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Abstract

Elastic properties of hydrating cement paste can be successfully predicted by combination of the hydration model, percolation theory and
micromechanical analysis. Reconstruction of hydrating microstructure is based on the 3D digital NIST model of cement hydration, which is
enhanced for the prediction of two C–S–H types. Chemical phases in a percolated microstructure served as an input in a two-level analytical or
one-level 3D FEM or FFT elastic homogenization. Special mesh generation for the percolated microstructure is discussed as well as its numerical
implementation. Good results from FEM and FFT were found for the size of the representative volume element of 50×50×50 μm, considering
water-to-cement ratio in the range from 0.25 to 0.5. While good predictions in well-hydrated cement pastes were obtained for both analytical and
numerical approaches, numerical homogenization was found more accurate and versatile for the whole hydration time.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Young's modulus (E) and Poisson's ratio (ν) are important
parameters used in the structural design and analysis of cement-
based materials. Physical and chemical changes in the
microstructure of cement paste result in the evolution of
mechanical properties. While porosity determines the strength
to a great extent, elastic properties depend on the intrinsic elastic
values of individual components and their connectedness [3].
Therefore, modification of elastic behavior is a challenge that
finds its application in large-span structures, for example.

Several macroscopic approaches were aimed at the descrip-
tion of the evolution of Young's modulus, based on the maturity
concept, degree of hydration [22], or percolation [5,31].
Moreover, linear dependence between the degree of hydration
and Young's modulus was reported several times [8,24]. The
next consecutive step deals with volumetric prediction of
dominant chemical phases via microscale models of cement
hydration, combined with the homogenization approach. Here,
previous macroscopic results are very useful for validation.
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Volumetric fractions from continuous affinity hydration models
may provide such input for analytical homogenization [3].
Although the analytical homogenization relies on morpholog-
ical assumptions and does not account for true microstructure
configuration, the results were adequate [3]. More sophisticat-
ed, direct homogenization via FEM from a discrete hydration
model also yielded good results, even for leached cement pastes
[9,12,16]. Convergence of analytical and numerical homogeni-
zation methods is generally observed at later stages of hydration
where porosity and percolation do not play a significant role.

The homogenization approach is complicated by the fact that
cement paste starts as a suspension and a load-bearing structure
emerges only after a setting time period. Percolation theory
partially addresses this phenomenon near to the set point. Non-
critical application of percolation theory to later evolution of
microstructure is problematic since a big gap in elastic
properties exists between raw cement and hydration products
and a certain correction is necessary [31]. Alternatively, the use
of contact finite elements have recently been shown to solve this
problem [29]. The aim of this paper is to relate effective elastic
properties of cement paste to the properties of its individual
chemical phases on the nano- and micro-level, using methods of
uncoupled upscaling [3]. The percolation threshold, which
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defines the transition from a suspension to a partially solid
structure, is determined from the NIST cement hydration model
working on the micrometer scale [2]. The model further serves
for estimating the chemical composition and spatial configura-
tion of the microstructure which will provide an input to two-
level analytical or one-level numerical homogenization.

2. Cement hydration model CEMHYD3D

The discrete hydration model, called CEMHYD3D and
developed at NIST, will be used for the reconstruction of 3D
cement microstructures; for details see [2,10]. The model
reflects four important effects during cement hydration: cement
chemical composition, particle size distribution (PSD), curing
regime and temperature. A voxel (volume element) is the basic
building unit and represents one chemical phase. The size of the
voxel determines the model resolution that should be small
enough to capture the important underlying processes, e.g.
dissolution, transport, reaction, and diffusion. A reasonable
voxel size of 1×1×1 μm has been found [10]. Basic chemical
reactions guarantee the correct volume fractions of hydrating
Portland cement.

An initial and random 3D microstructure is reconstructed
with the help of autocorrelation functions and contains typically
four cement clinker minerals and forms of calcium sulfate, all as
digital spherical particles [2]. Hydration products are, with
certain probabilities, formed on the grains exposed to water
contact and they nucleate in the available pore space. The size of
microstructure may be arbitrary, limiting the maximal cement
grain that may be placed in. The microstructure remains periodic
during hydration which enables homogenization techniques
dealing with periodic fields. Although the real hydration time
may be determined from the model, the degree of hydration is
preferred, in order to avoid the fitting parameter related to the
model cycles [2].

Any random model system contains two sources of error:
statistical fluctuation and the finite size effect [10]. The first
emerges due to the random nature of cement paste while the
second is due to limited representation of a sample. Comparison
of various sizes of hydrating microstructures gives an estimate
of the expected error. It has been shown that for water-to-cement
ratio (wcr) from 0.2 to 0.5, for fine and coarse cement, and for
an expected error in the degree of hydration of 10% at the same
model cycle after 3 h of hydration, the reasonable microstruc-
ture size lies in the range of 20–50 μm [23]. A microstructure
edge size above 100 μm has been found to bring no significant
accuracy in the hydration model predictions in terms of released
heat [10].

This model of cement hydration also brings digital resolution
problems. The voxel is likely to lie in the range from 0.125 to
1 μm/voxel and has been determined using an assumption of
continuous C–S–H phase and a dissolution rate of larger
cement grains [10]. The progress of the reaction front towards a
grain is also influenced by a dissolution length, specified as 6 or
26 adjacent voxels. The latter value corresponds to a 3×3×3
voxel box around the central voxel and specifies candidates to
be dissolved. Although the dissolution length significantly
changes the hydration kinetics, the elastic results remain less
sensitive as demonstrated in the validation section.

2.1. Models for two morphologies of C–S–H gel

It has been observed over the past decades that the C–S–H
gel, as the main hydration product, may be divided into two
groups called inner–outer [21], middle–late product, pheno-
grains–groundmass, low–high density (C–S–HLD – C–S–
HHD) [15,26]. Though these pairs of expressions are not
equivalent, they are closely related. According to the Jennings–
Tennis (J-T) model, a globule with a diameter around 5 nm is
probably responsible for the two types of C–S–H gels [15].

It is believed that at the beginning of hydration only C–S–
HLD appears due to unrestrained pore space while C–S–HHD

originates from later stages of cement hydration when diffusion
reactions dominate in the microstructure. This transition
happens at the nanometer scale. Our first attempt to model
this change in the voxel-based model has been based on an
explicitly given transition thickness, which roughly defines the
change to the C–S–HHD in a given neighborhood around a
cement grain. It has been found that the results are almost
independent of the cement fineness and of the wcr, which is in
contradiction to the J-T model [26].

A more successful model distinguishing two morphologies
of C–S–H has been based on a confinement condition. At the
beginning of hydration, there is enough capillary space to
accommodate C–S–H; hence, it is of the C–S–HLD type. As
hydration proceeds, expanding solid phases are more restrained,
causing compressive stresses. It is assumed that these stresses
transform C–S–HLD to the C–S–HHD type. This mechanism
results in an algorithm:

1. locate an undifferentiated C–S–H voxel from CEMHYD3D
model,

2. determine the amount of all solid voxels in a box around the
monophase C–S–H voxel,

3. if the amount equals at least to a transition one, change all C–
S–H voxels in the box to C–S–HHD type,

4. scan the next C–S–H voxel in the microstructure.

Two unknown parameters have to be determined for this
confinement model: the box size around the C–S–H voxel and
the amount of solid voxels in that neighborhood to cause the
transition. For the purpose of parametric study, three OPC
microstructures with a wcr of 0.2, 0.3 and 0.5 have been
generated. Fig. 1 displays the results of the C–S–HHD

evolution, where the straight lines correspond to the J-T
model [26]. There are also results for the evolution of C–S–
HHD, assuming the amount of 26 solid voxels in the box of
3×3×3 around the C–S–H voxel. If the box 5×5×5 is
considered, a transition amount of 119 solid phases yields the
closest match to previous results. Similar results were found for
different wcrs suggesting that a larger box or optimisation of the
algorithm is not necessary.

The 3×3×3 box with 26 solid voxels seems to be the most
reasonable choice, used also later throughout validation. This



Fig. 2. Example of 2D cement microstructure shortly after the percolation
threshold of solids, emphasizing their percolation.

Fig. 1. C–S–HHD evolution for three wcrs based on the confinement model (left) and based on the J-T model (right) [26].
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choice is supported by the J-T model [26], where the volumetric
C–S–HHD/C–S–H ratio for the ultimate degree of hydration is
supposed to be 0.8 and 0.5 for the wcr of 0.25 and 0.4,
respectively. The data from the affinity model also support this
choice [3]: C–S–HHD starts to form at the degree of hydration
of 0.6 at wcr = 0.6 and the volume fraction of C–S–HHD is
around 30% at a degree of hydration of 0.9.

The assumption of C–S–HHD origin in rather later diffusion
processes leads to obvious disagreement in Fig. 1 when
compared to the J-T model. On the other hand, the J-T model
is extrapolated to early ages where surface area determination
brings difficulties [26]. However, the question of early C–S–
HHD evolution remains open and the confinement model will be
used exclusively for the purpose of elastic homogenization. It
must be further noted that implementation of two different
molar volumes of both C–S–H gels may be necessary to
improve the model. When interstitial space in the C–S–H is
filled with water, the densities of both types were calculated as
1850–1980 or 2037–2195 kg/m3, depending on the density of
globules [15]. The confinement model exhibits a weak
dependence on the resolution since only “surface” layers of
C–S–H are affected by the resolution and the C–S–HHD remain
in the close vicinity of the cement grains.

2.2. Percolation concept

Percolation theory describes topological connection in a
random material of at least two phases. There exists a strong
link between the behavior of a random material and percolation,
e.g. elasticity, conductivity, permeability [28]. When applied to
cement paste, percolation of solids p, further referred to as
percolation, is quantified as

p ¼ connected volume of solids
total volume of solids

: ð1Þ

In the beginning of hydration, the cement grains are mutually
separated hence connected volume fraction and percolation of
solids is equal to zero. As hydration proceeds, the hydration
products glue the grains. At the point called the percolation
threshold of solids pc, the microstructure contains sufficient
amount of solids to bridge one side to the opposite.
Fig. 2 shows an example of 2D microstructure from the
NIST model, containing digital spheres of cement grains,
porosity and hydration products acting as a glue. In such digital
images, two voxels are considered to be connected when they
share the same face and do not belong to different cement grains
[10]. For this purpose, the NIST authors implemented the
“burning” algorithm that locates all solid phases that bridge
opposite sides of the microstructure [2]. In Fig. 2, the
microstructure has already attained the percolation threshold
where spanning and isolated clusters may be identified.

For a statistically homogeneous material, the static Young's
modulus attains a non-zero value only after the percolation
threshold pc has been reached [5,28]. In other words,
appearance of the first spanning cluster over the microstructure
is a necessity. Several studies of hydrating cement pastes from
the NIST model revealed that the percolation threshold
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corresponds to the percolation in the range from 0.2 to 0.6,
depending on the model resolution [2,10]. In the vicinity of the
percolation threshold, the static Young's modulus obeys the
power law:

EðpÞ ¼ kðp−pcÞf ; ð2Þ
where f is the critical exponent and k is the structure parameter.
Numerical simulations of a 3D random material network yield
f = 3.75 [28].

Ye et al. [31] used the same structure of Eq. (2) for
determination of the shear modulus of cement paste. They
obtained parameters f = 1.35, k on average as 27 GPa and
pc∼0.4 for the OPC with the wcr = 0.5 and 0.6 [31]. They
concluded that the percolation threshold seems to be indepen-
dent in these two wcrs. Boumiz et al. [5] found good correlation
with shear modulus for f in the range from 1.92 to 2.13 for the
wcr between 0.34 and 0.4. It must be noted that Eq. (2) is valid
only in the vicinity of the percolation threshold, i.e., at the initial
stages of cement hydration, and does not take into account the
significant change of elastic properties of phases during
chemical reactions, Table 1.

It is obvious that isolated clusters do not contribute to the
shear stiffness. Until the first spanning cluster appears, the
mechanical behavior resembles that of water. Therefore, the
substitution of isolated voxels with water-filled porosity is
necessary while leaving the spanning clusters of solids. The
term percolated microstructure will refer further to such
configuration.

3. Homogenization of cement paste

A lot of literature deals with the theory of homogenization, a
brief review is given in, e.g., [27,32]. Generally, three types of
micromechanical methods are used. Rigorous bounds such as
the Hashin bounds, analytical approximations such as the self-
consistent scheme, differential medium or third-order approx-
Table 1
Intrinsic elastic moduli of chemical phases in the homogenization as measured
by nanoindentation or mechanical tests

Phase E (GPa) ν (–) Reference

C3S 135±7 0.3 [30]
C2S 130±20 0.3 [30]
C3A 145±10 0.3 [30]
C4AF 125±20 0.3 [30]
CS̄H2 16–30–35 0.18–0.3–0.34 [1]
Water-filled porosity 0.001 0.499924 –
Empty porosity 0.001 0.001 –
CH 38±5 0.305 [3,6]
C–S–HLD 21.7±2.2 0.24 [6]
C–S–HHD 29.4±2.4 0.24 [6]
C6AS̄3H32 22.4 0.25 [16]
C4AS̄H12 42.3 0.324 [16]
C3AH6 22.4 0.25 ⁎
FH3 22.4 0.25 ⁎

Bold values enter the homogenization procedure, values denoted by asterisks are
estimated, based on [16].
imations, and numerical methods like finite elements [25],
boundary integrals, Fourier transforms [20] or method of cells.

The transition from a heterogeneous to a homogeneous
material at higher level requires statistically homogeneous
material, in other words, an appropriate size of a sample called
representative volume element (RVE). Generally, the size of the
RVE is a function of five parameters: the analyzed physical
quantity, the contrast of material properties, the volume fraction
of components, the relative error and the amount of realizations
of random microstructure [17].

The selection of RVE in a cement paste depends not only on
the morphology but also on the data available on the
identification of the intrinsic properties of constituents. The
smallest mechanical tests were performed via nanoindentation
on the nanometer scale. This is the smallest considered level,
referred to as the C–S–H level [3]. According to Jennings's
model [15], the characteristic length of packed globules ends at
100 nm. This length scale contains also inclusions of C–S–H
gel porosity and small calcium hydroxide crystals that can be
hardly separated from the matrix during nanoindentation tests.

The higher level, referred to as the cement paste level, spans
the characteristic length approximately from 1 μm up to
100 μm. The upper limit depends especially on the maximum
size of cement grain used in calculation. The cement paste level
contains four unhydrated cement clinkers (C3S, C2S, C3A,
C4AF), gypsum, larger calcium hydroxide crystals, ettringite,
capillary porosity, other minor phases and already homogenized
C–S–H phase. The RVE of this level corresponds to the
representative cube from the NIST model, typically in the range
from 25 to 100 μm.

The homogenization approach is easily applicable to coarser
scales, arriving to mortar and concrete level with the
characteristic length up to 0.1 m, covering the range of several
orders of magnitude [3].

3.1. Intrinsic elastic properties of chemical phases

With the development of nanoindentation, elastic properties
of constituents can be accessed at very fine scales, typically in
the range from 300 to 500 nm. Synthetically prepared clinker
minerals (C3S, C2S, C3A, C4AF) were analyzed via nanoin-
dentation and by the resonance frequency technique [30], Table
1. Higher scatter of values from nanoindentation reflects also
higher intrinsic porosity. It is assumed that all reactants and
products keep their specific elastic properties constant during
the whole cement hydration. Constantinides and Ulm [6]
performed nanoindentation tests of C–S–H and calcium
hydroxide, in an OPC with the wcr of 0.5. They found two
peaks in Young's modulus that may be probably attributed to
the C–S–HLD and C–S–HHD type, Table 1. Since these three
constituents are the most common hydration products, effective
properties of the cement paste rely considerably upon their
elastic behavior.

The Poisson's ratio of water strongly influences the resulting
Poisson's ratio during the early hydration period [3]. The
question remains as to whether the water can move in reality
without any constraint through the capillary network. If so, the
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water should act in the micromechanical model as an easily
compressible void. This problem emerges in analytical
homogenization since there is no information about percolation
of the capillary network. On the other hand, numerical
homogenization localizes the deformation in empty capillary
pores in the RVE since the connectivity of capillaries is given by
phases arrangement. Assigning a non-zero Young's modulus to
water, Poisson's number is determined in such a way that the
bulk modulus of water corresponds to k = 2.18 GPa.

3.2. Analytical approximation

Two level analytical homogenization, proposed by Bernard
et al. [3], will be applied in order to verify the assumptions of
analytical methods against the numerical results. The Mori–
Tanaka method [19] homogenizes the C–S–H level, where the
C–S–HLD is the reference phase. The cement paste level is
homogenized by the self-consistent scheme [13]. In the latter,
the percolation threshold of solids coincides with the porosity of
at least 50%, depending on assigned elastic properties of
porosity [3].

3.3. Numerical approximations and boundary conditions

The microstructure configuration is a prerequisite for
numerical methods, here obtained from the NIST hydration
model. The finite element method (FEM) provides a robust tool
for arbitrary RVE, material properties, and boundary conditions
(b.c.). In our case, the RVE has the shape of a cube, where one
voxel corresponds to one finite element. A brick element with
tri-linear shape functions was found appropriate [9]. Recently, a
new homogenization method of periodic composites has been
introduced, based on fast Fourier transformations (FFT)
[18,20]. The FFT homogenization in the discrete form may be
considered as a kind of FEM with good enough approximation
functions. Therefore, the mesh refinement makes no improve-
ment of results, as opposed to FEM. The FFT homogenization
will serve here only as an indicator of error obtained from FEM.

Drugan and Willis [7] showed that the RVE size should be
approximately two sphere diameters for a random distribution
of identical spheres in the case of elastic response. Gusev [11]
carried out a 3D FEM study on identical spheres in a matrix,
where the spheres occupied approximately 26% of volume and
the modulus contrast was around 20. He found the optimum
RVE size was around 3–5 times the sphere diameter. Similar
results have been obtained by Zeman and S̆ejnoha [33] for
analysis of real-world materials. Böhm and Han [4] reported
that relatively small RVE sizes can be used for apparent elastic
moduli but non-linear behavior required much larger sizes.
Though these findings are not directly applicable to the case of a
cement paste, results from the validation section are consistent.

The RVE may be subjected to three basic types of load:
displacements, tractions, or periodic boundary conditions.
Kinematic uniform boundary conditions (KUBC) are prescribed
as displacements u at the boundary Γ of RVE:

u ¼ Ed x; 8xaC; ð3Þ
where x is a coordinate tensor and E represents the macroscopic
prescribed strain tensor. Static uniform boundary conditions
(SUBC) are imposed as prescribed tractions σ on Γ:

rd n ¼ Rd n; 8xaC; ð4Þ
where n is the normal to Γ at x and Σ is the macroscopic
prescribed stress tensor.

The periodic boundary conditions mean in our case that the
opposite sides of the RVE share the same displacements.
Homogeneous strains are imposed over all finite elements to
load such RVE:

Fe ¼
Z

V

BTDTdV ; ð5Þ

where Fe is the node force vector of the element, B is the strain
interpolation matrix, D is the material stiffness matrix and T is
the matrix containing macroscopic prescribed strains.

After assembling the global stiffness matrix K and node
forces F, the reduced equation is solved with the conjugate
gradient method:

Kr ¼ F; ð6Þ
where the vector r contains node displacements.

Similar NIST code with the conjugate gradient method has
already been used for an analysis of cement pastes [9].
Presented algorithms have been implemented in an open-source
FEM software1, allowing an arbitrary mesh structure. The
results for special RVE were compared with exact analytical
results, e.g., two phase random material with equal shear
moduli, serial and parallel layers, or small contrast in material
properties [9].

The response of the RVE is not necessarily isotropic due to
statistical inhomogeneity such as early percolation. Averaging is
performed, assuming the same accumulated mechanical energy
W in anisotropic and isotropic material in the equilibrated RVE:

W ¼ 1
2
hϵi : hri ¼ 1

2
hϵi : Chom

iso : hϵi; ð7Þ

where Ciso
hom is the stiffness tensor of the isotropic material, 〈ϵ〉

and 〈σ〉 are the volume averages of strain and stress tensor over
RVE, respectively.

Huet [14] and Kanit et al. [17], among others, showed that
KUBC result in higher apparent effective moduli, if the RVE is
insufficiently small. On the other hand, SUBC lead to
considerably lower apparent effective moduli:

Capp
SUBCVC

app
PERIODICVC

app
KUBC: ð8Þ

Kanit et al. [17] found that the bias of apparent properties is
the lowest for the periodic boundary conditions when the RVE
size changes. However, when the RVE is large enough, all three
boundary conditions yield the same result.

http://cml.fsv.cvut.cz/~sifel
http://cml.fsv.cvut.cz/~sifel


Fig. 3. Possible configuration of split nodes in solid adjacent voxels.

Fig. 5. Young's modulus predicted from analytical homogenization, un/
percolated RVE, wcr = 0.5.
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3.4. Mesh generation for FEM

The simplest mesh is an equally spaced, uniform grid, where
one voxel corresponds to a brick element in the form of a cube
[9]. Preliminary simulation with only spanning clusters revealed
that the early-hydrated RVEs are too stiff when compared to
experimental data. The reason is in different contact type
between percolation and FEM; while percolation takes into
account a connection face-to-face, FEM works on common
displacements at nodes. It may happen that two adjacent brick
elements are in a spanning cluster, they share the same nodes
but belong to different cement grains, for example. In such a
case, the common displacements are separated in order to
reduce the stiffness of the RVE. A split node is introduced,
which replaces to some extent the contact elements and relax
concentrated stresses as well. The RVE with split node contains
only spanning clusters where the water-filled porosity subs-
titutes isolated voxels.

Consider any inner node in the RVE. Eight finite elements
intersect in that node and all share the common displacement.
To disconnect certain elements from that node, three possible
configurations exits, Fig. 3. Disconnection by a face (Fig. 3a)
needs additional 4 nodes, by an edge 2 nodes (Fig. 3b), and by a
vertex 1 node (Fig. 3c). Note that each node has three degrees of
freedom. Under practical simulations, the total amount of nodes
in the RVE increases up to 15% due to the introduction of the
split node.

Accuracy improvement is possible on the cement hydration
model as well as in the part of numerical homogenization.
Refinement of the mesh within the same RVE will verify only
FEM performance. Better results are expected when the
hydration model refines the voxel size and consequently the
mesh, maintaining one finite element per one voxel. After that,
Fig. 4. Effect of RVE size on percolation of solids, wcr = 0.5.
the results reflect the role of RVE size and numerical
homogenization performance.

4. Validation and discussion

Many experiments demonstrate that the modulus of elasticity
is almost directly proportional to the degree of hydration [5,16].
Cement pastes with a wcr in the range from 0.25 to 0.5 were
validated analytically and numerically, covering the range
routinely used in practice. The cement image reconstruction was
based on the autocorrelation functions from the NIST cement
database and the PSD was approximated from the Blaine
fineness [2,23].

4.1. Loose cement paste, wcr=0.5

The first example covers ordinary CEM I, wcr = 0.5, based
on the work of Kamali et al. [16]. They approximated the
evolution of E modulus with the function:

E ¼ 46:03ð1−fcapÞ3:16; ð9Þ

where fcap is a volume fraction of the capillary porosity from the
NIST model, decreasing during hydration. In this case, fcap is
calculated from the percolated RVE and is equal to one until the
percolation threshold of solids is reached.

In order to explore an effect of the RVE size, three samples
with edge lengths of 25, 50, 75 μm were generated using the
same PSD curve and autocorrelation functions [16]. The voxel
edge and the resolution are 1 μm and each representative cube
Fig. 6. Effect of percolation on E modulus, 25×25×25 μm, FEM–periodic b.c.,
wcr = 0.5.



Fig. 7. Effect of RVE size on E modulus, FEM–periodic b.c., split nodes, FFT,
wcr = 0.5.
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contained the largest possible cement grain, i.e., the diameter of
half of the RVE. The NIST model ran 1500 cycles at a constant
temperature 20°C for each case with the dissolution box of
3×3×3 μm. Fig. 4 displays percolation for one principal
direction at early ages, determined as the connected volume
fraction of all solid phases. It is obvious that a larger cement
grain fills the pore space better than smaller grains. Therefore,
the larger RVE percolates sooner but when the hydration degree
exceeds approximately 0.15, the percolation falls nearly on the
same curve.

Fig. 5 shows the E modulus as predicted from the two-level
analytical homogenization. The volume phase fractions were
taken from the RVE of 75 μm either as unpercolated or
percolated. The high final capillary porosity of this paste, 23%
at the degree of hydration of 0.87, makes the prediction less
accurate and modulus underestimation is typical for the self-
consistent scheme at the cement paste level [3].
Fig. 8. Effect of kinematic, static and periodic boundary conditions, degree of
hydration = 0.3 (a) and 0.9 (b), FEM, all with split nodes, wcr = 0.5.
Fig. 6 demonstrates an effect of percolation on Young's
modulus, as calculated via the FEM with periodic boundary
conditions, in the RVE of 25 μm. An unpercolated RVE with the
regular mesh yields non-zero apparent moduli from the
beginning of hydration. The reason has already been explained
and percolated RVE with split node is remedy.

Fig. 7 displays the effect of RVE size with split nodes, using
previous RVEs with percolated phases. While the edge size of
25 μm is too small and leads to stiffness underestimation at
early ages, the difference between 50 and 75 μm size is
negligible and the results correspond well to empirical formula
Eq. (9). The FFT method of the 75 μm RVE predicts
comparable values with the FEM. Note that FFT method does
not allow the split node algorithm and in this case contains only
percolated phases in the RVE. On the other hand, the stress
concentration at sharp corners is treated exactly.

The effect of RVE size on the apparent elastic properties was
explored on the RVEs with the edges of 10, 25, 50, 75 and
100 μm. Since the placement of digital spheres in initial cement
image is per se random, five RVEs from each size, with different
spatial configuration, were evaluated. The same dissolution box
3×3×3 μm was used during all simulations.

Fig. 8 shows the E moduli from FEM with three types of
boundary conditions at the degree of hydration of 0.3 and 0.9.
The bars represent the 95% confidence level from five random
simulations at each size. Both figures follow bounds from
inequality (8). Periodic boundary conditions exhibit the lowest
dependence on the RVE size and the size of 50 μm seems to be
representative enough. However, going to earlier stages of
Fig. 9. Difference among percolated, split node mesh and FFT, degree of
hydration = 0.3 (a) and 0.9 (b), periodic b.c. Note similar FFT results of various
RVE sizes, wcr = 0.5.



Fig. 10. Analytically predicted Young's modulus and Poisson's ratio using un/percolated volumetic fractions, wcr = 0.35.
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hydration, the statistical homogeneity and isotropy become
worse and the larger RVE may be necessary.

The results of the FFT method are theoretically exact, limited
only by wanted precision of iterations in numerical implemen-
tation. Therefore, the difference with FEM shows an error
caused by displacement approximations. Fig. 9 depicts the
performance for the degree of hydration of 0.3 and 0.9. The
highest E modulus yields a percolated RVE, followed by split
nodes, converging to those in the FFT method. The FFT results
testify that effective properties may be evaluated from several
random realizations of considerably smaller RVEs [17], e.g.,
10 μm. FEM exhibits poor approximation of displacements in
such a small RVE; hence, a larger RVE improves the
approximations rather than introducing new information from
the cement microstructure.

4.2. White cement paste, wcr = 0.35

Boumiz et al. [5] measured acoustic wave velocities and the
heat of hydration on a white cement paste of wcr = 0.35. Data
were recalculated in terms of Young's modulus, Poisson's ratio
and the degree of hydration. Our simulation ran on a
75×75×75 μm RVE with a 3×3×3 μm dissolution box and
1 μm voxel resolution. The results from the two-level analytical
homogenization are in Fig. 10 for un- and percolated RVEs. The
wcr of this paste corresponds roughly to 0.318, which is the
value where the percolation threshold of solids coincides with
the self-consistent scheme in terms of E modulus cut-off [3]. In
experiment, the Poisson's ratio decreases from 0.5; therefore,
Fig. 11. E modulus and Poisson's ratio for the voxel resolution of 1, 0.5 and 0.33 μm
RVE of 25×25×25 μm, wcr = 0.35.
the elastic properties of capillary water correspond to water-
filled porosity (Table 1).

This white cement paste served for a study exploring how
much the elastic properties are influenced when varying the
resolution and voxel dissolution of the NIST model. An initial
RVE of 25×25×25 μm was generated and consequently scaled
two and three times. This corresponds to the voxel resolution of
1, 0.5 and 0.33 μm. In other words, there are three self-similar
RVEs of 25 μm size with three above-mentioned resolutions.
The dissolution neighborhood around a voxel may contain six
or 26 possibly dissolved adjacent voxels, the latter
corresponding to the full box of 3×3×3 voxels. The choice
leads to a different RVE morphology and strongly influences
hydration kinetics. Larger boxes than 3×3×3 voxels are
physically unjustified since a dissolved phase cannot jump
over a solid voxel [10]. Fig. 11 illustrates the results from FEM
homogenization with split nodes and periodic boundary
conditions, for three resolutions and both amount of possibly
dissolved adjacent voxels. Although the results are different and
not far apart, neither the voxel resolution nor the amount of six
or 26 voxels influence the response dominantly. This suggests a
conclusion that variant RVE arrangements from the NIST
model at the same hydration degree and from the same cement
paste lead to similar homogenized elastic properties.

4.3. Dense cement paste, wcr=0.25

The dense microstructure of Kamali et al. [16], wcr = 0.25,
was reconstructed in the size of 75×75×75 μm and hydrated
and the amount of possibly dissolved voxels as six or 26, FEM–periodic b.c.,



Fig. 13. Effect of RVE size on E modulus, FEM–periodic b.c., split nodes, FFT.
Comparison with analytical homogenization from percolated RVE, wcr = 0.25.
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with a 1 μm voxel resolution, in the 3×3×3 μm dissolution
box. Fig. 12a shows the evolution of E modulus on the C–S–
H level as obtained via the analytical method of Mori–
Tanaka. Almost all initial C–S–HLD is finally changed to the
C–S–HHD type which causes an increase of E modulus on
this level. Fig. 12b displays the results on the cement paste
level. The percolation threshold plays a significant role and,
in this particular case, corresponds to the degree of hydration
as low as 0.015. A low wcr means that a high portion of
cement remains unhydrated in later stages due to unavailable
pore space; therefore, the maximum degree of hydration
attains approximately 0.62. The unhydrated clinker minerals
boost the stiffness of the cement paste together with a higher
portion of C–S–HHD. The empirical formula of Eq. (9) is not
well suited for the middle hydration period, as observed in
Fig. 12b.

Fig. 13 demonstrates the evolution of Young's modulus for
RVE sizes of 50 and 75 μm under periodic b.c. In early ages,
the FFT homogenization on the 75×75×75 RVE predicts a
higher E modulus than FEM which means that there is an
excessive amount of split nodes. The difference between 50
and 75 μm sizes is again not significant for the whole
hydration period, suggesting that 50 μm might be considered
as reasonable minimum size. When the initial unpercolated
RVE entered FEM homogenization, the E modulus would
already begin at 26.2 GPa instead of 0.001 GPa, which
illustrates the significance of percolation and the split node
algorithm.

The apparent moduli were explored again on RVEs of 10, 25,
50 and 75 μm. Five randomly generated and hydrated samples
were used for each size, having the same initial parameters of
Fig. 12. Young's modulus predicted analytically (a) on the C–S–H level by the
Mori–Tanaka method, (b) on the cement paste level by the self consistent
scheme, wcr = 0.25.
the NIST program as in the last simulation. Fig. 14 shows the
effect of boundary conditions on apparent elastic properties for
the hydration degrees of 0.3 and 0.62, respectively. The widest
95% confidence level was found for the static uniform boundary
condition, the other b.c. are comparable in the scatter. The
hydration degree of 0.3, which corresponds to the capillary
porosity fraction of 23.4%, requires rather larger RVE, as
evident from the fluctuation of mean values. A porosity fraction
of 4.4% is reached at the degree of hydration of 0.62, which
means that the contrast of elastic properties is reduced in terms
of their volume fractions; therefore, different b.c. lead to similar
results (Fig. 14b).

Fig. 15 displays the difference among percolated mesh, the
split nodes mesh and the FFT method for two hydration
degrees. All three configurations with periodic boundary
conditions are close in a well-hydrated RVE while for a lower
hydration degree the results from both meshes are different. The
Fig. 14. Effect of kinematic, static and periodic boundary conditions, degree of
hydration = 0.3 (a) and 0.62 (b), FEM, split nodes, wcr = 0.25.



Fig. 15. Difference among percolated, split node mesh and FFT, degree of
hydration = 0.3 (a) and 0.62 (b), periodic b.c., wcr = 0.25.
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convergence of apparent moduli was tested on the
100×100×100 μm RVE by means of the FFT homogenization.
The maximal relative difference 0.6% between 50 and 100 μm
was found in Young's modulus during the FFT homogenization.
This suggests that the RVE of 50 μm edge is appropriate at least
after the degree of hydration of 0.3.

5. Conclusion

This paper has presented a combination of the NIST cement
hydration model and the linear elastic homogenization
approach. Commonly used chemical reactions originating in
the cement chemistry together with additional parameters were
employed to reconstruct a digital image of hydrating cement
paste. The NIST model was enhanced for prediction of two
types of C–S–H, based on the confinement theory. Percolation
of solids, i.e., their connectivity, is the key for proper simulation
of early age elastic properties. Otherwise, the micromechanical
models predict a stiffer response of RVE at that period.

Two-level analytical homogenization was extended to early
ages, considering the percolation of solids. Validated wcrs in the
range from 0.25 to 0.5 testify that Young's moduli are
underestimated above wcr =0.318 and vice versa, using the
combination of the Mori–Tanaka and the self-consistent scheme
[3].

The percolation concept was further extended with split
nodes, minimizing stress concentration problems and allowing
simple tri-linear approximation of displacements in the FEM.
Kinematic, static and periodic boundary conditions were applied
in order to explore the role of RVE size on apparent elastic
properties. The periodic boundary conditions were found as the
most appropriate for the following reasons: small bias of results
of random realizations and excellent results even for small
RVEs. In validated wcrs, a RVE edge size of 50 μm seems to be
reasonable for determination of elastic properties via FEM.

The FFT-based homogenization served as an indicator of
FEM displacement approximations. The FEM with split nodes
on percolated RVEs yields similar values to FFT results in all
validated wcrs except small RVEs, e.g., 10 μm. Such small
RVEs were found reasonable for the FFT method since the
solution is limited only by numerical precision, not by the
selection of displacement approximations. If FEM used higher
approximation functions, smaller RVE would also be
reasonable.

All homogenization methods testify that the common
assumption of linearity between hydration degree and E
modulus is appropriate only for a wcr higher than approxi-
mately 0.35. Bellow that, the evolution of the E modulus has a
concave shape, similar to the square root function.
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