spočívá v menší složce dotvarování při vysychání kvůli nižšímu vertikálnímu napětí, přičemž složka smrštění při vysychání stejná.

Obrázek 30: Napětí v předpínacích kabelech - vnitřní horizontální.

Obrázek 31: Napětí v předpínacích kabelech - vertikální.

Zelený průběh vychází z výpočtu s vlivem teploty a vlhkosti $S_{T2} + S_{H3}$. Vzhledem k tomu, že u tohoto modelu má zvýšená teplota vliv jen na míru dotvarování, dá se opět vysvětlit rozdíl mezi vertikálním a tangenciálním směrem, kdy u vertikálního směru je složka dotvarování výrazně nižší, a tak je menší i příspěvek zvýšené teploty.

Pro výpočet čerchovaných křivek byly využity okrajové podmínky uvedené v legendě. Teplotní podmínky obsahují fluktuace teplot během tlakových testů (zvlnění křivky). Vzhledem k neúměrnému poklesu předpětí v obou případech je nutné konstatovat, že použitý materiálový model je na výrazné pohyby teplot velmi citlivý a při větším počtu cyklů narůstá poddajnost betonu nad reálné meze.

8.2 Vývoj napětí v betonové stěně

Stejné porovnání jako v případě předpínací výztuže bylo provedeno pro napětí v samotném betonu. Výpočet proběhl pro totožné podmínky a srovnání je doplněno o grafy vývoje deformace v obou směrech.

Jak je možné vidět na Obrázcích 32 a 33, napětí ve středu stěn je díky pomalému transportu vlhkosti relativně stabilní i při fluktuacích teploty a vlhkosti. Na rozdíl od napětí v okrajích stěny, kde během prudkých změn teploty a vlhkosti dochází ke změnám i 15 MPa.

Zvýšení tlakového napětí během prvních 500 dnů v případě $S_{H3} + S_{T2}$ ve středu stěny je pravděpodobně způsobeno velmi rychlým vysycháním okrajů, které se smršťují, a tím stlačují jádro. Dle vývoje předpětí je ztráta s vlivem vlhkosti a teploty výrazně větší, ačkoliv úroveň tlakového napětí v jádru krátce roste. V případě, že by celý profil stěny vysychal rovnoměrně, tento trend by byl opačný a ke snížení tlakového napětí by došlo v celé tloušťce stěny a zcela by tak korespondoval jak s vývojem deformace, tak i s poklesem napětí v předpínací výztuží.

Obrázek 32: Napětí v tangenciálním směru ve středu stěny.

Obrázek 33: Napětí ve vertikálním směru ve středu stěny.

Obrázek 34: Napětí v tangenciálním směru na vnějším okraji stěny.

Obrázek 35: Napětí v tangenciálním směru na vnitřním okraji stěny.

Obrázek 36: Napětí ve vertikálním směru na vnějším okraji stěny.

Obrázek 37: Napětí ve vertikálním směru na vnitřním okraji stěny.

Obrázek 38: Poměrná deformace v tangenciálním směru.

Obrázek 39: Poměrná deformace ve vertikálním směru.

Na vývojích napětí, stejně jako v případě předpínací výztuže, je možné pozorovat nadměrné reakce modelu na změny teploty a vlhkosti. V tomto stavu jsou data modelem predikovaná v podstatě nepoužitelná. V návaznosti na toto chování proběhl pokus o nalezení "viníka", za pomoci simulace s vlivem samotné vlhkosti a samotné teploty, za použití okrajových podmínek $S_{H3} + S_{T2}$ pro referenční stabilní vývoj a S_{H2} a S_{T1} . Z výsledků na Obrázcích 40 a 41 vyplývá, že cykly vlhkosti nemají přílišný vliv na změny deformace, a to především na dlouhodobý trend jejího vývoje. Teplota vychází z těchto simulací jako zjevná příčina nadmíru zvýšené poddajnosti. Pro další fáze benchmarku bude třeba určit okrajové podmínky tak, aby byla zachována co nejlepší reprezentativnost prostředí, ve kterém se kontejnment nachází a zároveň nezkreslovaly získaná data kvůli přílišné citlivosti modelu na změny teplot. Závislost poddajnosti na pohybech teploty se dá dále definovat parametrem kTc. Hodnota parametru byla pro simulaci zvolena jako kTm/20 a provedená simulace je zobrazena na Obrázcích 40 a 41. Z této simulace je patrné, že je možno pomocí parametru kTc dosáhnout reálnějších výsledků i za použití složitějších okrajových podmínek.

Obrázek 40: Identifikace citlivosti modelu - deformace v tengenciálním směru.

Následující obrázky popisují průběh napětí v betonové stěně ve vybraných časech v simulaci s podmínkami $S_{T1}+S_{H2}$ za aplikace parametru kTc. Vizualizace jsou vytvořeny v programu Paraview [5]. Je zde patrný vliv oscilující vlhkosti na napětí v okrajích stěny, a to například na nárůstu tlakového napětí v okrajích mezi časem t = 45 dní a t = 200 dní. Zároveň lze snadno pozorovat celkový trend vysychání, který se zde projevuje postupným snižováním tlakového napětí v celé šířce stěny.

Obrázek 41: Identifikace citlivosti modelu - deformace ve vertikálním směru.

Obrázek 42: Napětí v tangenciálním směru v čase zavedení předpětí t = 45 dní.

Obrázek 43: Napětí v tangenciálním směru.

Obrázek 44: Napětí ve vertikálním směru v čase zavedení předpětí t = 45 dní.

(c) t = 1000 dní.

(d) t = 2500 dní.

Obrázek 45: Napětí ve vertikálním směru.

8.3 Transport tepla a vlhkosti v betonu

Pro lepší představu chování vlhkosti v betonu byly připojeny vizualizace simulací transportu vlhkosti ve vybraných časech. Na levém obrázku je zobrazen výpočetní model a na pravém graf relativní vlhkosti, kde osa x znázorňuje radiální řez stěnou.

Obrázek 46: Relativní vlhkost t = 100 dní.

Obrázek 47: Relativní vlhkost t = 400 dní.

Obrázek 48: Relativní vlhkost t = 1000 dní.

Obrázek 49: Relativní vlhkost t = 2500 dní.

8.4 Srovnání modelů segmentů pro maketu a plnou velikost

Poslední část práce je věnována jednoduchému ověření předpokladů EDF o urychlení procesů vysychání časovým faktorem 9 a celkové možnosti reprezentovat chování CCB plné velikosti maketou. Jakkoliv může být tento předpoklad, co se vysychání týče, přesný, je nezbytné vzít v potaz, že se základní dotvarování vyvíjí nezávisle na vlhkosti a nikdy nedosahuje konečné hodnoty. Bude tedy v sedmém roce života zmenšeného modelu podobné, jako v sedmém roce života reálného kontejnmentu. Případné zanedbání tohoto trendu by mohlo vést ke vzniku značné chyby.

Pro ověření předpokladu urychlení vysychání byly provedeny dvě simulace, na jejichž výstupech je srovnána průměrná relativní vlhkost stěny modelu o tloušť ce 1200 mm a 400 mm. Na modely byly zavedeny vlhkostní okrajové podmínky S_{H3} , v případě většího modelu přenásobené časovým faktorem 9 a konstantní pokojová teplota. Simulace probíhala po dobu t = 2500 dní pro 400 mm a t = 22000 dní pro 1200 mm. Na Obrázku 50 jsou zobrazena získaná data, která byla pro lepší porovnatelnost v případě modelu 400 mm přenásobena faktorem 9, aby se časová osa shodovala pro oba modely.

Obrázek 50: Srovnání průměrné vlhkosti betonu pro reálný kontejnment a zmenšenou maketu, časová osa pro 400 mm prodloužena $9\times$.

Ze srovnání vyplývá, že oba modely v průměru vysychají skutečně velmi podobně a předpoklad časového faktoru je dostatečně přesný na to, aby nezaváděl podstatnou chybu. Jedná se však o první pohled na tuto problematiku, kterou bude nutné v dalších fázích práce prozkoumat podrobněji.

V poslední řadě zbývá porovnat vývoj základního dotvarování. Výstavba makety VERCORS respektovala časový faktor ve všech směrech a to i délkou betonáže nebo časem aktivace předpětí [3]. Zavedení předpětí do modelu 1200 mm bylo stanoveno pro čas t = 405 dní, kdy stáří betonu odpovídá 805 dnům. Časová osa byla opět srovnána

přenásobením dat pro model 400 mm koeficientem 9.

Obrázek 51: Porovnání dotvarování 1200 mm a 400 mm - Tangenciální deformace, časová osa pro 400 mm prodloužena $9 \times$.

Obrázek 52: Porovnání dotvarování 1200 mm a 400 mm - Vertikální deformace, časová osa pro 400 mm prodloužena $9 \times$.

Na Obrázcích 51 a 52 je pozorovatelná odchylka v dotvarování mezi modely, která v konečném stáří nepřesahuje 10 %. Tento rozdíl odezvy je třeba vzít v potaz, ačkoliv by díky relativně nízké hodnotě, a především minoritnímu podílu základního dotvarování na celkové deformaci, neměl působit přílišné obtíže.

8.5 Shrnutí

Na již provedených simulacích možné pozorovat a porozumět různým trendům a vlivům. Mezi ně patří zejména vlivy mechanických zatížení, lineární viskoelasticity, vlhkosti a teploty.

Na straně čistě mechanických vlastností lze konstatovat, že vliv základního dotvarování má na celkovou deformaci a ztráty předpětí pouze minoritní vliv. Relaxace výztuže se zde naopak projevuje velmi výrazně a k největší relaxaci dochází v intervalu do jednoho dne od předpětí. Je zde také třeba uvážit, jak předpínání probíhalo a případně jak dlouho bylo předpětí podrženo, protože i několik málo minut může mít na konečnou hodnotu ztrát předpětí markantní vliv.

Stran vlivů vysychání a transportu tepla byly vyzkoušeny různé úrovně zjednodušení okrajových podmínek. Díky těmto simulacím bylo zjištěno, že v případě vlhkosti může být dosaženo dobrých výsledků a především znatelně kratších časů výpočtu. Oscilace vlhkosti, vzhledem ke svému krátkému trvání, ovlivňují pouze okrajové části stěny a nemají tak přílišný vliv na celkový trend vysychání a výsledky poskytují dobrý přehled o dlouhodobém chování kontejnmentu. V případě zavedení okrajových podmínek pro tlakové testy bude dobré zohlednit nárůst vlhkosti a tím narůst tlakového napětí v okrajích stěn. V případě zanedbání tohoto vlivu by mohlo tahové napětí v okrajích stěn snadněji dosáhnout tahové pevnosti betonu a zapříčinit vznik trhlin, kdy již není možné výpočet provádět lineárně.

Vliv oscilující teploty je třeba dále prozkoumat a určit "správné" okrajové podmínky a materiálový model. Použitý model byl kalibrován pouze na jednom případě vzrůstu teploty, přičemž kontejnment tyto změny zažívá opakovaně. Zjednodušené okrajové podmínky s konstantní teplotou bylo možné použít jen pro získání prvotního pohledu a dále je třeba počítat s podmínkami složitějšími. Nerealistickou reakci modelu na fluktuace je možné z části řešit parametrem kTc, pro jehož stanovení nejsou k dispozici žádná (s výjimkou jednoho experimentu) veřejně přístupná data a rozumnou volbou míry zjednodušení okrajových podmínek [6].

9 Závěr

Cílem této práce bylo vytvoření slepé predikce chování kontejnmentu jaderného reaktoru v návaznosti na třetí benchmark VERCORS, a to především jeho reprezentativní části pro stanovení citlivosti na různé vlivy. Základem predikce byly experimentálně zjištěné materiálové charakteristiky poskytnuté EDF. Pomocí těchto dat byla provedena kalibrace materiálových modelů pro pro výpočet metodou konečných prvků.

Následné provedení simulací s velkým množstvím okrajových podmínek poskytlo solidní přehled o chování výpočetního modelu a velké množství cenných informací pro další fáze benchmarku. Proběhla diskuze o jejich správnosti, přesnosti nebo použitelnosti. Zejména:

- Dotvarování a smršťování betonu
- Vliv vlhkosti a teploty
- Ztráty předpětí
- Předpoklad časového faktoru

Na veškerá data získaná v této práci bude dále navázáno při dokončení první fáze benchmarku kdy bude se zjištěnými parametry proveden výpočet na modelu celé CCB a ke slepé predikci chování materiálu se přidruží vliv poškození. Pro tyto pokročilejší výpočty již budou využity složitější historie teploty a vlhkosti $(S_{T1} + S_{H1})$. Vliv cyklické teploty na dotvarování omezí redukce parametru kTm parametrem kTc. V dalších fázích, kdy budou poskytnuta podrobná data z měření na samotné maketě CCB, proběhne ověření predikce a následné zpřesnění výsledků.

Reference

- Model Code 2010, fib Bulletin vol. 65. Technical report, International Federation for Structural Concrete (fib), 2012.
- [2] Direction Production Ingeniere, EDF. Project maquette vercors, plan general, 2012.
 [Z oficiálních podkladů pro Benchmark 2022 VeRCoRs].
- [3] Direction Production Ingeniere, EDF. Specification of vercors benchmark 3, 2021. [Oficiální specifikace pro Benchmark 2022 VeRCoRs].
- [4] European Committee for Standardization. EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. CEN, 2005.
- [5] J. Ahrens, B. Geveci, Ch. Law. ParaView: An End-User Tool for Large Data Visualization Application, Visualization Handbook, Elsevier. https://www.paraview.org/, 2005.
- [6] M. Jirásek, P. Havlásek. Microprestress-Solidification Theory of Concrete Creep: Reformulation and Improvement. *Cement and Concrete Research*, 60:51–62, 2014.
- [7] Julien Niepceron. Vercors 3rd benchmark fv. https://www.rilem.net/news, 2020.
- [8] B. Patzák. OOFEM home page. http://www.oofem.org, 2000.
- [9] Z.P. Bažant, A.B. Hauggaard et al. Microprestress-solidification theory for concrete creep. I: Aging and drying effects. *Journal of Engineering Mechanics*, 123(11):1188– 1194, 1997.
- [10] Z.P. Bažant, L. Cedolin, G. Cusatis. Temperature effect on concrete creep modeled by microprestress-solidification theory. *Journal of Engineering Mechanics*, 130 (6):691– 699, 2004.
- [11] Z.P. Bažant, L.J. Najjar. Nonlinear water diffusion in nonsaturated concrete. Materials and Structures, 5:3–20, 1972.
- [12] Z.P. Bažant, M. Jirásek. Creep and Hygrothermal Effects in Concrete Structures. Solid Mechanics and Its Applications. Springer Netherlands, 2018.
- [13] Z.P. Bažant, S. Baweja. Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3. Adam Neville Symposium: Creep and Shrinkage -Structural Design Effects, 2000.
- [14] Z.P. Bažant, Y. Qiang. Relaxation of prestressing steel at varying strain and temperature: Viscoplastic constitutive relation. *Journal of Engineering Mechanics*, 139(7):814–823, 2013.